1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) Qu Wenruo 2017.  All rights reserved.
4   */
5  
6  /*
7   * The module is used to catch unexpected/corrupted tree block data.
8   * Such behavior can be caused either by a fuzzed image or bugs.
9   *
10   * The objective is to do leaf/node validation checks when tree block is read
11   * from disk, and check *every* possible member, so other code won't
12   * need to checking them again.
13   *
14   * Due to the potential and unwanted damage, every checker needs to be
15   * carefully reviewed otherwise so it does not prevent mount of valid images.
16   */
17  
18  #include <linux/types.h>
19  #include <linux/stddef.h>
20  #include <linux/error-injection.h>
21  #include "messages.h"
22  #include "ctree.h"
23  #include "tree-checker.h"
24  #include "compression.h"
25  #include "volumes.h"
26  #include "misc.h"
27  #include "fs.h"
28  #include "accessors.h"
29  #include "file-item.h"
30  #include "inode-item.h"
31  #include "dir-item.h"
32  #include "extent-tree.h"
33  
34  /*
35   * Error message should follow the following format:
36   * corrupt <type>: <identifier>, <reason>[, <bad_value>]
37   *
38   * @type:	leaf or node
39   * @identifier:	the necessary info to locate the leaf/node.
40   * 		It's recommended to decode key.objecitd/offset if it's
41   * 		meaningful.
42   * @reason:	describe the error
43   * @bad_value:	optional, it's recommended to output bad value and its
44   *		expected value (range).
45   *
46   * Since comma is used to separate the components, only space is allowed
47   * inside each component.
48   */
49  
50  /*
51   * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
52   * Allows callers to customize the output.
53   */
54  __printf(3, 4)
55  __cold
generic_err(const struct extent_buffer * eb,int slot,const char * fmt,...)56  static void generic_err(const struct extent_buffer *eb, int slot,
57  			const char *fmt, ...)
58  {
59  	const struct btrfs_fs_info *fs_info = eb->fs_info;
60  	struct va_format vaf;
61  	va_list args;
62  
63  	va_start(args, fmt);
64  
65  	vaf.fmt = fmt;
66  	vaf.va = &args;
67  
68  	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
69  	btrfs_crit(fs_info,
70  		"corrupt %s: root=%llu block=%llu slot=%d, %pV",
71  		btrfs_header_level(eb) == 0 ? "leaf" : "node",
72  		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
73  	va_end(args);
74  }
75  
76  /*
77   * Customized reporter for extent data item, since its key objectid and
78   * offset has its own meaning.
79   */
80  __printf(3, 4)
81  __cold
file_extent_err(const struct extent_buffer * eb,int slot,const char * fmt,...)82  static void file_extent_err(const struct extent_buffer *eb, int slot,
83  			    const char *fmt, ...)
84  {
85  	const struct btrfs_fs_info *fs_info = eb->fs_info;
86  	struct btrfs_key key;
87  	struct va_format vaf;
88  	va_list args;
89  
90  	btrfs_item_key_to_cpu(eb, &key, slot);
91  	va_start(args, fmt);
92  
93  	vaf.fmt = fmt;
94  	vaf.va = &args;
95  
96  	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
97  	btrfs_crit(fs_info,
98  	"corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
99  		btrfs_header_level(eb) == 0 ? "leaf" : "node",
100  		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
101  		key.objectid, key.offset, &vaf);
102  	va_end(args);
103  }
104  
105  /*
106   * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
107   * Else return 1
108   */
109  #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment)		      \
110  ({									      \
111  	if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)),      \
112  				 (alignment))))				      \
113  		file_extent_err((leaf), (slot),				      \
114  	"invalid %s for file extent, have %llu, should be aligned to %u",     \
115  			(#name), btrfs_file_extent_##name((leaf), (fi)),      \
116  			(alignment));					      \
117  	(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment)));   \
118  })
119  
file_extent_end(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_file_extent_item * extent)120  static u64 file_extent_end(struct extent_buffer *leaf,
121  			   struct btrfs_key *key,
122  			   struct btrfs_file_extent_item *extent)
123  {
124  	u64 end;
125  	u64 len;
126  
127  	if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
128  		len = btrfs_file_extent_ram_bytes(leaf, extent);
129  		end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
130  	} else {
131  		len = btrfs_file_extent_num_bytes(leaf, extent);
132  		end = key->offset + len;
133  	}
134  	return end;
135  }
136  
137  /*
138   * Customized report for dir_item, the only new important information is
139   * key->objectid, which represents inode number
140   */
141  __printf(3, 4)
142  __cold
dir_item_err(const struct extent_buffer * eb,int slot,const char * fmt,...)143  static void dir_item_err(const struct extent_buffer *eb, int slot,
144  			 const char *fmt, ...)
145  {
146  	const struct btrfs_fs_info *fs_info = eb->fs_info;
147  	struct btrfs_key key;
148  	struct va_format vaf;
149  	va_list args;
150  
151  	btrfs_item_key_to_cpu(eb, &key, slot);
152  	va_start(args, fmt);
153  
154  	vaf.fmt = fmt;
155  	vaf.va = &args;
156  
157  	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
158  	btrfs_crit(fs_info,
159  		"corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
160  		btrfs_header_level(eb) == 0 ? "leaf" : "node",
161  		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
162  		key.objectid, &vaf);
163  	va_end(args);
164  }
165  
166  /*
167   * This functions checks prev_key->objectid, to ensure current key and prev_key
168   * share the same objectid as inode number.
169   *
170   * This is to detect missing INODE_ITEM in subvolume trees.
171   *
172   * Return true if everything is OK or we don't need to check.
173   * Return false if anything is wrong.
174   */
check_prev_ino(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)175  static bool check_prev_ino(struct extent_buffer *leaf,
176  			   struct btrfs_key *key, int slot,
177  			   struct btrfs_key *prev_key)
178  {
179  	/* No prev key, skip check */
180  	if (slot == 0)
181  		return true;
182  
183  	/* Only these key->types needs to be checked */
184  	ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
185  	       key->type == BTRFS_INODE_REF_KEY ||
186  	       key->type == BTRFS_DIR_INDEX_KEY ||
187  	       key->type == BTRFS_DIR_ITEM_KEY ||
188  	       key->type == BTRFS_EXTENT_DATA_KEY);
189  
190  	/*
191  	 * Only subvolume trees along with their reloc trees need this check.
192  	 * Things like log tree doesn't follow this ino requirement.
193  	 */
194  	if (!is_fstree(btrfs_header_owner(leaf)))
195  		return true;
196  
197  	if (key->objectid == prev_key->objectid)
198  		return true;
199  
200  	/* Error found */
201  	dir_item_err(leaf, slot,
202  		"invalid previous key objectid, have %llu expect %llu",
203  		prev_key->objectid, key->objectid);
204  	return false;
205  }
check_extent_data_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)206  static int check_extent_data_item(struct extent_buffer *leaf,
207  				  struct btrfs_key *key, int slot,
208  				  struct btrfs_key *prev_key)
209  {
210  	struct btrfs_fs_info *fs_info = leaf->fs_info;
211  	struct btrfs_file_extent_item *fi;
212  	u32 sectorsize = fs_info->sectorsize;
213  	u32 item_size = btrfs_item_size(leaf, slot);
214  	u64 extent_end;
215  
216  	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
217  		file_extent_err(leaf, slot,
218  "unaligned file_offset for file extent, have %llu should be aligned to %u",
219  			key->offset, sectorsize);
220  		return -EUCLEAN;
221  	}
222  
223  	/*
224  	 * Previous key must have the same key->objectid (ino).
225  	 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
226  	 * But if objectids mismatch, it means we have a missing
227  	 * INODE_ITEM.
228  	 */
229  	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
230  		return -EUCLEAN;
231  
232  	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
233  
234  	/*
235  	 * Make sure the item contains at least inline header, so the file
236  	 * extent type is not some garbage.
237  	 */
238  	if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
239  		file_extent_err(leaf, slot,
240  				"invalid item size, have %u expect [%zu, %u)",
241  				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
242  				SZ_4K);
243  		return -EUCLEAN;
244  	}
245  	if (unlikely(btrfs_file_extent_type(leaf, fi) >=
246  		     BTRFS_NR_FILE_EXTENT_TYPES)) {
247  		file_extent_err(leaf, slot,
248  		"invalid type for file extent, have %u expect range [0, %u]",
249  			btrfs_file_extent_type(leaf, fi),
250  			BTRFS_NR_FILE_EXTENT_TYPES - 1);
251  		return -EUCLEAN;
252  	}
253  
254  	/*
255  	 * Support for new compression/encryption must introduce incompat flag,
256  	 * and must be caught in open_ctree().
257  	 */
258  	if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
259  		     BTRFS_NR_COMPRESS_TYPES)) {
260  		file_extent_err(leaf, slot,
261  	"invalid compression for file extent, have %u expect range [0, %u]",
262  			btrfs_file_extent_compression(leaf, fi),
263  			BTRFS_NR_COMPRESS_TYPES - 1);
264  		return -EUCLEAN;
265  	}
266  	if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
267  		file_extent_err(leaf, slot,
268  			"invalid encryption for file extent, have %u expect 0",
269  			btrfs_file_extent_encryption(leaf, fi));
270  		return -EUCLEAN;
271  	}
272  	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
273  		/* Inline extent must have 0 as key offset */
274  		if (unlikely(key->offset)) {
275  			file_extent_err(leaf, slot,
276  		"invalid file_offset for inline file extent, have %llu expect 0",
277  				key->offset);
278  			return -EUCLEAN;
279  		}
280  
281  		/* Compressed inline extent has no on-disk size, skip it */
282  		if (btrfs_file_extent_compression(leaf, fi) !=
283  		    BTRFS_COMPRESS_NONE)
284  			return 0;
285  
286  		/* Uncompressed inline extent size must match item size */
287  		if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
288  					  btrfs_file_extent_ram_bytes(leaf, fi))) {
289  			file_extent_err(leaf, slot,
290  	"invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
291  				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
292  				btrfs_file_extent_ram_bytes(leaf, fi));
293  			return -EUCLEAN;
294  		}
295  		return 0;
296  	}
297  
298  	/* Regular or preallocated extent has fixed item size */
299  	if (unlikely(item_size != sizeof(*fi))) {
300  		file_extent_err(leaf, slot,
301  	"invalid item size for reg/prealloc file extent, have %u expect %zu",
302  			item_size, sizeof(*fi));
303  		return -EUCLEAN;
304  	}
305  	if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
306  		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
307  		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
308  		     CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
309  		     CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
310  		return -EUCLEAN;
311  
312  	/* Catch extent end overflow */
313  	if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
314  					key->offset, &extent_end))) {
315  		file_extent_err(leaf, slot,
316  	"extent end overflow, have file offset %llu extent num bytes %llu",
317  				key->offset,
318  				btrfs_file_extent_num_bytes(leaf, fi));
319  		return -EUCLEAN;
320  	}
321  
322  	/*
323  	 * Check that no two consecutive file extent items, in the same leaf,
324  	 * present ranges that overlap each other.
325  	 */
326  	if (slot > 0 &&
327  	    prev_key->objectid == key->objectid &&
328  	    prev_key->type == BTRFS_EXTENT_DATA_KEY) {
329  		struct btrfs_file_extent_item *prev_fi;
330  		u64 prev_end;
331  
332  		prev_fi = btrfs_item_ptr(leaf, slot - 1,
333  					 struct btrfs_file_extent_item);
334  		prev_end = file_extent_end(leaf, prev_key, prev_fi);
335  		if (unlikely(prev_end > key->offset)) {
336  			file_extent_err(leaf, slot - 1,
337  "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
338  					prev_end, key->offset);
339  			return -EUCLEAN;
340  		}
341  	}
342  
343  	/*
344  	 * For non-compressed data extents, ram_bytes should match its
345  	 * disk_num_bytes.
346  	 * However we do not really utilize ram_bytes in this case, so this check
347  	 * is only optional for DEBUG builds for developers to catch the
348  	 * unexpected behaviors.
349  	 */
350  	if (IS_ENABLED(CONFIG_BTRFS_DEBUG) &&
351  	    btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE &&
352  	    btrfs_file_extent_disk_bytenr(leaf, fi)) {
353  		if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) !=
354  			    btrfs_file_extent_disk_num_bytes(leaf, fi)))
355  			file_extent_err(leaf, slot,
356  "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent",
357  					btrfs_file_extent_ram_bytes(leaf, fi),
358  					btrfs_file_extent_disk_num_bytes(leaf, fi));
359  	}
360  
361  	return 0;
362  }
363  
check_csum_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)364  static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
365  			   int slot, struct btrfs_key *prev_key)
366  {
367  	struct btrfs_fs_info *fs_info = leaf->fs_info;
368  	u32 sectorsize = fs_info->sectorsize;
369  	const u32 csumsize = fs_info->csum_size;
370  
371  	if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
372  		generic_err(leaf, slot,
373  		"invalid key objectid for csum item, have %llu expect %llu",
374  			key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
375  		return -EUCLEAN;
376  	}
377  	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
378  		generic_err(leaf, slot,
379  	"unaligned key offset for csum item, have %llu should be aligned to %u",
380  			key->offset, sectorsize);
381  		return -EUCLEAN;
382  	}
383  	if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
384  		generic_err(leaf, slot,
385  	"unaligned item size for csum item, have %u should be aligned to %u",
386  			btrfs_item_size(leaf, slot), csumsize);
387  		return -EUCLEAN;
388  	}
389  	if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
390  		u64 prev_csum_end;
391  		u32 prev_item_size;
392  
393  		prev_item_size = btrfs_item_size(leaf, slot - 1);
394  		prev_csum_end = (prev_item_size / csumsize) * sectorsize;
395  		prev_csum_end += prev_key->offset;
396  		if (unlikely(prev_csum_end > key->offset)) {
397  			generic_err(leaf, slot - 1,
398  "csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
399  				    prev_csum_end, key->offset);
400  			return -EUCLEAN;
401  		}
402  	}
403  	return 0;
404  }
405  
406  /* Inode item error output has the same format as dir_item_err() */
407  #define inode_item_err(eb, slot, fmt, ...)			\
408  	dir_item_err(eb, slot, fmt, __VA_ARGS__)
409  
check_inode_key(struct extent_buffer * leaf,struct btrfs_key * key,int slot)410  static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
411  			   int slot)
412  {
413  	struct btrfs_key item_key;
414  	bool is_inode_item;
415  
416  	btrfs_item_key_to_cpu(leaf, &item_key, slot);
417  	is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
418  
419  	/* For XATTR_ITEM, location key should be all 0 */
420  	if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
421  		if (unlikely(key->objectid != 0 || key->type != 0 ||
422  			     key->offset != 0))
423  			return -EUCLEAN;
424  		return 0;
425  	}
426  
427  	if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
428  		      key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
429  		     key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
430  		     key->objectid != BTRFS_FREE_INO_OBJECTID)) {
431  		if (is_inode_item) {
432  			generic_err(leaf, slot,
433  	"invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
434  				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
435  				BTRFS_FIRST_FREE_OBJECTID,
436  				BTRFS_LAST_FREE_OBJECTID,
437  				BTRFS_FREE_INO_OBJECTID);
438  		} else {
439  			dir_item_err(leaf, slot,
440  "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
441  				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
442  				BTRFS_FIRST_FREE_OBJECTID,
443  				BTRFS_LAST_FREE_OBJECTID,
444  				BTRFS_FREE_INO_OBJECTID);
445  		}
446  		return -EUCLEAN;
447  	}
448  	if (unlikely(key->offset != 0)) {
449  		if (is_inode_item)
450  			inode_item_err(leaf, slot,
451  				       "invalid key offset: has %llu expect 0",
452  				       key->offset);
453  		else
454  			dir_item_err(leaf, slot,
455  				"invalid location key offset:has %llu expect 0",
456  				key->offset);
457  		return -EUCLEAN;
458  	}
459  	return 0;
460  }
461  
check_root_key(struct extent_buffer * leaf,struct btrfs_key * key,int slot)462  static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
463  			  int slot)
464  {
465  	struct btrfs_key item_key;
466  	bool is_root_item;
467  
468  	btrfs_item_key_to_cpu(leaf, &item_key, slot);
469  	is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
470  
471  	/*
472  	 * Bad rootid for reloc trees.
473  	 *
474  	 * Reloc trees are only for subvolume trees, other trees only need
475  	 * to be COWed to be relocated.
476  	 */
477  	if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
478  		     !is_fstree(key->offset))) {
479  		generic_err(leaf, slot,
480  		"invalid reloc tree for root %lld, root id is not a subvolume tree",
481  			    key->offset);
482  		return -EUCLEAN;
483  	}
484  
485  	/* No such tree id */
486  	if (unlikely(key->objectid == 0)) {
487  		if (is_root_item)
488  			generic_err(leaf, slot, "invalid root id 0");
489  		else
490  			dir_item_err(leaf, slot,
491  				     "invalid location key root id 0");
492  		return -EUCLEAN;
493  	}
494  
495  	/* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
496  	if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
497  		dir_item_err(leaf, slot,
498  		"invalid location key objectid, have %llu expect [%llu, %llu]",
499  				key->objectid, BTRFS_FIRST_FREE_OBJECTID,
500  				BTRFS_LAST_FREE_OBJECTID);
501  		return -EUCLEAN;
502  	}
503  
504  	/*
505  	 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
506  	 * @offset transid.
507  	 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
508  	 *
509  	 * So here we only check offset for reloc tree whose key->offset must
510  	 * be a valid tree.
511  	 */
512  	if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
513  		     key->offset == 0)) {
514  		generic_err(leaf, slot, "invalid root id 0 for reloc tree");
515  		return -EUCLEAN;
516  	}
517  	return 0;
518  }
519  
check_dir_item(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)520  static int check_dir_item(struct extent_buffer *leaf,
521  			  struct btrfs_key *key, struct btrfs_key *prev_key,
522  			  int slot)
523  {
524  	struct btrfs_fs_info *fs_info = leaf->fs_info;
525  	struct btrfs_dir_item *di;
526  	u32 item_size = btrfs_item_size(leaf, slot);
527  	u32 cur = 0;
528  
529  	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
530  		return -EUCLEAN;
531  
532  	di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
533  	while (cur < item_size) {
534  		struct btrfs_key location_key;
535  		u32 name_len;
536  		u32 data_len;
537  		u32 max_name_len;
538  		u32 total_size;
539  		u32 name_hash;
540  		u8 dir_type;
541  		int ret;
542  
543  		/* header itself should not cross item boundary */
544  		if (unlikely(cur + sizeof(*di) > item_size)) {
545  			dir_item_err(leaf, slot,
546  		"dir item header crosses item boundary, have %zu boundary %u",
547  				cur + sizeof(*di), item_size);
548  			return -EUCLEAN;
549  		}
550  
551  		/* Location key check */
552  		btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
553  		if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
554  			ret = check_root_key(leaf, &location_key, slot);
555  			if (unlikely(ret < 0))
556  				return ret;
557  		} else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
558  			   location_key.type == 0) {
559  			ret = check_inode_key(leaf, &location_key, slot);
560  			if (unlikely(ret < 0))
561  				return ret;
562  		} else {
563  			dir_item_err(leaf, slot,
564  			"invalid location key type, have %u, expect %u or %u",
565  				     location_key.type, BTRFS_ROOT_ITEM_KEY,
566  				     BTRFS_INODE_ITEM_KEY);
567  			return -EUCLEAN;
568  		}
569  
570  		/* dir type check */
571  		dir_type = btrfs_dir_ftype(leaf, di);
572  		if (unlikely(dir_type <= BTRFS_FT_UNKNOWN ||
573  			     dir_type >= BTRFS_FT_MAX)) {
574  			dir_item_err(leaf, slot,
575  			"invalid dir item type, have %u expect (0, %u)",
576  				dir_type, BTRFS_FT_MAX);
577  			return -EUCLEAN;
578  		}
579  
580  		if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
581  			     dir_type != BTRFS_FT_XATTR)) {
582  			dir_item_err(leaf, slot,
583  		"invalid dir item type for XATTR key, have %u expect %u",
584  				dir_type, BTRFS_FT_XATTR);
585  			return -EUCLEAN;
586  		}
587  		if (unlikely(dir_type == BTRFS_FT_XATTR &&
588  			     key->type != BTRFS_XATTR_ITEM_KEY)) {
589  			dir_item_err(leaf, slot,
590  			"xattr dir type found for non-XATTR key");
591  			return -EUCLEAN;
592  		}
593  		if (dir_type == BTRFS_FT_XATTR)
594  			max_name_len = XATTR_NAME_MAX;
595  		else
596  			max_name_len = BTRFS_NAME_LEN;
597  
598  		/* Name/data length check */
599  		name_len = btrfs_dir_name_len(leaf, di);
600  		data_len = btrfs_dir_data_len(leaf, di);
601  		if (unlikely(name_len > max_name_len)) {
602  			dir_item_err(leaf, slot,
603  			"dir item name len too long, have %u max %u",
604  				name_len, max_name_len);
605  			return -EUCLEAN;
606  		}
607  		if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
608  			dir_item_err(leaf, slot,
609  			"dir item name and data len too long, have %u max %u",
610  				name_len + data_len,
611  				BTRFS_MAX_XATTR_SIZE(fs_info));
612  			return -EUCLEAN;
613  		}
614  
615  		if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
616  			dir_item_err(leaf, slot,
617  			"dir item with invalid data len, have %u expect 0",
618  				data_len);
619  			return -EUCLEAN;
620  		}
621  
622  		total_size = sizeof(*di) + name_len + data_len;
623  
624  		/* header and name/data should not cross item boundary */
625  		if (unlikely(cur + total_size > item_size)) {
626  			dir_item_err(leaf, slot,
627  		"dir item data crosses item boundary, have %u boundary %u",
628  				cur + total_size, item_size);
629  			return -EUCLEAN;
630  		}
631  
632  		/*
633  		 * Special check for XATTR/DIR_ITEM, as key->offset is name
634  		 * hash, should match its name
635  		 */
636  		if (key->type == BTRFS_DIR_ITEM_KEY ||
637  		    key->type == BTRFS_XATTR_ITEM_KEY) {
638  			char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
639  
640  			read_extent_buffer(leaf, namebuf,
641  					(unsigned long)(di + 1), name_len);
642  			name_hash = btrfs_name_hash(namebuf, name_len);
643  			if (unlikely(key->offset != name_hash)) {
644  				dir_item_err(leaf, slot,
645  		"name hash mismatch with key, have 0x%016x expect 0x%016llx",
646  					name_hash, key->offset);
647  				return -EUCLEAN;
648  			}
649  		}
650  		cur += total_size;
651  		di = (struct btrfs_dir_item *)((void *)di + total_size);
652  	}
653  	return 0;
654  }
655  
656  __printf(3, 4)
657  __cold
block_group_err(const struct extent_buffer * eb,int slot,const char * fmt,...)658  static void block_group_err(const struct extent_buffer *eb, int slot,
659  			    const char *fmt, ...)
660  {
661  	const struct btrfs_fs_info *fs_info = eb->fs_info;
662  	struct btrfs_key key;
663  	struct va_format vaf;
664  	va_list args;
665  
666  	btrfs_item_key_to_cpu(eb, &key, slot);
667  	va_start(args, fmt);
668  
669  	vaf.fmt = fmt;
670  	vaf.va = &args;
671  
672  	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
673  	btrfs_crit(fs_info,
674  	"corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
675  		btrfs_header_level(eb) == 0 ? "leaf" : "node",
676  		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
677  		key.objectid, key.offset, &vaf);
678  	va_end(args);
679  }
680  
check_block_group_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)681  static int check_block_group_item(struct extent_buffer *leaf,
682  				  struct btrfs_key *key, int slot)
683  {
684  	struct btrfs_fs_info *fs_info = leaf->fs_info;
685  	struct btrfs_block_group_item bgi;
686  	u32 item_size = btrfs_item_size(leaf, slot);
687  	u64 chunk_objectid;
688  	u64 flags;
689  	u64 type;
690  
691  	/*
692  	 * Here we don't really care about alignment since extent allocator can
693  	 * handle it.  We care more about the size.
694  	 */
695  	if (unlikely(key->offset == 0)) {
696  		block_group_err(leaf, slot,
697  				"invalid block group size 0");
698  		return -EUCLEAN;
699  	}
700  
701  	if (unlikely(item_size != sizeof(bgi))) {
702  		block_group_err(leaf, slot,
703  			"invalid item size, have %u expect %zu",
704  				item_size, sizeof(bgi));
705  		return -EUCLEAN;
706  	}
707  
708  	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
709  			   sizeof(bgi));
710  	chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
711  	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
712  		/*
713  		 * We don't init the nr_global_roots until we load the global
714  		 * roots, so this could be 0 at mount time.  If it's 0 we'll
715  		 * just assume we're fine, and later we'll check against our
716  		 * actual value.
717  		 */
718  		if (unlikely(fs_info->nr_global_roots &&
719  			     chunk_objectid >= fs_info->nr_global_roots)) {
720  			block_group_err(leaf, slot,
721  	"invalid block group global root id, have %llu, needs to be <= %llu",
722  					chunk_objectid,
723  					fs_info->nr_global_roots);
724  			return -EUCLEAN;
725  		}
726  	} else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
727  		block_group_err(leaf, slot,
728  		"invalid block group chunk objectid, have %llu expect %llu",
729  				btrfs_stack_block_group_chunk_objectid(&bgi),
730  				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
731  		return -EUCLEAN;
732  	}
733  
734  	if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
735  		block_group_err(leaf, slot,
736  			"invalid block group used, have %llu expect [0, %llu)",
737  				btrfs_stack_block_group_used(&bgi), key->offset);
738  		return -EUCLEAN;
739  	}
740  
741  	flags = btrfs_stack_block_group_flags(&bgi);
742  	if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
743  		block_group_err(leaf, slot,
744  "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
745  			flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
746  			hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
747  		return -EUCLEAN;
748  	}
749  
750  	type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
751  	if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
752  		     type != BTRFS_BLOCK_GROUP_METADATA &&
753  		     type != BTRFS_BLOCK_GROUP_SYSTEM &&
754  		     type != (BTRFS_BLOCK_GROUP_METADATA |
755  			      BTRFS_BLOCK_GROUP_DATA))) {
756  		block_group_err(leaf, slot,
757  "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
758  			type, hweight64(type),
759  			BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
760  			BTRFS_BLOCK_GROUP_SYSTEM,
761  			BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
762  		return -EUCLEAN;
763  	}
764  	return 0;
765  }
766  
767  __printf(4, 5)
768  __cold
chunk_err(const struct extent_buffer * leaf,const struct btrfs_chunk * chunk,u64 logical,const char * fmt,...)769  static void chunk_err(const struct extent_buffer *leaf,
770  		      const struct btrfs_chunk *chunk, u64 logical,
771  		      const char *fmt, ...)
772  {
773  	const struct btrfs_fs_info *fs_info = leaf->fs_info;
774  	bool is_sb;
775  	struct va_format vaf;
776  	va_list args;
777  	int i;
778  	int slot = -1;
779  
780  	/* Only superblock eb is able to have such small offset */
781  	is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
782  
783  	if (!is_sb) {
784  		/*
785  		 * Get the slot number by iterating through all slots, this
786  		 * would provide better readability.
787  		 */
788  		for (i = 0; i < btrfs_header_nritems(leaf); i++) {
789  			if (btrfs_item_ptr_offset(leaf, i) ==
790  					(unsigned long)chunk) {
791  				slot = i;
792  				break;
793  			}
794  		}
795  	}
796  	va_start(args, fmt);
797  	vaf.fmt = fmt;
798  	vaf.va = &args;
799  
800  	if (is_sb)
801  		btrfs_crit(fs_info,
802  		"corrupt superblock syschunk array: chunk_start=%llu, %pV",
803  			   logical, &vaf);
804  	else
805  		btrfs_crit(fs_info,
806  	"corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
807  			   BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
808  			   logical, &vaf);
809  	va_end(args);
810  }
811  
812  /*
813   * The common chunk check which could also work on super block sys chunk array.
814   *
815   * Return -EUCLEAN if anything is corrupted.
816   * Return 0 if everything is OK.
817   */
btrfs_check_chunk_valid(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 logical)818  int btrfs_check_chunk_valid(struct extent_buffer *leaf,
819  			    struct btrfs_chunk *chunk, u64 logical)
820  {
821  	struct btrfs_fs_info *fs_info = leaf->fs_info;
822  	u64 length;
823  	u64 chunk_end;
824  	u64 stripe_len;
825  	u16 num_stripes;
826  	u16 sub_stripes;
827  	u64 type;
828  	u64 features;
829  	bool mixed = false;
830  	int raid_index;
831  	int nparity;
832  	int ncopies;
833  
834  	length = btrfs_chunk_length(leaf, chunk);
835  	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
836  	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
837  	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
838  	type = btrfs_chunk_type(leaf, chunk);
839  	raid_index = btrfs_bg_flags_to_raid_index(type);
840  	ncopies = btrfs_raid_array[raid_index].ncopies;
841  	nparity = btrfs_raid_array[raid_index].nparity;
842  
843  	if (unlikely(!num_stripes)) {
844  		chunk_err(leaf, chunk, logical,
845  			  "invalid chunk num_stripes, have %u", num_stripes);
846  		return -EUCLEAN;
847  	}
848  	if (unlikely(num_stripes < ncopies)) {
849  		chunk_err(leaf, chunk, logical,
850  			  "invalid chunk num_stripes < ncopies, have %u < %d",
851  			  num_stripes, ncopies);
852  		return -EUCLEAN;
853  	}
854  	if (unlikely(nparity && num_stripes == nparity)) {
855  		chunk_err(leaf, chunk, logical,
856  			  "invalid chunk num_stripes == nparity, have %u == %d",
857  			  num_stripes, nparity);
858  		return -EUCLEAN;
859  	}
860  	if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
861  		chunk_err(leaf, chunk, logical,
862  		"invalid chunk logical, have %llu should aligned to %u",
863  			  logical, fs_info->sectorsize);
864  		return -EUCLEAN;
865  	}
866  	if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
867  		chunk_err(leaf, chunk, logical,
868  			  "invalid chunk sectorsize, have %u expect %u",
869  			  btrfs_chunk_sector_size(leaf, chunk),
870  			  fs_info->sectorsize);
871  		return -EUCLEAN;
872  	}
873  	if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
874  		chunk_err(leaf, chunk, logical,
875  			  "invalid chunk length, have %llu", length);
876  		return -EUCLEAN;
877  	}
878  	if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
879  		chunk_err(leaf, chunk, logical,
880  "invalid chunk logical start and length, have logical start %llu length %llu",
881  			  logical, length);
882  		return -EUCLEAN;
883  	}
884  	if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
885  		chunk_err(leaf, chunk, logical,
886  			  "invalid chunk stripe length: %llu",
887  			  stripe_len);
888  		return -EUCLEAN;
889  	}
890  	/*
891  	 * We artificially limit the chunk size, so that the number of stripes
892  	 * inside a chunk can be fit into a U32.  The current limit (256G) is
893  	 * way too large for real world usage anyway, and it's also much larger
894  	 * than our existing limit (10G).
895  	 *
896  	 * Thus it should be a good way to catch obvious bitflips.
897  	 */
898  	if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
899  		chunk_err(leaf, chunk, logical,
900  			  "chunk length too large: have %llu limit %llu",
901  			  length, btrfs_stripe_nr_to_offset(U32_MAX));
902  		return -EUCLEAN;
903  	}
904  	if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
905  			      BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
906  		chunk_err(leaf, chunk, logical,
907  			  "unrecognized chunk type: 0x%llx",
908  			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
909  			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
910  			  btrfs_chunk_type(leaf, chunk));
911  		return -EUCLEAN;
912  	}
913  
914  	if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
915  		     (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
916  		chunk_err(leaf, chunk, logical,
917  		"invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
918  			  type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
919  		return -EUCLEAN;
920  	}
921  	if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
922  		chunk_err(leaf, chunk, logical,
923  	"missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
924  			  type, BTRFS_BLOCK_GROUP_TYPE_MASK);
925  		return -EUCLEAN;
926  	}
927  
928  	if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
929  		     (type & (BTRFS_BLOCK_GROUP_METADATA |
930  			      BTRFS_BLOCK_GROUP_DATA)))) {
931  		chunk_err(leaf, chunk, logical,
932  			  "system chunk with data or metadata type: 0x%llx",
933  			  type);
934  		return -EUCLEAN;
935  	}
936  
937  	features = btrfs_super_incompat_flags(fs_info->super_copy);
938  	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
939  		mixed = true;
940  
941  	if (!mixed) {
942  		if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
943  			     (type & BTRFS_BLOCK_GROUP_DATA))) {
944  			chunk_err(leaf, chunk, logical,
945  			"mixed chunk type in non-mixed mode: 0x%llx", type);
946  			return -EUCLEAN;
947  		}
948  	}
949  
950  	if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
951  		      sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
952  		     (type & BTRFS_BLOCK_GROUP_RAID1 &&
953  		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
954  		     (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
955  		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
956  		     (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
957  		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
958  		     (type & BTRFS_BLOCK_GROUP_RAID5 &&
959  		      num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
960  		     (type & BTRFS_BLOCK_GROUP_RAID6 &&
961  		      num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
962  		     (type & BTRFS_BLOCK_GROUP_DUP &&
963  		      num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
964  		     ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
965  		      num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
966  		chunk_err(leaf, chunk, logical,
967  			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
968  			num_stripes, sub_stripes,
969  			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
970  		return -EUCLEAN;
971  	}
972  
973  	return 0;
974  }
975  
976  /*
977   * Enhanced version of chunk item checker.
978   *
979   * The common btrfs_check_chunk_valid() doesn't check item size since it needs
980   * to work on super block sys_chunk_array which doesn't have full item ptr.
981   */
check_leaf_chunk_item(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_key * key,int slot)982  static int check_leaf_chunk_item(struct extent_buffer *leaf,
983  				 struct btrfs_chunk *chunk,
984  				 struct btrfs_key *key, int slot)
985  {
986  	int num_stripes;
987  
988  	if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
989  		chunk_err(leaf, chunk, key->offset,
990  			"invalid chunk item size: have %u expect [%zu, %u)",
991  			btrfs_item_size(leaf, slot),
992  			sizeof(struct btrfs_chunk),
993  			BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
994  		return -EUCLEAN;
995  	}
996  
997  	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
998  	/* Let btrfs_check_chunk_valid() handle this error type */
999  	if (num_stripes == 0)
1000  		goto out;
1001  
1002  	if (unlikely(btrfs_chunk_item_size(num_stripes) !=
1003  		     btrfs_item_size(leaf, slot))) {
1004  		chunk_err(leaf, chunk, key->offset,
1005  			"invalid chunk item size: have %u expect %lu",
1006  			btrfs_item_size(leaf, slot),
1007  			btrfs_chunk_item_size(num_stripes));
1008  		return -EUCLEAN;
1009  	}
1010  out:
1011  	return btrfs_check_chunk_valid(leaf, chunk, key->offset);
1012  }
1013  
1014  __printf(3, 4)
1015  __cold
dev_item_err(const struct extent_buffer * eb,int slot,const char * fmt,...)1016  static void dev_item_err(const struct extent_buffer *eb, int slot,
1017  			 const char *fmt, ...)
1018  {
1019  	struct btrfs_key key;
1020  	struct va_format vaf;
1021  	va_list args;
1022  
1023  	btrfs_item_key_to_cpu(eb, &key, slot);
1024  	va_start(args, fmt);
1025  
1026  	vaf.fmt = fmt;
1027  	vaf.va = &args;
1028  
1029  	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1030  	btrfs_crit(eb->fs_info,
1031  	"corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1032  		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1033  		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1034  		key.objectid, &vaf);
1035  	va_end(args);
1036  }
1037  
check_dev_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1038  static int check_dev_item(struct extent_buffer *leaf,
1039  			  struct btrfs_key *key, int slot)
1040  {
1041  	struct btrfs_dev_item *ditem;
1042  	const u32 item_size = btrfs_item_size(leaf, slot);
1043  
1044  	if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1045  		dev_item_err(leaf, slot,
1046  			     "invalid objectid: has=%llu expect=%llu",
1047  			     key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1048  		return -EUCLEAN;
1049  	}
1050  
1051  	if (unlikely(item_size != sizeof(*ditem))) {
1052  		dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1053  			     item_size, sizeof(*ditem));
1054  		return -EUCLEAN;
1055  	}
1056  
1057  	ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1058  	if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1059  		dev_item_err(leaf, slot,
1060  			     "devid mismatch: key has=%llu item has=%llu",
1061  			     key->offset, btrfs_device_id(leaf, ditem));
1062  		return -EUCLEAN;
1063  	}
1064  
1065  	/*
1066  	 * For device total_bytes, we don't have reliable way to check it, as
1067  	 * it can be 0 for device removal. Device size check can only be done
1068  	 * by dev extents check.
1069  	 */
1070  	if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1071  		     btrfs_device_total_bytes(leaf, ditem))) {
1072  		dev_item_err(leaf, slot,
1073  			     "invalid bytes used: have %llu expect [0, %llu]",
1074  			     btrfs_device_bytes_used(leaf, ditem),
1075  			     btrfs_device_total_bytes(leaf, ditem));
1076  		return -EUCLEAN;
1077  	}
1078  	/*
1079  	 * Remaining members like io_align/type/gen/dev_group aren't really
1080  	 * utilized.  Skip them to make later usage of them easier.
1081  	 */
1082  	return 0;
1083  }
1084  
check_inode_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1085  static int check_inode_item(struct extent_buffer *leaf,
1086  			    struct btrfs_key *key, int slot)
1087  {
1088  	struct btrfs_fs_info *fs_info = leaf->fs_info;
1089  	struct btrfs_inode_item *iitem;
1090  	u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1091  	u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1092  	const u32 item_size = btrfs_item_size(leaf, slot);
1093  	u32 mode;
1094  	int ret;
1095  	u32 flags;
1096  	u32 ro_flags;
1097  
1098  	ret = check_inode_key(leaf, key, slot);
1099  	if (unlikely(ret < 0))
1100  		return ret;
1101  
1102  	if (unlikely(item_size != sizeof(*iitem))) {
1103  		generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1104  			    item_size, sizeof(*iitem));
1105  		return -EUCLEAN;
1106  	}
1107  
1108  	iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1109  
1110  	/* Here we use super block generation + 1 to handle log tree */
1111  	if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1112  		inode_item_err(leaf, slot,
1113  			"invalid inode generation: has %llu expect (0, %llu]",
1114  			       btrfs_inode_generation(leaf, iitem),
1115  			       super_gen + 1);
1116  		return -EUCLEAN;
1117  	}
1118  	/* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1119  	if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1120  		inode_item_err(leaf, slot,
1121  			"invalid inode transid: has %llu expect [0, %llu]",
1122  			       btrfs_inode_transid(leaf, iitem), super_gen + 1);
1123  		return -EUCLEAN;
1124  	}
1125  
1126  	/*
1127  	 * For size and nbytes it's better not to be too strict, as for dir
1128  	 * item its size/nbytes can easily get wrong, but doesn't affect
1129  	 * anything in the fs. So here we skip the check.
1130  	 */
1131  	mode = btrfs_inode_mode(leaf, iitem);
1132  	if (unlikely(mode & ~valid_mask)) {
1133  		inode_item_err(leaf, slot,
1134  			       "unknown mode bit detected: 0x%x",
1135  			       mode & ~valid_mask);
1136  		return -EUCLEAN;
1137  	}
1138  
1139  	/*
1140  	 * S_IFMT is not bit mapped so we can't completely rely on
1141  	 * is_power_of_2/has_single_bit_set, but it can save us from checking
1142  	 * FIFO/CHR/DIR/REG.  Only needs to check BLK, LNK and SOCKS
1143  	 */
1144  	if (!has_single_bit_set(mode & S_IFMT)) {
1145  		if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1146  			inode_item_err(leaf, slot,
1147  			"invalid mode: has 0%o expect valid S_IF* bit(s)",
1148  				       mode & S_IFMT);
1149  			return -EUCLEAN;
1150  		}
1151  	}
1152  	if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1153  		inode_item_err(leaf, slot,
1154  		       "invalid nlink: has %u expect no more than 1 for dir",
1155  			btrfs_inode_nlink(leaf, iitem));
1156  		return -EUCLEAN;
1157  	}
1158  	btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1159  	if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1160  		inode_item_err(leaf, slot,
1161  			       "unknown incompat flags detected: 0x%x", flags);
1162  		return -EUCLEAN;
1163  	}
1164  	if (unlikely(!sb_rdonly(fs_info->sb) &&
1165  		     (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1166  		inode_item_err(leaf, slot,
1167  			"unknown ro-compat flags detected on writeable mount: 0x%x",
1168  			ro_flags);
1169  		return -EUCLEAN;
1170  	}
1171  	return 0;
1172  }
1173  
check_root_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1174  static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1175  			   int slot)
1176  {
1177  	struct btrfs_fs_info *fs_info = leaf->fs_info;
1178  	struct btrfs_root_item ri = { 0 };
1179  	const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1180  				     BTRFS_ROOT_SUBVOL_DEAD;
1181  	int ret;
1182  
1183  	ret = check_root_key(leaf, key, slot);
1184  	if (unlikely(ret < 0))
1185  		return ret;
1186  
1187  	if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1188  		     btrfs_item_size(leaf, slot) !=
1189  		     btrfs_legacy_root_item_size())) {
1190  		generic_err(leaf, slot,
1191  			    "invalid root item size, have %u expect %zu or %u",
1192  			    btrfs_item_size(leaf, slot), sizeof(ri),
1193  			    btrfs_legacy_root_item_size());
1194  		return -EUCLEAN;
1195  	}
1196  
1197  	/*
1198  	 * For legacy root item, the members starting at generation_v2 will be
1199  	 * all filled with 0.
1200  	 * And since we allow geneartion_v2 as 0, it will still pass the check.
1201  	 */
1202  	read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1203  			   btrfs_item_size(leaf, slot));
1204  
1205  	/* Generation related */
1206  	if (unlikely(btrfs_root_generation(&ri) >
1207  		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1208  		generic_err(leaf, slot,
1209  			"invalid root generation, have %llu expect (0, %llu]",
1210  			    btrfs_root_generation(&ri),
1211  			    btrfs_super_generation(fs_info->super_copy) + 1);
1212  		return -EUCLEAN;
1213  	}
1214  	if (unlikely(btrfs_root_generation_v2(&ri) >
1215  		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1216  		generic_err(leaf, slot,
1217  		"invalid root v2 generation, have %llu expect (0, %llu]",
1218  			    btrfs_root_generation_v2(&ri),
1219  			    btrfs_super_generation(fs_info->super_copy) + 1);
1220  		return -EUCLEAN;
1221  	}
1222  	if (unlikely(btrfs_root_last_snapshot(&ri) >
1223  		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1224  		generic_err(leaf, slot,
1225  		"invalid root last_snapshot, have %llu expect (0, %llu]",
1226  			    btrfs_root_last_snapshot(&ri),
1227  			    btrfs_super_generation(fs_info->super_copy) + 1);
1228  		return -EUCLEAN;
1229  	}
1230  
1231  	/* Alignment and level check */
1232  	if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1233  		generic_err(leaf, slot,
1234  		"invalid root bytenr, have %llu expect to be aligned to %u",
1235  			    btrfs_root_bytenr(&ri), fs_info->sectorsize);
1236  		return -EUCLEAN;
1237  	}
1238  	if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1239  		generic_err(leaf, slot,
1240  			    "invalid root level, have %u expect [0, %u]",
1241  			    btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1242  		return -EUCLEAN;
1243  	}
1244  	if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1245  		generic_err(leaf, slot,
1246  			    "invalid root level, have %u expect [0, %u]",
1247  			    btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1248  		return -EUCLEAN;
1249  	}
1250  
1251  	/* Flags check */
1252  	if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1253  		generic_err(leaf, slot,
1254  			    "invalid root flags, have 0x%llx expect mask 0x%llx",
1255  			    btrfs_root_flags(&ri), valid_root_flags);
1256  		return -EUCLEAN;
1257  	}
1258  	return 0;
1259  }
1260  
1261  __printf(3,4)
1262  __cold
extent_err(const struct extent_buffer * eb,int slot,const char * fmt,...)1263  static void extent_err(const struct extent_buffer *eb, int slot,
1264  		       const char *fmt, ...)
1265  {
1266  	struct btrfs_key key;
1267  	struct va_format vaf;
1268  	va_list args;
1269  	u64 bytenr;
1270  	u64 len;
1271  
1272  	btrfs_item_key_to_cpu(eb, &key, slot);
1273  	bytenr = key.objectid;
1274  	if (key.type == BTRFS_METADATA_ITEM_KEY ||
1275  	    key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1276  	    key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1277  		len = eb->fs_info->nodesize;
1278  	else
1279  		len = key.offset;
1280  	va_start(args, fmt);
1281  
1282  	vaf.fmt = fmt;
1283  	vaf.va = &args;
1284  
1285  	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1286  	btrfs_crit(eb->fs_info,
1287  	"corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1288  		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1289  		eb->start, slot, bytenr, len, &vaf);
1290  	va_end(args);
1291  }
1292  
is_valid_dref_root(u64 rootid)1293  static bool is_valid_dref_root(u64 rootid)
1294  {
1295  	/*
1296  	 * The following tree root objectids are allowed to have a data backref:
1297  	 * - subvolume trees
1298  	 * - data reloc tree
1299  	 * - tree root
1300  	 *   For v1 space cache
1301  	 */
1302  	return is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID ||
1303  	       rootid == BTRFS_ROOT_TREE_OBJECTID;
1304  }
1305  
check_extent_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1306  static int check_extent_item(struct extent_buffer *leaf,
1307  			     struct btrfs_key *key, int slot,
1308  			     struct btrfs_key *prev_key)
1309  {
1310  	struct btrfs_fs_info *fs_info = leaf->fs_info;
1311  	struct btrfs_extent_item *ei;
1312  	bool is_tree_block = false;
1313  	unsigned long ptr;	/* Current pointer inside inline refs */
1314  	unsigned long end;	/* Extent item end */
1315  	const u32 item_size = btrfs_item_size(leaf, slot);
1316  	u8 last_type = 0;
1317  	u64 last_seq = U64_MAX;
1318  	u64 flags;
1319  	u64 generation;
1320  	u64 total_refs;		/* Total refs in btrfs_extent_item */
1321  	u64 inline_refs = 0;	/* found total inline refs */
1322  
1323  	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1324  		     !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1325  		generic_err(leaf, slot,
1326  "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1327  		return -EUCLEAN;
1328  	}
1329  	/* key->objectid is the bytenr for both key types */
1330  	if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1331  		generic_err(leaf, slot,
1332  		"invalid key objectid, have %llu expect to be aligned to %u",
1333  			   key->objectid, fs_info->sectorsize);
1334  		return -EUCLEAN;
1335  	}
1336  
1337  	/* key->offset is tree level for METADATA_ITEM_KEY */
1338  	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1339  		     key->offset >= BTRFS_MAX_LEVEL)) {
1340  		extent_err(leaf, slot,
1341  			   "invalid tree level, have %llu expect [0, %u]",
1342  			   key->offset, BTRFS_MAX_LEVEL - 1);
1343  		return -EUCLEAN;
1344  	}
1345  
1346  	/*
1347  	 * EXTENT/METADATA_ITEM consists of:
1348  	 * 1) One btrfs_extent_item
1349  	 *    Records the total refs, type and generation of the extent.
1350  	 *
1351  	 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1352  	 *    Records the first key and level of the tree block.
1353  	 *
1354  	 * 2) Zero or more btrfs_extent_inline_ref(s)
1355  	 *    Each inline ref has one btrfs_extent_inline_ref shows:
1356  	 *    2.1) The ref type, one of the 4
1357  	 *         TREE_BLOCK_REF	Tree block only
1358  	 *         SHARED_BLOCK_REF	Tree block only
1359  	 *         EXTENT_DATA_REF	Data only
1360  	 *         SHARED_DATA_REF	Data only
1361  	 *    2.2) Ref type specific data
1362  	 *         Either using btrfs_extent_inline_ref::offset, or specific
1363  	 *         data structure.
1364  	 *
1365  	 *    All above inline items should follow the order:
1366  	 *
1367  	 *    - All btrfs_extent_inline_ref::type should be in an ascending
1368  	 *      order
1369  	 *
1370  	 *    - Within the same type, the items should follow a descending
1371  	 *      order by their sequence number. The sequence number is
1372  	 *      determined by:
1373  	 *      * btrfs_extent_inline_ref::offset for all types  other than
1374  	 *        EXTENT_DATA_REF
1375  	 *      * hash_extent_data_ref() for EXTENT_DATA_REF
1376  	 */
1377  	if (unlikely(item_size < sizeof(*ei))) {
1378  		extent_err(leaf, slot,
1379  			   "invalid item size, have %u expect [%zu, %u)",
1380  			   item_size, sizeof(*ei),
1381  			   BTRFS_LEAF_DATA_SIZE(fs_info));
1382  		return -EUCLEAN;
1383  	}
1384  	end = item_size + btrfs_item_ptr_offset(leaf, slot);
1385  
1386  	/* Checks against extent_item */
1387  	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1388  	flags = btrfs_extent_flags(leaf, ei);
1389  	total_refs = btrfs_extent_refs(leaf, ei);
1390  	generation = btrfs_extent_generation(leaf, ei);
1391  	if (unlikely(generation >
1392  		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1393  		extent_err(leaf, slot,
1394  			   "invalid generation, have %llu expect (0, %llu]",
1395  			   generation,
1396  			   btrfs_super_generation(fs_info->super_copy) + 1);
1397  		return -EUCLEAN;
1398  	}
1399  	if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1400  						  BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1401  		extent_err(leaf, slot,
1402  		"invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1403  			flags, BTRFS_EXTENT_FLAG_DATA |
1404  			BTRFS_EXTENT_FLAG_TREE_BLOCK);
1405  		return -EUCLEAN;
1406  	}
1407  	is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1408  	if (is_tree_block) {
1409  		if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1410  			     key->offset != fs_info->nodesize)) {
1411  			extent_err(leaf, slot,
1412  				   "invalid extent length, have %llu expect %u",
1413  				   key->offset, fs_info->nodesize);
1414  			return -EUCLEAN;
1415  		}
1416  	} else {
1417  		if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1418  			extent_err(leaf, slot,
1419  			"invalid key type, have %u expect %u for data backref",
1420  				   key->type, BTRFS_EXTENT_ITEM_KEY);
1421  			return -EUCLEAN;
1422  		}
1423  		if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1424  			extent_err(leaf, slot,
1425  			"invalid extent length, have %llu expect aligned to %u",
1426  				   key->offset, fs_info->sectorsize);
1427  			return -EUCLEAN;
1428  		}
1429  		if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1430  			extent_err(leaf, slot,
1431  			"invalid extent flag, data has full backref set");
1432  			return -EUCLEAN;
1433  		}
1434  	}
1435  	ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1436  
1437  	/* Check the special case of btrfs_tree_block_info */
1438  	if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1439  		struct btrfs_tree_block_info *info;
1440  
1441  		info = (struct btrfs_tree_block_info *)ptr;
1442  		if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1443  			extent_err(leaf, slot,
1444  			"invalid tree block info level, have %u expect [0, %u]",
1445  				   btrfs_tree_block_level(leaf, info),
1446  				   BTRFS_MAX_LEVEL - 1);
1447  			return -EUCLEAN;
1448  		}
1449  		ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1450  	}
1451  
1452  	/* Check inline refs */
1453  	while (ptr < end) {
1454  		struct btrfs_extent_inline_ref *iref;
1455  		struct btrfs_extent_data_ref *dref;
1456  		struct btrfs_shared_data_ref *sref;
1457  		u64 seq;
1458  		u64 dref_root;
1459  		u64 dref_objectid;
1460  		u64 dref_offset;
1461  		u64 inline_offset;
1462  		u8 inline_type;
1463  
1464  		if (unlikely(ptr + sizeof(*iref) > end)) {
1465  			extent_err(leaf, slot,
1466  "inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1467  				   ptr, sizeof(*iref), end);
1468  			return -EUCLEAN;
1469  		}
1470  		iref = (struct btrfs_extent_inline_ref *)ptr;
1471  		inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1472  		inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1473  		seq = inline_offset;
1474  		if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1475  			extent_err(leaf, slot,
1476  "inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1477  				   ptr, btrfs_extent_inline_ref_size(inline_type), end);
1478  			return -EUCLEAN;
1479  		}
1480  
1481  		switch (inline_type) {
1482  		/* inline_offset is subvolid of the owner, no need to check */
1483  		case BTRFS_TREE_BLOCK_REF_KEY:
1484  			inline_refs++;
1485  			break;
1486  		/* Contains parent bytenr */
1487  		case BTRFS_SHARED_BLOCK_REF_KEY:
1488  			if (unlikely(!IS_ALIGNED(inline_offset,
1489  						 fs_info->sectorsize))) {
1490  				extent_err(leaf, slot,
1491  		"invalid tree parent bytenr, have %llu expect aligned to %u",
1492  					   inline_offset, fs_info->sectorsize);
1493  				return -EUCLEAN;
1494  			}
1495  			inline_refs++;
1496  			break;
1497  		/*
1498  		 * Contains owner subvolid, owner key objectid, adjusted offset.
1499  		 * The only obvious corruption can happen in that offset.
1500  		 */
1501  		case BTRFS_EXTENT_DATA_REF_KEY:
1502  			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1503  			dref_root = btrfs_extent_data_ref_root(leaf, dref);
1504  			dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1505  			dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1506  			seq = hash_extent_data_ref(
1507  					btrfs_extent_data_ref_root(leaf, dref),
1508  					btrfs_extent_data_ref_objectid(leaf, dref),
1509  					btrfs_extent_data_ref_offset(leaf, dref));
1510  			if (unlikely(!is_valid_dref_root(dref_root))) {
1511  				extent_err(leaf, slot,
1512  					   "invalid data ref root value %llu",
1513  					   dref_root);
1514  				return -EUCLEAN;
1515  			}
1516  			if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID ||
1517  				     dref_objectid > BTRFS_LAST_FREE_OBJECTID)) {
1518  				extent_err(leaf, slot,
1519  					   "invalid data ref objectid value %llu",
1520  					   dref_objectid);
1521  				return -EUCLEAN;
1522  			}
1523  			if (unlikely(!IS_ALIGNED(dref_offset,
1524  						 fs_info->sectorsize))) {
1525  				extent_err(leaf, slot,
1526  		"invalid data ref offset, have %llu expect aligned to %u",
1527  					   dref_offset, fs_info->sectorsize);
1528  				return -EUCLEAN;
1529  			}
1530  			inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1531  			break;
1532  		/* Contains parent bytenr and ref count */
1533  		case BTRFS_SHARED_DATA_REF_KEY:
1534  			sref = (struct btrfs_shared_data_ref *)(iref + 1);
1535  			if (unlikely(!IS_ALIGNED(inline_offset,
1536  						 fs_info->sectorsize))) {
1537  				extent_err(leaf, slot,
1538  		"invalid data parent bytenr, have %llu expect aligned to %u",
1539  					   inline_offset, fs_info->sectorsize);
1540  				return -EUCLEAN;
1541  			}
1542  			inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1543  			break;
1544  		case BTRFS_EXTENT_OWNER_REF_KEY:
1545  			WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
1546  			break;
1547  		default:
1548  			extent_err(leaf, slot, "unknown inline ref type: %u",
1549  				   inline_type);
1550  			return -EUCLEAN;
1551  		}
1552  		if (inline_type < last_type) {
1553  			extent_err(leaf, slot,
1554  				   "inline ref out-of-order: has type %u, prev type %u",
1555  				   inline_type, last_type);
1556  			return -EUCLEAN;
1557  		}
1558  		/* Type changed, allow the sequence starts from U64_MAX again. */
1559  		if (inline_type > last_type)
1560  			last_seq = U64_MAX;
1561  		if (seq > last_seq) {
1562  			extent_err(leaf, slot,
1563  "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx",
1564  				   inline_type, inline_offset, seq,
1565  				   last_type, last_seq);
1566  			return -EUCLEAN;
1567  		}
1568  		last_type = inline_type;
1569  		last_seq = seq;
1570  		ptr += btrfs_extent_inline_ref_size(inline_type);
1571  	}
1572  	/* No padding is allowed */
1573  	if (unlikely(ptr != end)) {
1574  		extent_err(leaf, slot,
1575  			   "invalid extent item size, padding bytes found");
1576  		return -EUCLEAN;
1577  	}
1578  
1579  	/* Finally, check the inline refs against total refs */
1580  	if (unlikely(inline_refs > total_refs)) {
1581  		extent_err(leaf, slot,
1582  			"invalid extent refs, have %llu expect >= inline %llu",
1583  			   total_refs, inline_refs);
1584  		return -EUCLEAN;
1585  	}
1586  
1587  	if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1588  	    (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1589  		u64 prev_end = prev_key->objectid;
1590  
1591  		if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1592  			prev_end += fs_info->nodesize;
1593  		else
1594  			prev_end += prev_key->offset;
1595  
1596  		if (unlikely(prev_end > key->objectid)) {
1597  			extent_err(leaf, slot,
1598  	"previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1599  				   prev_key->objectid, prev_key->type,
1600  				   prev_key->offset, key->objectid, key->type,
1601  				   key->offset);
1602  			return -EUCLEAN;
1603  		}
1604  	}
1605  
1606  	return 0;
1607  }
1608  
check_simple_keyed_refs(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1609  static int check_simple_keyed_refs(struct extent_buffer *leaf,
1610  				   struct btrfs_key *key, int slot)
1611  {
1612  	u32 expect_item_size = 0;
1613  
1614  	if (key->type == BTRFS_SHARED_DATA_REF_KEY)
1615  		expect_item_size = sizeof(struct btrfs_shared_data_ref);
1616  
1617  	if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1618  		generic_err(leaf, slot,
1619  		"invalid item size, have %u expect %u for key type %u",
1620  			    btrfs_item_size(leaf, slot),
1621  			    expect_item_size, key->type);
1622  		return -EUCLEAN;
1623  	}
1624  	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1625  		generic_err(leaf, slot,
1626  "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1627  			    key->objectid, leaf->fs_info->sectorsize);
1628  		return -EUCLEAN;
1629  	}
1630  	if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1631  		     !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1632  		extent_err(leaf, slot,
1633  		"invalid tree parent bytenr, have %llu expect aligned to %u",
1634  			   key->offset, leaf->fs_info->sectorsize);
1635  		return -EUCLEAN;
1636  	}
1637  	return 0;
1638  }
1639  
check_extent_data_ref(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1640  static int check_extent_data_ref(struct extent_buffer *leaf,
1641  				 struct btrfs_key *key, int slot)
1642  {
1643  	struct btrfs_extent_data_ref *dref;
1644  	unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1645  	const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1646  
1647  	if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1648  		generic_err(leaf, slot,
1649  	"invalid item size, have %u expect aligned to %zu for key type %u",
1650  			    btrfs_item_size(leaf, slot),
1651  			    sizeof(*dref), key->type);
1652  		return -EUCLEAN;
1653  	}
1654  	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1655  		generic_err(leaf, slot,
1656  "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1657  			    key->objectid, leaf->fs_info->sectorsize);
1658  		return -EUCLEAN;
1659  	}
1660  	for (; ptr < end; ptr += sizeof(*dref)) {
1661  		u64 root;
1662  		u64 objectid;
1663  		u64 offset;
1664  
1665  		/*
1666  		 * We cannot check the extent_data_ref hash due to possible
1667  		 * overflow from the leaf due to hash collisions.
1668  		 */
1669  		dref = (struct btrfs_extent_data_ref *)ptr;
1670  		root = btrfs_extent_data_ref_root(leaf, dref);
1671  		objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1672  		offset = btrfs_extent_data_ref_offset(leaf, dref);
1673  		if (unlikely(!is_valid_dref_root(root))) {
1674  			extent_err(leaf, slot,
1675  				   "invalid extent data backref root value %llu",
1676  				   root);
1677  			return -EUCLEAN;
1678  		}
1679  		if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID ||
1680  			     objectid > BTRFS_LAST_FREE_OBJECTID)) {
1681  			extent_err(leaf, slot,
1682  				   "invalid extent data backref objectid value %llu",
1683  				   root);
1684  			return -EUCLEAN;
1685  		}
1686  		if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1687  			extent_err(leaf, slot,
1688  	"invalid extent data backref offset, have %llu expect aligned to %u",
1689  				   offset, leaf->fs_info->sectorsize);
1690  			return -EUCLEAN;
1691  		}
1692  	}
1693  	return 0;
1694  }
1695  
1696  #define inode_ref_err(eb, slot, fmt, args...)			\
1697  	inode_item_err(eb, slot, fmt, ##args)
check_inode_ref(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)1698  static int check_inode_ref(struct extent_buffer *leaf,
1699  			   struct btrfs_key *key, struct btrfs_key *prev_key,
1700  			   int slot)
1701  {
1702  	struct btrfs_inode_ref *iref;
1703  	unsigned long ptr;
1704  	unsigned long end;
1705  
1706  	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1707  		return -EUCLEAN;
1708  	/* namelen can't be 0, so item_size == sizeof() is also invalid */
1709  	if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1710  		inode_ref_err(leaf, slot,
1711  			"invalid item size, have %u expect (%zu, %u)",
1712  			btrfs_item_size(leaf, slot),
1713  			sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1714  		return -EUCLEAN;
1715  	}
1716  
1717  	ptr = btrfs_item_ptr_offset(leaf, slot);
1718  	end = ptr + btrfs_item_size(leaf, slot);
1719  	while (ptr < end) {
1720  		u16 namelen;
1721  
1722  		if (unlikely(ptr + sizeof(iref) > end)) {
1723  			inode_ref_err(leaf, slot,
1724  			"inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1725  				ptr, end, sizeof(iref));
1726  			return -EUCLEAN;
1727  		}
1728  
1729  		iref = (struct btrfs_inode_ref *)ptr;
1730  		namelen = btrfs_inode_ref_name_len(leaf, iref);
1731  		if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1732  			inode_ref_err(leaf, slot,
1733  				"inode ref overflow, ptr %lu end %lu namelen %u",
1734  				ptr, end, namelen);
1735  			return -EUCLEAN;
1736  		}
1737  
1738  		/*
1739  		 * NOTE: In theory we should record all found index numbers
1740  		 * to find any duplicated indexes, but that will be too time
1741  		 * consuming for inodes with too many hard links.
1742  		 */
1743  		ptr += sizeof(*iref) + namelen;
1744  	}
1745  	return 0;
1746  }
1747  
check_raid_stripe_extent(const struct extent_buffer * leaf,const struct btrfs_key * key,int slot)1748  static int check_raid_stripe_extent(const struct extent_buffer *leaf,
1749  				    const struct btrfs_key *key, int slot)
1750  {
1751  	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1752  		generic_err(leaf, slot,
1753  "invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
1754  			    key->objectid, leaf->fs_info->sectorsize);
1755  		return -EUCLEAN;
1756  	}
1757  
1758  	if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
1759  		generic_err(leaf, slot,
1760  	"RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
1761  		return -EUCLEAN;
1762  	}
1763  
1764  	return 0;
1765  }
1766  
check_dev_extent_item(const struct extent_buffer * leaf,const struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1767  static int check_dev_extent_item(const struct extent_buffer *leaf,
1768  				 const struct btrfs_key *key,
1769  				 int slot,
1770  				 struct btrfs_key *prev_key)
1771  {
1772  	struct btrfs_dev_extent *de;
1773  	const u32 sectorsize = leaf->fs_info->sectorsize;
1774  
1775  	de = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
1776  	/* Basic fixed member checks. */
1777  	if (unlikely(btrfs_dev_extent_chunk_tree(leaf, de) !=
1778  		     BTRFS_CHUNK_TREE_OBJECTID)) {
1779  		generic_err(leaf, slot,
1780  			    "invalid dev extent chunk tree id, has %llu expect %llu",
1781  			    btrfs_dev_extent_chunk_tree(leaf, de),
1782  			    BTRFS_CHUNK_TREE_OBJECTID);
1783  		return -EUCLEAN;
1784  	}
1785  	if (unlikely(btrfs_dev_extent_chunk_objectid(leaf, de) !=
1786  		     BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
1787  		generic_err(leaf, slot,
1788  			    "invalid dev extent chunk objectid, has %llu expect %llu",
1789  			    btrfs_dev_extent_chunk_objectid(leaf, de),
1790  			    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1791  		return -EUCLEAN;
1792  	}
1793  	/* Alignment check. */
1794  	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
1795  		generic_err(leaf, slot,
1796  			    "invalid dev extent key.offset, has %llu not aligned to %u",
1797  			    key->offset, sectorsize);
1798  		return -EUCLEAN;
1799  	}
1800  	if (unlikely(!IS_ALIGNED(btrfs_dev_extent_chunk_offset(leaf, de),
1801  				 sectorsize))) {
1802  		generic_err(leaf, slot,
1803  			    "invalid dev extent chunk offset, has %llu not aligned to %u",
1804  			    btrfs_dev_extent_chunk_objectid(leaf, de),
1805  			    sectorsize);
1806  		return -EUCLEAN;
1807  	}
1808  	if (unlikely(!IS_ALIGNED(btrfs_dev_extent_length(leaf, de),
1809  				 sectorsize))) {
1810  		generic_err(leaf, slot,
1811  			    "invalid dev extent length, has %llu not aligned to %u",
1812  			    btrfs_dev_extent_length(leaf, de), sectorsize);
1813  		return -EUCLEAN;
1814  	}
1815  	/* Overlap check with previous dev extent. */
1816  	if (slot && prev_key->objectid == key->objectid &&
1817  	    prev_key->type == key->type) {
1818  		struct btrfs_dev_extent *prev_de;
1819  		u64 prev_len;
1820  
1821  		prev_de = btrfs_item_ptr(leaf, slot - 1, struct btrfs_dev_extent);
1822  		prev_len = btrfs_dev_extent_length(leaf, prev_de);
1823  		if (unlikely(prev_key->offset + prev_len > key->offset)) {
1824  			generic_err(leaf, slot,
1825  		"dev extent overlap, prev offset %llu len %llu current offset %llu",
1826  				    prev_key->objectid, prev_len, key->offset);
1827  			return -EUCLEAN;
1828  		}
1829  	}
1830  	return 0;
1831  }
1832  
1833  /*
1834   * Common point to switch the item-specific validation.
1835   */
check_leaf_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1836  static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1837  						    struct btrfs_key *key,
1838  						    int slot,
1839  						    struct btrfs_key *prev_key)
1840  {
1841  	int ret = 0;
1842  	struct btrfs_chunk *chunk;
1843  
1844  	switch (key->type) {
1845  	case BTRFS_EXTENT_DATA_KEY:
1846  		ret = check_extent_data_item(leaf, key, slot, prev_key);
1847  		break;
1848  	case BTRFS_EXTENT_CSUM_KEY:
1849  		ret = check_csum_item(leaf, key, slot, prev_key);
1850  		break;
1851  	case BTRFS_DIR_ITEM_KEY:
1852  	case BTRFS_DIR_INDEX_KEY:
1853  	case BTRFS_XATTR_ITEM_KEY:
1854  		ret = check_dir_item(leaf, key, prev_key, slot);
1855  		break;
1856  	case BTRFS_INODE_REF_KEY:
1857  		ret = check_inode_ref(leaf, key, prev_key, slot);
1858  		break;
1859  	case BTRFS_BLOCK_GROUP_ITEM_KEY:
1860  		ret = check_block_group_item(leaf, key, slot);
1861  		break;
1862  	case BTRFS_CHUNK_ITEM_KEY:
1863  		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1864  		ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1865  		break;
1866  	case BTRFS_DEV_ITEM_KEY:
1867  		ret = check_dev_item(leaf, key, slot);
1868  		break;
1869  	case BTRFS_DEV_EXTENT_KEY:
1870  		ret = check_dev_extent_item(leaf, key, slot, prev_key);
1871  		break;
1872  	case BTRFS_INODE_ITEM_KEY:
1873  		ret = check_inode_item(leaf, key, slot);
1874  		break;
1875  	case BTRFS_ROOT_ITEM_KEY:
1876  		ret = check_root_item(leaf, key, slot);
1877  		break;
1878  	case BTRFS_EXTENT_ITEM_KEY:
1879  	case BTRFS_METADATA_ITEM_KEY:
1880  		ret = check_extent_item(leaf, key, slot, prev_key);
1881  		break;
1882  	case BTRFS_TREE_BLOCK_REF_KEY:
1883  	case BTRFS_SHARED_DATA_REF_KEY:
1884  	case BTRFS_SHARED_BLOCK_REF_KEY:
1885  		ret = check_simple_keyed_refs(leaf, key, slot);
1886  		break;
1887  	case BTRFS_EXTENT_DATA_REF_KEY:
1888  		ret = check_extent_data_ref(leaf, key, slot);
1889  		break;
1890  	case BTRFS_RAID_STRIPE_KEY:
1891  		ret = check_raid_stripe_extent(leaf, key, slot);
1892  		break;
1893  	}
1894  
1895  	if (ret)
1896  		return BTRFS_TREE_BLOCK_INVALID_ITEM;
1897  	return BTRFS_TREE_BLOCK_CLEAN;
1898  }
1899  
__btrfs_check_leaf(struct extent_buffer * leaf)1900  enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1901  {
1902  	struct btrfs_fs_info *fs_info = leaf->fs_info;
1903  	/* No valid key type is 0, so all key should be larger than this key */
1904  	struct btrfs_key prev_key = {0, 0, 0};
1905  	struct btrfs_key key;
1906  	u32 nritems = btrfs_header_nritems(leaf);
1907  	int slot;
1908  
1909  	if (unlikely(btrfs_header_level(leaf) != 0)) {
1910  		generic_err(leaf, 0,
1911  			"invalid level for leaf, have %d expect 0",
1912  			btrfs_header_level(leaf));
1913  		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1914  	}
1915  
1916  	if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) {
1917  		generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set");
1918  		return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
1919  	}
1920  
1921  	/*
1922  	 * Extent buffers from a relocation tree have a owner field that
1923  	 * corresponds to the subvolume tree they are based on. So just from an
1924  	 * extent buffer alone we can not find out what is the id of the
1925  	 * corresponding subvolume tree, so we can not figure out if the extent
1926  	 * buffer corresponds to the root of the relocation tree or not. So
1927  	 * skip this check for relocation trees.
1928  	 */
1929  	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1930  		u64 owner = btrfs_header_owner(leaf);
1931  
1932  		/* These trees must never be empty */
1933  		if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1934  			     owner == BTRFS_CHUNK_TREE_OBJECTID ||
1935  			     owner == BTRFS_DEV_TREE_OBJECTID ||
1936  			     owner == BTRFS_FS_TREE_OBJECTID ||
1937  			     owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1938  			generic_err(leaf, 0,
1939  			"invalid root, root %llu must never be empty",
1940  				    owner);
1941  			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1942  		}
1943  
1944  		/* Unknown tree */
1945  		if (unlikely(owner == 0)) {
1946  			generic_err(leaf, 0,
1947  				"invalid owner, root 0 is not defined");
1948  			return BTRFS_TREE_BLOCK_INVALID_OWNER;
1949  		}
1950  
1951  		/* EXTENT_TREE_V2 can have empty extent trees. */
1952  		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1953  			return BTRFS_TREE_BLOCK_CLEAN;
1954  
1955  		if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1956  			generic_err(leaf, 0,
1957  			"invalid root, root %llu must never be empty",
1958  				    owner);
1959  			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1960  		}
1961  
1962  		return BTRFS_TREE_BLOCK_CLEAN;
1963  	}
1964  
1965  	if (unlikely(nritems == 0))
1966  		return BTRFS_TREE_BLOCK_CLEAN;
1967  
1968  	/*
1969  	 * Check the following things to make sure this is a good leaf, and
1970  	 * leaf users won't need to bother with similar sanity checks:
1971  	 *
1972  	 * 1) key ordering
1973  	 * 2) item offset and size
1974  	 *    No overlap, no hole, all inside the leaf.
1975  	 * 3) item content
1976  	 *    If possible, do comprehensive sanity check.
1977  	 *    NOTE: All checks must only rely on the item data itself.
1978  	 */
1979  	for (slot = 0; slot < nritems; slot++) {
1980  		u32 item_end_expected;
1981  		u64 item_data_end;
1982  		enum btrfs_tree_block_status ret;
1983  
1984  		btrfs_item_key_to_cpu(leaf, &key, slot);
1985  
1986  		/* Make sure the keys are in the right order */
1987  		if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
1988  			generic_err(leaf, slot,
1989  	"bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
1990  				prev_key.objectid, prev_key.type,
1991  				prev_key.offset, key.objectid, key.type,
1992  				key.offset);
1993  			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1994  		}
1995  
1996  		item_data_end = (u64)btrfs_item_offset(leaf, slot) +
1997  				btrfs_item_size(leaf, slot);
1998  		/*
1999  		 * Make sure the offset and ends are right, remember that the
2000  		 * item data starts at the end of the leaf and grows towards the
2001  		 * front.
2002  		 */
2003  		if (slot == 0)
2004  			item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
2005  		else
2006  			item_end_expected = btrfs_item_offset(leaf,
2007  								 slot - 1);
2008  		if (unlikely(item_data_end != item_end_expected)) {
2009  			generic_err(leaf, slot,
2010  				"unexpected item end, have %llu expect %u",
2011  				item_data_end, item_end_expected);
2012  			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2013  		}
2014  
2015  		/*
2016  		 * Check to make sure that we don't point outside of the leaf,
2017  		 * just in case all the items are consistent to each other, but
2018  		 * all point outside of the leaf.
2019  		 */
2020  		if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
2021  			generic_err(leaf, slot,
2022  			"slot end outside of leaf, have %llu expect range [0, %u]",
2023  				item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
2024  			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2025  		}
2026  
2027  		/* Also check if the item pointer overlaps with btrfs item. */
2028  		if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
2029  			     btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
2030  			generic_err(leaf, slot,
2031  		"slot overlaps with its data, item end %lu data start %lu",
2032  				btrfs_item_nr_offset(leaf, slot) +
2033  				sizeof(struct btrfs_item),
2034  				btrfs_item_ptr_offset(leaf, slot));
2035  			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2036  		}
2037  
2038  		/* Check if the item size and content meet other criteria. */
2039  		ret = check_leaf_item(leaf, &key, slot, &prev_key);
2040  		if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2041  			return ret;
2042  
2043  		prev_key.objectid = key.objectid;
2044  		prev_key.type = key.type;
2045  		prev_key.offset = key.offset;
2046  	}
2047  
2048  	return BTRFS_TREE_BLOCK_CLEAN;
2049  }
2050  
btrfs_check_leaf(struct extent_buffer * leaf)2051  int btrfs_check_leaf(struct extent_buffer *leaf)
2052  {
2053  	enum btrfs_tree_block_status ret;
2054  
2055  	ret = __btrfs_check_leaf(leaf);
2056  	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2057  		return -EUCLEAN;
2058  	return 0;
2059  }
2060  ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
2061  
__btrfs_check_node(struct extent_buffer * node)2062  enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
2063  {
2064  	struct btrfs_fs_info *fs_info = node->fs_info;
2065  	unsigned long nr = btrfs_header_nritems(node);
2066  	struct btrfs_key key, next_key;
2067  	int slot;
2068  	int level = btrfs_header_level(node);
2069  	u64 bytenr;
2070  
2071  	if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) {
2072  		generic_err(node, 0, "invalid flag for node, WRITTEN not set");
2073  		return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
2074  	}
2075  
2076  	if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
2077  		generic_err(node, 0,
2078  			"invalid level for node, have %d expect [1, %d]",
2079  			level, BTRFS_MAX_LEVEL - 1);
2080  		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
2081  	}
2082  	if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
2083  		btrfs_crit(fs_info,
2084  "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
2085  			   btrfs_header_owner(node), node->start,
2086  			   nr == 0 ? "small" : "large", nr,
2087  			   BTRFS_NODEPTRS_PER_BLOCK(fs_info));
2088  		return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
2089  	}
2090  
2091  	for (slot = 0; slot < nr - 1; slot++) {
2092  		bytenr = btrfs_node_blockptr(node, slot);
2093  		btrfs_node_key_to_cpu(node, &key, slot);
2094  		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
2095  
2096  		if (unlikely(!bytenr)) {
2097  			generic_err(node, slot,
2098  				"invalid NULL node pointer");
2099  			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2100  		}
2101  		if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
2102  			generic_err(node, slot,
2103  			"unaligned pointer, have %llu should be aligned to %u",
2104  				bytenr, fs_info->sectorsize);
2105  			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2106  		}
2107  
2108  		if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
2109  			generic_err(node, slot,
2110  	"bad key order, current (%llu %u %llu) next (%llu %u %llu)",
2111  				key.objectid, key.type, key.offset,
2112  				next_key.objectid, next_key.type,
2113  				next_key.offset);
2114  			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
2115  		}
2116  	}
2117  	return BTRFS_TREE_BLOCK_CLEAN;
2118  }
2119  
btrfs_check_node(struct extent_buffer * node)2120  int btrfs_check_node(struct extent_buffer *node)
2121  {
2122  	enum btrfs_tree_block_status ret;
2123  
2124  	ret = __btrfs_check_node(node);
2125  	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2126  		return -EUCLEAN;
2127  	return 0;
2128  }
2129  ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
2130  
btrfs_check_eb_owner(const struct extent_buffer * eb,u64 root_owner)2131  int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
2132  {
2133  	const bool is_subvol = is_fstree(root_owner);
2134  	const u64 eb_owner = btrfs_header_owner(eb);
2135  
2136  	/*
2137  	 * Skip dummy fs, as selftests don't create unique ebs for each dummy
2138  	 * root.
2139  	 */
2140  	if (btrfs_is_testing(eb->fs_info))
2141  		return 0;
2142  	/*
2143  	 * There are several call sites (backref walking, qgroup, and data
2144  	 * reloc) passing 0 as @root_owner, as they are not holding the
2145  	 * tree root.  In that case, we can not do a reliable ownership check,
2146  	 * so just exit.
2147  	 */
2148  	if (root_owner == 0)
2149  		return 0;
2150  	/*
2151  	 * These trees use key.offset as their owner, our callers don't have
2152  	 * the extra capacity to pass key.offset here.  So we just skip them.
2153  	 */
2154  	if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
2155  	    root_owner == BTRFS_TREE_RELOC_OBJECTID)
2156  		return 0;
2157  
2158  	if (!is_subvol) {
2159  		/* For non-subvolume trees, the eb owner should match root owner */
2160  		if (unlikely(root_owner != eb_owner)) {
2161  			btrfs_crit(eb->fs_info,
2162  "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
2163  				btrfs_header_level(eb) == 0 ? "leaf" : "node",
2164  				root_owner, btrfs_header_bytenr(eb), eb_owner,
2165  				root_owner);
2166  			return -EUCLEAN;
2167  		}
2168  		return 0;
2169  	}
2170  
2171  	/*
2172  	 * For subvolume trees, owners can mismatch, but they should all belong
2173  	 * to subvolume trees.
2174  	 */
2175  	if (unlikely(is_subvol != is_fstree(eb_owner))) {
2176  		btrfs_crit(eb->fs_info,
2177  "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
2178  			btrfs_header_level(eb) == 0 ? "leaf" : "node",
2179  			root_owner, btrfs_header_bytenr(eb), eb_owner,
2180  			BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
2181  		return -EUCLEAN;
2182  	}
2183  	return 0;
2184  }
2185  
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)2186  int btrfs_verify_level_key(struct extent_buffer *eb, int level,
2187  			   struct btrfs_key *first_key, u64 parent_transid)
2188  {
2189  	struct btrfs_fs_info *fs_info = eb->fs_info;
2190  	int found_level;
2191  	struct btrfs_key found_key;
2192  	int ret;
2193  
2194  	found_level = btrfs_header_level(eb);
2195  	if (found_level != level) {
2196  		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2197  		     KERN_ERR "BTRFS: tree level check failed\n");
2198  		btrfs_err(fs_info,
2199  "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
2200  			  eb->start, level, found_level);
2201  		return -EIO;
2202  	}
2203  
2204  	if (!first_key)
2205  		return 0;
2206  
2207  	/*
2208  	 * For live tree block (new tree blocks in current transaction),
2209  	 * we need proper lock context to avoid race, which is impossible here.
2210  	 * So we only checks tree blocks which is read from disk, whose
2211  	 * generation <= fs_info->last_trans_committed.
2212  	 */
2213  	if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info))
2214  		return 0;
2215  
2216  	/* We have @first_key, so this @eb must have at least one item */
2217  	if (btrfs_header_nritems(eb) == 0) {
2218  		btrfs_err(fs_info,
2219  		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2220  			  eb->start);
2221  		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2222  		return -EUCLEAN;
2223  	}
2224  
2225  	if (found_level)
2226  		btrfs_node_key_to_cpu(eb, &found_key, 0);
2227  	else
2228  		btrfs_item_key_to_cpu(eb, &found_key, 0);
2229  	ret = btrfs_comp_cpu_keys(first_key, &found_key);
2230  
2231  	if (ret) {
2232  		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2233  		     KERN_ERR "BTRFS: tree first key check failed\n");
2234  		btrfs_err(fs_info,
2235  "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2236  			  eb->start, parent_transid, first_key->objectid,
2237  			  first_key->type, first_key->offset,
2238  			  found_key.objectid, found_key.type,
2239  			  found_key.offset);
2240  	}
2241  	return ret;
2242  }
2243