1  // SPDX-License-Identifier: GPL-2.0
2  
3  #include "linux/spinlock.h"
4  #include <linux/minmax.h>
5  #include "misc.h"
6  #include "ctree.h"
7  #include "space-info.h"
8  #include "sysfs.h"
9  #include "volumes.h"
10  #include "free-space-cache.h"
11  #include "ordered-data.h"
12  #include "transaction.h"
13  #include "block-group.h"
14  #include "fs.h"
15  #include "accessors.h"
16  #include "extent-tree.h"
17  
18  /*
19   * HOW DOES SPACE RESERVATION WORK
20   *
21   * If you want to know about delalloc specifically, there is a separate comment
22   * for that with the delalloc code.  This comment is about how the whole system
23   * works generally.
24   *
25   * BASIC CONCEPTS
26   *
27   *   1) space_info.  This is the ultimate arbiter of how much space we can use.
28   *   There's a description of the bytes_ fields with the struct declaration,
29   *   refer to that for specifics on each field.  Suffice it to say that for
30   *   reservations we care about total_bytes - SUM(space_info->bytes_) when
31   *   determining if there is space to make an allocation.  There is a space_info
32   *   for METADATA, SYSTEM, and DATA areas.
33   *
34   *   2) block_rsv's.  These are basically buckets for every different type of
35   *   metadata reservation we have.  You can see the comment in the block_rsv
36   *   code on the rules for each type, but generally block_rsv->reserved is how
37   *   much space is accounted for in space_info->bytes_may_use.
38   *
39   *   3) btrfs_calc*_size.  These are the worst case calculations we used based
40   *   on the number of items we will want to modify.  We have one for changing
41   *   items, and one for inserting new items.  Generally we use these helpers to
42   *   determine the size of the block reserves, and then use the actual bytes
43   *   values to adjust the space_info counters.
44   *
45   * MAKING RESERVATIONS, THE NORMAL CASE
46   *
47   *   We call into either btrfs_reserve_data_bytes() or
48   *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
49   *   num_bytes we want to reserve.
50   *
51   *   ->reserve
52   *     space_info->bytes_may_reserve += num_bytes
53   *
54   *   ->extent allocation
55   *     Call btrfs_add_reserved_bytes() which does
56   *     space_info->bytes_may_reserve -= num_bytes
57   *     space_info->bytes_reserved += extent_bytes
58   *
59   *   ->insert reference
60   *     Call btrfs_update_block_group() which does
61   *     space_info->bytes_reserved -= extent_bytes
62   *     space_info->bytes_used += extent_bytes
63   *
64   * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
65   *
66   *   Assume we are unable to simply make the reservation because we do not have
67   *   enough space
68   *
69   *   -> __reserve_bytes
70   *     create a reserve_ticket with ->bytes set to our reservation, add it to
71   *     the tail of space_info->tickets, kick async flush thread
72   *
73   *   ->handle_reserve_ticket
74   *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
75   *     on the ticket.
76   *
77   *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
78   *     Flushes various things attempting to free up space.
79   *
80   *   -> btrfs_try_granting_tickets()
81   *     This is called by anything that either subtracts space from
82   *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
83   *     space_info->total_bytes.  This loops through the ->priority_tickets and
84   *     then the ->tickets list checking to see if the reservation can be
85   *     completed.  If it can the space is added to space_info->bytes_may_use and
86   *     the ticket is woken up.
87   *
88   *   -> ticket wakeup
89   *     Check if ->bytes == 0, if it does we got our reservation and we can carry
90   *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
91   *     were interrupted.)
92   *
93   * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
94   *
95   *   Same as the above, except we add ourselves to the
96   *   space_info->priority_tickets, and we do not use ticket->wait, we simply
97   *   call flush_space() ourselves for the states that are safe for us to call
98   *   without deadlocking and hope for the best.
99   *
100   * THE FLUSHING STATES
101   *
102   *   Generally speaking we will have two cases for each state, a "nice" state
103   *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
104   *   reduce the locking over head on the various trees, and even to keep from
105   *   doing any work at all in the case of delayed refs.  Each of these delayed
106   *   things however hold reservations, and so letting them run allows us to
107   *   reclaim space so we can make new reservations.
108   *
109   *   FLUSH_DELAYED_ITEMS
110   *     Every inode has a delayed item to update the inode.  Take a simple write
111   *     for example, we would update the inode item at write time to update the
112   *     mtime, and then again at finish_ordered_io() time in order to update the
113   *     isize or bytes.  We keep these delayed items to coalesce these operations
114   *     into a single operation done on demand.  These are an easy way to reclaim
115   *     metadata space.
116   *
117   *   FLUSH_DELALLOC
118   *     Look at the delalloc comment to get an idea of how much space is reserved
119   *     for delayed allocation.  We can reclaim some of this space simply by
120   *     running delalloc, but usually we need to wait for ordered extents to
121   *     reclaim the bulk of this space.
122   *
123   *   FLUSH_DELAYED_REFS
124   *     We have a block reserve for the outstanding delayed refs space, and every
125   *     delayed ref operation holds a reservation.  Running these is a quick way
126   *     to reclaim space, but we want to hold this until the end because COW can
127   *     churn a lot and we can avoid making some extent tree modifications if we
128   *     are able to delay for as long as possible.
129   *
130   *   ALLOC_CHUNK
131   *     We will skip this the first time through space reservation, because of
132   *     overcommit and we don't want to have a lot of useless metadata space when
133   *     our worst case reservations will likely never come true.
134   *
135   *   RUN_DELAYED_IPUTS
136   *     If we're freeing inodes we're likely freeing checksums, file extent
137   *     items, and extent tree items.  Loads of space could be freed up by these
138   *     operations, however they won't be usable until the transaction commits.
139   *
140   *   COMMIT_TRANS
141   *     This will commit the transaction.  Historically we had a lot of logic
142   *     surrounding whether or not we'd commit the transaction, but this waits born
143   *     out of a pre-tickets era where we could end up committing the transaction
144   *     thousands of times in a row without making progress.  Now thanks to our
145   *     ticketing system we know if we're not making progress and can error
146   *     everybody out after a few commits rather than burning the disk hoping for
147   *     a different answer.
148   *
149   * OVERCOMMIT
150   *
151   *   Because we hold so many reservations for metadata we will allow you to
152   *   reserve more space than is currently free in the currently allocate
153   *   metadata space.  This only happens with metadata, data does not allow
154   *   overcommitting.
155   *
156   *   You can see the current logic for when we allow overcommit in
157   *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
158   *   is no unallocated space to be had, all reservations are kept within the
159   *   free space in the allocated metadata chunks.
160   *
161   *   Because of overcommitting, you generally want to use the
162   *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
163   *   thing with or without extra unallocated space.
164   */
165  
btrfs_space_info_used(const struct btrfs_space_info * s_info,bool may_use_included)166  u64 __pure btrfs_space_info_used(const struct btrfs_space_info *s_info,
167  			  bool may_use_included)
168  {
169  	ASSERT(s_info);
170  	return s_info->bytes_used + s_info->bytes_reserved +
171  		s_info->bytes_pinned + s_info->bytes_readonly +
172  		s_info->bytes_zone_unusable +
173  		(may_use_included ? s_info->bytes_may_use : 0);
174  }
175  
176  /*
177   * after adding space to the filesystem, we need to clear the full flags
178   * on all the space infos.
179   */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)180  void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
181  {
182  	struct list_head *head = &info->space_info;
183  	struct btrfs_space_info *found;
184  
185  	list_for_each_entry(found, head, list)
186  		found->full = 0;
187  }
188  
189  /*
190   * Block groups with more than this value (percents) of unusable space will be
191   * scheduled for background reclaim.
192   */
193  #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
194  
195  #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET			(10ULL)
196  
197  /*
198   * Calculate chunk size depending on volume type (regular or zoned).
199   */
calc_chunk_size(const struct btrfs_fs_info * fs_info,u64 flags)200  static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
201  {
202  	if (btrfs_is_zoned(fs_info))
203  		return fs_info->zone_size;
204  
205  	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
206  
207  	if (flags & BTRFS_BLOCK_GROUP_DATA)
208  		return BTRFS_MAX_DATA_CHUNK_SIZE;
209  	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
210  		return SZ_32M;
211  
212  	/* Handle BTRFS_BLOCK_GROUP_METADATA */
213  	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
214  		return SZ_1G;
215  
216  	return SZ_256M;
217  }
218  
219  /*
220   * Update default chunk size.
221   */
btrfs_update_space_info_chunk_size(struct btrfs_space_info * space_info,u64 chunk_size)222  void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
223  					u64 chunk_size)
224  {
225  	WRITE_ONCE(space_info->chunk_size, chunk_size);
226  }
227  
create_space_info(struct btrfs_fs_info * info,u64 flags)228  static int create_space_info(struct btrfs_fs_info *info, u64 flags)
229  {
230  
231  	struct btrfs_space_info *space_info;
232  	int i;
233  	int ret;
234  
235  	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
236  	if (!space_info)
237  		return -ENOMEM;
238  
239  	space_info->fs_info = info;
240  	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241  		INIT_LIST_HEAD(&space_info->block_groups[i]);
242  	init_rwsem(&space_info->groups_sem);
243  	spin_lock_init(&space_info->lock);
244  	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
245  	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
246  	INIT_LIST_HEAD(&space_info->ro_bgs);
247  	INIT_LIST_HEAD(&space_info->tickets);
248  	INIT_LIST_HEAD(&space_info->priority_tickets);
249  	space_info->clamp = 1;
250  	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
251  
252  	if (btrfs_is_zoned(info))
253  		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
254  
255  	ret = btrfs_sysfs_add_space_info_type(info, space_info);
256  	if (ret)
257  		return ret;
258  
259  	list_add(&space_info->list, &info->space_info);
260  	if (flags & BTRFS_BLOCK_GROUP_DATA)
261  		info->data_sinfo = space_info;
262  
263  	return ret;
264  }
265  
btrfs_init_space_info(struct btrfs_fs_info * fs_info)266  int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
267  {
268  	struct btrfs_super_block *disk_super;
269  	u64 features;
270  	u64 flags;
271  	int mixed = 0;
272  	int ret;
273  
274  	disk_super = fs_info->super_copy;
275  	if (!btrfs_super_root(disk_super))
276  		return -EINVAL;
277  
278  	features = btrfs_super_incompat_flags(disk_super);
279  	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
280  		mixed = 1;
281  
282  	flags = BTRFS_BLOCK_GROUP_SYSTEM;
283  	ret = create_space_info(fs_info, flags);
284  	if (ret)
285  		goto out;
286  
287  	if (mixed) {
288  		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
289  		ret = create_space_info(fs_info, flags);
290  	} else {
291  		flags = BTRFS_BLOCK_GROUP_METADATA;
292  		ret = create_space_info(fs_info, flags);
293  		if (ret)
294  			goto out;
295  
296  		flags = BTRFS_BLOCK_GROUP_DATA;
297  		ret = create_space_info(fs_info, flags);
298  	}
299  out:
300  	return ret;
301  }
302  
btrfs_add_bg_to_space_info(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)303  void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
304  				struct btrfs_block_group *block_group)
305  {
306  	struct btrfs_space_info *found;
307  	int factor, index;
308  
309  	factor = btrfs_bg_type_to_factor(block_group->flags);
310  
311  	found = btrfs_find_space_info(info, block_group->flags);
312  	ASSERT(found);
313  	spin_lock(&found->lock);
314  	found->total_bytes += block_group->length;
315  	found->disk_total += block_group->length * factor;
316  	found->bytes_used += block_group->used;
317  	found->disk_used += block_group->used * factor;
318  	found->bytes_readonly += block_group->bytes_super;
319  	btrfs_space_info_update_bytes_zone_unusable(info, found, block_group->zone_unusable);
320  	if (block_group->length > 0)
321  		found->full = 0;
322  	btrfs_try_granting_tickets(info, found);
323  	spin_unlock(&found->lock);
324  
325  	block_group->space_info = found;
326  
327  	index = btrfs_bg_flags_to_raid_index(block_group->flags);
328  	down_write(&found->groups_sem);
329  	list_add_tail(&block_group->list, &found->block_groups[index]);
330  	up_write(&found->groups_sem);
331  }
332  
btrfs_find_space_info(struct btrfs_fs_info * info,u64 flags)333  struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
334  					       u64 flags)
335  {
336  	struct list_head *head = &info->space_info;
337  	struct btrfs_space_info *found;
338  
339  	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
340  
341  	list_for_each_entry(found, head, list) {
342  		if (found->flags & flags)
343  			return found;
344  	}
345  	return NULL;
346  }
347  
calc_effective_data_chunk_size(struct btrfs_fs_info * fs_info)348  static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info)
349  {
350  	struct btrfs_space_info *data_sinfo;
351  	u64 data_chunk_size;
352  
353  	/*
354  	 * Calculate the data_chunk_size, space_info->chunk_size is the
355  	 * "optimal" chunk size based on the fs size.  However when we actually
356  	 * allocate the chunk we will strip this down further, making it no
357  	 * more than 10% of the disk or 1G, whichever is smaller.
358  	 *
359  	 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size)
360  	 * as it is.
361  	 */
362  	data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
363  	if (btrfs_is_zoned(fs_info))
364  		return data_sinfo->chunk_size;
365  	data_chunk_size = min(data_sinfo->chunk_size,
366  			      mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
367  	return min_t(u64, data_chunk_size, SZ_1G);
368  }
369  
calc_available_free_space(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info,enum btrfs_reserve_flush_enum flush)370  static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
371  			  const struct btrfs_space_info *space_info,
372  			  enum btrfs_reserve_flush_enum flush)
373  {
374  	u64 profile;
375  	u64 avail;
376  	u64 data_chunk_size;
377  	int factor;
378  
379  	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
380  		profile = btrfs_system_alloc_profile(fs_info);
381  	else
382  		profile = btrfs_metadata_alloc_profile(fs_info);
383  
384  	avail = atomic64_read(&fs_info->free_chunk_space);
385  
386  	/*
387  	 * If we have dup, raid1 or raid10 then only half of the free
388  	 * space is actually usable.  For raid56, the space info used
389  	 * doesn't include the parity drive, so we don't have to
390  	 * change the math
391  	 */
392  	factor = btrfs_bg_type_to_factor(profile);
393  	avail = div_u64(avail, factor);
394  	if (avail == 0)
395  		return 0;
396  
397  	data_chunk_size = calc_effective_data_chunk_size(fs_info);
398  
399  	/*
400  	 * Since data allocations immediately use block groups as part of the
401  	 * reservation, because we assume that data reservations will == actual
402  	 * usage, we could potentially overcommit and then immediately have that
403  	 * available space used by a data allocation, which could put us in a
404  	 * bind when we get close to filling the file system.
405  	 *
406  	 * To handle this simply remove the data_chunk_size from the available
407  	 * space.  If we are relatively empty this won't affect our ability to
408  	 * overcommit much, and if we're very close to full it'll keep us from
409  	 * getting into a position where we've given ourselves very little
410  	 * metadata wiggle room.
411  	 */
412  	if (avail <= data_chunk_size)
413  		return 0;
414  	avail -= data_chunk_size;
415  
416  	/*
417  	 * If we aren't flushing all things, let us overcommit up to
418  	 * 1/2th of the space. If we can flush, don't let us overcommit
419  	 * too much, let it overcommit up to 1/8 of the space.
420  	 */
421  	if (flush == BTRFS_RESERVE_FLUSH_ALL)
422  		avail >>= 3;
423  	else
424  		avail >>= 1;
425  
426  	/*
427  	 * On the zoned mode, we always allocate one zone as one chunk.
428  	 * Returning non-zone size alingned bytes here will result in
429  	 * less pressure for the async metadata reclaim process, and it
430  	 * will over-commit too much leading to ENOSPC. Align down to the
431  	 * zone size to avoid that.
432  	 */
433  	if (btrfs_is_zoned(fs_info))
434  		avail = ALIGN_DOWN(avail, fs_info->zone_size);
435  
436  	return avail;
437  }
438  
btrfs_can_overcommit(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)439  int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
440  			 const struct btrfs_space_info *space_info, u64 bytes,
441  			 enum btrfs_reserve_flush_enum flush)
442  {
443  	u64 avail;
444  	u64 used;
445  
446  	/* Don't overcommit when in mixed mode */
447  	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
448  		return 0;
449  
450  	used = btrfs_space_info_used(space_info, true);
451  	avail = calc_available_free_space(fs_info, space_info, flush);
452  
453  	if (used + bytes < space_info->total_bytes + avail)
454  		return 1;
455  	return 0;
456  }
457  
remove_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)458  static void remove_ticket(struct btrfs_space_info *space_info,
459  			  struct reserve_ticket *ticket)
460  {
461  	if (!list_empty(&ticket->list)) {
462  		list_del_init(&ticket->list);
463  		ASSERT(space_info->reclaim_size >= ticket->bytes);
464  		space_info->reclaim_size -= ticket->bytes;
465  	}
466  }
467  
468  /*
469   * This is for space we already have accounted in space_info->bytes_may_use, so
470   * basically when we're returning space from block_rsv's.
471   */
btrfs_try_granting_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)472  void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
473  				struct btrfs_space_info *space_info)
474  {
475  	struct list_head *head;
476  	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
477  
478  	lockdep_assert_held(&space_info->lock);
479  
480  	head = &space_info->priority_tickets;
481  again:
482  	while (!list_empty(head)) {
483  		struct reserve_ticket *ticket;
484  		u64 used = btrfs_space_info_used(space_info, true);
485  
486  		ticket = list_first_entry(head, struct reserve_ticket, list);
487  
488  		/* Check and see if our ticket can be satisfied now. */
489  		if ((used + ticket->bytes <= space_info->total_bytes) ||
490  		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
491  					 flush)) {
492  			btrfs_space_info_update_bytes_may_use(fs_info,
493  							      space_info,
494  							      ticket->bytes);
495  			remove_ticket(space_info, ticket);
496  			ticket->bytes = 0;
497  			space_info->tickets_id++;
498  			wake_up(&ticket->wait);
499  		} else {
500  			break;
501  		}
502  	}
503  
504  	if (head == &space_info->priority_tickets) {
505  		head = &space_info->tickets;
506  		flush = BTRFS_RESERVE_FLUSH_ALL;
507  		goto again;
508  	}
509  }
510  
511  #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
512  do {									\
513  	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
514  	spin_lock(&__rsv->lock);					\
515  	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
516  		   __rsv->size, __rsv->reserved);			\
517  	spin_unlock(&__rsv->lock);					\
518  } while (0)
519  
space_info_flag_to_str(const struct btrfs_space_info * space_info)520  static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
521  {
522  	switch (space_info->flags) {
523  	case BTRFS_BLOCK_GROUP_SYSTEM:
524  		return "SYSTEM";
525  	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
526  		return "DATA+METADATA";
527  	case BTRFS_BLOCK_GROUP_DATA:
528  		return "DATA";
529  	case BTRFS_BLOCK_GROUP_METADATA:
530  		return "METADATA";
531  	default:
532  		return "UNKNOWN";
533  	}
534  }
535  
dump_global_block_rsv(struct btrfs_fs_info * fs_info)536  static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
537  {
538  	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
539  	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
540  	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
541  	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
542  	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
543  }
544  
__btrfs_dump_space_info(const struct btrfs_fs_info * fs_info,const struct btrfs_space_info * info)545  static void __btrfs_dump_space_info(const struct btrfs_fs_info *fs_info,
546  				    const struct btrfs_space_info *info)
547  {
548  	const char *flag_str = space_info_flag_to_str(info);
549  	lockdep_assert_held(&info->lock);
550  
551  	/* The free space could be negative in case of overcommit */
552  	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
553  		   flag_str,
554  		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
555  		   info->full ? "" : "not ");
556  	btrfs_info(fs_info,
557  "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
558  		info->total_bytes, info->bytes_used, info->bytes_pinned,
559  		info->bytes_reserved, info->bytes_may_use,
560  		info->bytes_readonly, info->bytes_zone_unusable);
561  }
562  
btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)563  void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
564  			   struct btrfs_space_info *info, u64 bytes,
565  			   int dump_block_groups)
566  {
567  	struct btrfs_block_group *cache;
568  	u64 total_avail = 0;
569  	int index = 0;
570  
571  	spin_lock(&info->lock);
572  	__btrfs_dump_space_info(fs_info, info);
573  	dump_global_block_rsv(fs_info);
574  	spin_unlock(&info->lock);
575  
576  	if (!dump_block_groups)
577  		return;
578  
579  	down_read(&info->groups_sem);
580  again:
581  	list_for_each_entry(cache, &info->block_groups[index], list) {
582  		u64 avail;
583  
584  		spin_lock(&cache->lock);
585  		avail = cache->length - cache->used - cache->pinned -
586  			cache->reserved - cache->bytes_super - cache->zone_unusable;
587  		btrfs_info(fs_info,
588  "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
589  			   cache->start, cache->length, cache->used, cache->pinned,
590  			   cache->reserved, cache->delalloc_bytes,
591  			   cache->bytes_super, cache->zone_unusable,
592  			   avail, cache->ro ? "[readonly]" : "");
593  		spin_unlock(&cache->lock);
594  		btrfs_dump_free_space(cache, bytes);
595  		total_avail += avail;
596  	}
597  	if (++index < BTRFS_NR_RAID_TYPES)
598  		goto again;
599  	up_read(&info->groups_sem);
600  
601  	btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
602  }
603  
calc_reclaim_items_nr(const struct btrfs_fs_info * fs_info,u64 to_reclaim)604  static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
605  					u64 to_reclaim)
606  {
607  	u64 bytes;
608  	u64 nr;
609  
610  	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
611  	nr = div64_u64(to_reclaim, bytes);
612  	if (!nr)
613  		nr = 1;
614  	return nr;
615  }
616  
617  /*
618   * shrink metadata reservation for delalloc
619   */
shrink_delalloc(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 to_reclaim,bool wait_ordered,bool for_preempt)620  static void shrink_delalloc(struct btrfs_fs_info *fs_info,
621  			    struct btrfs_space_info *space_info,
622  			    u64 to_reclaim, bool wait_ordered,
623  			    bool for_preempt)
624  {
625  	struct btrfs_trans_handle *trans;
626  	u64 delalloc_bytes;
627  	u64 ordered_bytes;
628  	u64 items;
629  	long time_left;
630  	int loops;
631  
632  	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
633  	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
634  	if (delalloc_bytes == 0 && ordered_bytes == 0)
635  		return;
636  
637  	/* Calc the number of the pages we need flush for space reservation */
638  	if (to_reclaim == U64_MAX) {
639  		items = U64_MAX;
640  	} else {
641  		/*
642  		 * to_reclaim is set to however much metadata we need to
643  		 * reclaim, but reclaiming that much data doesn't really track
644  		 * exactly.  What we really want to do is reclaim full inode's
645  		 * worth of reservations, however that's not available to us
646  		 * here.  We will take a fraction of the delalloc bytes for our
647  		 * flushing loops and hope for the best.  Delalloc will expand
648  		 * the amount we write to cover an entire dirty extent, which
649  		 * will reclaim the metadata reservation for that range.  If
650  		 * it's not enough subsequent flush stages will be more
651  		 * aggressive.
652  		 */
653  		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
654  		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
655  	}
656  
657  	trans = current->journal_info;
658  
659  	/*
660  	 * If we are doing more ordered than delalloc we need to just wait on
661  	 * ordered extents, otherwise we'll waste time trying to flush delalloc
662  	 * that likely won't give us the space back we need.
663  	 */
664  	if (ordered_bytes > delalloc_bytes && !for_preempt)
665  		wait_ordered = true;
666  
667  	loops = 0;
668  	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
669  		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
670  		long nr_pages = min_t(u64, temp, LONG_MAX);
671  		int async_pages;
672  
673  		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
674  
675  		/*
676  		 * We need to make sure any outstanding async pages are now
677  		 * processed before we continue.  This is because things like
678  		 * sync_inode() try to be smart and skip writing if the inode is
679  		 * marked clean.  We don't use filemap_fwrite for flushing
680  		 * because we want to control how many pages we write out at a
681  		 * time, thus this is the only safe way to make sure we've
682  		 * waited for outstanding compressed workers to have started
683  		 * their jobs and thus have ordered extents set up properly.
684  		 *
685  		 * This exists because we do not want to wait for each
686  		 * individual inode to finish its async work, we simply want to
687  		 * start the IO on everybody, and then come back here and wait
688  		 * for all of the async work to catch up.  Once we're done with
689  		 * that we know we'll have ordered extents for everything and we
690  		 * can decide if we wait for that or not.
691  		 *
692  		 * If we choose to replace this in the future, make absolutely
693  		 * sure that the proper waiting is being done in the async case,
694  		 * as there have been bugs in that area before.
695  		 */
696  		async_pages = atomic_read(&fs_info->async_delalloc_pages);
697  		if (!async_pages)
698  			goto skip_async;
699  
700  		/*
701  		 * We don't want to wait forever, if we wrote less pages in this
702  		 * loop than we have outstanding, only wait for that number of
703  		 * pages, otherwise we can wait for all async pages to finish
704  		 * before continuing.
705  		 */
706  		if (async_pages > nr_pages)
707  			async_pages -= nr_pages;
708  		else
709  			async_pages = 0;
710  		wait_event(fs_info->async_submit_wait,
711  			   atomic_read(&fs_info->async_delalloc_pages) <=
712  			   async_pages);
713  skip_async:
714  		loops++;
715  		if (wait_ordered && !trans) {
716  			btrfs_wait_ordered_roots(fs_info, items, NULL);
717  		} else {
718  			time_left = schedule_timeout_killable(1);
719  			if (time_left)
720  				break;
721  		}
722  
723  		/*
724  		 * If we are for preemption we just want a one-shot of delalloc
725  		 * flushing so we can stop flushing if we decide we don't need
726  		 * to anymore.
727  		 */
728  		if (for_preempt)
729  			break;
730  
731  		spin_lock(&space_info->lock);
732  		if (list_empty(&space_info->tickets) &&
733  		    list_empty(&space_info->priority_tickets)) {
734  			spin_unlock(&space_info->lock);
735  			break;
736  		}
737  		spin_unlock(&space_info->lock);
738  
739  		delalloc_bytes = percpu_counter_sum_positive(
740  						&fs_info->delalloc_bytes);
741  		ordered_bytes = percpu_counter_sum_positive(
742  						&fs_info->ordered_bytes);
743  	}
744  }
745  
746  /*
747   * Try to flush some data based on policy set by @state. This is only advisory
748   * and may fail for various reasons. The caller is supposed to examine the
749   * state of @space_info to detect the outcome.
750   */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,enum btrfs_flush_state state,bool for_preempt)751  static void flush_space(struct btrfs_fs_info *fs_info,
752  		       struct btrfs_space_info *space_info, u64 num_bytes,
753  		       enum btrfs_flush_state state, bool for_preempt)
754  {
755  	struct btrfs_root *root = fs_info->tree_root;
756  	struct btrfs_trans_handle *trans;
757  	int nr;
758  	int ret = 0;
759  
760  	switch (state) {
761  	case FLUSH_DELAYED_ITEMS_NR:
762  	case FLUSH_DELAYED_ITEMS:
763  		if (state == FLUSH_DELAYED_ITEMS_NR)
764  			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
765  		else
766  			nr = -1;
767  
768  		trans = btrfs_join_transaction_nostart(root);
769  		if (IS_ERR(trans)) {
770  			ret = PTR_ERR(trans);
771  			if (ret == -ENOENT)
772  				ret = 0;
773  			break;
774  		}
775  		ret = btrfs_run_delayed_items_nr(trans, nr);
776  		btrfs_end_transaction(trans);
777  		break;
778  	case FLUSH_DELALLOC:
779  	case FLUSH_DELALLOC_WAIT:
780  	case FLUSH_DELALLOC_FULL:
781  		if (state == FLUSH_DELALLOC_FULL)
782  			num_bytes = U64_MAX;
783  		shrink_delalloc(fs_info, space_info, num_bytes,
784  				state != FLUSH_DELALLOC, for_preempt);
785  		break;
786  	case FLUSH_DELAYED_REFS_NR:
787  	case FLUSH_DELAYED_REFS:
788  		trans = btrfs_join_transaction_nostart(root);
789  		if (IS_ERR(trans)) {
790  			ret = PTR_ERR(trans);
791  			if (ret == -ENOENT)
792  				ret = 0;
793  			break;
794  		}
795  		if (state == FLUSH_DELAYED_REFS_NR)
796  			btrfs_run_delayed_refs(trans, num_bytes);
797  		else
798  			btrfs_run_delayed_refs(trans, 0);
799  		btrfs_end_transaction(trans);
800  		break;
801  	case ALLOC_CHUNK:
802  	case ALLOC_CHUNK_FORCE:
803  		trans = btrfs_join_transaction(root);
804  		if (IS_ERR(trans)) {
805  			ret = PTR_ERR(trans);
806  			break;
807  		}
808  		ret = btrfs_chunk_alloc(trans,
809  				btrfs_get_alloc_profile(fs_info, space_info->flags),
810  				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
811  					CHUNK_ALLOC_FORCE);
812  		btrfs_end_transaction(trans);
813  
814  		if (ret > 0 || ret == -ENOSPC)
815  			ret = 0;
816  		break;
817  	case RUN_DELAYED_IPUTS:
818  		/*
819  		 * If we have pending delayed iputs then we could free up a
820  		 * bunch of pinned space, so make sure we run the iputs before
821  		 * we do our pinned bytes check below.
822  		 */
823  		btrfs_run_delayed_iputs(fs_info);
824  		btrfs_wait_on_delayed_iputs(fs_info);
825  		break;
826  	case COMMIT_TRANS:
827  		ASSERT(current->journal_info == NULL);
828  		/*
829  		 * We don't want to start a new transaction, just attach to the
830  		 * current one or wait it fully commits in case its commit is
831  		 * happening at the moment. Note: we don't use a nostart join
832  		 * because that does not wait for a transaction to fully commit
833  		 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
834  		 */
835  		ret = btrfs_commit_current_transaction(root);
836  		break;
837  	default:
838  		ret = -ENOSPC;
839  		break;
840  	}
841  
842  	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
843  				ret, for_preempt);
844  	return;
845  }
846  
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info)847  static u64 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
848  					    const struct btrfs_space_info *space_info)
849  {
850  	u64 used;
851  	u64 avail;
852  	u64 to_reclaim = space_info->reclaim_size;
853  
854  	lockdep_assert_held(&space_info->lock);
855  
856  	avail = calc_available_free_space(fs_info, space_info,
857  					  BTRFS_RESERVE_FLUSH_ALL);
858  	used = btrfs_space_info_used(space_info, true);
859  
860  	/*
861  	 * We may be flushing because suddenly we have less space than we had
862  	 * before, and now we're well over-committed based on our current free
863  	 * space.  If that's the case add in our overage so we make sure to put
864  	 * appropriate pressure on the flushing state machine.
865  	 */
866  	if (space_info->total_bytes + avail < used)
867  		to_reclaim += used - (space_info->total_bytes + avail);
868  
869  	return to_reclaim;
870  }
871  
need_preemptive_reclaim(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info)872  static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
873  				    const struct btrfs_space_info *space_info)
874  {
875  	const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
876  	u64 ordered, delalloc;
877  	u64 thresh;
878  	u64 used;
879  
880  	thresh = mult_perc(space_info->total_bytes, 90);
881  
882  	lockdep_assert_held(&space_info->lock);
883  
884  	/* If we're just plain full then async reclaim just slows us down. */
885  	if ((space_info->bytes_used + space_info->bytes_reserved +
886  	     global_rsv_size) >= thresh)
887  		return false;
888  
889  	used = space_info->bytes_may_use + space_info->bytes_pinned;
890  
891  	/* The total flushable belongs to the global rsv, don't flush. */
892  	if (global_rsv_size >= used)
893  		return false;
894  
895  	/*
896  	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
897  	 * that devoted to other reservations then there's no sense in flushing,
898  	 * we don't have a lot of things that need flushing.
899  	 */
900  	if (used - global_rsv_size <= SZ_128M)
901  		return false;
902  
903  	/*
904  	 * We have tickets queued, bail so we don't compete with the async
905  	 * flushers.
906  	 */
907  	if (space_info->reclaim_size)
908  		return false;
909  
910  	/*
911  	 * If we have over half of the free space occupied by reservations or
912  	 * pinned then we want to start flushing.
913  	 *
914  	 * We do not do the traditional thing here, which is to say
915  	 *
916  	 *   if (used >= ((total_bytes + avail) / 2))
917  	 *     return 1;
918  	 *
919  	 * because this doesn't quite work how we want.  If we had more than 50%
920  	 * of the space_info used by bytes_used and we had 0 available we'd just
921  	 * constantly run the background flusher.  Instead we want it to kick in
922  	 * if our reclaimable space exceeds our clamped free space.
923  	 *
924  	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
925  	 * the following:
926  	 *
927  	 * Amount of RAM        Minimum threshold       Maximum threshold
928  	 *
929  	 *        256GiB                     1GiB                  128GiB
930  	 *        128GiB                   512MiB                   64GiB
931  	 *         64GiB                   256MiB                   32GiB
932  	 *         32GiB                   128MiB                   16GiB
933  	 *         16GiB                    64MiB                    8GiB
934  	 *
935  	 * These are the range our thresholds will fall in, corresponding to how
936  	 * much delalloc we need for the background flusher to kick in.
937  	 */
938  
939  	thresh = calc_available_free_space(fs_info, space_info,
940  					   BTRFS_RESERVE_FLUSH_ALL);
941  	used = space_info->bytes_used + space_info->bytes_reserved +
942  	       space_info->bytes_readonly + global_rsv_size;
943  	if (used < space_info->total_bytes)
944  		thresh += space_info->total_bytes - used;
945  	thresh >>= space_info->clamp;
946  
947  	used = space_info->bytes_pinned;
948  
949  	/*
950  	 * If we have more ordered bytes than delalloc bytes then we're either
951  	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
952  	 * around.  Preemptive flushing is only useful in that it can free up
953  	 * space before tickets need to wait for things to finish.  In the case
954  	 * of ordered extents, preemptively waiting on ordered extents gets us
955  	 * nothing, if our reservations are tied up in ordered extents we'll
956  	 * simply have to slow down writers by forcing them to wait on ordered
957  	 * extents.
958  	 *
959  	 * In the case that ordered is larger than delalloc, only include the
960  	 * block reserves that we would actually be able to directly reclaim
961  	 * from.  In this case if we're heavy on metadata operations this will
962  	 * clearly be heavy enough to warrant preemptive flushing.  In the case
963  	 * of heavy DIO or ordered reservations, preemptive flushing will just
964  	 * waste time and cause us to slow down.
965  	 *
966  	 * We want to make sure we truly are maxed out on ordered however, so
967  	 * cut ordered in half, and if it's still higher than delalloc then we
968  	 * can keep flushing.  This is to avoid the case where we start
969  	 * flushing, and now delalloc == ordered and we stop preemptively
970  	 * flushing when we could still have several gigs of delalloc to flush.
971  	 */
972  	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
973  	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
974  	if (ordered >= delalloc)
975  		used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
976  			btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
977  	else
978  		used += space_info->bytes_may_use - global_rsv_size;
979  
980  	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
981  		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
982  }
983  
steal_from_global_rsv(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)984  static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
985  				  struct btrfs_space_info *space_info,
986  				  struct reserve_ticket *ticket)
987  {
988  	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
989  	u64 min_bytes;
990  
991  	if (!ticket->steal)
992  		return false;
993  
994  	if (global_rsv->space_info != space_info)
995  		return false;
996  
997  	spin_lock(&global_rsv->lock);
998  	min_bytes = mult_perc(global_rsv->size, 10);
999  	if (global_rsv->reserved < min_bytes + ticket->bytes) {
1000  		spin_unlock(&global_rsv->lock);
1001  		return false;
1002  	}
1003  	global_rsv->reserved -= ticket->bytes;
1004  	remove_ticket(space_info, ticket);
1005  	ticket->bytes = 0;
1006  	wake_up(&ticket->wait);
1007  	space_info->tickets_id++;
1008  	if (global_rsv->reserved < global_rsv->size)
1009  		global_rsv->full = 0;
1010  	spin_unlock(&global_rsv->lock);
1011  
1012  	return true;
1013  }
1014  
1015  /*
1016   * We've exhausted our flushing, start failing tickets.
1017   *
1018   * @fs_info - fs_info for this fs
1019   * @space_info - the space info we were flushing
1020   *
1021   * We call this when we've exhausted our flushing ability and haven't made
1022   * progress in satisfying tickets.  The reservation code handles tickets in
1023   * order, so if there is a large ticket first and then smaller ones we could
1024   * very well satisfy the smaller tickets.  This will attempt to wake up any
1025   * tickets in the list to catch this case.
1026   *
1027   * This function returns true if it was able to make progress by clearing out
1028   * other tickets, or if it stumbles across a ticket that was smaller than the
1029   * first ticket.
1030   */
maybe_fail_all_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1031  static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1032  				   struct btrfs_space_info *space_info)
1033  {
1034  	struct reserve_ticket *ticket;
1035  	u64 tickets_id = space_info->tickets_id;
1036  	const bool aborted = BTRFS_FS_ERROR(fs_info);
1037  
1038  	trace_btrfs_fail_all_tickets(fs_info, space_info);
1039  
1040  	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1041  		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1042  		__btrfs_dump_space_info(fs_info, space_info);
1043  	}
1044  
1045  	while (!list_empty(&space_info->tickets) &&
1046  	       tickets_id == space_info->tickets_id) {
1047  		ticket = list_first_entry(&space_info->tickets,
1048  					  struct reserve_ticket, list);
1049  
1050  		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1051  			return true;
1052  
1053  		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1054  			btrfs_info(fs_info, "failing ticket with %llu bytes",
1055  				   ticket->bytes);
1056  
1057  		remove_ticket(space_info, ticket);
1058  		if (aborted)
1059  			ticket->error = -EIO;
1060  		else
1061  			ticket->error = -ENOSPC;
1062  		wake_up(&ticket->wait);
1063  
1064  		/*
1065  		 * We're just throwing tickets away, so more flushing may not
1066  		 * trip over btrfs_try_granting_tickets, so we need to call it
1067  		 * here to see if we can make progress with the next ticket in
1068  		 * the list.
1069  		 */
1070  		if (!aborted)
1071  			btrfs_try_granting_tickets(fs_info, space_info);
1072  	}
1073  	return (tickets_id != space_info->tickets_id);
1074  }
1075  
1076  /*
1077   * This is for normal flushers, we can wait all goddamned day if we want to.  We
1078   * will loop and continuously try to flush as long as we are making progress.
1079   * We count progress as clearing off tickets each time we have to loop.
1080   */
btrfs_async_reclaim_metadata_space(struct work_struct * work)1081  static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1082  {
1083  	struct btrfs_fs_info *fs_info;
1084  	struct btrfs_space_info *space_info;
1085  	u64 to_reclaim;
1086  	enum btrfs_flush_state flush_state;
1087  	int commit_cycles = 0;
1088  	u64 last_tickets_id;
1089  
1090  	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1091  	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1092  
1093  	spin_lock(&space_info->lock);
1094  	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1095  	if (!to_reclaim) {
1096  		space_info->flush = 0;
1097  		spin_unlock(&space_info->lock);
1098  		return;
1099  	}
1100  	last_tickets_id = space_info->tickets_id;
1101  	spin_unlock(&space_info->lock);
1102  
1103  	flush_state = FLUSH_DELAYED_ITEMS_NR;
1104  	do {
1105  		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1106  		spin_lock(&space_info->lock);
1107  		if (list_empty(&space_info->tickets)) {
1108  			space_info->flush = 0;
1109  			spin_unlock(&space_info->lock);
1110  			return;
1111  		}
1112  		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1113  							      space_info);
1114  		if (last_tickets_id == space_info->tickets_id) {
1115  			flush_state++;
1116  		} else {
1117  			last_tickets_id = space_info->tickets_id;
1118  			flush_state = FLUSH_DELAYED_ITEMS_NR;
1119  			if (commit_cycles)
1120  				commit_cycles--;
1121  		}
1122  
1123  		/*
1124  		 * We do not want to empty the system of delalloc unless we're
1125  		 * under heavy pressure, so allow one trip through the flushing
1126  		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1127  		 */
1128  		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1129  			flush_state++;
1130  
1131  		/*
1132  		 * We don't want to force a chunk allocation until we've tried
1133  		 * pretty hard to reclaim space.  Think of the case where we
1134  		 * freed up a bunch of space and so have a lot of pinned space
1135  		 * to reclaim.  We would rather use that than possibly create a
1136  		 * underutilized metadata chunk.  So if this is our first run
1137  		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1138  		 * commit the transaction.  If nothing has changed the next go
1139  		 * around then we can force a chunk allocation.
1140  		 */
1141  		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1142  			flush_state++;
1143  
1144  		if (flush_state > COMMIT_TRANS) {
1145  			commit_cycles++;
1146  			if (commit_cycles > 2) {
1147  				if (maybe_fail_all_tickets(fs_info, space_info)) {
1148  					flush_state = FLUSH_DELAYED_ITEMS_NR;
1149  					commit_cycles--;
1150  				} else {
1151  					space_info->flush = 0;
1152  				}
1153  			} else {
1154  				flush_state = FLUSH_DELAYED_ITEMS_NR;
1155  			}
1156  		}
1157  		spin_unlock(&space_info->lock);
1158  	} while (flush_state <= COMMIT_TRANS);
1159  }
1160  
1161  /*
1162   * This handles pre-flushing of metadata space before we get to the point that
1163   * we need to start blocking threads on tickets.  The logic here is different
1164   * from the other flush paths because it doesn't rely on tickets to tell us how
1165   * much we need to flush, instead it attempts to keep us below the 80% full
1166   * watermark of space by flushing whichever reservation pool is currently the
1167   * largest.
1168   */
btrfs_preempt_reclaim_metadata_space(struct work_struct * work)1169  static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1170  {
1171  	struct btrfs_fs_info *fs_info;
1172  	struct btrfs_space_info *space_info;
1173  	struct btrfs_block_rsv *delayed_block_rsv;
1174  	struct btrfs_block_rsv *delayed_refs_rsv;
1175  	struct btrfs_block_rsv *global_rsv;
1176  	struct btrfs_block_rsv *trans_rsv;
1177  	int loops = 0;
1178  
1179  	fs_info = container_of(work, struct btrfs_fs_info,
1180  			       preempt_reclaim_work);
1181  	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1182  	delayed_block_rsv = &fs_info->delayed_block_rsv;
1183  	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1184  	global_rsv = &fs_info->global_block_rsv;
1185  	trans_rsv = &fs_info->trans_block_rsv;
1186  
1187  	spin_lock(&space_info->lock);
1188  	while (need_preemptive_reclaim(fs_info, space_info)) {
1189  		enum btrfs_flush_state flush;
1190  		u64 delalloc_size = 0;
1191  		u64 to_reclaim, block_rsv_size;
1192  		const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1193  
1194  		loops++;
1195  
1196  		/*
1197  		 * We don't have a precise counter for the metadata being
1198  		 * reserved for delalloc, so we'll approximate it by subtracting
1199  		 * out the block rsv's space from the bytes_may_use.  If that
1200  		 * amount is higher than the individual reserves, then we can
1201  		 * assume it's tied up in delalloc reservations.
1202  		 */
1203  		block_rsv_size = global_rsv_size +
1204  			btrfs_block_rsv_reserved(delayed_block_rsv) +
1205  			btrfs_block_rsv_reserved(delayed_refs_rsv) +
1206  			btrfs_block_rsv_reserved(trans_rsv);
1207  		if (block_rsv_size < space_info->bytes_may_use)
1208  			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1209  
1210  		/*
1211  		 * We don't want to include the global_rsv in our calculation,
1212  		 * because that's space we can't touch.  Subtract it from the
1213  		 * block_rsv_size for the next checks.
1214  		 */
1215  		block_rsv_size -= global_rsv_size;
1216  
1217  		/*
1218  		 * We really want to avoid flushing delalloc too much, as it
1219  		 * could result in poor allocation patterns, so only flush it if
1220  		 * it's larger than the rest of the pools combined.
1221  		 */
1222  		if (delalloc_size > block_rsv_size) {
1223  			to_reclaim = delalloc_size;
1224  			flush = FLUSH_DELALLOC;
1225  		} else if (space_info->bytes_pinned >
1226  			   (btrfs_block_rsv_reserved(delayed_block_rsv) +
1227  			    btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1228  			to_reclaim = space_info->bytes_pinned;
1229  			flush = COMMIT_TRANS;
1230  		} else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1231  			   btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1232  			to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1233  			flush = FLUSH_DELAYED_ITEMS_NR;
1234  		} else {
1235  			to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1236  			flush = FLUSH_DELAYED_REFS_NR;
1237  		}
1238  
1239  		spin_unlock(&space_info->lock);
1240  
1241  		/*
1242  		 * We don't want to reclaim everything, just a portion, so scale
1243  		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1244  		 * reclaim 1 items worth.
1245  		 */
1246  		to_reclaim >>= 2;
1247  		if (!to_reclaim)
1248  			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1249  		flush_space(fs_info, space_info, to_reclaim, flush, true);
1250  		cond_resched();
1251  		spin_lock(&space_info->lock);
1252  	}
1253  
1254  	/* We only went through once, back off our clamping. */
1255  	if (loops == 1 && !space_info->reclaim_size)
1256  		space_info->clamp = max(1, space_info->clamp - 1);
1257  	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1258  	spin_unlock(&space_info->lock);
1259  }
1260  
1261  /*
1262   * FLUSH_DELALLOC_WAIT:
1263   *   Space is freed from flushing delalloc in one of two ways.
1264   *
1265   *   1) compression is on and we allocate less space than we reserved
1266   *   2) we are overwriting existing space
1267   *
1268   *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1269   *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1270   *   length to ->bytes_reserved, and subtracts the reserved space from
1271   *   ->bytes_may_use.
1272   *
1273   *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1274   *   extent in the range we are overwriting, which creates a delayed ref for
1275   *   that freed extent.  This however is not reclaimed until the transaction
1276   *   commits, thus the next stages.
1277   *
1278   * RUN_DELAYED_IPUTS
1279   *   If we are freeing inodes, we want to make sure all delayed iputs have
1280   *   completed, because they could have been on an inode with i_nlink == 0, and
1281   *   thus have been truncated and freed up space.  But again this space is not
1282   *   immediately re-usable, it comes in the form of a delayed ref, which must be
1283   *   run and then the transaction must be committed.
1284   *
1285   * COMMIT_TRANS
1286   *   This is where we reclaim all of the pinned space generated by running the
1287   *   iputs
1288   *
1289   * ALLOC_CHUNK_FORCE
1290   *   For data we start with alloc chunk force, however we could have been full
1291   *   before, and then the transaction commit could have freed new block groups,
1292   *   so if we now have space to allocate do the force chunk allocation.
1293   */
1294  static const enum btrfs_flush_state data_flush_states[] = {
1295  	FLUSH_DELALLOC_FULL,
1296  	RUN_DELAYED_IPUTS,
1297  	COMMIT_TRANS,
1298  	ALLOC_CHUNK_FORCE,
1299  };
1300  
btrfs_async_reclaim_data_space(struct work_struct * work)1301  static void btrfs_async_reclaim_data_space(struct work_struct *work)
1302  {
1303  	struct btrfs_fs_info *fs_info;
1304  	struct btrfs_space_info *space_info;
1305  	u64 last_tickets_id;
1306  	enum btrfs_flush_state flush_state = 0;
1307  
1308  	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1309  	space_info = fs_info->data_sinfo;
1310  
1311  	spin_lock(&space_info->lock);
1312  	if (list_empty(&space_info->tickets)) {
1313  		space_info->flush = 0;
1314  		spin_unlock(&space_info->lock);
1315  		return;
1316  	}
1317  	last_tickets_id = space_info->tickets_id;
1318  	spin_unlock(&space_info->lock);
1319  
1320  	while (!space_info->full) {
1321  		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1322  		spin_lock(&space_info->lock);
1323  		if (list_empty(&space_info->tickets)) {
1324  			space_info->flush = 0;
1325  			spin_unlock(&space_info->lock);
1326  			return;
1327  		}
1328  
1329  		/* Something happened, fail everything and bail. */
1330  		if (BTRFS_FS_ERROR(fs_info))
1331  			goto aborted_fs;
1332  		last_tickets_id = space_info->tickets_id;
1333  		spin_unlock(&space_info->lock);
1334  	}
1335  
1336  	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1337  		flush_space(fs_info, space_info, U64_MAX,
1338  			    data_flush_states[flush_state], false);
1339  		spin_lock(&space_info->lock);
1340  		if (list_empty(&space_info->tickets)) {
1341  			space_info->flush = 0;
1342  			spin_unlock(&space_info->lock);
1343  			return;
1344  		}
1345  
1346  		if (last_tickets_id == space_info->tickets_id) {
1347  			flush_state++;
1348  		} else {
1349  			last_tickets_id = space_info->tickets_id;
1350  			flush_state = 0;
1351  		}
1352  
1353  		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1354  			if (space_info->full) {
1355  				if (maybe_fail_all_tickets(fs_info, space_info))
1356  					flush_state = 0;
1357  				else
1358  					space_info->flush = 0;
1359  			} else {
1360  				flush_state = 0;
1361  			}
1362  
1363  			/* Something happened, fail everything and bail. */
1364  			if (BTRFS_FS_ERROR(fs_info))
1365  				goto aborted_fs;
1366  
1367  		}
1368  		spin_unlock(&space_info->lock);
1369  	}
1370  	return;
1371  
1372  aborted_fs:
1373  	maybe_fail_all_tickets(fs_info, space_info);
1374  	space_info->flush = 0;
1375  	spin_unlock(&space_info->lock);
1376  }
1377  
btrfs_init_async_reclaim_work(struct btrfs_fs_info * fs_info)1378  void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1379  {
1380  	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1381  	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1382  	INIT_WORK(&fs_info->preempt_reclaim_work,
1383  		  btrfs_preempt_reclaim_metadata_space);
1384  }
1385  
1386  static const enum btrfs_flush_state priority_flush_states[] = {
1387  	FLUSH_DELAYED_ITEMS_NR,
1388  	FLUSH_DELAYED_ITEMS,
1389  	ALLOC_CHUNK,
1390  };
1391  
1392  static const enum btrfs_flush_state evict_flush_states[] = {
1393  	FLUSH_DELAYED_ITEMS_NR,
1394  	FLUSH_DELAYED_ITEMS,
1395  	FLUSH_DELAYED_REFS_NR,
1396  	FLUSH_DELAYED_REFS,
1397  	FLUSH_DELALLOC,
1398  	FLUSH_DELALLOC_WAIT,
1399  	FLUSH_DELALLOC_FULL,
1400  	ALLOC_CHUNK,
1401  	COMMIT_TRANS,
1402  };
1403  
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,const enum btrfs_flush_state * states,int states_nr)1404  static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1405  				struct btrfs_space_info *space_info,
1406  				struct reserve_ticket *ticket,
1407  				const enum btrfs_flush_state *states,
1408  				int states_nr)
1409  {
1410  	u64 to_reclaim;
1411  	int flush_state = 0;
1412  
1413  	spin_lock(&space_info->lock);
1414  	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1415  	/*
1416  	 * This is the priority reclaim path, so to_reclaim could be >0 still
1417  	 * because we may have only satisfied the priority tickets and still
1418  	 * left non priority tickets on the list.  We would then have
1419  	 * to_reclaim but ->bytes == 0.
1420  	 */
1421  	if (ticket->bytes == 0) {
1422  		spin_unlock(&space_info->lock);
1423  		return;
1424  	}
1425  
1426  	while (flush_state < states_nr) {
1427  		spin_unlock(&space_info->lock);
1428  		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1429  			    false);
1430  		flush_state++;
1431  		spin_lock(&space_info->lock);
1432  		if (ticket->bytes == 0) {
1433  			spin_unlock(&space_info->lock);
1434  			return;
1435  		}
1436  	}
1437  
1438  	/*
1439  	 * Attempt to steal from the global rsv if we can, except if the fs was
1440  	 * turned into error mode due to a transaction abort when flushing space
1441  	 * above, in that case fail with the abort error instead of returning
1442  	 * success to the caller if we can steal from the global rsv - this is
1443  	 * just to have caller fail immeditelly instead of later when trying to
1444  	 * modify the fs, making it easier to debug -ENOSPC problems.
1445  	 */
1446  	if (BTRFS_FS_ERROR(fs_info)) {
1447  		ticket->error = BTRFS_FS_ERROR(fs_info);
1448  		remove_ticket(space_info, ticket);
1449  	} else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1450  		ticket->error = -ENOSPC;
1451  		remove_ticket(space_info, ticket);
1452  	}
1453  
1454  	/*
1455  	 * We must run try_granting_tickets here because we could be a large
1456  	 * ticket in front of a smaller ticket that can now be satisfied with
1457  	 * the available space.
1458  	 */
1459  	btrfs_try_granting_tickets(fs_info, space_info);
1460  	spin_unlock(&space_info->lock);
1461  }
1462  
priority_reclaim_data_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1463  static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1464  					struct btrfs_space_info *space_info,
1465  					struct reserve_ticket *ticket)
1466  {
1467  	spin_lock(&space_info->lock);
1468  
1469  	/* We could have been granted before we got here. */
1470  	if (ticket->bytes == 0) {
1471  		spin_unlock(&space_info->lock);
1472  		return;
1473  	}
1474  
1475  	while (!space_info->full) {
1476  		spin_unlock(&space_info->lock);
1477  		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1478  		spin_lock(&space_info->lock);
1479  		if (ticket->bytes == 0) {
1480  			spin_unlock(&space_info->lock);
1481  			return;
1482  		}
1483  	}
1484  
1485  	ticket->error = -ENOSPC;
1486  	remove_ticket(space_info, ticket);
1487  	btrfs_try_granting_tickets(fs_info, space_info);
1488  	spin_unlock(&space_info->lock);
1489  }
1490  
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1491  static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1492  				struct btrfs_space_info *space_info,
1493  				struct reserve_ticket *ticket)
1494  
1495  {
1496  	DEFINE_WAIT(wait);
1497  	int ret = 0;
1498  
1499  	spin_lock(&space_info->lock);
1500  	while (ticket->bytes > 0 && ticket->error == 0) {
1501  		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1502  		if (ret) {
1503  			/*
1504  			 * Delete us from the list. After we unlock the space
1505  			 * info, we don't want the async reclaim job to reserve
1506  			 * space for this ticket. If that would happen, then the
1507  			 * ticket's task would not known that space was reserved
1508  			 * despite getting an error, resulting in a space leak
1509  			 * (bytes_may_use counter of our space_info).
1510  			 */
1511  			remove_ticket(space_info, ticket);
1512  			ticket->error = -EINTR;
1513  			break;
1514  		}
1515  		spin_unlock(&space_info->lock);
1516  
1517  		schedule();
1518  
1519  		finish_wait(&ticket->wait, &wait);
1520  		spin_lock(&space_info->lock);
1521  	}
1522  	spin_unlock(&space_info->lock);
1523  }
1524  
1525  /*
1526   * Do the appropriate flushing and waiting for a ticket.
1527   *
1528   * @fs_info:    the filesystem
1529   * @space_info: space info for the reservation
1530   * @ticket:     ticket for the reservation
1531   * @start_ns:   timestamp when the reservation started
1532   * @orig_bytes: amount of bytes originally reserved
1533   * @flush:      how much we can flush
1534   *
1535   * This does the work of figuring out how to flush for the ticket, waiting for
1536   * the reservation, and returning the appropriate error if there is one.
1537   */
handle_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 start_ns,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1538  static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1539  				 struct btrfs_space_info *space_info,
1540  				 struct reserve_ticket *ticket,
1541  				 u64 start_ns, u64 orig_bytes,
1542  				 enum btrfs_reserve_flush_enum flush)
1543  {
1544  	int ret;
1545  
1546  	switch (flush) {
1547  	case BTRFS_RESERVE_FLUSH_DATA:
1548  	case BTRFS_RESERVE_FLUSH_ALL:
1549  	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1550  		wait_reserve_ticket(fs_info, space_info, ticket);
1551  		break;
1552  	case BTRFS_RESERVE_FLUSH_LIMIT:
1553  		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1554  						priority_flush_states,
1555  						ARRAY_SIZE(priority_flush_states));
1556  		break;
1557  	case BTRFS_RESERVE_FLUSH_EVICT:
1558  		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1559  						evict_flush_states,
1560  						ARRAY_SIZE(evict_flush_states));
1561  		break;
1562  	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1563  		priority_reclaim_data_space(fs_info, space_info, ticket);
1564  		break;
1565  	default:
1566  		ASSERT(0);
1567  		break;
1568  	}
1569  
1570  	ret = ticket->error;
1571  	ASSERT(list_empty(&ticket->list));
1572  	/*
1573  	 * Check that we can't have an error set if the reservation succeeded,
1574  	 * as that would confuse tasks and lead them to error out without
1575  	 * releasing reserved space (if an error happens the expectation is that
1576  	 * space wasn't reserved at all).
1577  	 */
1578  	ASSERT(!(ticket->bytes == 0 && ticket->error));
1579  	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1580  				   start_ns, flush, ticket->error);
1581  	return ret;
1582  }
1583  
1584  /*
1585   * This returns true if this flush state will go through the ordinary flushing
1586   * code.
1587   */
is_normal_flushing(enum btrfs_reserve_flush_enum flush)1588  static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1589  {
1590  	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1591  		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1592  }
1593  
maybe_clamp_preempt(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1594  static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1595  				       struct btrfs_space_info *space_info)
1596  {
1597  	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1598  	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1599  
1600  	/*
1601  	 * If we're heavy on ordered operations then clamping won't help us.  We
1602  	 * need to clamp specifically to keep up with dirty'ing buffered
1603  	 * writers, because there's not a 1:1 correlation of writing delalloc
1604  	 * and freeing space, like there is with flushing delayed refs or
1605  	 * delayed nodes.  If we're already more ordered than delalloc then
1606  	 * we're keeping up, otherwise we aren't and should probably clamp.
1607  	 */
1608  	if (ordered < delalloc)
1609  		space_info->clamp = min(space_info->clamp + 1, 8);
1610  }
1611  
can_steal(enum btrfs_reserve_flush_enum flush)1612  static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1613  {
1614  	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1615  		flush == BTRFS_RESERVE_FLUSH_EVICT);
1616  }
1617  
1618  /*
1619   * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1620   * fail as quickly as possible.
1621   */
can_ticket(enum btrfs_reserve_flush_enum flush)1622  static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1623  {
1624  	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1625  		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1626  }
1627  
1628  /*
1629   * Try to reserve bytes from the block_rsv's space.
1630   *
1631   * @fs_info:    the filesystem
1632   * @space_info: space info we want to allocate from
1633   * @orig_bytes: number of bytes we want
1634   * @flush:      whether or not we can flush to make our reservation
1635   *
1636   * This will reserve orig_bytes number of bytes from the space info associated
1637   * with the block_rsv.  If there is not enough space it will make an attempt to
1638   * flush out space to make room.  It will do this by flushing delalloc if
1639   * possible or committing the transaction.  If flush is 0 then no attempts to
1640   * regain reservations will be made and this will fail if there is not enough
1641   * space already.
1642   */
__reserve_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1643  static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1644  			   struct btrfs_space_info *space_info, u64 orig_bytes,
1645  			   enum btrfs_reserve_flush_enum flush)
1646  {
1647  	struct work_struct *async_work;
1648  	struct reserve_ticket ticket;
1649  	u64 start_ns = 0;
1650  	u64 used;
1651  	int ret = -ENOSPC;
1652  	bool pending_tickets;
1653  
1654  	ASSERT(orig_bytes);
1655  	/*
1656  	 * If have a transaction handle (current->journal_info != NULL), then
1657  	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1658  	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1659  	 * flushing methods can trigger transaction commits.
1660  	 */
1661  	if (current->journal_info) {
1662  		/* One assert per line for easier debugging. */
1663  		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1664  		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1665  		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1666  	}
1667  
1668  	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1669  		async_work = &fs_info->async_data_reclaim_work;
1670  	else
1671  		async_work = &fs_info->async_reclaim_work;
1672  
1673  	spin_lock(&space_info->lock);
1674  	used = btrfs_space_info_used(space_info, true);
1675  
1676  	/*
1677  	 * We don't want NO_FLUSH allocations to jump everybody, they can
1678  	 * generally handle ENOSPC in a different way, so treat them the same as
1679  	 * normal flushers when it comes to skipping pending tickets.
1680  	 */
1681  	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1682  		pending_tickets = !list_empty(&space_info->tickets) ||
1683  			!list_empty(&space_info->priority_tickets);
1684  	else
1685  		pending_tickets = !list_empty(&space_info->priority_tickets);
1686  
1687  	/*
1688  	 * Carry on if we have enough space (short-circuit) OR call
1689  	 * can_overcommit() to ensure we can overcommit to continue.
1690  	 */
1691  	if (!pending_tickets &&
1692  	    ((used + orig_bytes <= space_info->total_bytes) ||
1693  	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1694  		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1695  						      orig_bytes);
1696  		ret = 0;
1697  	}
1698  
1699  	/*
1700  	 * Things are dire, we need to make a reservation so we don't abort.  We
1701  	 * will let this reservation go through as long as we have actual space
1702  	 * left to allocate for the block.
1703  	 */
1704  	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1705  		used = btrfs_space_info_used(space_info, false);
1706  		if (used + orig_bytes <= space_info->total_bytes) {
1707  			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1708  							      orig_bytes);
1709  			ret = 0;
1710  		}
1711  	}
1712  
1713  	/*
1714  	 * If we couldn't make a reservation then setup our reservation ticket
1715  	 * and kick the async worker if it's not already running.
1716  	 *
1717  	 * If we are a priority flusher then we just need to add our ticket to
1718  	 * the list and we will do our own flushing further down.
1719  	 */
1720  	if (ret && can_ticket(flush)) {
1721  		ticket.bytes = orig_bytes;
1722  		ticket.error = 0;
1723  		space_info->reclaim_size += ticket.bytes;
1724  		init_waitqueue_head(&ticket.wait);
1725  		ticket.steal = can_steal(flush);
1726  		if (trace_btrfs_reserve_ticket_enabled())
1727  			start_ns = ktime_get_ns();
1728  
1729  		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1730  		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1731  		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1732  			list_add_tail(&ticket.list, &space_info->tickets);
1733  			if (!space_info->flush) {
1734  				/*
1735  				 * We were forced to add a reserve ticket, so
1736  				 * our preemptive flushing is unable to keep
1737  				 * up.  Clamp down on the threshold for the
1738  				 * preemptive flushing in order to keep up with
1739  				 * the workload.
1740  				 */
1741  				maybe_clamp_preempt(fs_info, space_info);
1742  
1743  				space_info->flush = 1;
1744  				trace_btrfs_trigger_flush(fs_info,
1745  							  space_info->flags,
1746  							  orig_bytes, flush,
1747  							  "enospc");
1748  				queue_work(system_unbound_wq, async_work);
1749  			}
1750  		} else {
1751  			list_add_tail(&ticket.list,
1752  				      &space_info->priority_tickets);
1753  		}
1754  	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1755  		/*
1756  		 * We will do the space reservation dance during log replay,
1757  		 * which means we won't have fs_info->fs_root set, so don't do
1758  		 * the async reclaim as we will panic.
1759  		 */
1760  		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1761  		    !work_busy(&fs_info->preempt_reclaim_work) &&
1762  		    need_preemptive_reclaim(fs_info, space_info)) {
1763  			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1764  						  orig_bytes, flush, "preempt");
1765  			queue_work(system_unbound_wq,
1766  				   &fs_info->preempt_reclaim_work);
1767  		}
1768  	}
1769  	spin_unlock(&space_info->lock);
1770  	if (!ret || !can_ticket(flush))
1771  		return ret;
1772  
1773  	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1774  				     orig_bytes, flush);
1775  }
1776  
1777  /*
1778   * Try to reserve metadata bytes from the block_rsv's space.
1779   *
1780   * @fs_info:    the filesystem
1781   * @space_info: the space_info we're allocating for
1782   * @orig_bytes: number of bytes we want
1783   * @flush:      whether or not we can flush to make our reservation
1784   *
1785   * This will reserve orig_bytes number of bytes from the space info associated
1786   * with the block_rsv.  If there is not enough space it will make an attempt to
1787   * flush out space to make room.  It will do this by flushing delalloc if
1788   * possible or committing the transaction.  If flush is 0 then no attempts to
1789   * regain reservations will be made and this will fail if there is not enough
1790   * space already.
1791   */
btrfs_reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1792  int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1793  				 struct btrfs_space_info *space_info,
1794  				 u64 orig_bytes,
1795  				 enum btrfs_reserve_flush_enum flush)
1796  {
1797  	int ret;
1798  
1799  	ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1800  	if (ret == -ENOSPC) {
1801  		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1802  					      space_info->flags, orig_bytes, 1);
1803  
1804  		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1805  			btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
1806  	}
1807  	return ret;
1808  }
1809  
1810  /*
1811   * Try to reserve data bytes for an allocation.
1812   *
1813   * @fs_info: the filesystem
1814   * @bytes:   number of bytes we need
1815   * @flush:   how we are allowed to flush
1816   *
1817   * This will reserve bytes from the data space info.  If there is not enough
1818   * space then we will attempt to flush space as specified by flush.
1819   */
btrfs_reserve_data_bytes(struct btrfs_fs_info * fs_info,u64 bytes,enum btrfs_reserve_flush_enum flush)1820  int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1821  			     enum btrfs_reserve_flush_enum flush)
1822  {
1823  	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1824  	int ret;
1825  
1826  	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1827  	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1828  	       flush == BTRFS_RESERVE_NO_FLUSH);
1829  	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1830  
1831  	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1832  	if (ret == -ENOSPC) {
1833  		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1834  					      data_sinfo->flags, bytes, 1);
1835  		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1836  			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1837  	}
1838  	return ret;
1839  }
1840  
1841  /* Dump all the space infos when we abort a transaction due to ENOSPC. */
btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info * fs_info)1842  __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1843  {
1844  	struct btrfs_space_info *space_info;
1845  
1846  	btrfs_info(fs_info, "dumping space info:");
1847  	list_for_each_entry(space_info, &fs_info->space_info, list) {
1848  		spin_lock(&space_info->lock);
1849  		__btrfs_dump_space_info(fs_info, space_info);
1850  		spin_unlock(&space_info->lock);
1851  	}
1852  	dump_global_block_rsv(fs_info);
1853  }
1854  
1855  /*
1856   * Account the unused space of all the readonly block group in the space_info.
1857   * takes mirrors into account.
1858   */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)1859  u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1860  {
1861  	struct btrfs_block_group *block_group;
1862  	u64 free_bytes = 0;
1863  	int factor;
1864  
1865  	/* It's df, we don't care if it's racy */
1866  	if (list_empty(&sinfo->ro_bgs))
1867  		return 0;
1868  
1869  	spin_lock(&sinfo->lock);
1870  	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1871  		spin_lock(&block_group->lock);
1872  
1873  		if (!block_group->ro) {
1874  			spin_unlock(&block_group->lock);
1875  			continue;
1876  		}
1877  
1878  		factor = btrfs_bg_type_to_factor(block_group->flags);
1879  		free_bytes += (block_group->length -
1880  			       block_group->used) * factor;
1881  
1882  		spin_unlock(&block_group->lock);
1883  	}
1884  	spin_unlock(&sinfo->lock);
1885  
1886  	return free_bytes;
1887  }
1888  
calc_pct_ratio(u64 x,u64 y)1889  static u64 calc_pct_ratio(u64 x, u64 y)
1890  {
1891  	int err;
1892  
1893  	if (!y)
1894  		return 0;
1895  again:
1896  	err = check_mul_overflow(100, x, &x);
1897  	if (err)
1898  		goto lose_precision;
1899  	return div64_u64(x, y);
1900  lose_precision:
1901  	x >>= 10;
1902  	y >>= 10;
1903  	if (!y)
1904  		y = 1;
1905  	goto again;
1906  }
1907  
1908  /*
1909   * A reasonable buffer for unallocated space is 10 data block_groups.
1910   * If we claw this back repeatedly, we can still achieve efficient
1911   * utilization when near full, and not do too much reclaim while
1912   * always maintaining a solid buffer for workloads that quickly
1913   * allocate and pressure the unallocated space.
1914   */
calc_unalloc_target(struct btrfs_fs_info * fs_info)1915  static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info)
1916  {
1917  	u64 chunk_sz = calc_effective_data_chunk_size(fs_info);
1918  
1919  	return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz;
1920  }
1921  
1922  /*
1923   * The fundamental goal of automatic reclaim is to protect the filesystem's
1924   * unallocated space and thus minimize the probability of the filesystem going
1925   * read only when a metadata allocation failure causes a transaction abort.
1926   *
1927   * However, relocations happen into the space_info's unused space, therefore
1928   * automatic reclaim must also back off as that space runs low. There is no
1929   * value in doing trivial "relocations" of re-writing the same block group
1930   * into a fresh one.
1931   *
1932   * Furthermore, we want to avoid doing too much reclaim even if there are good
1933   * candidates. This is because the allocator is pretty good at filling up the
1934   * holes with writes. So we want to do just enough reclaim to try and stay
1935   * safe from running out of unallocated space but not be wasteful about it.
1936   *
1937   * Therefore, the dynamic reclaim threshold is calculated as follows:
1938   * - calculate a target unallocated amount of 5 block group sized chunks
1939   * - ratchet up the intensity of reclaim depending on how far we are from
1940   *   that target by using a formula of unalloc / target to set the threshold.
1941   *
1942   * Typically with 10 block groups as the target, the discrete values this comes
1943   * out to are 0, 10, 20, ... , 80, 90, and 99.
1944   */
calc_dynamic_reclaim_threshold(const struct btrfs_space_info * space_info)1945  static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info)
1946  {
1947  	struct btrfs_fs_info *fs_info = space_info->fs_info;
1948  	u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1949  	u64 target = calc_unalloc_target(fs_info);
1950  	u64 alloc = space_info->total_bytes;
1951  	u64 used = btrfs_space_info_used(space_info, false);
1952  	u64 unused = alloc - used;
1953  	u64 want = target > unalloc ? target - unalloc : 0;
1954  	u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1955  
1956  	/* If we have no unused space, don't bother, it won't work anyway. */
1957  	if (unused < data_chunk_size)
1958  		return 0;
1959  
1960  	/* Cast to int is OK because want <= target. */
1961  	return calc_pct_ratio(want, target);
1962  }
1963  
btrfs_calc_reclaim_threshold(const struct btrfs_space_info * space_info)1964  int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info)
1965  {
1966  	lockdep_assert_held(&space_info->lock);
1967  
1968  	if (READ_ONCE(space_info->dynamic_reclaim))
1969  		return calc_dynamic_reclaim_threshold(space_info);
1970  	return READ_ONCE(space_info->bg_reclaim_threshold);
1971  }
1972  
1973  /*
1974   * Under "urgent" reclaim, we will reclaim even fresh block groups that have
1975   * recently seen successful allocations, as we are desperate to reclaim
1976   * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs.
1977   */
is_reclaim_urgent(struct btrfs_space_info * space_info)1978  static bool is_reclaim_urgent(struct btrfs_space_info *space_info)
1979  {
1980  	struct btrfs_fs_info *fs_info = space_info->fs_info;
1981  	u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1982  	u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1983  
1984  	return unalloc < data_chunk_size;
1985  }
1986  
do_reclaim_sweep(const struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,int raid)1987  static void do_reclaim_sweep(const struct btrfs_fs_info *fs_info,
1988  			     struct btrfs_space_info *space_info, int raid)
1989  {
1990  	struct btrfs_block_group *bg;
1991  	int thresh_pct;
1992  	bool try_again = true;
1993  	bool urgent;
1994  
1995  	spin_lock(&space_info->lock);
1996  	urgent = is_reclaim_urgent(space_info);
1997  	thresh_pct = btrfs_calc_reclaim_threshold(space_info);
1998  	spin_unlock(&space_info->lock);
1999  
2000  	down_read(&space_info->groups_sem);
2001  again:
2002  	list_for_each_entry(bg, &space_info->block_groups[raid], list) {
2003  		u64 thresh;
2004  		bool reclaim = false;
2005  
2006  		btrfs_get_block_group(bg);
2007  		spin_lock(&bg->lock);
2008  		thresh = mult_perc(bg->length, thresh_pct);
2009  		if (bg->used < thresh && bg->reclaim_mark) {
2010  			try_again = false;
2011  			reclaim = true;
2012  		}
2013  		bg->reclaim_mark++;
2014  		spin_unlock(&bg->lock);
2015  		if (reclaim)
2016  			btrfs_mark_bg_to_reclaim(bg);
2017  		btrfs_put_block_group(bg);
2018  	}
2019  
2020  	/*
2021  	 * In situations where we are very motivated to reclaim (low unalloc)
2022  	 * use two passes to make the reclaim mark check best effort.
2023  	 *
2024  	 * If we have any staler groups, we don't touch the fresher ones, but if we
2025  	 * really need a block group, do take a fresh one.
2026  	 */
2027  	if (try_again && urgent) {
2028  		try_again = false;
2029  		goto again;
2030  	}
2031  
2032  	up_read(&space_info->groups_sem);
2033  }
2034  
btrfs_space_info_update_reclaimable(struct btrfs_space_info * space_info,s64 bytes)2035  void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes)
2036  {
2037  	u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info);
2038  
2039  	lockdep_assert_held(&space_info->lock);
2040  	space_info->reclaimable_bytes += bytes;
2041  
2042  	if (space_info->reclaimable_bytes >= chunk_sz)
2043  		btrfs_set_periodic_reclaim_ready(space_info, true);
2044  }
2045  
btrfs_set_periodic_reclaim_ready(struct btrfs_space_info * space_info,bool ready)2046  void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready)
2047  {
2048  	lockdep_assert_held(&space_info->lock);
2049  	if (!READ_ONCE(space_info->periodic_reclaim))
2050  		return;
2051  	if (ready != space_info->periodic_reclaim_ready) {
2052  		space_info->periodic_reclaim_ready = ready;
2053  		if (!ready)
2054  			space_info->reclaimable_bytes = 0;
2055  	}
2056  }
2057  
btrfs_should_periodic_reclaim(struct btrfs_space_info * space_info)2058  bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info)
2059  {
2060  	bool ret;
2061  
2062  	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2063  		return false;
2064  	if (!READ_ONCE(space_info->periodic_reclaim))
2065  		return false;
2066  
2067  	spin_lock(&space_info->lock);
2068  	ret = space_info->periodic_reclaim_ready;
2069  	btrfs_set_periodic_reclaim_ready(space_info, false);
2070  	spin_unlock(&space_info->lock);
2071  
2072  	return ret;
2073  }
2074  
btrfs_reclaim_sweep(const struct btrfs_fs_info * fs_info)2075  void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info)
2076  {
2077  	int raid;
2078  	struct btrfs_space_info *space_info;
2079  
2080  	list_for_each_entry(space_info, &fs_info->space_info, list) {
2081  		if (!btrfs_should_periodic_reclaim(space_info))
2082  			continue;
2083  		for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++)
2084  			do_reclaim_sweep(fs_info, space_info, raid);
2085  	}
2086  }
2087