1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/slab.h>
7  #include <linux/blkdev.h>
8  #include <linux/writeback.h>
9  #include <linux/sched/mm.h>
10  #include "messages.h"
11  #include "misc.h"
12  #include "ctree.h"
13  #include "transaction.h"
14  #include "btrfs_inode.h"
15  #include "extent_io.h"
16  #include "disk-io.h"
17  #include "compression.h"
18  #include "delalloc-space.h"
19  #include "qgroup.h"
20  #include "subpage.h"
21  #include "file.h"
22  #include "block-group.h"
23  
24  static struct kmem_cache *btrfs_ordered_extent_cache;
25  
entry_end(struct btrfs_ordered_extent * entry)26  static u64 entry_end(struct btrfs_ordered_extent *entry)
27  {
28  	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29  		return (u64)-1;
30  	return entry->file_offset + entry->num_bytes;
31  }
32  
33  /* returns NULL if the insertion worked, or it returns the node it did find
34   * in the tree
35   */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)36  static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37  				   struct rb_node *node)
38  {
39  	struct rb_node **p = &root->rb_node;
40  	struct rb_node *parent = NULL;
41  	struct btrfs_ordered_extent *entry;
42  
43  	while (*p) {
44  		parent = *p;
45  		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46  
47  		if (file_offset < entry->file_offset)
48  			p = &(*p)->rb_left;
49  		else if (file_offset >= entry_end(entry))
50  			p = &(*p)->rb_right;
51  		else
52  			return parent;
53  	}
54  
55  	rb_link_node(node, parent, p);
56  	rb_insert_color(node, root);
57  	return NULL;
58  }
59  
60  /*
61   * look for a given offset in the tree, and if it can't be found return the
62   * first lesser offset
63   */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)64  static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65  				     struct rb_node **prev_ret)
66  {
67  	struct rb_node *n = root->rb_node;
68  	struct rb_node *prev = NULL;
69  	struct rb_node *test;
70  	struct btrfs_ordered_extent *entry;
71  	struct btrfs_ordered_extent *prev_entry = NULL;
72  
73  	while (n) {
74  		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75  		prev = n;
76  		prev_entry = entry;
77  
78  		if (file_offset < entry->file_offset)
79  			n = n->rb_left;
80  		else if (file_offset >= entry_end(entry))
81  			n = n->rb_right;
82  		else
83  			return n;
84  	}
85  	if (!prev_ret)
86  		return NULL;
87  
88  	while (prev && file_offset >= entry_end(prev_entry)) {
89  		test = rb_next(prev);
90  		if (!test)
91  			break;
92  		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93  				      rb_node);
94  		if (file_offset < entry_end(prev_entry))
95  			break;
96  
97  		prev = test;
98  	}
99  	if (prev)
100  		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101  				      rb_node);
102  	while (prev && file_offset < entry_end(prev_entry)) {
103  		test = rb_prev(prev);
104  		if (!test)
105  			break;
106  		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107  				      rb_node);
108  		prev = test;
109  	}
110  	*prev_ret = prev;
111  	return NULL;
112  }
113  
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)114  static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115  			  u64 len)
116  {
117  	if (file_offset + len <= entry->file_offset ||
118  	    entry->file_offset + entry->num_bytes <= file_offset)
119  		return 0;
120  	return 1;
121  }
122  
123  /*
124   * look find the first ordered struct that has this offset, otherwise
125   * the first one less than this offset
126   */
ordered_tree_search(struct btrfs_inode * inode,u64 file_offset)127  static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128  						  u64 file_offset)
129  {
130  	struct rb_node *prev = NULL;
131  	struct rb_node *ret;
132  	struct btrfs_ordered_extent *entry;
133  
134  	if (inode->ordered_tree_last) {
135  		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136  				 rb_node);
137  		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138  			return inode->ordered_tree_last;
139  	}
140  	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141  	if (!ret)
142  		ret = prev;
143  	if (ret)
144  		inode->ordered_tree_last = ret;
145  	return ret;
146  }
147  
alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)148  static struct btrfs_ordered_extent *alloc_ordered_extent(
149  			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150  			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151  			u64 offset, unsigned long flags, int compress_type)
152  {
153  	struct btrfs_ordered_extent *entry;
154  	int ret;
155  	u64 qgroup_rsv = 0;
156  
157  	if (flags &
158  	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159  		/* For nocow write, we can release the qgroup rsv right now */
160  		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
161  		if (ret < 0)
162  			return ERR_PTR(ret);
163  	} else {
164  		/*
165  		 * The ordered extent has reserved qgroup space, release now
166  		 * and pass the reserved number for qgroup_record to free.
167  		 */
168  		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
169  		if (ret < 0)
170  			return ERR_PTR(ret);
171  	}
172  	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173  	if (!entry)
174  		return ERR_PTR(-ENOMEM);
175  
176  	entry->file_offset = file_offset;
177  	entry->num_bytes = num_bytes;
178  	entry->ram_bytes = ram_bytes;
179  	entry->disk_bytenr = disk_bytenr;
180  	entry->disk_num_bytes = disk_num_bytes;
181  	entry->offset = offset;
182  	entry->bytes_left = num_bytes;
183  	entry->inode = BTRFS_I(igrab(&inode->vfs_inode));
184  	entry->compress_type = compress_type;
185  	entry->truncated_len = (u64)-1;
186  	entry->qgroup_rsv = qgroup_rsv;
187  	entry->flags = flags;
188  	refcount_set(&entry->refs, 1);
189  	init_waitqueue_head(&entry->wait);
190  	INIT_LIST_HEAD(&entry->list);
191  	INIT_LIST_HEAD(&entry->log_list);
192  	INIT_LIST_HEAD(&entry->root_extent_list);
193  	INIT_LIST_HEAD(&entry->work_list);
194  	INIT_LIST_HEAD(&entry->bioc_list);
195  	init_completion(&entry->completion);
196  
197  	/*
198  	 * We don't need the count_max_extents here, we can assume that all of
199  	 * that work has been done at higher layers, so this is truly the
200  	 * smallest the extent is going to get.
201  	 */
202  	spin_lock(&inode->lock);
203  	btrfs_mod_outstanding_extents(inode, 1);
204  	spin_unlock(&inode->lock);
205  
206  	return entry;
207  }
208  
insert_ordered_extent(struct btrfs_ordered_extent * entry)209  static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
210  {
211  	struct btrfs_inode *inode = entry->inode;
212  	struct btrfs_root *root = inode->root;
213  	struct btrfs_fs_info *fs_info = root->fs_info;
214  	struct rb_node *node;
215  
216  	trace_btrfs_ordered_extent_add(inode, entry);
217  
218  	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219  				 fs_info->delalloc_batch);
220  
221  	/* One ref for the tree. */
222  	refcount_inc(&entry->refs);
223  
224  	spin_lock_irq(&inode->ordered_tree_lock);
225  	node = tree_insert(&inode->ordered_tree, entry->file_offset,
226  			   &entry->rb_node);
227  	if (unlikely(node))
228  		btrfs_panic(fs_info, -EEXIST,
229  				"inconsistency in ordered tree at offset %llu",
230  				entry->file_offset);
231  	spin_unlock_irq(&inode->ordered_tree_lock);
232  
233  	spin_lock(&root->ordered_extent_lock);
234  	list_add_tail(&entry->root_extent_list,
235  		      &root->ordered_extents);
236  	root->nr_ordered_extents++;
237  	if (root->nr_ordered_extents == 1) {
238  		spin_lock(&fs_info->ordered_root_lock);
239  		BUG_ON(!list_empty(&root->ordered_root));
240  		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241  		spin_unlock(&fs_info->ordered_root_lock);
242  	}
243  	spin_unlock(&root->ordered_extent_lock);
244  }
245  
246  /*
247   * Add an ordered extent to the per-inode tree.
248   *
249   * @inode:           Inode that this extent is for.
250   * @file_offset:     Logical offset in file where the extent starts.
251   * @num_bytes:       Logical length of extent in file.
252   * @ram_bytes:       Full length of unencoded data.
253   * @disk_bytenr:     Offset of extent on disk.
254   * @disk_num_bytes:  Size of extent on disk.
255   * @offset:          Offset into unencoded data where file data starts.
256   * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
257   * @compress_type:   Compression algorithm used for data.
258   *
259   * Most of these parameters correspond to &struct btrfs_file_extent_item. The
260   * tree is given a single reference on the ordered extent that was inserted, and
261   * the returned pointer is given a second reference.
262   *
263   * Return: the new ordered extent or error pointer.
264   */
btrfs_alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,const struct btrfs_file_extent * file_extent,unsigned long flags)265  struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
266  			struct btrfs_inode *inode, u64 file_offset,
267  			const struct btrfs_file_extent *file_extent, unsigned long flags)
268  {
269  	struct btrfs_ordered_extent *entry;
270  
271  	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
272  
273  	/*
274  	 * For regular writes, we just use the members in @file_extent.
275  	 *
276  	 * For NOCOW, we don't really care about the numbers except @start and
277  	 * file_extent->num_bytes, as we won't insert a file extent item at all.
278  	 *
279  	 * For PREALLOC, we do not use ordered extent members, but
280  	 * btrfs_mark_extent_written() handles everything.
281  	 *
282  	 * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents,
283  	 * or btrfs_split_ordered_extent() cannot handle it correctly.
284  	 */
285  	if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)))
286  		entry = alloc_ordered_extent(inode, file_offset,
287  					     file_extent->num_bytes,
288  					     file_extent->num_bytes,
289  					     file_extent->disk_bytenr + file_extent->offset,
290  					     file_extent->num_bytes, 0, flags,
291  					     file_extent->compression);
292  	else
293  		entry = alloc_ordered_extent(inode, file_offset,
294  					     file_extent->num_bytes,
295  					     file_extent->ram_bytes,
296  					     file_extent->disk_bytenr,
297  					     file_extent->disk_num_bytes,
298  					     file_extent->offset, flags,
299  					     file_extent->compression);
300  	if (!IS_ERR(entry))
301  		insert_ordered_extent(entry);
302  	return entry;
303  }
304  
305  /*
306   * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
307   * when an ordered extent is finished.  If the list covers more than one
308   * ordered extent, it is split across multiples.
309   */
btrfs_add_ordered_sum(struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)310  void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
311  			   struct btrfs_ordered_sum *sum)
312  {
313  	struct btrfs_inode *inode = entry->inode;
314  
315  	spin_lock_irq(&inode->ordered_tree_lock);
316  	list_add_tail(&sum->list, &entry->list);
317  	spin_unlock_irq(&inode->ordered_tree_lock);
318  }
319  
btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent * ordered)320  void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
321  {
322  	if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
323  		mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO);
324  }
325  
finish_ordered_fn(struct btrfs_work * work)326  static void finish_ordered_fn(struct btrfs_work *work)
327  {
328  	struct btrfs_ordered_extent *ordered_extent;
329  
330  	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
331  	btrfs_finish_ordered_io(ordered_extent);
332  }
333  
can_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct folio * folio,u64 file_offset,u64 len,bool uptodate)334  static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
335  				      struct folio *folio, u64 file_offset,
336  				      u64 len, bool uptodate)
337  {
338  	struct btrfs_inode *inode = ordered->inode;
339  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
340  
341  	lockdep_assert_held(&inode->ordered_tree_lock);
342  
343  	if (folio) {
344  		ASSERT(folio->mapping);
345  		ASSERT(folio_pos(folio) <= file_offset);
346  		ASSERT(file_offset + len <= folio_pos(folio) + folio_size(folio));
347  
348  		/*
349  		 * Ordered (Private2) bit indicates whether we still have
350  		 * pending io unfinished for the ordered extent.
351  		 *
352  		 * If there's no such bit, we need to skip to next range.
353  		 */
354  		if (!btrfs_folio_test_ordered(fs_info, folio, file_offset, len))
355  			return false;
356  		btrfs_folio_clear_ordered(fs_info, folio, file_offset, len);
357  	}
358  
359  	/* Now we're fine to update the accounting. */
360  	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
361  		btrfs_crit(fs_info,
362  "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
363  			   btrfs_root_id(inode->root), btrfs_ino(inode),
364  			   ordered->file_offset, ordered->num_bytes,
365  			   len, ordered->bytes_left);
366  		ordered->bytes_left = 0;
367  	} else {
368  		ordered->bytes_left -= len;
369  	}
370  
371  	if (!uptodate)
372  		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
373  
374  	if (ordered->bytes_left)
375  		return false;
376  
377  	/*
378  	 * All the IO of the ordered extent is finished, we need to queue
379  	 * the finish_func to be executed.
380  	 */
381  	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
382  	cond_wake_up(&ordered->wait);
383  	refcount_inc(&ordered->refs);
384  	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
385  	return true;
386  }
387  
btrfs_queue_ordered_fn(struct btrfs_ordered_extent * ordered)388  static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
389  {
390  	struct btrfs_inode *inode = ordered->inode;
391  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
392  	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
393  		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
394  
395  	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
396  	btrfs_queue_work(wq, &ordered->work);
397  }
398  
btrfs_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct folio * folio,u64 file_offset,u64 len,bool uptodate)399  void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
400  				 struct folio *folio, u64 file_offset, u64 len,
401  				 bool uptodate)
402  {
403  	struct btrfs_inode *inode = ordered->inode;
404  	unsigned long flags;
405  	bool ret;
406  
407  	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
408  
409  	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
410  	ret = can_finish_ordered_extent(ordered, folio, file_offset, len,
411  					uptodate);
412  	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
413  
414  	/*
415  	 * If this is a COW write it means we created new extent maps for the
416  	 * range and they point to unwritten locations if we got an error either
417  	 * before submitting a bio or during IO.
418  	 *
419  	 * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
420  	 * are queuing its completion below. During completion, at
421  	 * btrfs_finish_one_ordered(), we will drop the extent maps for the
422  	 * unwritten extents.
423  	 *
424  	 * However because completion runs in a work queue we can end up having
425  	 * a fast fsync running before that. In the case of direct IO, once we
426  	 * unlock the inode the fsync might start, and we queue the completion
427  	 * before unlocking the inode. In the case of buffered IO when writeback
428  	 * finishes (end_bbio_data_write()) we queue the completion, so if the
429  	 * writeback was triggered by a fast fsync, the fsync might start
430  	 * logging before ordered extent completion runs in the work queue.
431  	 *
432  	 * The fast fsync will log file extent items based on the extent maps it
433  	 * finds, so if by the time it collects extent maps the ordered extent
434  	 * completion didn't happen yet, it will log file extent items that
435  	 * point to unwritten extents, resulting in a corruption if a crash
436  	 * happens and the log tree is replayed. Note that a fast fsync does not
437  	 * wait for completion of ordered extents in order to reduce latency.
438  	 *
439  	 * Set a flag in the inode so that the next fast fsync will wait for
440  	 * ordered extents to complete before starting to log.
441  	 */
442  	if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
443  		set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
444  
445  	if (ret)
446  		btrfs_queue_ordered_fn(ordered);
447  }
448  
449  /*
450   * Mark all ordered extents io inside the specified range finished.
451   *
452   * @folio:	 The involved folio for the operation.
453   *		 For uncompressed buffered IO, the folio status also needs to be
454   *		 updated to indicate whether the pending ordered io is finished.
455   *		 Can be NULL for direct IO and compressed write.
456   *		 For these cases, callers are ensured they won't execute the
457   *		 endio function twice.
458   *
459   * This function is called for endio, thus the range must have ordered
460   * extent(s) covering it.
461   */
btrfs_mark_ordered_io_finished(struct btrfs_inode * inode,struct folio * folio,u64 file_offset,u64 num_bytes,bool uptodate)462  void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
463  				    struct folio *folio, u64 file_offset,
464  				    u64 num_bytes, bool uptodate)
465  {
466  	struct rb_node *node;
467  	struct btrfs_ordered_extent *entry = NULL;
468  	unsigned long flags;
469  	u64 cur = file_offset;
470  
471  	trace_btrfs_writepage_end_io_hook(inode, file_offset,
472  					  file_offset + num_bytes - 1,
473  					  uptodate);
474  
475  	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
476  	while (cur < file_offset + num_bytes) {
477  		u64 entry_end;
478  		u64 end;
479  		u32 len;
480  
481  		node = ordered_tree_search(inode, cur);
482  		/* No ordered extents at all */
483  		if (!node)
484  			break;
485  
486  		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
487  		entry_end = entry->file_offset + entry->num_bytes;
488  		/*
489  		 * |<-- OE --->|  |
490  		 *		  cur
491  		 * Go to next OE.
492  		 */
493  		if (cur >= entry_end) {
494  			node = rb_next(node);
495  			/* No more ordered extents, exit */
496  			if (!node)
497  				break;
498  			entry = rb_entry(node, struct btrfs_ordered_extent,
499  					 rb_node);
500  
501  			/* Go to next ordered extent and continue */
502  			cur = entry->file_offset;
503  			continue;
504  		}
505  		/*
506  		 * |	|<--- OE --->|
507  		 * cur
508  		 * Go to the start of OE.
509  		 */
510  		if (cur < entry->file_offset) {
511  			cur = entry->file_offset;
512  			continue;
513  		}
514  
515  		/*
516  		 * Now we are definitely inside one ordered extent.
517  		 *
518  		 * |<--- OE --->|
519  		 *	|
520  		 *	cur
521  		 */
522  		end = min(entry->file_offset + entry->num_bytes,
523  			  file_offset + num_bytes) - 1;
524  		ASSERT(end + 1 - cur < U32_MAX);
525  		len = end + 1 - cur;
526  
527  		if (can_finish_ordered_extent(entry, folio, cur, len, uptodate)) {
528  			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
529  			btrfs_queue_ordered_fn(entry);
530  			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
531  		}
532  		cur += len;
533  	}
534  	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
535  }
536  
537  /*
538   * Finish IO for one ordered extent across a given range.  The range can only
539   * contain one ordered extent.
540   *
541   * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
542   *               search and use the ordered extent directly.
543   * 		 Will be also used to store the finished ordered extent.
544   * @file_offset: File offset for the finished IO
545   * @io_size:	 Length of the finish IO range
546   *
547   * Return true if the ordered extent is finished in the range, and update
548   * @cached.
549   * Return false otherwise.
550   *
551   * NOTE: The range can NOT cross multiple ordered extents.
552   * Thus caller should ensure the range doesn't cross ordered extents.
553   */
btrfs_dec_test_ordered_pending(struct btrfs_inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)554  bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
555  				    struct btrfs_ordered_extent **cached,
556  				    u64 file_offset, u64 io_size)
557  {
558  	struct rb_node *node;
559  	struct btrfs_ordered_extent *entry = NULL;
560  	unsigned long flags;
561  	bool finished = false;
562  
563  	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
564  	if (cached && *cached) {
565  		entry = *cached;
566  		goto have_entry;
567  	}
568  
569  	node = ordered_tree_search(inode, file_offset);
570  	if (!node)
571  		goto out;
572  
573  	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
574  have_entry:
575  	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
576  		goto out;
577  
578  	if (io_size > entry->bytes_left)
579  		btrfs_crit(inode->root->fs_info,
580  			   "bad ordered accounting left %llu size %llu",
581  		       entry->bytes_left, io_size);
582  
583  	entry->bytes_left -= io_size;
584  
585  	if (entry->bytes_left == 0) {
586  		/*
587  		 * Ensure only one caller can set the flag and finished_ret
588  		 * accordingly
589  		 */
590  		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
591  		/* test_and_set_bit implies a barrier */
592  		cond_wake_up_nomb(&entry->wait);
593  	}
594  out:
595  	if (finished && cached && entry) {
596  		*cached = entry;
597  		refcount_inc(&entry->refs);
598  		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
599  	}
600  	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
601  	return finished;
602  }
603  
604  /*
605   * used to drop a reference on an ordered extent.  This will free
606   * the extent if the last reference is dropped
607   */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)608  void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
609  {
610  	struct list_head *cur;
611  	struct btrfs_ordered_sum *sum;
612  
613  	trace_btrfs_ordered_extent_put(entry->inode, entry);
614  
615  	if (refcount_dec_and_test(&entry->refs)) {
616  		ASSERT(list_empty(&entry->root_extent_list));
617  		ASSERT(list_empty(&entry->log_list));
618  		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
619  		if (entry->inode)
620  			btrfs_add_delayed_iput(entry->inode);
621  		while (!list_empty(&entry->list)) {
622  			cur = entry->list.next;
623  			sum = list_entry(cur, struct btrfs_ordered_sum, list);
624  			list_del(&sum->list);
625  			kvfree(sum);
626  		}
627  		kmem_cache_free(btrfs_ordered_extent_cache, entry);
628  	}
629  }
630  
631  /*
632   * remove an ordered extent from the tree.  No references are dropped
633   * and waiters are woken up.
634   */
btrfs_remove_ordered_extent(struct btrfs_inode * btrfs_inode,struct btrfs_ordered_extent * entry)635  void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
636  				 struct btrfs_ordered_extent *entry)
637  {
638  	struct btrfs_root *root = btrfs_inode->root;
639  	struct btrfs_fs_info *fs_info = root->fs_info;
640  	struct rb_node *node;
641  	bool pending;
642  	bool freespace_inode;
643  
644  	/*
645  	 * If this is a free space inode the thread has not acquired the ordered
646  	 * extents lockdep map.
647  	 */
648  	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
649  
650  	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
651  	/* This is paired with alloc_ordered_extent(). */
652  	spin_lock(&btrfs_inode->lock);
653  	btrfs_mod_outstanding_extents(btrfs_inode, -1);
654  	spin_unlock(&btrfs_inode->lock);
655  	if (root != fs_info->tree_root) {
656  		u64 release;
657  
658  		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
659  			release = entry->disk_num_bytes;
660  		else
661  			release = entry->num_bytes;
662  		btrfs_delalloc_release_metadata(btrfs_inode, release,
663  						test_bit(BTRFS_ORDERED_IOERR,
664  							 &entry->flags));
665  	}
666  
667  	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
668  				 fs_info->delalloc_batch);
669  
670  	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
671  	node = &entry->rb_node;
672  	rb_erase(node, &btrfs_inode->ordered_tree);
673  	RB_CLEAR_NODE(node);
674  	if (btrfs_inode->ordered_tree_last == node)
675  		btrfs_inode->ordered_tree_last = NULL;
676  	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
677  	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
678  	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
679  
680  	/*
681  	 * The current running transaction is waiting on us, we need to let it
682  	 * know that we're complete and wake it up.
683  	 */
684  	if (pending) {
685  		struct btrfs_transaction *trans;
686  
687  		/*
688  		 * The checks for trans are just a formality, it should be set,
689  		 * but if it isn't we don't want to deref/assert under the spin
690  		 * lock, so be nice and check if trans is set, but ASSERT() so
691  		 * if it isn't set a developer will notice.
692  		 */
693  		spin_lock(&fs_info->trans_lock);
694  		trans = fs_info->running_transaction;
695  		if (trans)
696  			refcount_inc(&trans->use_count);
697  		spin_unlock(&fs_info->trans_lock);
698  
699  		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
700  		if (trans) {
701  			if (atomic_dec_and_test(&trans->pending_ordered))
702  				wake_up(&trans->pending_wait);
703  			btrfs_put_transaction(trans);
704  		}
705  	}
706  
707  	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
708  
709  	spin_lock(&root->ordered_extent_lock);
710  	list_del_init(&entry->root_extent_list);
711  	root->nr_ordered_extents--;
712  
713  	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
714  
715  	if (!root->nr_ordered_extents) {
716  		spin_lock(&fs_info->ordered_root_lock);
717  		BUG_ON(list_empty(&root->ordered_root));
718  		list_del_init(&root->ordered_root);
719  		spin_unlock(&fs_info->ordered_root_lock);
720  	}
721  	spin_unlock(&root->ordered_extent_lock);
722  	wake_up(&entry->wait);
723  	if (!freespace_inode)
724  		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
725  }
726  
btrfs_run_ordered_extent_work(struct btrfs_work * work)727  static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
728  {
729  	struct btrfs_ordered_extent *ordered;
730  
731  	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
732  	btrfs_start_ordered_extent(ordered);
733  	complete(&ordered->completion);
734  }
735  
736  /*
737   * Wait for all the ordered extents in a root. Use @bg as range or do whole
738   * range if it's NULL.
739   */
btrfs_wait_ordered_extents(struct btrfs_root * root,u64 nr,const struct btrfs_block_group * bg)740  u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
741  			       const struct btrfs_block_group *bg)
742  {
743  	struct btrfs_fs_info *fs_info = root->fs_info;
744  	LIST_HEAD(splice);
745  	LIST_HEAD(skipped);
746  	LIST_HEAD(works);
747  	struct btrfs_ordered_extent *ordered, *next;
748  	u64 count = 0;
749  	u64 range_start, range_len;
750  	u64 range_end;
751  
752  	if (bg) {
753  		range_start = bg->start;
754  		range_len = bg->length;
755  	} else {
756  		range_start = 0;
757  		range_len = U64_MAX;
758  	}
759  	range_end = range_start + range_len;
760  
761  	mutex_lock(&root->ordered_extent_mutex);
762  	spin_lock(&root->ordered_extent_lock);
763  	list_splice_init(&root->ordered_extents, &splice);
764  	while (!list_empty(&splice) && nr) {
765  		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
766  					   root_extent_list);
767  
768  		if (range_end <= ordered->disk_bytenr ||
769  		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
770  			list_move_tail(&ordered->root_extent_list, &skipped);
771  			cond_resched_lock(&root->ordered_extent_lock);
772  			continue;
773  		}
774  
775  		list_move_tail(&ordered->root_extent_list,
776  			       &root->ordered_extents);
777  		refcount_inc(&ordered->refs);
778  		spin_unlock(&root->ordered_extent_lock);
779  
780  		btrfs_init_work(&ordered->flush_work,
781  				btrfs_run_ordered_extent_work, NULL);
782  		list_add_tail(&ordered->work_list, &works);
783  		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
784  
785  		cond_resched();
786  		if (nr != U64_MAX)
787  			nr--;
788  		count++;
789  		spin_lock(&root->ordered_extent_lock);
790  	}
791  	list_splice_tail(&skipped, &root->ordered_extents);
792  	list_splice_tail(&splice, &root->ordered_extents);
793  	spin_unlock(&root->ordered_extent_lock);
794  
795  	list_for_each_entry_safe(ordered, next, &works, work_list) {
796  		list_del_init(&ordered->work_list);
797  		wait_for_completion(&ordered->completion);
798  		btrfs_put_ordered_extent(ordered);
799  		cond_resched();
800  	}
801  	mutex_unlock(&root->ordered_extent_mutex);
802  
803  	return count;
804  }
805  
806  /*
807   * Wait for @nr ordered extents that intersect the @bg, or the whole range of
808   * the filesystem if @bg is NULL.
809   */
btrfs_wait_ordered_roots(struct btrfs_fs_info * fs_info,u64 nr,const struct btrfs_block_group * bg)810  void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
811  			      const struct btrfs_block_group *bg)
812  {
813  	struct btrfs_root *root;
814  	LIST_HEAD(splice);
815  	u64 done;
816  
817  	mutex_lock(&fs_info->ordered_operations_mutex);
818  	spin_lock(&fs_info->ordered_root_lock);
819  	list_splice_init(&fs_info->ordered_roots, &splice);
820  	while (!list_empty(&splice) && nr) {
821  		root = list_first_entry(&splice, struct btrfs_root,
822  					ordered_root);
823  		root = btrfs_grab_root(root);
824  		BUG_ON(!root);
825  		list_move_tail(&root->ordered_root,
826  			       &fs_info->ordered_roots);
827  		spin_unlock(&fs_info->ordered_root_lock);
828  
829  		done = btrfs_wait_ordered_extents(root, nr, bg);
830  		btrfs_put_root(root);
831  
832  		if (nr != U64_MAX)
833  			nr -= done;
834  
835  		spin_lock(&fs_info->ordered_root_lock);
836  	}
837  	list_splice_tail(&splice, &fs_info->ordered_roots);
838  	spin_unlock(&fs_info->ordered_root_lock);
839  	mutex_unlock(&fs_info->ordered_operations_mutex);
840  }
841  
842  /*
843   * Start IO and wait for a given ordered extent to finish.
844   *
845   * Wait on page writeback for all the pages in the extent and the IO completion
846   * code to insert metadata into the btree corresponding to the extent.
847   */
btrfs_start_ordered_extent(struct btrfs_ordered_extent * entry)848  void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
849  {
850  	u64 start = entry->file_offset;
851  	u64 end = start + entry->num_bytes - 1;
852  	struct btrfs_inode *inode = entry->inode;
853  	bool freespace_inode;
854  
855  	trace_btrfs_ordered_extent_start(inode, entry);
856  
857  	/*
858  	 * If this is a free space inode do not take the ordered extents lockdep
859  	 * map.
860  	 */
861  	freespace_inode = btrfs_is_free_space_inode(inode);
862  
863  	/*
864  	 * pages in the range can be dirty, clean or writeback.  We
865  	 * start IO on any dirty ones so the wait doesn't stall waiting
866  	 * for the flusher thread to find them
867  	 */
868  	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
869  		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
870  
871  	if (!freespace_inode)
872  		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
873  	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
874  }
875  
876  /*
877   * Used to wait on ordered extents across a large range of bytes.
878   */
btrfs_wait_ordered_range(struct btrfs_inode * inode,u64 start,u64 len)879  int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len)
880  {
881  	int ret = 0;
882  	int ret_wb = 0;
883  	u64 end;
884  	u64 orig_end;
885  	struct btrfs_ordered_extent *ordered;
886  
887  	if (start + len < start) {
888  		orig_end = OFFSET_MAX;
889  	} else {
890  		orig_end = start + len - 1;
891  		if (orig_end > OFFSET_MAX)
892  			orig_end = OFFSET_MAX;
893  	}
894  
895  	/* start IO across the range first to instantiate any delalloc
896  	 * extents
897  	 */
898  	ret = btrfs_fdatawrite_range(inode, start, orig_end);
899  	if (ret)
900  		return ret;
901  
902  	/*
903  	 * If we have a writeback error don't return immediately. Wait first
904  	 * for any ordered extents that haven't completed yet. This is to make
905  	 * sure no one can dirty the same page ranges and call writepages()
906  	 * before the ordered extents complete - to avoid failures (-EEXIST)
907  	 * when adding the new ordered extents to the ordered tree.
908  	 */
909  	ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end);
910  
911  	end = orig_end;
912  	while (1) {
913  		ordered = btrfs_lookup_first_ordered_extent(inode, end);
914  		if (!ordered)
915  			break;
916  		if (ordered->file_offset > orig_end) {
917  			btrfs_put_ordered_extent(ordered);
918  			break;
919  		}
920  		if (ordered->file_offset + ordered->num_bytes <= start) {
921  			btrfs_put_ordered_extent(ordered);
922  			break;
923  		}
924  		btrfs_start_ordered_extent(ordered);
925  		end = ordered->file_offset;
926  		/*
927  		 * If the ordered extent had an error save the error but don't
928  		 * exit without waiting first for all other ordered extents in
929  		 * the range to complete.
930  		 */
931  		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
932  			ret = -EIO;
933  		btrfs_put_ordered_extent(ordered);
934  		if (end == 0 || end == start)
935  			break;
936  		end--;
937  	}
938  	return ret_wb ? ret_wb : ret;
939  }
940  
941  /*
942   * find an ordered extent corresponding to file_offset.  return NULL if
943   * nothing is found, otherwise take a reference on the extent and return it
944   */
btrfs_lookup_ordered_extent(struct btrfs_inode * inode,u64 file_offset)945  struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
946  							 u64 file_offset)
947  {
948  	struct rb_node *node;
949  	struct btrfs_ordered_extent *entry = NULL;
950  	unsigned long flags;
951  
952  	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
953  	node = ordered_tree_search(inode, file_offset);
954  	if (!node)
955  		goto out;
956  
957  	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
958  	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
959  		entry = NULL;
960  	if (entry) {
961  		refcount_inc(&entry->refs);
962  		trace_btrfs_ordered_extent_lookup(inode, entry);
963  	}
964  out:
965  	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
966  	return entry;
967  }
968  
969  /* Since the DIO code tries to lock a wide area we need to look for any ordered
970   * extents that exist in the range, rather than just the start of the range.
971   */
btrfs_lookup_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)972  struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
973  		struct btrfs_inode *inode, u64 file_offset, u64 len)
974  {
975  	struct rb_node *node;
976  	struct btrfs_ordered_extent *entry = NULL;
977  
978  	spin_lock_irq(&inode->ordered_tree_lock);
979  	node = ordered_tree_search(inode, file_offset);
980  	if (!node) {
981  		node = ordered_tree_search(inode, file_offset + len);
982  		if (!node)
983  			goto out;
984  	}
985  
986  	while (1) {
987  		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
988  		if (range_overlaps(entry, file_offset, len))
989  			break;
990  
991  		if (entry->file_offset >= file_offset + len) {
992  			entry = NULL;
993  			break;
994  		}
995  		entry = NULL;
996  		node = rb_next(node);
997  		if (!node)
998  			break;
999  	}
1000  out:
1001  	if (entry) {
1002  		refcount_inc(&entry->refs);
1003  		trace_btrfs_ordered_extent_lookup_range(inode, entry);
1004  	}
1005  	spin_unlock_irq(&inode->ordered_tree_lock);
1006  	return entry;
1007  }
1008  
1009  /*
1010   * Adds all ordered extents to the given list. The list ends up sorted by the
1011   * file_offset of the ordered extents.
1012   */
btrfs_get_ordered_extents_for_logging(struct btrfs_inode * inode,struct list_head * list)1013  void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
1014  					   struct list_head *list)
1015  {
1016  	struct rb_node *n;
1017  
1018  	btrfs_assert_inode_locked(inode);
1019  
1020  	spin_lock_irq(&inode->ordered_tree_lock);
1021  	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
1022  		struct btrfs_ordered_extent *ordered;
1023  
1024  		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
1025  
1026  		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
1027  			continue;
1028  
1029  		ASSERT(list_empty(&ordered->log_list));
1030  		list_add_tail(&ordered->log_list, list);
1031  		refcount_inc(&ordered->refs);
1032  		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
1033  	}
1034  	spin_unlock_irq(&inode->ordered_tree_lock);
1035  }
1036  
1037  /*
1038   * lookup and return any extent before 'file_offset'.  NULL is returned
1039   * if none is found
1040   */
1041  struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct btrfs_inode * inode,u64 file_offset)1042  btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
1043  {
1044  	struct rb_node *node;
1045  	struct btrfs_ordered_extent *entry = NULL;
1046  
1047  	spin_lock_irq(&inode->ordered_tree_lock);
1048  	node = ordered_tree_search(inode, file_offset);
1049  	if (!node)
1050  		goto out;
1051  
1052  	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1053  	refcount_inc(&entry->refs);
1054  	trace_btrfs_ordered_extent_lookup_first(inode, entry);
1055  out:
1056  	spin_unlock_irq(&inode->ordered_tree_lock);
1057  	return entry;
1058  }
1059  
1060  /*
1061   * Lookup the first ordered extent that overlaps the range
1062   * [@file_offset, @file_offset + @len).
1063   *
1064   * The difference between this and btrfs_lookup_first_ordered_extent() is
1065   * that this one won't return any ordered extent that does not overlap the range.
1066   * And the difference against btrfs_lookup_ordered_extent() is, this function
1067   * ensures the first ordered extent gets returned.
1068   */
btrfs_lookup_first_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)1069  struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1070  			struct btrfs_inode *inode, u64 file_offset, u64 len)
1071  {
1072  	struct rb_node *node;
1073  	struct rb_node *cur;
1074  	struct rb_node *prev;
1075  	struct rb_node *next;
1076  	struct btrfs_ordered_extent *entry = NULL;
1077  
1078  	spin_lock_irq(&inode->ordered_tree_lock);
1079  	node = inode->ordered_tree.rb_node;
1080  	/*
1081  	 * Here we don't want to use tree_search() which will use tree->last
1082  	 * and screw up the search order.
1083  	 * And __tree_search() can't return the adjacent ordered extents
1084  	 * either, thus here we do our own search.
1085  	 */
1086  	while (node) {
1087  		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1088  
1089  		if (file_offset < entry->file_offset) {
1090  			node = node->rb_left;
1091  		} else if (file_offset >= entry_end(entry)) {
1092  			node = node->rb_right;
1093  		} else {
1094  			/*
1095  			 * Direct hit, got an ordered extent that starts at
1096  			 * @file_offset
1097  			 */
1098  			goto out;
1099  		}
1100  	}
1101  	if (!entry) {
1102  		/* Empty tree */
1103  		goto out;
1104  	}
1105  
1106  	cur = &entry->rb_node;
1107  	/* We got an entry around @file_offset, check adjacent entries */
1108  	if (entry->file_offset < file_offset) {
1109  		prev = cur;
1110  		next = rb_next(cur);
1111  	} else {
1112  		prev = rb_prev(cur);
1113  		next = cur;
1114  	}
1115  	if (prev) {
1116  		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1117  		if (range_overlaps(entry, file_offset, len))
1118  			goto out;
1119  	}
1120  	if (next) {
1121  		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1122  		if (range_overlaps(entry, file_offset, len))
1123  			goto out;
1124  	}
1125  	/* No ordered extent in the range */
1126  	entry = NULL;
1127  out:
1128  	if (entry) {
1129  		refcount_inc(&entry->refs);
1130  		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1131  	}
1132  
1133  	spin_unlock_irq(&inode->ordered_tree_lock);
1134  	return entry;
1135  }
1136  
1137  /*
1138   * Lock the passed range and ensures all pending ordered extents in it are run
1139   * to completion.
1140   *
1141   * @inode:        Inode whose ordered tree is to be searched
1142   * @start:        Beginning of range to flush
1143   * @end:          Last byte of range to lock
1144   * @cached_state: If passed, will return the extent state responsible for the
1145   *                locked range. It's the caller's responsibility to free the
1146   *                cached state.
1147   *
1148   * Always return with the given range locked, ensuring after it's called no
1149   * order extent can be pending.
1150   */
btrfs_lock_and_flush_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1151  void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1152  					u64 end,
1153  					struct extent_state **cached_state)
1154  {
1155  	struct btrfs_ordered_extent *ordered;
1156  	struct extent_state *cache = NULL;
1157  	struct extent_state **cachedp = &cache;
1158  
1159  	if (cached_state)
1160  		cachedp = cached_state;
1161  
1162  	while (1) {
1163  		lock_extent(&inode->io_tree, start, end, cachedp);
1164  		ordered = btrfs_lookup_ordered_range(inode, start,
1165  						     end - start + 1);
1166  		if (!ordered) {
1167  			/*
1168  			 * If no external cached_state has been passed then
1169  			 * decrement the extra ref taken for cachedp since we
1170  			 * aren't exposing it outside of this function
1171  			 */
1172  			if (!cached_state)
1173  				refcount_dec(&cache->refs);
1174  			break;
1175  		}
1176  		unlock_extent(&inode->io_tree, start, end, cachedp);
1177  		btrfs_start_ordered_extent(ordered);
1178  		btrfs_put_ordered_extent(ordered);
1179  	}
1180  }
1181  
1182  /*
1183   * Lock the passed range and ensure all pending ordered extents in it are run
1184   * to completion in nowait mode.
1185   *
1186   * Return true if btrfs_lock_ordered_range does not return any extents,
1187   * otherwise false.
1188   */
btrfs_try_lock_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1189  bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1190  				  struct extent_state **cached_state)
1191  {
1192  	struct btrfs_ordered_extent *ordered;
1193  
1194  	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1195  		return false;
1196  
1197  	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1198  	if (!ordered)
1199  		return true;
1200  
1201  	btrfs_put_ordered_extent(ordered);
1202  	unlock_extent(&inode->io_tree, start, end, cached_state);
1203  
1204  	return false;
1205  }
1206  
1207  /* Split out a new ordered extent for this first @len bytes of @ordered. */
btrfs_split_ordered_extent(struct btrfs_ordered_extent * ordered,u64 len)1208  struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1209  			struct btrfs_ordered_extent *ordered, u64 len)
1210  {
1211  	struct btrfs_inode *inode = ordered->inode;
1212  	struct btrfs_root *root = inode->root;
1213  	struct btrfs_fs_info *fs_info = root->fs_info;
1214  	u64 file_offset = ordered->file_offset;
1215  	u64 disk_bytenr = ordered->disk_bytenr;
1216  	unsigned long flags = ordered->flags;
1217  	struct btrfs_ordered_sum *sum, *tmpsum;
1218  	struct btrfs_ordered_extent *new;
1219  	struct rb_node *node;
1220  	u64 offset = 0;
1221  
1222  	trace_btrfs_ordered_extent_split(inode, ordered);
1223  
1224  	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1225  
1226  	/*
1227  	 * The entire bio must be covered by the ordered extent, but we can't
1228  	 * reduce the original extent to a zero length either.
1229  	 */
1230  	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1231  		return ERR_PTR(-EINVAL);
1232  	/* We cannot split partially completed ordered extents. */
1233  	if (ordered->bytes_left) {
1234  		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1235  		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1236  			return ERR_PTR(-EINVAL);
1237  	}
1238  	/* We cannot split a compressed ordered extent. */
1239  	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1240  		return ERR_PTR(-EINVAL);
1241  
1242  	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1243  				   len, 0, flags, ordered->compress_type);
1244  	if (IS_ERR(new))
1245  		return new;
1246  
1247  	/* One ref for the tree. */
1248  	refcount_inc(&new->refs);
1249  
1250  	/*
1251  	 * Take the root's ordered_extent_lock to avoid a race with
1252  	 * btrfs_wait_ordered_extents() when updating the disk_bytenr and
1253  	 * disk_num_bytes fields of the ordered extent below. And we disable
1254  	 * IRQs because the inode's ordered_tree_lock is used in IRQ context
1255  	 * elsewhere.
1256  	 *
1257  	 * There's no concern about a previous caller of
1258  	 * btrfs_wait_ordered_extents() getting the trimmed ordered extent
1259  	 * before we insert the new one, because even if it gets the ordered
1260  	 * extent before it's trimmed and the new one inserted, right before it
1261  	 * uses it or during its use, the ordered extent might have been
1262  	 * trimmed in the meanwhile, and it missed the new ordered extent.
1263  	 * There's no way around this and it's harmless for current use cases,
1264  	 * so we take the root's ordered_extent_lock to fix that race during
1265  	 * trimming and silence tools like KCSAN.
1266  	 */
1267  	spin_lock_irq(&root->ordered_extent_lock);
1268  	spin_lock(&inode->ordered_tree_lock);
1269  
1270  	/*
1271  	 * We don't have overlapping ordered extents (that would imply double
1272  	 * allocation of extents) and we checked above that the split length
1273  	 * does not cross the ordered extent's num_bytes field, so there's
1274  	 * no need to remove it and re-insert it in the tree.
1275  	 */
1276  	ordered->file_offset += len;
1277  	ordered->disk_bytenr += len;
1278  	ordered->num_bytes -= len;
1279  	ordered->disk_num_bytes -= len;
1280  	ordered->ram_bytes -= len;
1281  
1282  	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1283  		ASSERT(ordered->bytes_left == 0);
1284  		new->bytes_left = 0;
1285  	} else {
1286  		ordered->bytes_left -= len;
1287  	}
1288  
1289  	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1290  		if (ordered->truncated_len > len) {
1291  			ordered->truncated_len -= len;
1292  		} else {
1293  			new->truncated_len = ordered->truncated_len;
1294  			ordered->truncated_len = 0;
1295  		}
1296  	}
1297  
1298  	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1299  		if (offset == len)
1300  			break;
1301  		list_move_tail(&sum->list, &new->list);
1302  		offset += sum->len;
1303  	}
1304  
1305  	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1306  	if (unlikely(node))
1307  		btrfs_panic(fs_info, -EEXIST,
1308  			"inconsistency in ordered tree at offset %llu after split",
1309  			new->file_offset);
1310  	spin_unlock(&inode->ordered_tree_lock);
1311  
1312  	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1313  	root->nr_ordered_extents++;
1314  	spin_unlock_irq(&root->ordered_extent_lock);
1315  	return new;
1316  }
1317  
ordered_data_init(void)1318  int __init ordered_data_init(void)
1319  {
1320  	btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1321  	if (!btrfs_ordered_extent_cache)
1322  		return -ENOMEM;
1323  
1324  	return 0;
1325  }
1326  
ordered_data_exit(void)1327  void __cold ordered_data_exit(void)
1328  {
1329  	kmem_cache_destroy(btrfs_ordered_extent_cache);
1330  }
1331