1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "messages.h"
10 #include "ctree.h"
11 #include "delayed-ref.h"
12 #include "transaction.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "tree-mod-log.h"
16 #include "fs.h"
17
18 struct kmem_cache *btrfs_delayed_ref_head_cachep;
19 struct kmem_cache *btrfs_delayed_ref_node_cachep;
20 struct kmem_cache *btrfs_delayed_extent_op_cachep;
21 /*
22 * delayed back reference update tracking. For subvolume trees
23 * we queue up extent allocations and backref maintenance for
24 * delayed processing. This avoids deep call chains where we
25 * add extents in the middle of btrfs_search_slot, and it allows
26 * us to buffer up frequently modified backrefs in an rb tree instead
27 * of hammering updates on the extent allocation tree.
28 */
29
btrfs_check_space_for_delayed_refs(struct btrfs_fs_info * fs_info)30 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
31 {
32 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
33 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
34 bool ret = false;
35 u64 reserved;
36
37 spin_lock(&global_rsv->lock);
38 reserved = global_rsv->reserved;
39 spin_unlock(&global_rsv->lock);
40
41 /*
42 * Since the global reserve is just kind of magic we don't really want
43 * to rely on it to save our bacon, so if our size is more than the
44 * delayed_refs_rsv and the global rsv then it's time to think about
45 * bailing.
46 */
47 spin_lock(&delayed_refs_rsv->lock);
48 reserved += delayed_refs_rsv->reserved;
49 if (delayed_refs_rsv->size >= reserved)
50 ret = true;
51 spin_unlock(&delayed_refs_rsv->lock);
52 return ret;
53 }
54
55 /*
56 * Release a ref head's reservation.
57 *
58 * @fs_info: the filesystem
59 * @nr_refs: number of delayed refs to drop
60 * @nr_csums: number of csum items to drop
61 *
62 * Drops the delayed ref head's count from the delayed refs rsv and free any
63 * excess reservation we had.
64 */
btrfs_delayed_refs_rsv_release(struct btrfs_fs_info * fs_info,int nr_refs,int nr_csums)65 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
66 {
67 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
68 u64 num_bytes;
69 u64 released;
70
71 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
72 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
73
74 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
75 if (released)
76 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
77 0, released, 0);
78 }
79
80 /*
81 * Adjust the size of the delayed refs rsv.
82 *
83 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
84 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
85 * add it to the delayed_refs_rsv.
86 */
btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle * trans)87 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
88 {
89 struct btrfs_fs_info *fs_info = trans->fs_info;
90 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
91 struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
92 u64 num_bytes;
93 u64 reserved_bytes;
94
95 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
96 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
97 trans->delayed_ref_csum_deletions);
98
99 if (num_bytes == 0)
100 return;
101
102 /*
103 * Try to take num_bytes from the transaction's local delayed reserve.
104 * If not possible, try to take as much as it's available. If the local
105 * reserve doesn't have enough reserved space, the delayed refs reserve
106 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
107 * by someone or if a transaction commit is triggered before that, the
108 * global block reserve will be used. We want to minimize using the
109 * global block reserve for cases we can account for in advance, to
110 * avoid exhausting it and reach -ENOSPC during a transaction commit.
111 */
112 spin_lock(&local_rsv->lock);
113 reserved_bytes = min(num_bytes, local_rsv->reserved);
114 local_rsv->reserved -= reserved_bytes;
115 local_rsv->full = (local_rsv->reserved >= local_rsv->size);
116 spin_unlock(&local_rsv->lock);
117
118 spin_lock(&delayed_rsv->lock);
119 delayed_rsv->size += num_bytes;
120 delayed_rsv->reserved += reserved_bytes;
121 delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
122 spin_unlock(&delayed_rsv->lock);
123 trans->delayed_ref_updates = 0;
124 trans->delayed_ref_csum_deletions = 0;
125 }
126
127 /*
128 * Adjust the size of the delayed refs block reserve for 1 block group item
129 * insertion, used after allocating a block group.
130 */
btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info * fs_info)131 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
132 {
133 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
134
135 spin_lock(&delayed_rsv->lock);
136 /*
137 * Inserting a block group item does not require changing the free space
138 * tree, only the extent tree or the block group tree, so this is all we
139 * need.
140 */
141 delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
142 delayed_rsv->full = false;
143 spin_unlock(&delayed_rsv->lock);
144 }
145
146 /*
147 * Adjust the size of the delayed refs block reserve to release space for 1
148 * block group item insertion.
149 */
btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info * fs_info)150 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
151 {
152 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
153 const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
154 u64 released;
155
156 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
157 if (released > 0)
158 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
159 0, released, 0);
160 }
161
162 /*
163 * Adjust the size of the delayed refs block reserve for 1 block group item
164 * update.
165 */
btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info * fs_info)166 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
167 {
168 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
169
170 spin_lock(&delayed_rsv->lock);
171 /*
172 * Updating a block group item does not result in new nodes/leaves and
173 * does not require changing the free space tree, only the extent tree
174 * or the block group tree, so this is all we need.
175 */
176 delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
177 delayed_rsv->full = false;
178 spin_unlock(&delayed_rsv->lock);
179 }
180
181 /*
182 * Adjust the size of the delayed refs block reserve to release space for 1
183 * block group item update.
184 */
btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info * fs_info)185 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
186 {
187 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
188 const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
189 u64 released;
190
191 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
192 if (released > 0)
193 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
194 0, released, 0);
195 }
196
197 /*
198 * Refill based on our delayed refs usage.
199 *
200 * @fs_info: the filesystem
201 * @flush: control how we can flush for this reservation.
202 *
203 * This will refill the delayed block_rsv up to 1 items size worth of space and
204 * will return -ENOSPC if we can't make the reservation.
205 */
btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush)206 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
207 enum btrfs_reserve_flush_enum flush)
208 {
209 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
210 struct btrfs_space_info *space_info = block_rsv->space_info;
211 u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
212 u64 num_bytes = 0;
213 u64 refilled_bytes;
214 u64 to_free;
215 int ret = -ENOSPC;
216
217 spin_lock(&block_rsv->lock);
218 if (block_rsv->reserved < block_rsv->size) {
219 num_bytes = block_rsv->size - block_rsv->reserved;
220 num_bytes = min(num_bytes, limit);
221 }
222 spin_unlock(&block_rsv->lock);
223
224 if (!num_bytes)
225 return 0;
226
227 ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
228 if (ret)
229 return ret;
230
231 /*
232 * We may have raced with someone else, so check again if we the block
233 * reserve is still not full and release any excess space.
234 */
235 spin_lock(&block_rsv->lock);
236 if (block_rsv->reserved < block_rsv->size) {
237 u64 needed = block_rsv->size - block_rsv->reserved;
238
239 if (num_bytes >= needed) {
240 block_rsv->reserved += needed;
241 block_rsv->full = true;
242 to_free = num_bytes - needed;
243 refilled_bytes = needed;
244 } else {
245 block_rsv->reserved += num_bytes;
246 to_free = 0;
247 refilled_bytes = num_bytes;
248 }
249 } else {
250 to_free = num_bytes;
251 refilled_bytes = 0;
252 }
253 spin_unlock(&block_rsv->lock);
254
255 if (to_free > 0)
256 btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
257
258 if (refilled_bytes > 0)
259 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
260 refilled_bytes, 1);
261 return 0;
262 }
263
264 /*
265 * compare two delayed data backrefs with same bytenr and type
266 */
comp_data_refs(struct btrfs_delayed_ref_node * ref1,struct btrfs_delayed_ref_node * ref2)267 static int comp_data_refs(struct btrfs_delayed_ref_node *ref1,
268 struct btrfs_delayed_ref_node *ref2)
269 {
270 if (ref1->data_ref.objectid < ref2->data_ref.objectid)
271 return -1;
272 if (ref1->data_ref.objectid > ref2->data_ref.objectid)
273 return 1;
274 if (ref1->data_ref.offset < ref2->data_ref.offset)
275 return -1;
276 if (ref1->data_ref.offset > ref2->data_ref.offset)
277 return 1;
278 return 0;
279 }
280
comp_refs(struct btrfs_delayed_ref_node * ref1,struct btrfs_delayed_ref_node * ref2,bool check_seq)281 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
282 struct btrfs_delayed_ref_node *ref2,
283 bool check_seq)
284 {
285 int ret = 0;
286
287 if (ref1->type < ref2->type)
288 return -1;
289 if (ref1->type > ref2->type)
290 return 1;
291 if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY ||
292 ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
293 if (ref1->parent < ref2->parent)
294 return -1;
295 if (ref1->parent > ref2->parent)
296 return 1;
297 } else {
298 if (ref1->ref_root < ref2->ref_root)
299 return -1;
300 if (ref1->ref_root > ref2->ref_root)
301 return 1;
302 if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY)
303 ret = comp_data_refs(ref1, ref2);
304 }
305 if (ret)
306 return ret;
307 if (check_seq) {
308 if (ref1->seq < ref2->seq)
309 return -1;
310 if (ref1->seq > ref2->seq)
311 return 1;
312 }
313 return 0;
314 }
315
316 /* insert a new ref to head ref rbtree */
htree_insert(struct rb_root_cached * root,struct rb_node * node)317 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
318 struct rb_node *node)
319 {
320 struct rb_node **p = &root->rb_root.rb_node;
321 struct rb_node *parent_node = NULL;
322 struct btrfs_delayed_ref_head *entry;
323 struct btrfs_delayed_ref_head *ins;
324 u64 bytenr;
325 bool leftmost = true;
326
327 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
328 bytenr = ins->bytenr;
329 while (*p) {
330 parent_node = *p;
331 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
332 href_node);
333
334 if (bytenr < entry->bytenr) {
335 p = &(*p)->rb_left;
336 } else if (bytenr > entry->bytenr) {
337 p = &(*p)->rb_right;
338 leftmost = false;
339 } else {
340 return entry;
341 }
342 }
343
344 rb_link_node(node, parent_node, p);
345 rb_insert_color_cached(node, root, leftmost);
346 return NULL;
347 }
348
tree_insert(struct rb_root_cached * root,struct btrfs_delayed_ref_node * ins)349 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
350 struct btrfs_delayed_ref_node *ins)
351 {
352 struct rb_node **p = &root->rb_root.rb_node;
353 struct rb_node *node = &ins->ref_node;
354 struct rb_node *parent_node = NULL;
355 struct btrfs_delayed_ref_node *entry;
356 bool leftmost = true;
357
358 while (*p) {
359 int comp;
360
361 parent_node = *p;
362 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
363 ref_node);
364 comp = comp_refs(ins, entry, true);
365 if (comp < 0) {
366 p = &(*p)->rb_left;
367 } else if (comp > 0) {
368 p = &(*p)->rb_right;
369 leftmost = false;
370 } else {
371 return entry;
372 }
373 }
374
375 rb_link_node(node, parent_node, p);
376 rb_insert_color_cached(node, root, leftmost);
377 return NULL;
378 }
379
find_first_ref_head(struct btrfs_delayed_ref_root * dr)380 static struct btrfs_delayed_ref_head *find_first_ref_head(
381 struct btrfs_delayed_ref_root *dr)
382 {
383 struct rb_node *n;
384 struct btrfs_delayed_ref_head *entry;
385
386 n = rb_first_cached(&dr->href_root);
387 if (!n)
388 return NULL;
389
390 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
391
392 return entry;
393 }
394
395 /*
396 * Find a head entry based on bytenr. This returns the delayed ref head if it
397 * was able to find one, or NULL if nothing was in that spot. If return_bigger
398 * is given, the next bigger entry is returned if no exact match is found.
399 */
find_ref_head(struct btrfs_delayed_ref_root * dr,u64 bytenr,bool return_bigger)400 static struct btrfs_delayed_ref_head *find_ref_head(
401 struct btrfs_delayed_ref_root *dr, u64 bytenr,
402 bool return_bigger)
403 {
404 struct rb_root *root = &dr->href_root.rb_root;
405 struct rb_node *n;
406 struct btrfs_delayed_ref_head *entry;
407
408 n = root->rb_node;
409 entry = NULL;
410 while (n) {
411 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
412
413 if (bytenr < entry->bytenr)
414 n = n->rb_left;
415 else if (bytenr > entry->bytenr)
416 n = n->rb_right;
417 else
418 return entry;
419 }
420 if (entry && return_bigger) {
421 if (bytenr > entry->bytenr) {
422 n = rb_next(&entry->href_node);
423 if (!n)
424 return NULL;
425 entry = rb_entry(n, struct btrfs_delayed_ref_head,
426 href_node);
427 }
428 return entry;
429 }
430 return NULL;
431 }
432
btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)433 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
434 struct btrfs_delayed_ref_head *head)
435 {
436 lockdep_assert_held(&delayed_refs->lock);
437 if (mutex_trylock(&head->mutex))
438 return 0;
439
440 refcount_inc(&head->refs);
441 spin_unlock(&delayed_refs->lock);
442
443 mutex_lock(&head->mutex);
444 spin_lock(&delayed_refs->lock);
445 if (RB_EMPTY_NODE(&head->href_node)) {
446 mutex_unlock(&head->mutex);
447 btrfs_put_delayed_ref_head(head);
448 return -EAGAIN;
449 }
450 btrfs_put_delayed_ref_head(head);
451 return 0;
452 }
453
drop_delayed_ref(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref)454 static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
455 struct btrfs_delayed_ref_root *delayed_refs,
456 struct btrfs_delayed_ref_head *head,
457 struct btrfs_delayed_ref_node *ref)
458 {
459 lockdep_assert_held(&head->lock);
460 rb_erase_cached(&ref->ref_node, &head->ref_tree);
461 RB_CLEAR_NODE(&ref->ref_node);
462 if (!list_empty(&ref->add_list))
463 list_del(&ref->add_list);
464 btrfs_put_delayed_ref(ref);
465 atomic_dec(&delayed_refs->num_entries);
466 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
467 }
468
merge_ref(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref,u64 seq)469 static bool merge_ref(struct btrfs_fs_info *fs_info,
470 struct btrfs_delayed_ref_root *delayed_refs,
471 struct btrfs_delayed_ref_head *head,
472 struct btrfs_delayed_ref_node *ref,
473 u64 seq)
474 {
475 struct btrfs_delayed_ref_node *next;
476 struct rb_node *node = rb_next(&ref->ref_node);
477 bool done = false;
478
479 while (!done && node) {
480 int mod;
481
482 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
483 node = rb_next(node);
484 if (seq && next->seq >= seq)
485 break;
486 if (comp_refs(ref, next, false))
487 break;
488
489 if (ref->action == next->action) {
490 mod = next->ref_mod;
491 } else {
492 if (ref->ref_mod < next->ref_mod) {
493 swap(ref, next);
494 done = true;
495 }
496 mod = -next->ref_mod;
497 }
498
499 drop_delayed_ref(fs_info, delayed_refs, head, next);
500 ref->ref_mod += mod;
501 if (ref->ref_mod == 0) {
502 drop_delayed_ref(fs_info, delayed_refs, head, ref);
503 done = true;
504 } else {
505 /*
506 * Can't have multiples of the same ref on a tree block.
507 */
508 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
509 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
510 }
511 }
512
513 return done;
514 }
515
btrfs_merge_delayed_refs(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)516 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
517 struct btrfs_delayed_ref_root *delayed_refs,
518 struct btrfs_delayed_ref_head *head)
519 {
520 struct btrfs_delayed_ref_node *ref;
521 struct rb_node *node;
522 u64 seq = 0;
523
524 lockdep_assert_held(&head->lock);
525
526 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
527 return;
528
529 /* We don't have too many refs to merge for data. */
530 if (head->is_data)
531 return;
532
533 seq = btrfs_tree_mod_log_lowest_seq(fs_info);
534 again:
535 for (node = rb_first_cached(&head->ref_tree); node;
536 node = rb_next(node)) {
537 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
538 if (seq && ref->seq >= seq)
539 continue;
540 if (merge_ref(fs_info, delayed_refs, head, ref, seq))
541 goto again;
542 }
543 }
544
btrfs_check_delayed_seq(struct btrfs_fs_info * fs_info,u64 seq)545 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
546 {
547 int ret = 0;
548 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
549
550 if (min_seq != 0 && seq >= min_seq) {
551 btrfs_debug(fs_info,
552 "holding back delayed_ref %llu, lowest is %llu",
553 seq, min_seq);
554 ret = 1;
555 }
556
557 return ret;
558 }
559
btrfs_select_ref_head(struct btrfs_delayed_ref_root * delayed_refs)560 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
561 struct btrfs_delayed_ref_root *delayed_refs)
562 {
563 struct btrfs_delayed_ref_head *head;
564
565 lockdep_assert_held(&delayed_refs->lock);
566 again:
567 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
568 true);
569 if (!head && delayed_refs->run_delayed_start != 0) {
570 delayed_refs->run_delayed_start = 0;
571 head = find_first_ref_head(delayed_refs);
572 }
573 if (!head)
574 return NULL;
575
576 while (head->processing) {
577 struct rb_node *node;
578
579 node = rb_next(&head->href_node);
580 if (!node) {
581 if (delayed_refs->run_delayed_start == 0)
582 return NULL;
583 delayed_refs->run_delayed_start = 0;
584 goto again;
585 }
586 head = rb_entry(node, struct btrfs_delayed_ref_head,
587 href_node);
588 }
589
590 head->processing = true;
591 WARN_ON(delayed_refs->num_heads_ready == 0);
592 delayed_refs->num_heads_ready--;
593 delayed_refs->run_delayed_start = head->bytenr +
594 head->num_bytes;
595 return head;
596 }
597
btrfs_delete_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)598 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
599 struct btrfs_delayed_ref_head *head)
600 {
601 lockdep_assert_held(&delayed_refs->lock);
602 lockdep_assert_held(&head->lock);
603
604 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
605 RB_CLEAR_NODE(&head->href_node);
606 atomic_dec(&delayed_refs->num_entries);
607 delayed_refs->num_heads--;
608 if (!head->processing)
609 delayed_refs->num_heads_ready--;
610 }
611
612 /*
613 * Helper to insert the ref_node to the tail or merge with tail.
614 *
615 * Return false if the ref was inserted.
616 * Return true if the ref was merged into an existing one (and therefore can be
617 * freed by the caller).
618 */
insert_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * ref)619 static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
620 struct btrfs_delayed_ref_head *href,
621 struct btrfs_delayed_ref_node *ref)
622 {
623 struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
624 struct btrfs_delayed_ref_node *exist;
625 int mod;
626
627 spin_lock(&href->lock);
628 exist = tree_insert(&href->ref_tree, ref);
629 if (!exist) {
630 if (ref->action == BTRFS_ADD_DELAYED_REF)
631 list_add_tail(&ref->add_list, &href->ref_add_list);
632 atomic_inc(&root->num_entries);
633 spin_unlock(&href->lock);
634 trans->delayed_ref_updates++;
635 return false;
636 }
637
638 /* Now we are sure we can merge */
639 if (exist->action == ref->action) {
640 mod = ref->ref_mod;
641 } else {
642 /* Need to change action */
643 if (exist->ref_mod < ref->ref_mod) {
644 exist->action = ref->action;
645 mod = -exist->ref_mod;
646 exist->ref_mod = ref->ref_mod;
647 if (ref->action == BTRFS_ADD_DELAYED_REF)
648 list_add_tail(&exist->add_list,
649 &href->ref_add_list);
650 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
651 ASSERT(!list_empty(&exist->add_list));
652 list_del_init(&exist->add_list);
653 } else {
654 ASSERT(0);
655 }
656 } else
657 mod = -ref->ref_mod;
658 }
659 exist->ref_mod += mod;
660
661 /* remove existing tail if its ref_mod is zero */
662 if (exist->ref_mod == 0)
663 drop_delayed_ref(trans->fs_info, root, href, exist);
664 spin_unlock(&href->lock);
665 return true;
666 }
667
668 /*
669 * helper function to update the accounting in the head ref
670 * existing and update must have the same bytenr
671 */
update_existing_head_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * existing,struct btrfs_delayed_ref_head * update)672 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
673 struct btrfs_delayed_ref_head *existing,
674 struct btrfs_delayed_ref_head *update)
675 {
676 struct btrfs_delayed_ref_root *delayed_refs =
677 &trans->transaction->delayed_refs;
678 struct btrfs_fs_info *fs_info = trans->fs_info;
679 int old_ref_mod;
680
681 BUG_ON(existing->is_data != update->is_data);
682
683 spin_lock(&existing->lock);
684
685 /*
686 * When freeing an extent, we may not know the owning root when we
687 * first create the head_ref. However, some deref before the last deref
688 * will know it, so we just need to update the head_ref accordingly.
689 */
690 if (!existing->owning_root)
691 existing->owning_root = update->owning_root;
692
693 if (update->must_insert_reserved) {
694 /* if the extent was freed and then
695 * reallocated before the delayed ref
696 * entries were processed, we can end up
697 * with an existing head ref without
698 * the must_insert_reserved flag set.
699 * Set it again here
700 */
701 existing->must_insert_reserved = update->must_insert_reserved;
702 existing->owning_root = update->owning_root;
703
704 /*
705 * update the num_bytes so we make sure the accounting
706 * is done correctly
707 */
708 existing->num_bytes = update->num_bytes;
709
710 }
711
712 if (update->extent_op) {
713 if (!existing->extent_op) {
714 existing->extent_op = update->extent_op;
715 } else {
716 if (update->extent_op->update_key) {
717 memcpy(&existing->extent_op->key,
718 &update->extent_op->key,
719 sizeof(update->extent_op->key));
720 existing->extent_op->update_key = true;
721 }
722 if (update->extent_op->update_flags) {
723 existing->extent_op->flags_to_set |=
724 update->extent_op->flags_to_set;
725 existing->extent_op->update_flags = true;
726 }
727 btrfs_free_delayed_extent_op(update->extent_op);
728 }
729 }
730 /*
731 * update the reference mod on the head to reflect this new operation,
732 * only need the lock for this case cause we could be processing it
733 * currently, for refs we just added we know we're a-ok.
734 */
735 old_ref_mod = existing->total_ref_mod;
736 existing->ref_mod += update->ref_mod;
737 existing->total_ref_mod += update->ref_mod;
738
739 /*
740 * If we are going to from a positive ref mod to a negative or vice
741 * versa we need to make sure to adjust pending_csums accordingly.
742 * We reserve bytes for csum deletion when adding or updating a ref head
743 * see add_delayed_ref_head() for more details.
744 */
745 if (existing->is_data) {
746 u64 csum_leaves =
747 btrfs_csum_bytes_to_leaves(fs_info,
748 existing->num_bytes);
749
750 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
751 delayed_refs->pending_csums -= existing->num_bytes;
752 btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
753 }
754 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
755 delayed_refs->pending_csums += existing->num_bytes;
756 trans->delayed_ref_csum_deletions += csum_leaves;
757 }
758 }
759
760 spin_unlock(&existing->lock);
761 }
762
init_delayed_ref_head(struct btrfs_delayed_ref_head * head_ref,struct btrfs_ref * generic_ref,struct btrfs_qgroup_extent_record * qrecord,u64 reserved)763 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
764 struct btrfs_ref *generic_ref,
765 struct btrfs_qgroup_extent_record *qrecord,
766 u64 reserved)
767 {
768 int count_mod = 1;
769 bool must_insert_reserved = false;
770
771 /* If reserved is provided, it must be a data extent. */
772 BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved);
773
774 switch (generic_ref->action) {
775 case BTRFS_ADD_DELAYED_REF:
776 /* count_mod is already set to 1. */
777 break;
778 case BTRFS_UPDATE_DELAYED_HEAD:
779 count_mod = 0;
780 break;
781 case BTRFS_DROP_DELAYED_REF:
782 /*
783 * The head node stores the sum of all the mods, so dropping a ref
784 * should drop the sum in the head node by one.
785 */
786 count_mod = -1;
787 break;
788 case BTRFS_ADD_DELAYED_EXTENT:
789 /*
790 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
791 * reserved accounting when the extent is finally added, or if a
792 * later modification deletes the delayed ref without ever
793 * inserting the extent into the extent allocation tree.
794 * ref->must_insert_reserved is the flag used to record that
795 * accounting mods are required.
796 *
797 * Once we record must_insert_reserved, switch the action to
798 * BTRFS_ADD_DELAYED_REF because other special casing is not
799 * required.
800 */
801 must_insert_reserved = true;
802 break;
803 }
804
805 refcount_set(&head_ref->refs, 1);
806 head_ref->bytenr = generic_ref->bytenr;
807 head_ref->num_bytes = generic_ref->num_bytes;
808 head_ref->ref_mod = count_mod;
809 head_ref->reserved_bytes = reserved;
810 head_ref->must_insert_reserved = must_insert_reserved;
811 head_ref->owning_root = generic_ref->owning_root;
812 head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA);
813 head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID);
814 head_ref->ref_tree = RB_ROOT_CACHED;
815 INIT_LIST_HEAD(&head_ref->ref_add_list);
816 RB_CLEAR_NODE(&head_ref->href_node);
817 head_ref->processing = false;
818 head_ref->total_ref_mod = count_mod;
819 spin_lock_init(&head_ref->lock);
820 mutex_init(&head_ref->mutex);
821
822 /* If not metadata set an impossible level to help debugging. */
823 if (generic_ref->type == BTRFS_REF_METADATA)
824 head_ref->level = generic_ref->tree_ref.level;
825 else
826 head_ref->level = U8_MAX;
827
828 if (qrecord) {
829 if (generic_ref->ref_root && reserved) {
830 qrecord->data_rsv = reserved;
831 qrecord->data_rsv_refroot = generic_ref->ref_root;
832 }
833 qrecord->bytenr = generic_ref->bytenr;
834 qrecord->num_bytes = generic_ref->num_bytes;
835 qrecord->old_roots = NULL;
836 }
837 }
838
839 /*
840 * helper function to actually insert a head node into the rbtree.
841 * this does all the dirty work in terms of maintaining the correct
842 * overall modification count.
843 *
844 * Returns an error pointer in case of an error.
845 */
846 static noinline struct btrfs_delayed_ref_head *
add_delayed_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,int action,bool * qrecord_inserted_ret)847 add_delayed_ref_head(struct btrfs_trans_handle *trans,
848 struct btrfs_delayed_ref_head *head_ref,
849 struct btrfs_qgroup_extent_record *qrecord,
850 int action, bool *qrecord_inserted_ret)
851 {
852 struct btrfs_fs_info *fs_info = trans->fs_info;
853 struct btrfs_delayed_ref_head *existing;
854 struct btrfs_delayed_ref_root *delayed_refs;
855 bool qrecord_inserted = false;
856
857 delayed_refs = &trans->transaction->delayed_refs;
858
859 /* Record qgroup extent info if provided */
860 if (qrecord) {
861 int ret;
862
863 ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, qrecord);
864 if (ret) {
865 /* Clean up if insertion fails or item exists. */
866 xa_release(&delayed_refs->dirty_extents,
867 qrecord->bytenr >> fs_info->sectorsize_bits);
868 /* Caller responsible for freeing qrecord on error. */
869 if (ret < 0)
870 return ERR_PTR(ret);
871 kfree(qrecord);
872 } else {
873 qrecord_inserted = true;
874 }
875 }
876
877 trace_add_delayed_ref_head(fs_info, head_ref, action);
878
879 existing = htree_insert(&delayed_refs->href_root,
880 &head_ref->href_node);
881 if (existing) {
882 update_existing_head_ref(trans, existing, head_ref);
883 /*
884 * we've updated the existing ref, free the newly
885 * allocated ref
886 */
887 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
888 head_ref = existing;
889 } else {
890 /*
891 * We reserve the amount of bytes needed to delete csums when
892 * adding the ref head and not when adding individual drop refs
893 * since the csum items are deleted only after running the last
894 * delayed drop ref (the data extent's ref count drops to 0).
895 */
896 if (head_ref->is_data && head_ref->ref_mod < 0) {
897 delayed_refs->pending_csums += head_ref->num_bytes;
898 trans->delayed_ref_csum_deletions +=
899 btrfs_csum_bytes_to_leaves(fs_info, head_ref->num_bytes);
900 }
901 delayed_refs->num_heads++;
902 delayed_refs->num_heads_ready++;
903 atomic_inc(&delayed_refs->num_entries);
904 }
905 if (qrecord_inserted_ret)
906 *qrecord_inserted_ret = qrecord_inserted;
907
908 return head_ref;
909 }
910
911 /*
912 * Initialize the structure which represents a modification to a an extent.
913 *
914 * @fs_info: Internal to the mounted filesystem mount structure.
915 *
916 * @ref: The structure which is going to be initialized.
917 *
918 * @bytenr: The logical address of the extent for which a modification is
919 * going to be recorded.
920 *
921 * @num_bytes: Size of the extent whose modification is being recorded.
922 *
923 * @ref_root: The id of the root where this modification has originated, this
924 * can be either one of the well-known metadata trees or the
925 * subvolume id which references this extent.
926 *
927 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
928 * BTRFS_ADD_DELAYED_EXTENT
929 *
930 * @ref_type: Holds the type of the extent which is being recorded, can be
931 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
932 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
933 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
934 */
init_delayed_ref_common(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * ref,struct btrfs_ref * generic_ref)935 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
936 struct btrfs_delayed_ref_node *ref,
937 struct btrfs_ref *generic_ref)
938 {
939 int action = generic_ref->action;
940 u64 seq = 0;
941
942 if (action == BTRFS_ADD_DELAYED_EXTENT)
943 action = BTRFS_ADD_DELAYED_REF;
944
945 if (is_fstree(generic_ref->ref_root))
946 seq = atomic64_read(&fs_info->tree_mod_seq);
947
948 refcount_set(&ref->refs, 1);
949 ref->bytenr = generic_ref->bytenr;
950 ref->num_bytes = generic_ref->num_bytes;
951 ref->ref_mod = 1;
952 ref->action = action;
953 ref->seq = seq;
954 ref->type = btrfs_ref_type(generic_ref);
955 ref->ref_root = generic_ref->ref_root;
956 ref->parent = generic_ref->parent;
957 RB_CLEAR_NODE(&ref->ref_node);
958 INIT_LIST_HEAD(&ref->add_list);
959
960 if (generic_ref->type == BTRFS_REF_DATA)
961 ref->data_ref = generic_ref->data_ref;
962 else
963 ref->tree_ref = generic_ref->tree_ref;
964 }
965
btrfs_init_tree_ref(struct btrfs_ref * generic_ref,int level,u64 mod_root,bool skip_qgroup)966 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
967 bool skip_qgroup)
968 {
969 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
970 /* If @real_root not set, use @root as fallback */
971 generic_ref->real_root = mod_root ?: generic_ref->ref_root;
972 #endif
973 generic_ref->tree_ref.level = level;
974 generic_ref->type = BTRFS_REF_METADATA;
975 if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
976 (!mod_root || is_fstree(mod_root))))
977 generic_ref->skip_qgroup = true;
978 else
979 generic_ref->skip_qgroup = false;
980
981 }
982
btrfs_init_data_ref(struct btrfs_ref * generic_ref,u64 ino,u64 offset,u64 mod_root,bool skip_qgroup)983 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
984 u64 mod_root, bool skip_qgroup)
985 {
986 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
987 /* If @real_root not set, use @root as fallback */
988 generic_ref->real_root = mod_root ?: generic_ref->ref_root;
989 #endif
990 generic_ref->data_ref.objectid = ino;
991 generic_ref->data_ref.offset = offset;
992 generic_ref->type = BTRFS_REF_DATA;
993 if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
994 (!mod_root || is_fstree(mod_root))))
995 generic_ref->skip_qgroup = true;
996 else
997 generic_ref->skip_qgroup = false;
998 }
999
add_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op,u64 reserved)1000 static int add_delayed_ref(struct btrfs_trans_handle *trans,
1001 struct btrfs_ref *generic_ref,
1002 struct btrfs_delayed_extent_op *extent_op,
1003 u64 reserved)
1004 {
1005 struct btrfs_fs_info *fs_info = trans->fs_info;
1006 struct btrfs_delayed_ref_node *node;
1007 struct btrfs_delayed_ref_head *head_ref;
1008 struct btrfs_delayed_ref_head *new_head_ref;
1009 struct btrfs_delayed_ref_root *delayed_refs;
1010 struct btrfs_qgroup_extent_record *record = NULL;
1011 bool qrecord_inserted;
1012 int action = generic_ref->action;
1013 bool merged;
1014 int ret;
1015
1016 node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS);
1017 if (!node)
1018 return -ENOMEM;
1019
1020 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1021 if (!head_ref) {
1022 ret = -ENOMEM;
1023 goto free_node;
1024 }
1025
1026 if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1027 record = kzalloc(sizeof(*record), GFP_NOFS);
1028 if (!record) {
1029 ret = -ENOMEM;
1030 goto free_head_ref;
1031 }
1032 if (xa_reserve(&trans->transaction->delayed_refs.dirty_extents,
1033 generic_ref->bytenr >> fs_info->sectorsize_bits,
1034 GFP_NOFS)) {
1035 ret = -ENOMEM;
1036 goto free_record;
1037 }
1038 }
1039
1040 init_delayed_ref_common(fs_info, node, generic_ref);
1041 init_delayed_ref_head(head_ref, generic_ref, record, reserved);
1042 head_ref->extent_op = extent_op;
1043
1044 delayed_refs = &trans->transaction->delayed_refs;
1045 spin_lock(&delayed_refs->lock);
1046
1047 /*
1048 * insert both the head node and the new ref without dropping
1049 * the spin lock
1050 */
1051 new_head_ref = add_delayed_ref_head(trans, head_ref, record,
1052 action, &qrecord_inserted);
1053 if (IS_ERR(new_head_ref)) {
1054 spin_unlock(&delayed_refs->lock);
1055 ret = PTR_ERR(new_head_ref);
1056 goto free_record;
1057 }
1058 head_ref = new_head_ref;
1059
1060 merged = insert_delayed_ref(trans, head_ref, node);
1061 spin_unlock(&delayed_refs->lock);
1062
1063 /*
1064 * Need to update the delayed_refs_rsv with any changes we may have
1065 * made.
1066 */
1067 btrfs_update_delayed_refs_rsv(trans);
1068
1069 if (generic_ref->type == BTRFS_REF_DATA)
1070 trace_add_delayed_data_ref(trans->fs_info, node);
1071 else
1072 trace_add_delayed_tree_ref(trans->fs_info, node);
1073 if (merged)
1074 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1075
1076 if (qrecord_inserted)
1077 return btrfs_qgroup_trace_extent_post(trans, record);
1078 return 0;
1079
1080 free_record:
1081 kfree(record);
1082 free_head_ref:
1083 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1084 free_node:
1085 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1086 return ret;
1087 }
1088
1089 /*
1090 * Add a delayed tree ref. This does all of the accounting required to make sure
1091 * the delayed ref is eventually processed before this transaction commits.
1092 */
btrfs_add_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op)1093 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1094 struct btrfs_ref *generic_ref,
1095 struct btrfs_delayed_extent_op *extent_op)
1096 {
1097 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1098 return add_delayed_ref(trans, generic_ref, extent_op, 0);
1099 }
1100
1101 /*
1102 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1103 */
btrfs_add_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,u64 reserved)1104 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1105 struct btrfs_ref *generic_ref,
1106 u64 reserved)
1107 {
1108 ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action);
1109 return add_delayed_ref(trans, generic_ref, NULL, reserved);
1110 }
1111
btrfs_add_delayed_extent_op(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,u8 level,struct btrfs_delayed_extent_op * extent_op)1112 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1113 u64 bytenr, u64 num_bytes, u8 level,
1114 struct btrfs_delayed_extent_op *extent_op)
1115 {
1116 struct btrfs_delayed_ref_head *head_ref;
1117 struct btrfs_delayed_ref_head *head_ref_ret;
1118 struct btrfs_delayed_ref_root *delayed_refs;
1119 struct btrfs_ref generic_ref = {
1120 .type = BTRFS_REF_METADATA,
1121 .action = BTRFS_UPDATE_DELAYED_HEAD,
1122 .bytenr = bytenr,
1123 .num_bytes = num_bytes,
1124 .tree_ref.level = level,
1125 };
1126
1127 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1128 if (!head_ref)
1129 return -ENOMEM;
1130
1131 init_delayed_ref_head(head_ref, &generic_ref, NULL, 0);
1132 head_ref->extent_op = extent_op;
1133
1134 delayed_refs = &trans->transaction->delayed_refs;
1135 spin_lock(&delayed_refs->lock);
1136
1137 head_ref_ret = add_delayed_ref_head(trans, head_ref, NULL,
1138 BTRFS_UPDATE_DELAYED_HEAD, NULL);
1139 spin_unlock(&delayed_refs->lock);
1140
1141 if (IS_ERR(head_ref_ret)) {
1142 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1143 return PTR_ERR(head_ref_ret);
1144 }
1145
1146 /*
1147 * Need to update the delayed_refs_rsv with any changes we may have
1148 * made.
1149 */
1150 btrfs_update_delayed_refs_rsv(trans);
1151 return 0;
1152 }
1153
btrfs_put_delayed_ref(struct btrfs_delayed_ref_node * ref)1154 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1155 {
1156 if (refcount_dec_and_test(&ref->refs)) {
1157 WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1158 kmem_cache_free(btrfs_delayed_ref_node_cachep, ref);
1159 }
1160 }
1161
1162 /*
1163 * This does a simple search for the head node for a given extent. Returns the
1164 * head node if found, or NULL if not.
1165 */
1166 struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,u64 bytenr)1167 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1168 {
1169 lockdep_assert_held(&delayed_refs->lock);
1170
1171 return find_ref_head(delayed_refs, bytenr, false);
1172 }
1173
find_comp(struct btrfs_delayed_ref_node * entry,u64 root,u64 parent)1174 static int find_comp(struct btrfs_delayed_ref_node *entry, u64 root, u64 parent)
1175 {
1176 int type = parent ? BTRFS_SHARED_BLOCK_REF_KEY : BTRFS_TREE_BLOCK_REF_KEY;
1177
1178 if (type < entry->type)
1179 return -1;
1180 if (type > entry->type)
1181 return 1;
1182
1183 if (type == BTRFS_TREE_BLOCK_REF_KEY) {
1184 if (root < entry->ref_root)
1185 return -1;
1186 if (root > entry->ref_root)
1187 return 1;
1188 } else {
1189 if (parent < entry->parent)
1190 return -1;
1191 if (parent > entry->parent)
1192 return 1;
1193 }
1194 return 0;
1195 }
1196
1197 /*
1198 * Check to see if a given root/parent reference is attached to the head. This
1199 * only checks for BTRFS_ADD_DELAYED_REF references that match, as that
1200 * indicates the reference exists for the given root or parent. This is for
1201 * tree blocks only.
1202 *
1203 * @head: the head of the bytenr we're searching.
1204 * @root: the root objectid of the reference if it is a normal reference.
1205 * @parent: the parent if this is a shared backref.
1206 */
btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head * head,u64 root,u64 parent)1207 bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head,
1208 u64 root, u64 parent)
1209 {
1210 struct rb_node *node;
1211 bool found = false;
1212
1213 lockdep_assert_held(&head->mutex);
1214
1215 spin_lock(&head->lock);
1216 node = head->ref_tree.rb_root.rb_node;
1217 while (node) {
1218 struct btrfs_delayed_ref_node *entry;
1219 int ret;
1220
1221 entry = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
1222 ret = find_comp(entry, root, parent);
1223 if (ret < 0) {
1224 node = node->rb_left;
1225 } else if (ret > 0) {
1226 node = node->rb_right;
1227 } else {
1228 /*
1229 * We only want to count ADD actions, as drops mean the
1230 * ref doesn't exist.
1231 */
1232 if (entry->action == BTRFS_ADD_DELAYED_REF)
1233 found = true;
1234 break;
1235 }
1236 }
1237 spin_unlock(&head->lock);
1238 return found;
1239 }
1240
btrfs_delayed_ref_exit(void)1241 void __cold btrfs_delayed_ref_exit(void)
1242 {
1243 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1244 kmem_cache_destroy(btrfs_delayed_ref_node_cachep);
1245 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1246 }
1247
btrfs_delayed_ref_init(void)1248 int __init btrfs_delayed_ref_init(void)
1249 {
1250 btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
1251 if (!btrfs_delayed_ref_head_cachep)
1252 goto fail;
1253
1254 btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0);
1255 if (!btrfs_delayed_ref_node_cachep)
1256 goto fail;
1257
1258 btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
1259 if (!btrfs_delayed_extent_op_cachep)
1260 goto fail;
1261
1262 return 0;
1263 fail:
1264 btrfs_delayed_ref_exit();
1265 return -ENOMEM;
1266 }
1267