1  // SPDX-License-Identifier: GPL-2.0-only
2  /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3   */
4  #include <linux/bpf.h>
5  #include <linux/btf.h>
6  #include <linux/bpf-cgroup.h>
7  #include <linux/cgroup.h>
8  #include <linux/rcupdate.h>
9  #include <linux/random.h>
10  #include <linux/smp.h>
11  #include <linux/topology.h>
12  #include <linux/ktime.h>
13  #include <linux/sched.h>
14  #include <linux/uidgid.h>
15  #include <linux/filter.h>
16  #include <linux/ctype.h>
17  #include <linux/jiffies.h>
18  #include <linux/pid_namespace.h>
19  #include <linux/poison.h>
20  #include <linux/proc_ns.h>
21  #include <linux/sched/task.h>
22  #include <linux/security.h>
23  #include <linux/btf_ids.h>
24  #include <linux/bpf_mem_alloc.h>
25  #include <linux/kasan.h>
26  
27  #include "../../lib/kstrtox.h"
28  
29  /* If kernel subsystem is allowing eBPF programs to call this function,
30   * inside its own verifier_ops->get_func_proto() callback it should return
31   * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
32   *
33   * Different map implementations will rely on rcu in map methods
34   * lookup/update/delete, therefore eBPF programs must run under rcu lock
35   * if program is allowed to access maps, so check rcu_read_lock_held() or
36   * rcu_read_lock_trace_held() in all three functions.
37   */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)38  BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
39  {
40  	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
41  		     !rcu_read_lock_bh_held());
42  	return (unsigned long) map->ops->map_lookup_elem(map, key);
43  }
44  
45  const struct bpf_func_proto bpf_map_lookup_elem_proto = {
46  	.func		= bpf_map_lookup_elem,
47  	.gpl_only	= false,
48  	.pkt_access	= true,
49  	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
50  	.arg1_type	= ARG_CONST_MAP_PTR,
51  	.arg2_type	= ARG_PTR_TO_MAP_KEY,
52  };
53  
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)54  BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
55  	   void *, value, u64, flags)
56  {
57  	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
58  		     !rcu_read_lock_bh_held());
59  	return map->ops->map_update_elem(map, key, value, flags);
60  }
61  
62  const struct bpf_func_proto bpf_map_update_elem_proto = {
63  	.func		= bpf_map_update_elem,
64  	.gpl_only	= false,
65  	.pkt_access	= true,
66  	.ret_type	= RET_INTEGER,
67  	.arg1_type	= ARG_CONST_MAP_PTR,
68  	.arg2_type	= ARG_PTR_TO_MAP_KEY,
69  	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
70  	.arg4_type	= ARG_ANYTHING,
71  };
72  
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)73  BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
74  {
75  	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
76  		     !rcu_read_lock_bh_held());
77  	return map->ops->map_delete_elem(map, key);
78  }
79  
80  const struct bpf_func_proto bpf_map_delete_elem_proto = {
81  	.func		= bpf_map_delete_elem,
82  	.gpl_only	= false,
83  	.pkt_access	= true,
84  	.ret_type	= RET_INTEGER,
85  	.arg1_type	= ARG_CONST_MAP_PTR,
86  	.arg2_type	= ARG_PTR_TO_MAP_KEY,
87  };
88  
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)89  BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
90  {
91  	return map->ops->map_push_elem(map, value, flags);
92  }
93  
94  const struct bpf_func_proto bpf_map_push_elem_proto = {
95  	.func		= bpf_map_push_elem,
96  	.gpl_only	= false,
97  	.pkt_access	= true,
98  	.ret_type	= RET_INTEGER,
99  	.arg1_type	= ARG_CONST_MAP_PTR,
100  	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
101  	.arg3_type	= ARG_ANYTHING,
102  };
103  
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)104  BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
105  {
106  	return map->ops->map_pop_elem(map, value);
107  }
108  
109  const struct bpf_func_proto bpf_map_pop_elem_proto = {
110  	.func		= bpf_map_pop_elem,
111  	.gpl_only	= false,
112  	.ret_type	= RET_INTEGER,
113  	.arg1_type	= ARG_CONST_MAP_PTR,
114  	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
115  };
116  
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)117  BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
118  {
119  	return map->ops->map_peek_elem(map, value);
120  }
121  
122  const struct bpf_func_proto bpf_map_peek_elem_proto = {
123  	.func		= bpf_map_peek_elem,
124  	.gpl_only	= false,
125  	.ret_type	= RET_INTEGER,
126  	.arg1_type	= ARG_CONST_MAP_PTR,
127  	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
128  };
129  
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)130  BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
131  {
132  	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
133  	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
134  }
135  
136  const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
137  	.func		= bpf_map_lookup_percpu_elem,
138  	.gpl_only	= false,
139  	.pkt_access	= true,
140  	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
141  	.arg1_type	= ARG_CONST_MAP_PTR,
142  	.arg2_type	= ARG_PTR_TO_MAP_KEY,
143  	.arg3_type	= ARG_ANYTHING,
144  };
145  
146  const struct bpf_func_proto bpf_get_prandom_u32_proto = {
147  	.func		= bpf_user_rnd_u32,
148  	.gpl_only	= false,
149  	.ret_type	= RET_INTEGER,
150  };
151  
BPF_CALL_0(bpf_get_smp_processor_id)152  BPF_CALL_0(bpf_get_smp_processor_id)
153  {
154  	return smp_processor_id();
155  }
156  
157  const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
158  	.func		= bpf_get_smp_processor_id,
159  	.gpl_only	= false,
160  	.ret_type	= RET_INTEGER,
161  	.allow_fastcall	= true,
162  };
163  
BPF_CALL_0(bpf_get_numa_node_id)164  BPF_CALL_0(bpf_get_numa_node_id)
165  {
166  	return numa_node_id();
167  }
168  
169  const struct bpf_func_proto bpf_get_numa_node_id_proto = {
170  	.func		= bpf_get_numa_node_id,
171  	.gpl_only	= false,
172  	.ret_type	= RET_INTEGER,
173  };
174  
BPF_CALL_0(bpf_ktime_get_ns)175  BPF_CALL_0(bpf_ktime_get_ns)
176  {
177  	/* NMI safe access to clock monotonic */
178  	return ktime_get_mono_fast_ns();
179  }
180  
181  const struct bpf_func_proto bpf_ktime_get_ns_proto = {
182  	.func		= bpf_ktime_get_ns,
183  	.gpl_only	= false,
184  	.ret_type	= RET_INTEGER,
185  };
186  
BPF_CALL_0(bpf_ktime_get_boot_ns)187  BPF_CALL_0(bpf_ktime_get_boot_ns)
188  {
189  	/* NMI safe access to clock boottime */
190  	return ktime_get_boot_fast_ns();
191  }
192  
193  const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
194  	.func		= bpf_ktime_get_boot_ns,
195  	.gpl_only	= false,
196  	.ret_type	= RET_INTEGER,
197  };
198  
BPF_CALL_0(bpf_ktime_get_coarse_ns)199  BPF_CALL_0(bpf_ktime_get_coarse_ns)
200  {
201  	return ktime_get_coarse_ns();
202  }
203  
204  const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
205  	.func		= bpf_ktime_get_coarse_ns,
206  	.gpl_only	= false,
207  	.ret_type	= RET_INTEGER,
208  };
209  
BPF_CALL_0(bpf_ktime_get_tai_ns)210  BPF_CALL_0(bpf_ktime_get_tai_ns)
211  {
212  	/* NMI safe access to clock tai */
213  	return ktime_get_tai_fast_ns();
214  }
215  
216  const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
217  	.func		= bpf_ktime_get_tai_ns,
218  	.gpl_only	= false,
219  	.ret_type	= RET_INTEGER,
220  };
221  
BPF_CALL_0(bpf_get_current_pid_tgid)222  BPF_CALL_0(bpf_get_current_pid_tgid)
223  {
224  	struct task_struct *task = current;
225  
226  	if (unlikely(!task))
227  		return -EINVAL;
228  
229  	return (u64) task->tgid << 32 | task->pid;
230  }
231  
232  const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
233  	.func		= bpf_get_current_pid_tgid,
234  	.gpl_only	= false,
235  	.ret_type	= RET_INTEGER,
236  };
237  
BPF_CALL_0(bpf_get_current_uid_gid)238  BPF_CALL_0(bpf_get_current_uid_gid)
239  {
240  	struct task_struct *task = current;
241  	kuid_t uid;
242  	kgid_t gid;
243  
244  	if (unlikely(!task))
245  		return -EINVAL;
246  
247  	current_uid_gid(&uid, &gid);
248  	return (u64) from_kgid(&init_user_ns, gid) << 32 |
249  		     from_kuid(&init_user_ns, uid);
250  }
251  
252  const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
253  	.func		= bpf_get_current_uid_gid,
254  	.gpl_only	= false,
255  	.ret_type	= RET_INTEGER,
256  };
257  
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)258  BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
259  {
260  	struct task_struct *task = current;
261  
262  	if (unlikely(!task))
263  		goto err_clear;
264  
265  	/* Verifier guarantees that size > 0 */
266  	strscpy_pad(buf, task->comm, size);
267  	return 0;
268  err_clear:
269  	memset(buf, 0, size);
270  	return -EINVAL;
271  }
272  
273  const struct bpf_func_proto bpf_get_current_comm_proto = {
274  	.func		= bpf_get_current_comm,
275  	.gpl_only	= false,
276  	.ret_type	= RET_INTEGER,
277  	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
278  	.arg2_type	= ARG_CONST_SIZE,
279  };
280  
281  #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
282  
__bpf_spin_lock(struct bpf_spin_lock * lock)283  static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
284  {
285  	arch_spinlock_t *l = (void *)lock;
286  	union {
287  		__u32 val;
288  		arch_spinlock_t lock;
289  	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
290  
291  	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
292  	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
293  	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
294  	preempt_disable();
295  	arch_spin_lock(l);
296  }
297  
__bpf_spin_unlock(struct bpf_spin_lock * lock)298  static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
299  {
300  	arch_spinlock_t *l = (void *)lock;
301  
302  	arch_spin_unlock(l);
303  	preempt_enable();
304  }
305  
306  #else
307  
__bpf_spin_lock(struct bpf_spin_lock * lock)308  static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
309  {
310  	atomic_t *l = (void *)lock;
311  
312  	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
313  	do {
314  		atomic_cond_read_relaxed(l, !VAL);
315  	} while (atomic_xchg(l, 1));
316  }
317  
__bpf_spin_unlock(struct bpf_spin_lock * lock)318  static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
319  {
320  	atomic_t *l = (void *)lock;
321  
322  	atomic_set_release(l, 0);
323  }
324  
325  #endif
326  
327  static DEFINE_PER_CPU(unsigned long, irqsave_flags);
328  
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)329  static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
330  {
331  	unsigned long flags;
332  
333  	local_irq_save(flags);
334  	__bpf_spin_lock(lock);
335  	__this_cpu_write(irqsave_flags, flags);
336  }
337  
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)338  NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
339  {
340  	__bpf_spin_lock_irqsave(lock);
341  	return 0;
342  }
343  
344  const struct bpf_func_proto bpf_spin_lock_proto = {
345  	.func		= bpf_spin_lock,
346  	.gpl_only	= false,
347  	.ret_type	= RET_VOID,
348  	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
349  	.arg1_btf_id    = BPF_PTR_POISON,
350  };
351  
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)352  static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
353  {
354  	unsigned long flags;
355  
356  	flags = __this_cpu_read(irqsave_flags);
357  	__bpf_spin_unlock(lock);
358  	local_irq_restore(flags);
359  }
360  
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)361  NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
362  {
363  	__bpf_spin_unlock_irqrestore(lock);
364  	return 0;
365  }
366  
367  const struct bpf_func_proto bpf_spin_unlock_proto = {
368  	.func		= bpf_spin_unlock,
369  	.gpl_only	= false,
370  	.ret_type	= RET_VOID,
371  	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
372  	.arg1_btf_id    = BPF_PTR_POISON,
373  };
374  
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)375  void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
376  			   bool lock_src)
377  {
378  	struct bpf_spin_lock *lock;
379  
380  	if (lock_src)
381  		lock = src + map->record->spin_lock_off;
382  	else
383  		lock = dst + map->record->spin_lock_off;
384  	preempt_disable();
385  	__bpf_spin_lock_irqsave(lock);
386  	copy_map_value(map, dst, src);
387  	__bpf_spin_unlock_irqrestore(lock);
388  	preempt_enable();
389  }
390  
BPF_CALL_0(bpf_jiffies64)391  BPF_CALL_0(bpf_jiffies64)
392  {
393  	return get_jiffies_64();
394  }
395  
396  const struct bpf_func_proto bpf_jiffies64_proto = {
397  	.func		= bpf_jiffies64,
398  	.gpl_only	= false,
399  	.ret_type	= RET_INTEGER,
400  };
401  
402  #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)403  BPF_CALL_0(bpf_get_current_cgroup_id)
404  {
405  	struct cgroup *cgrp;
406  	u64 cgrp_id;
407  
408  	rcu_read_lock();
409  	cgrp = task_dfl_cgroup(current);
410  	cgrp_id = cgroup_id(cgrp);
411  	rcu_read_unlock();
412  
413  	return cgrp_id;
414  }
415  
416  const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
417  	.func		= bpf_get_current_cgroup_id,
418  	.gpl_only	= false,
419  	.ret_type	= RET_INTEGER,
420  };
421  
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)422  BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
423  {
424  	struct cgroup *cgrp;
425  	struct cgroup *ancestor;
426  	u64 cgrp_id;
427  
428  	rcu_read_lock();
429  	cgrp = task_dfl_cgroup(current);
430  	ancestor = cgroup_ancestor(cgrp, ancestor_level);
431  	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
432  	rcu_read_unlock();
433  
434  	return cgrp_id;
435  }
436  
437  const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
438  	.func		= bpf_get_current_ancestor_cgroup_id,
439  	.gpl_only	= false,
440  	.ret_type	= RET_INTEGER,
441  	.arg1_type	= ARG_ANYTHING,
442  };
443  #endif /* CONFIG_CGROUPS */
444  
445  #define BPF_STRTOX_BASE_MASK 0x1F
446  
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)447  static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
448  			  unsigned long long *res, bool *is_negative)
449  {
450  	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
451  	const char *cur_buf = buf;
452  	size_t cur_len = buf_len;
453  	unsigned int consumed;
454  	size_t val_len;
455  	char str[64];
456  
457  	if (!buf || !buf_len || !res || !is_negative)
458  		return -EINVAL;
459  
460  	if (base != 0 && base != 8 && base != 10 && base != 16)
461  		return -EINVAL;
462  
463  	if (flags & ~BPF_STRTOX_BASE_MASK)
464  		return -EINVAL;
465  
466  	while (cur_buf < buf + buf_len && isspace(*cur_buf))
467  		++cur_buf;
468  
469  	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
470  	if (*is_negative)
471  		++cur_buf;
472  
473  	consumed = cur_buf - buf;
474  	cur_len -= consumed;
475  	if (!cur_len)
476  		return -EINVAL;
477  
478  	cur_len = min(cur_len, sizeof(str) - 1);
479  	memcpy(str, cur_buf, cur_len);
480  	str[cur_len] = '\0';
481  	cur_buf = str;
482  
483  	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
484  	val_len = _parse_integer(cur_buf, base, res);
485  
486  	if (val_len & KSTRTOX_OVERFLOW)
487  		return -ERANGE;
488  
489  	if (val_len == 0)
490  		return -EINVAL;
491  
492  	cur_buf += val_len;
493  	consumed += cur_buf - str;
494  
495  	return consumed;
496  }
497  
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)498  static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
499  			 long long *res)
500  {
501  	unsigned long long _res;
502  	bool is_negative;
503  	int err;
504  
505  	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
506  	if (err < 0)
507  		return err;
508  	if (is_negative) {
509  		if ((long long)-_res > 0)
510  			return -ERANGE;
511  		*res = -_res;
512  	} else {
513  		if ((long long)_res < 0)
514  			return -ERANGE;
515  		*res = _res;
516  	}
517  	return err;
518  }
519  
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,s64 *,res)520  BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
521  	   s64 *, res)
522  {
523  	long long _res;
524  	int err;
525  
526  	*res = 0;
527  	err = __bpf_strtoll(buf, buf_len, flags, &_res);
528  	if (err < 0)
529  		return err;
530  	*res = _res;
531  	return err;
532  }
533  
534  const struct bpf_func_proto bpf_strtol_proto = {
535  	.func		= bpf_strtol,
536  	.gpl_only	= false,
537  	.ret_type	= RET_INTEGER,
538  	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
539  	.arg2_type	= ARG_CONST_SIZE,
540  	.arg3_type	= ARG_ANYTHING,
541  	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
542  	.arg4_size	= sizeof(s64),
543  };
544  
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,u64 *,res)545  BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
546  	   u64 *, res)
547  {
548  	unsigned long long _res;
549  	bool is_negative;
550  	int err;
551  
552  	*res = 0;
553  	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
554  	if (err < 0)
555  		return err;
556  	if (is_negative)
557  		return -EINVAL;
558  	*res = _res;
559  	return err;
560  }
561  
562  const struct bpf_func_proto bpf_strtoul_proto = {
563  	.func		= bpf_strtoul,
564  	.gpl_only	= false,
565  	.ret_type	= RET_INTEGER,
566  	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
567  	.arg2_type	= ARG_CONST_SIZE,
568  	.arg3_type	= ARG_ANYTHING,
569  	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
570  	.arg4_size	= sizeof(u64),
571  };
572  
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)573  BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
574  {
575  	return strncmp(s1, s2, s1_sz);
576  }
577  
578  static const struct bpf_func_proto bpf_strncmp_proto = {
579  	.func		= bpf_strncmp,
580  	.gpl_only	= false,
581  	.ret_type	= RET_INTEGER,
582  	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
583  	.arg2_type	= ARG_CONST_SIZE,
584  	.arg3_type	= ARG_PTR_TO_CONST_STR,
585  };
586  
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)587  BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
588  	   struct bpf_pidns_info *, nsdata, u32, size)
589  {
590  	struct task_struct *task = current;
591  	struct pid_namespace *pidns;
592  	int err = -EINVAL;
593  
594  	if (unlikely(size != sizeof(struct bpf_pidns_info)))
595  		goto clear;
596  
597  	if (unlikely((u64)(dev_t)dev != dev))
598  		goto clear;
599  
600  	if (unlikely(!task))
601  		goto clear;
602  
603  	pidns = task_active_pid_ns(task);
604  	if (unlikely(!pidns)) {
605  		err = -ENOENT;
606  		goto clear;
607  	}
608  
609  	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
610  		goto clear;
611  
612  	nsdata->pid = task_pid_nr_ns(task, pidns);
613  	nsdata->tgid = task_tgid_nr_ns(task, pidns);
614  	return 0;
615  clear:
616  	memset((void *)nsdata, 0, (size_t) size);
617  	return err;
618  }
619  
620  const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
621  	.func		= bpf_get_ns_current_pid_tgid,
622  	.gpl_only	= false,
623  	.ret_type	= RET_INTEGER,
624  	.arg1_type	= ARG_ANYTHING,
625  	.arg2_type	= ARG_ANYTHING,
626  	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
627  	.arg4_type      = ARG_CONST_SIZE,
628  };
629  
630  static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
631  	.func		= bpf_get_raw_cpu_id,
632  	.gpl_only	= false,
633  	.ret_type	= RET_INTEGER,
634  };
635  
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)636  BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
637  	   u64, flags, void *, data, u64, size)
638  {
639  	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
640  		return -EINVAL;
641  
642  	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
643  }
644  
645  const struct bpf_func_proto bpf_event_output_data_proto =  {
646  	.func		= bpf_event_output_data,
647  	.gpl_only       = true,
648  	.ret_type       = RET_INTEGER,
649  	.arg1_type      = ARG_PTR_TO_CTX,
650  	.arg2_type      = ARG_CONST_MAP_PTR,
651  	.arg3_type      = ARG_ANYTHING,
652  	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
653  	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
654  };
655  
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)656  BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
657  	   const void __user *, user_ptr)
658  {
659  	int ret = copy_from_user(dst, user_ptr, size);
660  
661  	if (unlikely(ret)) {
662  		memset(dst, 0, size);
663  		ret = -EFAULT;
664  	}
665  
666  	return ret;
667  }
668  
669  const struct bpf_func_proto bpf_copy_from_user_proto = {
670  	.func		= bpf_copy_from_user,
671  	.gpl_only	= false,
672  	.might_sleep	= true,
673  	.ret_type	= RET_INTEGER,
674  	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
675  	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
676  	.arg3_type	= ARG_ANYTHING,
677  };
678  
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)679  BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
680  	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
681  {
682  	int ret;
683  
684  	/* flags is not used yet */
685  	if (unlikely(flags))
686  		return -EINVAL;
687  
688  	if (unlikely(!size))
689  		return 0;
690  
691  	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
692  	if (ret == size)
693  		return 0;
694  
695  	memset(dst, 0, size);
696  	/* Return -EFAULT for partial read */
697  	return ret < 0 ? ret : -EFAULT;
698  }
699  
700  const struct bpf_func_proto bpf_copy_from_user_task_proto = {
701  	.func		= bpf_copy_from_user_task,
702  	.gpl_only	= true,
703  	.might_sleep	= true,
704  	.ret_type	= RET_INTEGER,
705  	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
706  	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
707  	.arg3_type	= ARG_ANYTHING,
708  	.arg4_type	= ARG_PTR_TO_BTF_ID,
709  	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
710  	.arg5_type	= ARG_ANYTHING
711  };
712  
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)713  BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
714  {
715  	if (cpu >= nr_cpu_ids)
716  		return (unsigned long)NULL;
717  
718  	return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
719  }
720  
721  const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
722  	.func		= bpf_per_cpu_ptr,
723  	.gpl_only	= false,
724  	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
725  	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
726  	.arg2_type	= ARG_ANYTHING,
727  };
728  
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)729  BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
730  {
731  	return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
732  }
733  
734  const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
735  	.func		= bpf_this_cpu_ptr,
736  	.gpl_only	= false,
737  	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
738  	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
739  };
740  
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)741  static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
742  		size_t bufsz)
743  {
744  	void __user *user_ptr = (__force void __user *)unsafe_ptr;
745  
746  	buf[0] = 0;
747  
748  	switch (fmt_ptype) {
749  	case 's':
750  #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
751  		if ((unsigned long)unsafe_ptr < TASK_SIZE)
752  			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
753  		fallthrough;
754  #endif
755  	case 'k':
756  		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
757  	case 'u':
758  		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
759  	}
760  
761  	return -EINVAL;
762  }
763  
764  /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
765   * arguments representation.
766   */
767  #define MAX_BPRINTF_BIN_ARGS	512
768  
769  /* Support executing three nested bprintf helper calls on a given CPU */
770  #define MAX_BPRINTF_NEST_LEVEL	3
771  struct bpf_bprintf_buffers {
772  	char bin_args[MAX_BPRINTF_BIN_ARGS];
773  	char buf[MAX_BPRINTF_BUF];
774  };
775  
776  static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
777  static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
778  
try_get_buffers(struct bpf_bprintf_buffers ** bufs)779  static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
780  {
781  	int nest_level;
782  
783  	preempt_disable();
784  	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
785  	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
786  		this_cpu_dec(bpf_bprintf_nest_level);
787  		preempt_enable();
788  		return -EBUSY;
789  	}
790  	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
791  
792  	return 0;
793  }
794  
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)795  void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
796  {
797  	if (!data->bin_args && !data->buf)
798  		return;
799  	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
800  		return;
801  	this_cpu_dec(bpf_bprintf_nest_level);
802  	preempt_enable();
803  }
804  
805  /*
806   * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
807   *
808   * Returns a negative value if fmt is an invalid format string or 0 otherwise.
809   *
810   * This can be used in two ways:
811   * - Format string verification only: when data->get_bin_args is false
812   * - Arguments preparation: in addition to the above verification, it writes in
813   *   data->bin_args a binary representation of arguments usable by bstr_printf
814   *   where pointers from BPF have been sanitized.
815   *
816   * In argument preparation mode, if 0 is returned, safe temporary buffers are
817   * allocated and bpf_bprintf_cleanup should be called to free them after use.
818   */
bpf_bprintf_prepare(char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)819  int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
820  			u32 num_args, struct bpf_bprintf_data *data)
821  {
822  	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
823  	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
824  	struct bpf_bprintf_buffers *buffers = NULL;
825  	size_t sizeof_cur_arg, sizeof_cur_ip;
826  	int err, i, num_spec = 0;
827  	u64 cur_arg;
828  	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
829  
830  	fmt_end = strnchr(fmt, fmt_size, 0);
831  	if (!fmt_end)
832  		return -EINVAL;
833  	fmt_size = fmt_end - fmt;
834  
835  	if (get_buffers && try_get_buffers(&buffers))
836  		return -EBUSY;
837  
838  	if (data->get_bin_args) {
839  		if (num_args)
840  			tmp_buf = buffers->bin_args;
841  		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
842  		data->bin_args = (u32 *)tmp_buf;
843  	}
844  
845  	if (data->get_buf)
846  		data->buf = buffers->buf;
847  
848  	for (i = 0; i < fmt_size; i++) {
849  		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
850  			err = -EINVAL;
851  			goto out;
852  		}
853  
854  		if (fmt[i] != '%')
855  			continue;
856  
857  		if (fmt[i + 1] == '%') {
858  			i++;
859  			continue;
860  		}
861  
862  		if (num_spec >= num_args) {
863  			err = -EINVAL;
864  			goto out;
865  		}
866  
867  		/* The string is zero-terminated so if fmt[i] != 0, we can
868  		 * always access fmt[i + 1], in the worst case it will be a 0
869  		 */
870  		i++;
871  
872  		/* skip optional "[0 +-][num]" width formatting field */
873  		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
874  		       fmt[i] == ' ')
875  			i++;
876  		if (fmt[i] >= '1' && fmt[i] <= '9') {
877  			i++;
878  			while (fmt[i] >= '0' && fmt[i] <= '9')
879  				i++;
880  		}
881  
882  		if (fmt[i] == 'p') {
883  			sizeof_cur_arg = sizeof(long);
884  
885  			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
886  			    fmt[i + 2] == 's') {
887  				fmt_ptype = fmt[i + 1];
888  				i += 2;
889  				goto fmt_str;
890  			}
891  
892  			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
893  			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
894  			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
895  			    fmt[i + 1] == 'S') {
896  				/* just kernel pointers */
897  				if (tmp_buf)
898  					cur_arg = raw_args[num_spec];
899  				i++;
900  				goto nocopy_fmt;
901  			}
902  
903  			if (fmt[i + 1] == 'B') {
904  				if (tmp_buf)  {
905  					err = snprintf(tmp_buf,
906  						       (tmp_buf_end - tmp_buf),
907  						       "%pB",
908  						       (void *)(long)raw_args[num_spec]);
909  					tmp_buf += (err + 1);
910  				}
911  
912  				i++;
913  				num_spec++;
914  				continue;
915  			}
916  
917  			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
918  			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
919  			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
920  				err = -EINVAL;
921  				goto out;
922  			}
923  
924  			i += 2;
925  			if (!tmp_buf)
926  				goto nocopy_fmt;
927  
928  			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
929  			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
930  				err = -ENOSPC;
931  				goto out;
932  			}
933  
934  			unsafe_ptr = (char *)(long)raw_args[num_spec];
935  			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
936  						       sizeof_cur_ip);
937  			if (err < 0)
938  				memset(cur_ip, 0, sizeof_cur_ip);
939  
940  			/* hack: bstr_printf expects IP addresses to be
941  			 * pre-formatted as strings, ironically, the easiest way
942  			 * to do that is to call snprintf.
943  			 */
944  			ip_spec[2] = fmt[i - 1];
945  			ip_spec[3] = fmt[i];
946  			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
947  				       ip_spec, &cur_ip);
948  
949  			tmp_buf += err + 1;
950  			num_spec++;
951  
952  			continue;
953  		} else if (fmt[i] == 's') {
954  			fmt_ptype = fmt[i];
955  fmt_str:
956  			if (fmt[i + 1] != 0 &&
957  			    !isspace(fmt[i + 1]) &&
958  			    !ispunct(fmt[i + 1])) {
959  				err = -EINVAL;
960  				goto out;
961  			}
962  
963  			if (!tmp_buf)
964  				goto nocopy_fmt;
965  
966  			if (tmp_buf_end == tmp_buf) {
967  				err = -ENOSPC;
968  				goto out;
969  			}
970  
971  			unsafe_ptr = (char *)(long)raw_args[num_spec];
972  			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
973  						    fmt_ptype,
974  						    tmp_buf_end - tmp_buf);
975  			if (err < 0) {
976  				tmp_buf[0] = '\0';
977  				err = 1;
978  			}
979  
980  			tmp_buf += err;
981  			num_spec++;
982  
983  			continue;
984  		} else if (fmt[i] == 'c') {
985  			if (!tmp_buf)
986  				goto nocopy_fmt;
987  
988  			if (tmp_buf_end == tmp_buf) {
989  				err = -ENOSPC;
990  				goto out;
991  			}
992  
993  			*tmp_buf = raw_args[num_spec];
994  			tmp_buf++;
995  			num_spec++;
996  
997  			continue;
998  		}
999  
1000  		sizeof_cur_arg = sizeof(int);
1001  
1002  		if (fmt[i] == 'l') {
1003  			sizeof_cur_arg = sizeof(long);
1004  			i++;
1005  		}
1006  		if (fmt[i] == 'l') {
1007  			sizeof_cur_arg = sizeof(long long);
1008  			i++;
1009  		}
1010  
1011  		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1012  		    fmt[i] != 'x' && fmt[i] != 'X') {
1013  			err = -EINVAL;
1014  			goto out;
1015  		}
1016  
1017  		if (tmp_buf)
1018  			cur_arg = raw_args[num_spec];
1019  nocopy_fmt:
1020  		if (tmp_buf) {
1021  			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1022  			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1023  				err = -ENOSPC;
1024  				goto out;
1025  			}
1026  
1027  			if (sizeof_cur_arg == 8) {
1028  				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1029  				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1030  			} else {
1031  				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1032  			}
1033  			tmp_buf += sizeof_cur_arg;
1034  		}
1035  		num_spec++;
1036  	}
1037  
1038  	err = 0;
1039  out:
1040  	if (err)
1041  		bpf_bprintf_cleanup(data);
1042  	return err;
1043  }
1044  
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1045  BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1046  	   const void *, args, u32, data_len)
1047  {
1048  	struct bpf_bprintf_data data = {
1049  		.get_bin_args	= true,
1050  	};
1051  	int err, num_args;
1052  
1053  	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1054  	    (data_len && !args))
1055  		return -EINVAL;
1056  	num_args = data_len / 8;
1057  
1058  	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1059  	 * can safely give an unbounded size.
1060  	 */
1061  	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1062  	if (err < 0)
1063  		return err;
1064  
1065  	err = bstr_printf(str, str_size, fmt, data.bin_args);
1066  
1067  	bpf_bprintf_cleanup(&data);
1068  
1069  	return err + 1;
1070  }
1071  
1072  const struct bpf_func_proto bpf_snprintf_proto = {
1073  	.func		= bpf_snprintf,
1074  	.gpl_only	= true,
1075  	.ret_type	= RET_INTEGER,
1076  	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1077  	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1078  	.arg3_type	= ARG_PTR_TO_CONST_STR,
1079  	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1080  	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1081  };
1082  
1083  struct bpf_async_cb {
1084  	struct bpf_map *map;
1085  	struct bpf_prog *prog;
1086  	void __rcu *callback_fn;
1087  	void *value;
1088  	union {
1089  		struct rcu_head rcu;
1090  		struct work_struct delete_work;
1091  	};
1092  	u64 flags;
1093  };
1094  
1095  /* BPF map elements can contain 'struct bpf_timer'.
1096   * Such map owns all of its BPF timers.
1097   * 'struct bpf_timer' is allocated as part of map element allocation
1098   * and it's zero initialized.
1099   * That space is used to keep 'struct bpf_async_kern'.
1100   * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1101   * remembers 'struct bpf_map *' pointer it's part of.
1102   * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1103   * bpf_timer_start() arms the timer.
1104   * If user space reference to a map goes to zero at this point
1105   * ops->map_release_uref callback is responsible for cancelling the timers,
1106   * freeing their memory, and decrementing prog's refcnts.
1107   * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1108   * Inner maps can contain bpf timers as well. ops->map_release_uref is
1109   * freeing the timers when inner map is replaced or deleted by user space.
1110   */
1111  struct bpf_hrtimer {
1112  	struct bpf_async_cb cb;
1113  	struct hrtimer timer;
1114  	atomic_t cancelling;
1115  };
1116  
1117  struct bpf_work {
1118  	struct bpf_async_cb cb;
1119  	struct work_struct work;
1120  	struct work_struct delete_work;
1121  };
1122  
1123  /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1124  struct bpf_async_kern {
1125  	union {
1126  		struct bpf_async_cb *cb;
1127  		struct bpf_hrtimer *timer;
1128  		struct bpf_work *work;
1129  	};
1130  	/* bpf_spin_lock is used here instead of spinlock_t to make
1131  	 * sure that it always fits into space reserved by struct bpf_timer
1132  	 * regardless of LOCKDEP and spinlock debug flags.
1133  	 */
1134  	struct bpf_spin_lock lock;
1135  } __attribute__((aligned(8)));
1136  
1137  enum bpf_async_type {
1138  	BPF_ASYNC_TYPE_TIMER = 0,
1139  	BPF_ASYNC_TYPE_WQ,
1140  };
1141  
1142  static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1143  
bpf_timer_cb(struct hrtimer * hrtimer)1144  static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1145  {
1146  	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1147  	struct bpf_map *map = t->cb.map;
1148  	void *value = t->cb.value;
1149  	bpf_callback_t callback_fn;
1150  	void *key;
1151  	u32 idx;
1152  
1153  	BTF_TYPE_EMIT(struct bpf_timer);
1154  	callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1155  	if (!callback_fn)
1156  		goto out;
1157  
1158  	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1159  	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1160  	 * Remember the timer this callback is servicing to prevent
1161  	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1162  	 * bpf_map_delete_elem() on the same timer.
1163  	 */
1164  	this_cpu_write(hrtimer_running, t);
1165  	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1166  		struct bpf_array *array = container_of(map, struct bpf_array, map);
1167  
1168  		/* compute the key */
1169  		idx = ((char *)value - array->value) / array->elem_size;
1170  		key = &idx;
1171  	} else { /* hash or lru */
1172  		key = value - round_up(map->key_size, 8);
1173  	}
1174  
1175  	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1176  	/* The verifier checked that return value is zero. */
1177  
1178  	this_cpu_write(hrtimer_running, NULL);
1179  out:
1180  	return HRTIMER_NORESTART;
1181  }
1182  
bpf_wq_work(struct work_struct * work)1183  static void bpf_wq_work(struct work_struct *work)
1184  {
1185  	struct bpf_work *w = container_of(work, struct bpf_work, work);
1186  	struct bpf_async_cb *cb = &w->cb;
1187  	struct bpf_map *map = cb->map;
1188  	bpf_callback_t callback_fn;
1189  	void *value = cb->value;
1190  	void *key;
1191  	u32 idx;
1192  
1193  	BTF_TYPE_EMIT(struct bpf_wq);
1194  
1195  	callback_fn = READ_ONCE(cb->callback_fn);
1196  	if (!callback_fn)
1197  		return;
1198  
1199  	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1200  		struct bpf_array *array = container_of(map, struct bpf_array, map);
1201  
1202  		/* compute the key */
1203  		idx = ((char *)value - array->value) / array->elem_size;
1204  		key = &idx;
1205  	} else { /* hash or lru */
1206  		key = value - round_up(map->key_size, 8);
1207  	}
1208  
1209          rcu_read_lock_trace();
1210          migrate_disable();
1211  
1212  	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1213  
1214  	migrate_enable();
1215  	rcu_read_unlock_trace();
1216  }
1217  
bpf_wq_delete_work(struct work_struct * work)1218  static void bpf_wq_delete_work(struct work_struct *work)
1219  {
1220  	struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1221  
1222  	cancel_work_sync(&w->work);
1223  
1224  	kfree_rcu(w, cb.rcu);
1225  }
1226  
bpf_timer_delete_work(struct work_struct * work)1227  static void bpf_timer_delete_work(struct work_struct *work)
1228  {
1229  	struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1230  
1231  	/* Cancel the timer and wait for callback to complete if it was running.
1232  	 * If hrtimer_cancel() can be safely called it's safe to call
1233  	 * kfree_rcu(t) right after for both preallocated and non-preallocated
1234  	 * maps.  The async->cb = NULL was already done and no code path can see
1235  	 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1236  	 * bpf_timer_cancel_and_free will have been cancelled.
1237  	 */
1238  	hrtimer_cancel(&t->timer);
1239  	kfree_rcu(t, cb.rcu);
1240  }
1241  
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1242  static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1243  			    enum bpf_async_type type)
1244  {
1245  	struct bpf_async_cb *cb;
1246  	struct bpf_hrtimer *t;
1247  	struct bpf_work *w;
1248  	clockid_t clockid;
1249  	size_t size;
1250  	int ret = 0;
1251  
1252  	if (in_nmi())
1253  		return -EOPNOTSUPP;
1254  
1255  	switch (type) {
1256  	case BPF_ASYNC_TYPE_TIMER:
1257  		size = sizeof(struct bpf_hrtimer);
1258  		break;
1259  	case BPF_ASYNC_TYPE_WQ:
1260  		size = sizeof(struct bpf_work);
1261  		break;
1262  	default:
1263  		return -EINVAL;
1264  	}
1265  
1266  	__bpf_spin_lock_irqsave(&async->lock);
1267  	t = async->timer;
1268  	if (t) {
1269  		ret = -EBUSY;
1270  		goto out;
1271  	}
1272  
1273  	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1274  	cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
1275  	if (!cb) {
1276  		ret = -ENOMEM;
1277  		goto out;
1278  	}
1279  
1280  	switch (type) {
1281  	case BPF_ASYNC_TYPE_TIMER:
1282  		clockid = flags & (MAX_CLOCKS - 1);
1283  		t = (struct bpf_hrtimer *)cb;
1284  
1285  		atomic_set(&t->cancelling, 0);
1286  		INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1287  		hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1288  		t->timer.function = bpf_timer_cb;
1289  		cb->value = (void *)async - map->record->timer_off;
1290  		break;
1291  	case BPF_ASYNC_TYPE_WQ:
1292  		w = (struct bpf_work *)cb;
1293  
1294  		INIT_WORK(&w->work, bpf_wq_work);
1295  		INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1296  		cb->value = (void *)async - map->record->wq_off;
1297  		break;
1298  	}
1299  	cb->map = map;
1300  	cb->prog = NULL;
1301  	cb->flags = flags;
1302  	rcu_assign_pointer(cb->callback_fn, NULL);
1303  
1304  	WRITE_ONCE(async->cb, cb);
1305  	/* Guarantee the order between async->cb and map->usercnt. So
1306  	 * when there are concurrent uref release and bpf timer init, either
1307  	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1308  	 * timer or atomic64_read() below returns a zero usercnt.
1309  	 */
1310  	smp_mb();
1311  	if (!atomic64_read(&map->usercnt)) {
1312  		/* maps with timers must be either held by user space
1313  		 * or pinned in bpffs.
1314  		 */
1315  		WRITE_ONCE(async->cb, NULL);
1316  		kfree(cb);
1317  		ret = -EPERM;
1318  	}
1319  out:
1320  	__bpf_spin_unlock_irqrestore(&async->lock);
1321  	return ret;
1322  }
1323  
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1324  BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1325  	   u64, flags)
1326  {
1327  	clock_t clockid = flags & (MAX_CLOCKS - 1);
1328  
1329  	BUILD_BUG_ON(MAX_CLOCKS != 16);
1330  	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1331  	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1332  
1333  	if (flags >= MAX_CLOCKS ||
1334  	    /* similar to timerfd except _ALARM variants are not supported */
1335  	    (clockid != CLOCK_MONOTONIC &&
1336  	     clockid != CLOCK_REALTIME &&
1337  	     clockid != CLOCK_BOOTTIME))
1338  		return -EINVAL;
1339  
1340  	return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1341  }
1342  
1343  static const struct bpf_func_proto bpf_timer_init_proto = {
1344  	.func		= bpf_timer_init,
1345  	.gpl_only	= true,
1346  	.ret_type	= RET_INTEGER,
1347  	.arg1_type	= ARG_PTR_TO_TIMER,
1348  	.arg2_type	= ARG_CONST_MAP_PTR,
1349  	.arg3_type	= ARG_ANYTHING,
1350  };
1351  
__bpf_async_set_callback(struct bpf_async_kern * async,void * callback_fn,struct bpf_prog_aux * aux,unsigned int flags,enum bpf_async_type type)1352  static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1353  				    struct bpf_prog_aux *aux, unsigned int flags,
1354  				    enum bpf_async_type type)
1355  {
1356  	struct bpf_prog *prev, *prog = aux->prog;
1357  	struct bpf_async_cb *cb;
1358  	int ret = 0;
1359  
1360  	if (in_nmi())
1361  		return -EOPNOTSUPP;
1362  	__bpf_spin_lock_irqsave(&async->lock);
1363  	cb = async->cb;
1364  	if (!cb) {
1365  		ret = -EINVAL;
1366  		goto out;
1367  	}
1368  	if (!atomic64_read(&cb->map->usercnt)) {
1369  		/* maps with timers must be either held by user space
1370  		 * or pinned in bpffs. Otherwise timer might still be
1371  		 * running even when bpf prog is detached and user space
1372  		 * is gone, since map_release_uref won't ever be called.
1373  		 */
1374  		ret = -EPERM;
1375  		goto out;
1376  	}
1377  	prev = cb->prog;
1378  	if (prev != prog) {
1379  		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1380  		 * can pick different callback_fn-s within the same prog.
1381  		 */
1382  		prog = bpf_prog_inc_not_zero(prog);
1383  		if (IS_ERR(prog)) {
1384  			ret = PTR_ERR(prog);
1385  			goto out;
1386  		}
1387  		if (prev)
1388  			/* Drop prev prog refcnt when swapping with new prog */
1389  			bpf_prog_put(prev);
1390  		cb->prog = prog;
1391  	}
1392  	rcu_assign_pointer(cb->callback_fn, callback_fn);
1393  out:
1394  	__bpf_spin_unlock_irqrestore(&async->lock);
1395  	return ret;
1396  }
1397  
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1398  BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1399  	   struct bpf_prog_aux *, aux)
1400  {
1401  	return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1402  }
1403  
1404  static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1405  	.func		= bpf_timer_set_callback,
1406  	.gpl_only	= true,
1407  	.ret_type	= RET_INTEGER,
1408  	.arg1_type	= ARG_PTR_TO_TIMER,
1409  	.arg2_type	= ARG_PTR_TO_FUNC,
1410  };
1411  
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1412  BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1413  {
1414  	struct bpf_hrtimer *t;
1415  	int ret = 0;
1416  	enum hrtimer_mode mode;
1417  
1418  	if (in_nmi())
1419  		return -EOPNOTSUPP;
1420  	if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1421  		return -EINVAL;
1422  	__bpf_spin_lock_irqsave(&timer->lock);
1423  	t = timer->timer;
1424  	if (!t || !t->cb.prog) {
1425  		ret = -EINVAL;
1426  		goto out;
1427  	}
1428  
1429  	if (flags & BPF_F_TIMER_ABS)
1430  		mode = HRTIMER_MODE_ABS_SOFT;
1431  	else
1432  		mode = HRTIMER_MODE_REL_SOFT;
1433  
1434  	if (flags & BPF_F_TIMER_CPU_PIN)
1435  		mode |= HRTIMER_MODE_PINNED;
1436  
1437  	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1438  out:
1439  	__bpf_spin_unlock_irqrestore(&timer->lock);
1440  	return ret;
1441  }
1442  
1443  static const struct bpf_func_proto bpf_timer_start_proto = {
1444  	.func		= bpf_timer_start,
1445  	.gpl_only	= true,
1446  	.ret_type	= RET_INTEGER,
1447  	.arg1_type	= ARG_PTR_TO_TIMER,
1448  	.arg2_type	= ARG_ANYTHING,
1449  	.arg3_type	= ARG_ANYTHING,
1450  };
1451  
drop_prog_refcnt(struct bpf_async_cb * async)1452  static void drop_prog_refcnt(struct bpf_async_cb *async)
1453  {
1454  	struct bpf_prog *prog = async->prog;
1455  
1456  	if (prog) {
1457  		bpf_prog_put(prog);
1458  		async->prog = NULL;
1459  		rcu_assign_pointer(async->callback_fn, NULL);
1460  	}
1461  }
1462  
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1463  BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1464  {
1465  	struct bpf_hrtimer *t, *cur_t;
1466  	bool inc = false;
1467  	int ret = 0;
1468  
1469  	if (in_nmi())
1470  		return -EOPNOTSUPP;
1471  	rcu_read_lock();
1472  	__bpf_spin_lock_irqsave(&timer->lock);
1473  	t = timer->timer;
1474  	if (!t) {
1475  		ret = -EINVAL;
1476  		goto out;
1477  	}
1478  
1479  	cur_t = this_cpu_read(hrtimer_running);
1480  	if (cur_t == t) {
1481  		/* If bpf callback_fn is trying to bpf_timer_cancel()
1482  		 * its own timer the hrtimer_cancel() will deadlock
1483  		 * since it waits for callback_fn to finish.
1484  		 */
1485  		ret = -EDEADLK;
1486  		goto out;
1487  	}
1488  
1489  	/* Only account in-flight cancellations when invoked from a timer
1490  	 * callback, since we want to avoid waiting only if other _callbacks_
1491  	 * are waiting on us, to avoid introducing lockups. Non-callback paths
1492  	 * are ok, since nobody would synchronously wait for their completion.
1493  	 */
1494  	if (!cur_t)
1495  		goto drop;
1496  	atomic_inc(&t->cancelling);
1497  	/* Need full barrier after relaxed atomic_inc */
1498  	smp_mb__after_atomic();
1499  	inc = true;
1500  	if (atomic_read(&cur_t->cancelling)) {
1501  		/* We're cancelling timer t, while some other timer callback is
1502  		 * attempting to cancel us. In such a case, it might be possible
1503  		 * that timer t belongs to the other callback, or some other
1504  		 * callback waiting upon it (creating transitive dependencies
1505  		 * upon us), and we will enter a deadlock if we continue
1506  		 * cancelling and waiting for it synchronously, since it might
1507  		 * do the same. Bail!
1508  		 */
1509  		ret = -EDEADLK;
1510  		goto out;
1511  	}
1512  drop:
1513  	drop_prog_refcnt(&t->cb);
1514  out:
1515  	__bpf_spin_unlock_irqrestore(&timer->lock);
1516  	/* Cancel the timer and wait for associated callback to finish
1517  	 * if it was running.
1518  	 */
1519  	ret = ret ?: hrtimer_cancel(&t->timer);
1520  	if (inc)
1521  		atomic_dec(&t->cancelling);
1522  	rcu_read_unlock();
1523  	return ret;
1524  }
1525  
1526  static const struct bpf_func_proto bpf_timer_cancel_proto = {
1527  	.func		= bpf_timer_cancel,
1528  	.gpl_only	= true,
1529  	.ret_type	= RET_INTEGER,
1530  	.arg1_type	= ARG_PTR_TO_TIMER,
1531  };
1532  
__bpf_async_cancel_and_free(struct bpf_async_kern * async)1533  static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1534  {
1535  	struct bpf_async_cb *cb;
1536  
1537  	/* Performance optimization: read async->cb without lock first. */
1538  	if (!READ_ONCE(async->cb))
1539  		return NULL;
1540  
1541  	__bpf_spin_lock_irqsave(&async->lock);
1542  	/* re-read it under lock */
1543  	cb = async->cb;
1544  	if (!cb)
1545  		goto out;
1546  	drop_prog_refcnt(cb);
1547  	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1548  	 * this timer, since it won't be initialized.
1549  	 */
1550  	WRITE_ONCE(async->cb, NULL);
1551  out:
1552  	__bpf_spin_unlock_irqrestore(&async->lock);
1553  	return cb;
1554  }
1555  
1556  /* This function is called by map_delete/update_elem for individual element and
1557   * by ops->map_release_uref when the user space reference to a map reaches zero.
1558   */
bpf_timer_cancel_and_free(void * val)1559  void bpf_timer_cancel_and_free(void *val)
1560  {
1561  	struct bpf_hrtimer *t;
1562  
1563  	t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1564  
1565  	if (!t)
1566  		return;
1567  	/* We check that bpf_map_delete/update_elem() was called from timer
1568  	 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1569  	 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1570  	 * just return -1). Though callback_fn is still running on this cpu it's
1571  	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1572  	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1573  	 * since async->cb = NULL was already done. The timer will be
1574  	 * effectively cancelled because bpf_timer_cb() will return
1575  	 * HRTIMER_NORESTART.
1576  	 *
1577  	 * However, it is possible the timer callback_fn calling us armed the
1578  	 * timer _before_ calling us, such that failing to cancel it here will
1579  	 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1580  	 * Therefore, we _need_ to cancel any outstanding timers before we do
1581  	 * kfree_rcu, even though no more timers can be armed.
1582  	 *
1583  	 * Moreover, we need to schedule work even if timer does not belong to
1584  	 * the calling callback_fn, as on two different CPUs, we can end up in a
1585  	 * situation where both sides run in parallel, try to cancel one
1586  	 * another, and we end up waiting on both sides in hrtimer_cancel
1587  	 * without making forward progress, since timer1 depends on time2
1588  	 * callback to finish, and vice versa.
1589  	 *
1590  	 *  CPU 1 (timer1_cb)			CPU 2 (timer2_cb)
1591  	 *  bpf_timer_cancel_and_free(timer2)	bpf_timer_cancel_and_free(timer1)
1592  	 *
1593  	 * To avoid these issues, punt to workqueue context when we are in a
1594  	 * timer callback.
1595  	 */
1596  	if (this_cpu_read(hrtimer_running))
1597  		queue_work(system_unbound_wq, &t->cb.delete_work);
1598  	else
1599  		bpf_timer_delete_work(&t->cb.delete_work);
1600  }
1601  
1602  /* This function is called by map_delete/update_elem for individual element and
1603   * by ops->map_release_uref when the user space reference to a map reaches zero.
1604   */
bpf_wq_cancel_and_free(void * val)1605  void bpf_wq_cancel_and_free(void *val)
1606  {
1607  	struct bpf_work *work;
1608  
1609  	BTF_TYPE_EMIT(struct bpf_wq);
1610  
1611  	work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1612  	if (!work)
1613  		return;
1614  	/* Trigger cancel of the sleepable work, but *do not* wait for
1615  	 * it to finish if it was running as we might not be in a
1616  	 * sleepable context.
1617  	 * kfree will be called once the work has finished.
1618  	 */
1619  	schedule_work(&work->delete_work);
1620  }
1621  
BPF_CALL_2(bpf_kptr_xchg,void *,dst,void *,ptr)1622  BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1623  {
1624  	unsigned long *kptr = dst;
1625  
1626  	/* This helper may be inlined by verifier. */
1627  	return xchg(kptr, (unsigned long)ptr);
1628  }
1629  
1630  /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1631   * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1632   * denote type that verifier will determine.
1633   */
1634  static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1635  	.func         = bpf_kptr_xchg,
1636  	.gpl_only     = false,
1637  	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1638  	.ret_btf_id   = BPF_PTR_POISON,
1639  	.arg1_type    = ARG_KPTR_XCHG_DEST,
1640  	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1641  	.arg2_btf_id  = BPF_PTR_POISON,
1642  };
1643  
1644  /* Since the upper 8 bits of dynptr->size is reserved, the
1645   * maximum supported size is 2^24 - 1.
1646   */
1647  #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1648  #define DYNPTR_TYPE_SHIFT	28
1649  #define DYNPTR_SIZE_MASK	0xFFFFFF
1650  #define DYNPTR_RDONLY_BIT	BIT(31)
1651  
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1652  bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1653  {
1654  	return ptr->size & DYNPTR_RDONLY_BIT;
1655  }
1656  
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1657  void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1658  {
1659  	ptr->size |= DYNPTR_RDONLY_BIT;
1660  }
1661  
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1662  static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1663  {
1664  	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1665  }
1666  
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1667  static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1668  {
1669  	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1670  }
1671  
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1672  u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1673  {
1674  	return ptr->size & DYNPTR_SIZE_MASK;
1675  }
1676  
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1677  static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1678  {
1679  	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1680  
1681  	ptr->size = new_size | metadata;
1682  }
1683  
bpf_dynptr_check_size(u32 size)1684  int bpf_dynptr_check_size(u32 size)
1685  {
1686  	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1687  }
1688  
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1689  void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1690  		     enum bpf_dynptr_type type, u32 offset, u32 size)
1691  {
1692  	ptr->data = data;
1693  	ptr->offset = offset;
1694  	ptr->size = size;
1695  	bpf_dynptr_set_type(ptr, type);
1696  }
1697  
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1698  void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1699  {
1700  	memset(ptr, 0, sizeof(*ptr));
1701  }
1702  
bpf_dynptr_check_off_len(const struct bpf_dynptr_kern * ptr,u32 offset,u32 len)1703  static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1704  {
1705  	u32 size = __bpf_dynptr_size(ptr);
1706  
1707  	if (len > size || offset > size - len)
1708  		return -E2BIG;
1709  
1710  	return 0;
1711  }
1712  
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1713  BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1714  {
1715  	int err;
1716  
1717  	BTF_TYPE_EMIT(struct bpf_dynptr);
1718  
1719  	err = bpf_dynptr_check_size(size);
1720  	if (err)
1721  		goto error;
1722  
1723  	/* flags is currently unsupported */
1724  	if (flags) {
1725  		err = -EINVAL;
1726  		goto error;
1727  	}
1728  
1729  	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1730  
1731  	return 0;
1732  
1733  error:
1734  	bpf_dynptr_set_null(ptr);
1735  	return err;
1736  }
1737  
1738  static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1739  	.func		= bpf_dynptr_from_mem,
1740  	.gpl_only	= false,
1741  	.ret_type	= RET_INTEGER,
1742  	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1743  	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1744  	.arg3_type	= ARG_ANYTHING,
1745  	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1746  };
1747  
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1748  BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1749  	   u32, offset, u64, flags)
1750  {
1751  	enum bpf_dynptr_type type;
1752  	int err;
1753  
1754  	if (!src->data || flags)
1755  		return -EINVAL;
1756  
1757  	err = bpf_dynptr_check_off_len(src, offset, len);
1758  	if (err)
1759  		return err;
1760  
1761  	type = bpf_dynptr_get_type(src);
1762  
1763  	switch (type) {
1764  	case BPF_DYNPTR_TYPE_LOCAL:
1765  	case BPF_DYNPTR_TYPE_RINGBUF:
1766  		/* Source and destination may possibly overlap, hence use memmove to
1767  		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1768  		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1769  		 */
1770  		memmove(dst, src->data + src->offset + offset, len);
1771  		return 0;
1772  	case BPF_DYNPTR_TYPE_SKB:
1773  		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1774  	case BPF_DYNPTR_TYPE_XDP:
1775  		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1776  	default:
1777  		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1778  		return -EFAULT;
1779  	}
1780  }
1781  
1782  static const struct bpf_func_proto bpf_dynptr_read_proto = {
1783  	.func		= bpf_dynptr_read,
1784  	.gpl_only	= false,
1785  	.ret_type	= RET_INTEGER,
1786  	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1787  	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1788  	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1789  	.arg4_type	= ARG_ANYTHING,
1790  	.arg5_type	= ARG_ANYTHING,
1791  };
1792  
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1793  BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1794  	   u32, len, u64, flags)
1795  {
1796  	enum bpf_dynptr_type type;
1797  	int err;
1798  
1799  	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1800  		return -EINVAL;
1801  
1802  	err = bpf_dynptr_check_off_len(dst, offset, len);
1803  	if (err)
1804  		return err;
1805  
1806  	type = bpf_dynptr_get_type(dst);
1807  
1808  	switch (type) {
1809  	case BPF_DYNPTR_TYPE_LOCAL:
1810  	case BPF_DYNPTR_TYPE_RINGBUF:
1811  		if (flags)
1812  			return -EINVAL;
1813  		/* Source and destination may possibly overlap, hence use memmove to
1814  		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1815  		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1816  		 */
1817  		memmove(dst->data + dst->offset + offset, src, len);
1818  		return 0;
1819  	case BPF_DYNPTR_TYPE_SKB:
1820  		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1821  					     flags);
1822  	case BPF_DYNPTR_TYPE_XDP:
1823  		if (flags)
1824  			return -EINVAL;
1825  		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1826  	default:
1827  		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1828  		return -EFAULT;
1829  	}
1830  }
1831  
1832  static const struct bpf_func_proto bpf_dynptr_write_proto = {
1833  	.func		= bpf_dynptr_write,
1834  	.gpl_only	= false,
1835  	.ret_type	= RET_INTEGER,
1836  	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1837  	.arg2_type	= ARG_ANYTHING,
1838  	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1839  	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1840  	.arg5_type	= ARG_ANYTHING,
1841  };
1842  
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1843  BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1844  {
1845  	enum bpf_dynptr_type type;
1846  	int err;
1847  
1848  	if (!ptr->data)
1849  		return 0;
1850  
1851  	err = bpf_dynptr_check_off_len(ptr, offset, len);
1852  	if (err)
1853  		return 0;
1854  
1855  	if (__bpf_dynptr_is_rdonly(ptr))
1856  		return 0;
1857  
1858  	type = bpf_dynptr_get_type(ptr);
1859  
1860  	switch (type) {
1861  	case BPF_DYNPTR_TYPE_LOCAL:
1862  	case BPF_DYNPTR_TYPE_RINGBUF:
1863  		return (unsigned long)(ptr->data + ptr->offset + offset);
1864  	case BPF_DYNPTR_TYPE_SKB:
1865  	case BPF_DYNPTR_TYPE_XDP:
1866  		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1867  		return 0;
1868  	default:
1869  		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1870  		return 0;
1871  	}
1872  }
1873  
1874  static const struct bpf_func_proto bpf_dynptr_data_proto = {
1875  	.func		= bpf_dynptr_data,
1876  	.gpl_only	= false,
1877  	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1878  	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1879  	.arg2_type	= ARG_ANYTHING,
1880  	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1881  };
1882  
1883  const struct bpf_func_proto bpf_get_current_task_proto __weak;
1884  const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1885  const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1886  const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1887  const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1888  const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1889  const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1890  
1891  const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1892  bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1893  {
1894  	switch (func_id) {
1895  	case BPF_FUNC_map_lookup_elem:
1896  		return &bpf_map_lookup_elem_proto;
1897  	case BPF_FUNC_map_update_elem:
1898  		return &bpf_map_update_elem_proto;
1899  	case BPF_FUNC_map_delete_elem:
1900  		return &bpf_map_delete_elem_proto;
1901  	case BPF_FUNC_map_push_elem:
1902  		return &bpf_map_push_elem_proto;
1903  	case BPF_FUNC_map_pop_elem:
1904  		return &bpf_map_pop_elem_proto;
1905  	case BPF_FUNC_map_peek_elem:
1906  		return &bpf_map_peek_elem_proto;
1907  	case BPF_FUNC_map_lookup_percpu_elem:
1908  		return &bpf_map_lookup_percpu_elem_proto;
1909  	case BPF_FUNC_get_prandom_u32:
1910  		return &bpf_get_prandom_u32_proto;
1911  	case BPF_FUNC_get_smp_processor_id:
1912  		return &bpf_get_raw_smp_processor_id_proto;
1913  	case BPF_FUNC_get_numa_node_id:
1914  		return &bpf_get_numa_node_id_proto;
1915  	case BPF_FUNC_tail_call:
1916  		return &bpf_tail_call_proto;
1917  	case BPF_FUNC_ktime_get_ns:
1918  		return &bpf_ktime_get_ns_proto;
1919  	case BPF_FUNC_ktime_get_boot_ns:
1920  		return &bpf_ktime_get_boot_ns_proto;
1921  	case BPF_FUNC_ktime_get_tai_ns:
1922  		return &bpf_ktime_get_tai_ns_proto;
1923  	case BPF_FUNC_ringbuf_output:
1924  		return &bpf_ringbuf_output_proto;
1925  	case BPF_FUNC_ringbuf_reserve:
1926  		return &bpf_ringbuf_reserve_proto;
1927  	case BPF_FUNC_ringbuf_submit:
1928  		return &bpf_ringbuf_submit_proto;
1929  	case BPF_FUNC_ringbuf_discard:
1930  		return &bpf_ringbuf_discard_proto;
1931  	case BPF_FUNC_ringbuf_query:
1932  		return &bpf_ringbuf_query_proto;
1933  	case BPF_FUNC_strncmp:
1934  		return &bpf_strncmp_proto;
1935  	case BPF_FUNC_strtol:
1936  		return &bpf_strtol_proto;
1937  	case BPF_FUNC_strtoul:
1938  		return &bpf_strtoul_proto;
1939  	case BPF_FUNC_get_current_pid_tgid:
1940  		return &bpf_get_current_pid_tgid_proto;
1941  	case BPF_FUNC_get_ns_current_pid_tgid:
1942  		return &bpf_get_ns_current_pid_tgid_proto;
1943  	default:
1944  		break;
1945  	}
1946  
1947  	if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1948  		return NULL;
1949  
1950  	switch (func_id) {
1951  	case BPF_FUNC_spin_lock:
1952  		return &bpf_spin_lock_proto;
1953  	case BPF_FUNC_spin_unlock:
1954  		return &bpf_spin_unlock_proto;
1955  	case BPF_FUNC_jiffies64:
1956  		return &bpf_jiffies64_proto;
1957  	case BPF_FUNC_per_cpu_ptr:
1958  		return &bpf_per_cpu_ptr_proto;
1959  	case BPF_FUNC_this_cpu_ptr:
1960  		return &bpf_this_cpu_ptr_proto;
1961  	case BPF_FUNC_timer_init:
1962  		return &bpf_timer_init_proto;
1963  	case BPF_FUNC_timer_set_callback:
1964  		return &bpf_timer_set_callback_proto;
1965  	case BPF_FUNC_timer_start:
1966  		return &bpf_timer_start_proto;
1967  	case BPF_FUNC_timer_cancel:
1968  		return &bpf_timer_cancel_proto;
1969  	case BPF_FUNC_kptr_xchg:
1970  		return &bpf_kptr_xchg_proto;
1971  	case BPF_FUNC_for_each_map_elem:
1972  		return &bpf_for_each_map_elem_proto;
1973  	case BPF_FUNC_loop:
1974  		return &bpf_loop_proto;
1975  	case BPF_FUNC_user_ringbuf_drain:
1976  		return &bpf_user_ringbuf_drain_proto;
1977  	case BPF_FUNC_ringbuf_reserve_dynptr:
1978  		return &bpf_ringbuf_reserve_dynptr_proto;
1979  	case BPF_FUNC_ringbuf_submit_dynptr:
1980  		return &bpf_ringbuf_submit_dynptr_proto;
1981  	case BPF_FUNC_ringbuf_discard_dynptr:
1982  		return &bpf_ringbuf_discard_dynptr_proto;
1983  	case BPF_FUNC_dynptr_from_mem:
1984  		return &bpf_dynptr_from_mem_proto;
1985  	case BPF_FUNC_dynptr_read:
1986  		return &bpf_dynptr_read_proto;
1987  	case BPF_FUNC_dynptr_write:
1988  		return &bpf_dynptr_write_proto;
1989  	case BPF_FUNC_dynptr_data:
1990  		return &bpf_dynptr_data_proto;
1991  #ifdef CONFIG_CGROUPS
1992  	case BPF_FUNC_cgrp_storage_get:
1993  		return &bpf_cgrp_storage_get_proto;
1994  	case BPF_FUNC_cgrp_storage_delete:
1995  		return &bpf_cgrp_storage_delete_proto;
1996  	case BPF_FUNC_get_current_cgroup_id:
1997  		return &bpf_get_current_cgroup_id_proto;
1998  	case BPF_FUNC_get_current_ancestor_cgroup_id:
1999  		return &bpf_get_current_ancestor_cgroup_id_proto;
2000  #endif
2001  	default:
2002  		break;
2003  	}
2004  
2005  	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2006  		return NULL;
2007  
2008  	switch (func_id) {
2009  	case BPF_FUNC_trace_printk:
2010  		return bpf_get_trace_printk_proto();
2011  	case BPF_FUNC_get_current_task:
2012  		return &bpf_get_current_task_proto;
2013  	case BPF_FUNC_get_current_task_btf:
2014  		return &bpf_get_current_task_btf_proto;
2015  	case BPF_FUNC_probe_read_user:
2016  		return &bpf_probe_read_user_proto;
2017  	case BPF_FUNC_probe_read_kernel:
2018  		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2019  		       NULL : &bpf_probe_read_kernel_proto;
2020  	case BPF_FUNC_probe_read_user_str:
2021  		return &bpf_probe_read_user_str_proto;
2022  	case BPF_FUNC_probe_read_kernel_str:
2023  		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2024  		       NULL : &bpf_probe_read_kernel_str_proto;
2025  	case BPF_FUNC_snprintf_btf:
2026  		return &bpf_snprintf_btf_proto;
2027  	case BPF_FUNC_snprintf:
2028  		return &bpf_snprintf_proto;
2029  	case BPF_FUNC_task_pt_regs:
2030  		return &bpf_task_pt_regs_proto;
2031  	case BPF_FUNC_trace_vprintk:
2032  		return bpf_get_trace_vprintk_proto();
2033  	default:
2034  		return NULL;
2035  	}
2036  }
2037  EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2038  
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)2039  void bpf_list_head_free(const struct btf_field *field, void *list_head,
2040  			struct bpf_spin_lock *spin_lock)
2041  {
2042  	struct list_head *head = list_head, *orig_head = list_head;
2043  
2044  	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2045  	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2046  
2047  	/* Do the actual list draining outside the lock to not hold the lock for
2048  	 * too long, and also prevent deadlocks if tracing programs end up
2049  	 * executing on entry/exit of functions called inside the critical
2050  	 * section, and end up doing map ops that call bpf_list_head_free for
2051  	 * the same map value again.
2052  	 */
2053  	__bpf_spin_lock_irqsave(spin_lock);
2054  	if (!head->next || list_empty(head))
2055  		goto unlock;
2056  	head = head->next;
2057  unlock:
2058  	INIT_LIST_HEAD(orig_head);
2059  	__bpf_spin_unlock_irqrestore(spin_lock);
2060  
2061  	while (head != orig_head) {
2062  		void *obj = head;
2063  
2064  		obj -= field->graph_root.node_offset;
2065  		head = head->next;
2066  		/* The contained type can also have resources, including a
2067  		 * bpf_list_head which needs to be freed.
2068  		 */
2069  		migrate_disable();
2070  		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2071  		migrate_enable();
2072  	}
2073  }
2074  
2075  /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2076   * 'rb_node *', so field name of rb_node within containing struct is not
2077   * needed.
2078   *
2079   * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2080   * graph_root.node_offset, it's not necessary to know field name
2081   * or type of node struct
2082   */
2083  #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2084  	for (pos = rb_first_postorder(root); \
2085  	    pos && ({ n = rb_next_postorder(pos); 1; }); \
2086  	    pos = n)
2087  
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)2088  void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2089  		      struct bpf_spin_lock *spin_lock)
2090  {
2091  	struct rb_root_cached orig_root, *root = rb_root;
2092  	struct rb_node *pos, *n;
2093  	void *obj;
2094  
2095  	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2096  	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2097  
2098  	__bpf_spin_lock_irqsave(spin_lock);
2099  	orig_root = *root;
2100  	*root = RB_ROOT_CACHED;
2101  	__bpf_spin_unlock_irqrestore(spin_lock);
2102  
2103  	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2104  		obj = pos;
2105  		obj -= field->graph_root.node_offset;
2106  
2107  
2108  		migrate_disable();
2109  		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2110  		migrate_enable();
2111  	}
2112  }
2113  
2114  __bpf_kfunc_start_defs();
2115  
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)2116  __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2117  {
2118  	struct btf_struct_meta *meta = meta__ign;
2119  	u64 size = local_type_id__k;
2120  	void *p;
2121  
2122  	p = bpf_mem_alloc(&bpf_global_ma, size);
2123  	if (!p)
2124  		return NULL;
2125  	if (meta)
2126  		bpf_obj_init(meta->record, p);
2127  	return p;
2128  }
2129  
bpf_percpu_obj_new_impl(u64 local_type_id__k,void * meta__ign)2130  __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2131  {
2132  	u64 size = local_type_id__k;
2133  
2134  	/* The verifier has ensured that meta__ign must be NULL */
2135  	return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2136  }
2137  
2138  /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec,bool percpu)2139  void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2140  {
2141  	struct bpf_mem_alloc *ma;
2142  
2143  	if (rec && rec->refcount_off >= 0 &&
2144  	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2145  		/* Object is refcounted and refcount_dec didn't result in 0
2146  		 * refcount. Return without freeing the object
2147  		 */
2148  		return;
2149  	}
2150  
2151  	if (rec)
2152  		bpf_obj_free_fields(rec, p);
2153  
2154  	if (percpu)
2155  		ma = &bpf_global_percpu_ma;
2156  	else
2157  		ma = &bpf_global_ma;
2158  	bpf_mem_free_rcu(ma, p);
2159  }
2160  
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2161  __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2162  {
2163  	struct btf_struct_meta *meta = meta__ign;
2164  	void *p = p__alloc;
2165  
2166  	__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2167  }
2168  
bpf_percpu_obj_drop_impl(void * p__alloc,void * meta__ign)2169  __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2170  {
2171  	/* The verifier has ensured that meta__ign must be NULL */
2172  	bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2173  }
2174  
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2175  __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2176  {
2177  	struct btf_struct_meta *meta = meta__ign;
2178  	struct bpf_refcount *ref;
2179  
2180  	/* Could just cast directly to refcount_t *, but need some code using
2181  	 * bpf_refcount type so that it is emitted in vmlinux BTF
2182  	 */
2183  	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2184  	if (!refcount_inc_not_zero((refcount_t *)ref))
2185  		return NULL;
2186  
2187  	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2188  	 * in verifier.c
2189  	 */
2190  	return (void *)p__refcounted_kptr;
2191  }
2192  
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2193  static int __bpf_list_add(struct bpf_list_node_kern *node,
2194  			  struct bpf_list_head *head,
2195  			  bool tail, struct btf_record *rec, u64 off)
2196  {
2197  	struct list_head *n = &node->list_head, *h = (void *)head;
2198  
2199  	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2200  	 * called on its fields, so init here
2201  	 */
2202  	if (unlikely(!h->next))
2203  		INIT_LIST_HEAD(h);
2204  
2205  	/* node->owner != NULL implies !list_empty(n), no need to separately
2206  	 * check the latter
2207  	 */
2208  	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2209  		/* Only called from BPF prog, no need to migrate_disable */
2210  		__bpf_obj_drop_impl((void *)n - off, rec, false);
2211  		return -EINVAL;
2212  	}
2213  
2214  	tail ? list_add_tail(n, h) : list_add(n, h);
2215  	WRITE_ONCE(node->owner, head);
2216  
2217  	return 0;
2218  }
2219  
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2220  __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2221  					 struct bpf_list_node *node,
2222  					 void *meta__ign, u64 off)
2223  {
2224  	struct bpf_list_node_kern *n = (void *)node;
2225  	struct btf_struct_meta *meta = meta__ign;
2226  
2227  	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2228  }
2229  
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2230  __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2231  					struct bpf_list_node *node,
2232  					void *meta__ign, u64 off)
2233  {
2234  	struct bpf_list_node_kern *n = (void *)node;
2235  	struct btf_struct_meta *meta = meta__ign;
2236  
2237  	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2238  }
2239  
__bpf_list_del(struct bpf_list_head * head,bool tail)2240  static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2241  {
2242  	struct list_head *n, *h = (void *)head;
2243  	struct bpf_list_node_kern *node;
2244  
2245  	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2246  	 * called on its fields, so init here
2247  	 */
2248  	if (unlikely(!h->next))
2249  		INIT_LIST_HEAD(h);
2250  	if (list_empty(h))
2251  		return NULL;
2252  
2253  	n = tail ? h->prev : h->next;
2254  	node = container_of(n, struct bpf_list_node_kern, list_head);
2255  	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2256  		return NULL;
2257  
2258  	list_del_init(n);
2259  	WRITE_ONCE(node->owner, NULL);
2260  	return (struct bpf_list_node *)n;
2261  }
2262  
bpf_list_pop_front(struct bpf_list_head * head)2263  __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2264  {
2265  	return __bpf_list_del(head, false);
2266  }
2267  
bpf_list_pop_back(struct bpf_list_head * head)2268  __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2269  {
2270  	return __bpf_list_del(head, true);
2271  }
2272  
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2273  __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2274  						  struct bpf_rb_node *node)
2275  {
2276  	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2277  	struct rb_root_cached *r = (struct rb_root_cached *)root;
2278  	struct rb_node *n = &node_internal->rb_node;
2279  
2280  	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2281  	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2282  	 */
2283  	if (READ_ONCE(node_internal->owner) != root)
2284  		return NULL;
2285  
2286  	rb_erase_cached(n, r);
2287  	RB_CLEAR_NODE(n);
2288  	WRITE_ONCE(node_internal->owner, NULL);
2289  	return (struct bpf_rb_node *)n;
2290  }
2291  
2292  /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2293   * program
2294   */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2295  static int __bpf_rbtree_add(struct bpf_rb_root *root,
2296  			    struct bpf_rb_node_kern *node,
2297  			    void *less, struct btf_record *rec, u64 off)
2298  {
2299  	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2300  	struct rb_node *parent = NULL, *n = &node->rb_node;
2301  	bpf_callback_t cb = (bpf_callback_t)less;
2302  	bool leftmost = true;
2303  
2304  	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2305  	 * check the latter
2306  	 */
2307  	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2308  		/* Only called from BPF prog, no need to migrate_disable */
2309  		__bpf_obj_drop_impl((void *)n - off, rec, false);
2310  		return -EINVAL;
2311  	}
2312  
2313  	while (*link) {
2314  		parent = *link;
2315  		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2316  			link = &parent->rb_left;
2317  		} else {
2318  			link = &parent->rb_right;
2319  			leftmost = false;
2320  		}
2321  	}
2322  
2323  	rb_link_node(n, parent, link);
2324  	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2325  	WRITE_ONCE(node->owner, root);
2326  	return 0;
2327  }
2328  
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2329  __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2330  				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2331  				    void *meta__ign, u64 off)
2332  {
2333  	struct btf_struct_meta *meta = meta__ign;
2334  	struct bpf_rb_node_kern *n = (void *)node;
2335  
2336  	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2337  }
2338  
bpf_rbtree_first(struct bpf_rb_root * root)2339  __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2340  {
2341  	struct rb_root_cached *r = (struct rb_root_cached *)root;
2342  
2343  	return (struct bpf_rb_node *)rb_first_cached(r);
2344  }
2345  
2346  /**
2347   * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2348   * kfunc which is not stored in a map as a kptr, must be released by calling
2349   * bpf_task_release().
2350   * @p: The task on which a reference is being acquired.
2351   */
bpf_task_acquire(struct task_struct * p)2352  __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2353  {
2354  	if (refcount_inc_not_zero(&p->rcu_users))
2355  		return p;
2356  	return NULL;
2357  }
2358  
2359  /**
2360   * bpf_task_release - Release the reference acquired on a task.
2361   * @p: The task on which a reference is being released.
2362   */
bpf_task_release(struct task_struct * p)2363  __bpf_kfunc void bpf_task_release(struct task_struct *p)
2364  {
2365  	put_task_struct_rcu_user(p);
2366  }
2367  
bpf_task_release_dtor(void * p)2368  __bpf_kfunc void bpf_task_release_dtor(void *p)
2369  {
2370  	put_task_struct_rcu_user(p);
2371  }
2372  CFI_NOSEAL(bpf_task_release_dtor);
2373  
2374  #ifdef CONFIG_CGROUPS
2375  /**
2376   * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2377   * this kfunc which is not stored in a map as a kptr, must be released by
2378   * calling bpf_cgroup_release().
2379   * @cgrp: The cgroup on which a reference is being acquired.
2380   */
bpf_cgroup_acquire(struct cgroup * cgrp)2381  __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2382  {
2383  	return cgroup_tryget(cgrp) ? cgrp : NULL;
2384  }
2385  
2386  /**
2387   * bpf_cgroup_release - Release the reference acquired on a cgroup.
2388   * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2389   * not be freed until the current grace period has ended, even if its refcount
2390   * drops to 0.
2391   * @cgrp: The cgroup on which a reference is being released.
2392   */
bpf_cgroup_release(struct cgroup * cgrp)2393  __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2394  {
2395  	cgroup_put(cgrp);
2396  }
2397  
bpf_cgroup_release_dtor(void * cgrp)2398  __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2399  {
2400  	cgroup_put(cgrp);
2401  }
2402  CFI_NOSEAL(bpf_cgroup_release_dtor);
2403  
2404  /**
2405   * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2406   * array. A cgroup returned by this kfunc which is not subsequently stored in a
2407   * map, must be released by calling bpf_cgroup_release().
2408   * @cgrp: The cgroup for which we're performing a lookup.
2409   * @level: The level of ancestor to look up.
2410   */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2411  __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2412  {
2413  	struct cgroup *ancestor;
2414  
2415  	if (level > cgrp->level || level < 0)
2416  		return NULL;
2417  
2418  	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2419  	ancestor = cgrp->ancestors[level];
2420  	if (!cgroup_tryget(ancestor))
2421  		return NULL;
2422  	return ancestor;
2423  }
2424  
2425  /**
2426   * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2427   * kfunc which is not subsequently stored in a map, must be released by calling
2428   * bpf_cgroup_release().
2429   * @cgid: cgroup id.
2430   */
bpf_cgroup_from_id(u64 cgid)2431  __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2432  {
2433  	struct cgroup *cgrp;
2434  
2435  	cgrp = cgroup_get_from_id(cgid);
2436  	if (IS_ERR(cgrp))
2437  		return NULL;
2438  	return cgrp;
2439  }
2440  
2441  /**
2442   * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2443   * task's membership of cgroup ancestry.
2444   * @task: the task to be tested
2445   * @ancestor: possible ancestor of @task's cgroup
2446   *
2447   * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2448   * It follows all the same rules as cgroup_is_descendant, and only applies
2449   * to the default hierarchy.
2450   */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2451  __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2452  				       struct cgroup *ancestor)
2453  {
2454  	long ret;
2455  
2456  	rcu_read_lock();
2457  	ret = task_under_cgroup_hierarchy(task, ancestor);
2458  	rcu_read_unlock();
2459  	return ret;
2460  }
2461  
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)2462  BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2463  {
2464  	struct bpf_array *array = container_of(map, struct bpf_array, map);
2465  	struct cgroup *cgrp;
2466  
2467  	if (unlikely(idx >= array->map.max_entries))
2468  		return -E2BIG;
2469  
2470  	cgrp = READ_ONCE(array->ptrs[idx]);
2471  	if (unlikely(!cgrp))
2472  		return -EAGAIN;
2473  
2474  	return task_under_cgroup_hierarchy(current, cgrp);
2475  }
2476  
2477  const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2478  	.func           = bpf_current_task_under_cgroup,
2479  	.gpl_only       = false,
2480  	.ret_type       = RET_INTEGER,
2481  	.arg1_type      = ARG_CONST_MAP_PTR,
2482  	.arg2_type      = ARG_ANYTHING,
2483  };
2484  
2485  /**
2486   * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2487   * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2488   * hierarchy ID.
2489   * @task: The target task
2490   * @hierarchy_id: The ID of a cgroup1 hierarchy
2491   *
2492   * On success, the cgroup is returen. On failure, NULL is returned.
2493   */
2494  __bpf_kfunc struct cgroup *
bpf_task_get_cgroup1(struct task_struct * task,int hierarchy_id)2495  bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2496  {
2497  	struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2498  
2499  	if (IS_ERR(cgrp))
2500  		return NULL;
2501  	return cgrp;
2502  }
2503  #endif /* CONFIG_CGROUPS */
2504  
2505  /**
2506   * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2507   * in the root pid namespace idr. If a task is returned, it must either be
2508   * stored in a map, or released with bpf_task_release().
2509   * @pid: The pid of the task being looked up.
2510   */
bpf_task_from_pid(s32 pid)2511  __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2512  {
2513  	struct task_struct *p;
2514  
2515  	rcu_read_lock();
2516  	p = find_task_by_pid_ns(pid, &init_pid_ns);
2517  	if (p)
2518  		p = bpf_task_acquire(p);
2519  	rcu_read_unlock();
2520  
2521  	return p;
2522  }
2523  
2524  /**
2525   * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2526   * @p: The dynptr whose data slice to retrieve
2527   * @offset: Offset into the dynptr
2528   * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2529   * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2530   *               length of the requested slice. This must be a constant.
2531   *
2532   * For non-skb and non-xdp type dynptrs, there is no difference between
2533   * bpf_dynptr_slice and bpf_dynptr_data.
2534   *
2535   *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2536   *
2537   * If the intention is to write to the data slice, please use
2538   * bpf_dynptr_slice_rdwr.
2539   *
2540   * The user must check that the returned pointer is not null before using it.
2541   *
2542   * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2543   * does not change the underlying packet data pointers, so a call to
2544   * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2545   * the bpf program.
2546   *
2547   * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2548   * data slice (can be either direct pointer to the data or a pointer to the user
2549   * provided buffer, with its contents containing the data, if unable to obtain
2550   * direct pointer)
2551   */
bpf_dynptr_slice(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2552  __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
2553  				   void *buffer__opt, u32 buffer__szk)
2554  {
2555  	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2556  	enum bpf_dynptr_type type;
2557  	u32 len = buffer__szk;
2558  	int err;
2559  
2560  	if (!ptr->data)
2561  		return NULL;
2562  
2563  	err = bpf_dynptr_check_off_len(ptr, offset, len);
2564  	if (err)
2565  		return NULL;
2566  
2567  	type = bpf_dynptr_get_type(ptr);
2568  
2569  	switch (type) {
2570  	case BPF_DYNPTR_TYPE_LOCAL:
2571  	case BPF_DYNPTR_TYPE_RINGBUF:
2572  		return ptr->data + ptr->offset + offset;
2573  	case BPF_DYNPTR_TYPE_SKB:
2574  		if (buffer__opt)
2575  			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2576  		else
2577  			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2578  	case BPF_DYNPTR_TYPE_XDP:
2579  	{
2580  		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2581  		if (!IS_ERR_OR_NULL(xdp_ptr))
2582  			return xdp_ptr;
2583  
2584  		if (!buffer__opt)
2585  			return NULL;
2586  		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2587  		return buffer__opt;
2588  	}
2589  	default:
2590  		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2591  		return NULL;
2592  	}
2593  }
2594  
2595  /**
2596   * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2597   * @p: The dynptr whose data slice to retrieve
2598   * @offset: Offset into the dynptr
2599   * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2600   * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2601   *               length of the requested slice. This must be a constant.
2602   *
2603   * For non-skb and non-xdp type dynptrs, there is no difference between
2604   * bpf_dynptr_slice and bpf_dynptr_data.
2605   *
2606   * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2607   *
2608   * The returned pointer is writable and may point to either directly the dynptr
2609   * data at the requested offset or to the buffer if unable to obtain a direct
2610   * data pointer to (example: the requested slice is to the paged area of an skb
2611   * packet). In the case where the returned pointer is to the buffer, the user
2612   * is responsible for persisting writes through calling bpf_dynptr_write(). This
2613   * usually looks something like this pattern:
2614   *
2615   * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2616   * if (!eth)
2617   *	return TC_ACT_SHOT;
2618   *
2619   * // mutate eth header //
2620   *
2621   * if (eth == buffer)
2622   *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2623   *
2624   * Please note that, as in the example above, the user must check that the
2625   * returned pointer is not null before using it.
2626   *
2627   * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2628   * does not change the underlying packet data pointers, so a call to
2629   * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2630   * the bpf program.
2631   *
2632   * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2633   * data slice (can be either direct pointer to the data or a pointer to the user
2634   * provided buffer, with its contents containing the data, if unable to obtain
2635   * direct pointer)
2636   */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2637  __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
2638  					void *buffer__opt, u32 buffer__szk)
2639  {
2640  	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2641  
2642  	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2643  		return NULL;
2644  
2645  	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2646  	 *
2647  	 * For skb-type dynptrs, it is safe to write into the returned pointer
2648  	 * if the bpf program allows skb data writes. There are two possibilities
2649  	 * that may occur when calling bpf_dynptr_slice_rdwr:
2650  	 *
2651  	 * 1) The requested slice is in the head of the skb. In this case, the
2652  	 * returned pointer is directly to skb data, and if the skb is cloned, the
2653  	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2654  	 * The pointer can be directly written into.
2655  	 *
2656  	 * 2) Some portion of the requested slice is in the paged buffer area.
2657  	 * In this case, the requested data will be copied out into the buffer
2658  	 * and the returned pointer will be a pointer to the buffer. The skb
2659  	 * will not be pulled. To persist the write, the user will need to call
2660  	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2661  	 *
2662  	 * Similarly for xdp programs, if the requested slice is not across xdp
2663  	 * fragments, then a direct pointer will be returned, otherwise the data
2664  	 * will be copied out into the buffer and the user will need to call
2665  	 * bpf_dynptr_write() to commit changes.
2666  	 */
2667  	return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2668  }
2669  
bpf_dynptr_adjust(const struct bpf_dynptr * p,u32 start,u32 end)2670  __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
2671  {
2672  	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2673  	u32 size;
2674  
2675  	if (!ptr->data || start > end)
2676  		return -EINVAL;
2677  
2678  	size = __bpf_dynptr_size(ptr);
2679  
2680  	if (start > size || end > size)
2681  		return -ERANGE;
2682  
2683  	ptr->offset += start;
2684  	bpf_dynptr_set_size(ptr, end - start);
2685  
2686  	return 0;
2687  }
2688  
bpf_dynptr_is_null(const struct bpf_dynptr * p)2689  __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2690  {
2691  	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2692  
2693  	return !ptr->data;
2694  }
2695  
bpf_dynptr_is_rdonly(const struct bpf_dynptr * p)2696  __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2697  {
2698  	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2699  
2700  	if (!ptr->data)
2701  		return false;
2702  
2703  	return __bpf_dynptr_is_rdonly(ptr);
2704  }
2705  
bpf_dynptr_size(const struct bpf_dynptr * p)2706  __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
2707  {
2708  	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2709  
2710  	if (!ptr->data)
2711  		return -EINVAL;
2712  
2713  	return __bpf_dynptr_size(ptr);
2714  }
2715  
bpf_dynptr_clone(const struct bpf_dynptr * p,struct bpf_dynptr * clone__uninit)2716  __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2717  				 struct bpf_dynptr *clone__uninit)
2718  {
2719  	struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2720  	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2721  
2722  	if (!ptr->data) {
2723  		bpf_dynptr_set_null(clone);
2724  		return -EINVAL;
2725  	}
2726  
2727  	*clone = *ptr;
2728  
2729  	return 0;
2730  }
2731  
bpf_cast_to_kern_ctx(void * obj)2732  __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2733  {
2734  	return obj;
2735  }
2736  
bpf_rdonly_cast(const void * obj__ign,u32 btf_id__k)2737  __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2738  {
2739  	return (void *)obj__ign;
2740  }
2741  
bpf_rcu_read_lock(void)2742  __bpf_kfunc void bpf_rcu_read_lock(void)
2743  {
2744  	rcu_read_lock();
2745  }
2746  
bpf_rcu_read_unlock(void)2747  __bpf_kfunc void bpf_rcu_read_unlock(void)
2748  {
2749  	rcu_read_unlock();
2750  }
2751  
2752  struct bpf_throw_ctx {
2753  	struct bpf_prog_aux *aux;
2754  	u64 sp;
2755  	u64 bp;
2756  	int cnt;
2757  };
2758  
bpf_stack_walker(void * cookie,u64 ip,u64 sp,u64 bp)2759  static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2760  {
2761  	struct bpf_throw_ctx *ctx = cookie;
2762  	struct bpf_prog *prog;
2763  
2764  	if (!is_bpf_text_address(ip))
2765  		return !ctx->cnt;
2766  	prog = bpf_prog_ksym_find(ip);
2767  	ctx->cnt++;
2768  	if (bpf_is_subprog(prog))
2769  		return true;
2770  	ctx->aux = prog->aux;
2771  	ctx->sp = sp;
2772  	ctx->bp = bp;
2773  	return false;
2774  }
2775  
bpf_throw(u64 cookie)2776  __bpf_kfunc void bpf_throw(u64 cookie)
2777  {
2778  	struct bpf_throw_ctx ctx = {};
2779  
2780  	arch_bpf_stack_walk(bpf_stack_walker, &ctx);
2781  	WARN_ON_ONCE(!ctx.aux);
2782  	if (ctx.aux)
2783  		WARN_ON_ONCE(!ctx.aux->exception_boundary);
2784  	WARN_ON_ONCE(!ctx.bp);
2785  	WARN_ON_ONCE(!ctx.cnt);
2786  	/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
2787  	 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
2788  	 * which skips compiler generated instrumentation to do the same.
2789  	 */
2790  	kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
2791  	ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
2792  	WARN(1, "A call to BPF exception callback should never return\n");
2793  }
2794  
bpf_wq_init(struct bpf_wq * wq,void * p__map,unsigned int flags)2795  __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
2796  {
2797  	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2798  	struct bpf_map *map = p__map;
2799  
2800  	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
2801  	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
2802  
2803  	if (flags)
2804  		return -EINVAL;
2805  
2806  	return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
2807  }
2808  
bpf_wq_start(struct bpf_wq * wq,unsigned int flags)2809  __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
2810  {
2811  	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2812  	struct bpf_work *w;
2813  
2814  	if (in_nmi())
2815  		return -EOPNOTSUPP;
2816  	if (flags)
2817  		return -EINVAL;
2818  	w = READ_ONCE(async->work);
2819  	if (!w || !READ_ONCE(w->cb.prog))
2820  		return -EINVAL;
2821  
2822  	schedule_work(&w->work);
2823  	return 0;
2824  }
2825  
bpf_wq_set_callback_impl(struct bpf_wq * wq,int (callback_fn)(void * map,int * key,void * value),unsigned int flags,void * aux__ign)2826  __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
2827  					 int (callback_fn)(void *map, int *key, void *value),
2828  					 unsigned int flags,
2829  					 void *aux__ign)
2830  {
2831  	struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign;
2832  	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2833  
2834  	if (flags)
2835  		return -EINVAL;
2836  
2837  	return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
2838  }
2839  
bpf_preempt_disable(void)2840  __bpf_kfunc void bpf_preempt_disable(void)
2841  {
2842  	preempt_disable();
2843  }
2844  
bpf_preempt_enable(void)2845  __bpf_kfunc void bpf_preempt_enable(void)
2846  {
2847  	preempt_enable();
2848  }
2849  
2850  struct bpf_iter_bits {
2851  	__u64 __opaque[2];
2852  } __aligned(8);
2853  
2854  #define BITS_ITER_NR_WORDS_MAX 511
2855  
2856  struct bpf_iter_bits_kern {
2857  	union {
2858  		__u64 *bits;
2859  		__u64 bits_copy;
2860  	};
2861  	int nr_bits;
2862  	int bit;
2863  } __aligned(8);
2864  
2865  /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
2866   * a u64 pointer and an unsigned long pointer to find_next_bit() will
2867   * return the same result, as both point to the same 8-byte area.
2868   *
2869   * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
2870   * pointer also makes no difference. This is because the first iterated
2871   * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
2872   * long is composed of bits 32-63 of the u64.
2873   *
2874   * However, for 32-bit big-endian hosts, this is not the case. The first
2875   * iterated unsigned long will be bits 32-63 of the u64, so swap these two
2876   * ulong values within the u64.
2877   */
swap_ulong_in_u64(u64 * bits,unsigned int nr)2878  static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
2879  {
2880  #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
2881  	unsigned int i;
2882  
2883  	for (i = 0; i < nr; i++)
2884  		bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
2885  #endif
2886  }
2887  
2888  /**
2889   * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
2890   * @it: The new bpf_iter_bits to be created
2891   * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
2892   * @nr_words: The size of the specified memory area, measured in 8-byte units.
2893   * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
2894   * further reduced by the BPF memory allocator implementation.
2895   *
2896   * This function initializes a new bpf_iter_bits structure for iterating over
2897   * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
2898   * copies the data of the memory area to the newly created bpf_iter_bits @it for
2899   * subsequent iteration operations.
2900   *
2901   * On success, 0 is returned. On failure, ERR is returned.
2902   */
2903  __bpf_kfunc int
bpf_iter_bits_new(struct bpf_iter_bits * it,const u64 * unsafe_ptr__ign,u32 nr_words)2904  bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
2905  {
2906  	struct bpf_iter_bits_kern *kit = (void *)it;
2907  	u32 nr_bytes = nr_words * sizeof(u64);
2908  	u32 nr_bits = BYTES_TO_BITS(nr_bytes);
2909  	int err;
2910  
2911  	BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
2912  	BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
2913  		     __alignof__(struct bpf_iter_bits));
2914  
2915  	kit->nr_bits = 0;
2916  	kit->bits_copy = 0;
2917  	kit->bit = -1;
2918  
2919  	if (!unsafe_ptr__ign || !nr_words)
2920  		return -EINVAL;
2921  	if (nr_words > BITS_ITER_NR_WORDS_MAX)
2922  		return -E2BIG;
2923  
2924  	/* Optimization for u64 mask */
2925  	if (nr_bits == 64) {
2926  		err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
2927  		if (err)
2928  			return -EFAULT;
2929  
2930  		swap_ulong_in_u64(&kit->bits_copy, nr_words);
2931  
2932  		kit->nr_bits = nr_bits;
2933  		return 0;
2934  	}
2935  
2936  	if (bpf_mem_alloc_check_size(false, nr_bytes))
2937  		return -E2BIG;
2938  
2939  	/* Fallback to memalloc */
2940  	kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
2941  	if (!kit->bits)
2942  		return -ENOMEM;
2943  
2944  	err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
2945  	if (err) {
2946  		bpf_mem_free(&bpf_global_ma, kit->bits);
2947  		return err;
2948  	}
2949  
2950  	swap_ulong_in_u64(kit->bits, nr_words);
2951  
2952  	kit->nr_bits = nr_bits;
2953  	return 0;
2954  }
2955  
2956  /**
2957   * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
2958   * @it: The bpf_iter_bits to be checked
2959   *
2960   * This function returns a pointer to a number representing the value of the
2961   * next bit in the bits.
2962   *
2963   * If there are no further bits available, it returns NULL.
2964   */
bpf_iter_bits_next(struct bpf_iter_bits * it)2965  __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
2966  {
2967  	struct bpf_iter_bits_kern *kit = (void *)it;
2968  	int bit = kit->bit, nr_bits = kit->nr_bits;
2969  	const void *bits;
2970  
2971  	if (!nr_bits || bit >= nr_bits)
2972  		return NULL;
2973  
2974  	bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
2975  	bit = find_next_bit(bits, nr_bits, bit + 1);
2976  	if (bit >= nr_bits) {
2977  		kit->bit = bit;
2978  		return NULL;
2979  	}
2980  
2981  	kit->bit = bit;
2982  	return &kit->bit;
2983  }
2984  
2985  /**
2986   * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
2987   * @it: The bpf_iter_bits to be destroyed
2988   *
2989   * Destroy the resource associated with the bpf_iter_bits.
2990   */
bpf_iter_bits_destroy(struct bpf_iter_bits * it)2991  __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
2992  {
2993  	struct bpf_iter_bits_kern *kit = (void *)it;
2994  
2995  	if (kit->nr_bits <= 64)
2996  		return;
2997  	bpf_mem_free(&bpf_global_ma, kit->bits);
2998  }
2999  
3000  /**
3001   * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3002   * @dst:             Destination address, in kernel space.  This buffer must be
3003   *                   at least @dst__sz bytes long.
3004   * @dst__sz:         Maximum number of bytes to copy, includes the trailing NUL.
3005   * @unsafe_ptr__ign: Source address, in user space.
3006   * @flags:           The only supported flag is BPF_F_PAD_ZEROS
3007   *
3008   * Copies a NUL-terminated string from userspace to BPF space. If user string is
3009   * too long this will still ensure zero termination in the dst buffer unless
3010   * buffer size is 0.
3011   *
3012   * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3013   * memset all of @dst on failure.
3014   */
bpf_copy_from_user_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,u64 flags)3015  __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3016  {
3017  	int ret;
3018  
3019  	if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3020  		return -EINVAL;
3021  
3022  	if (unlikely(!dst__sz))
3023  		return 0;
3024  
3025  	ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3026  	if (ret < 0) {
3027  		if (flags & BPF_F_PAD_ZEROS)
3028  			memset((char *)dst, 0, dst__sz);
3029  
3030  		return ret;
3031  	}
3032  
3033  	if (flags & BPF_F_PAD_ZEROS)
3034  		memset((char *)dst + ret, 0, dst__sz - ret);
3035  	else
3036  		((char *)dst)[ret] = '\0';
3037  
3038  	return ret + 1;
3039  }
3040  
3041  __bpf_kfunc_end_defs();
3042  
3043  BTF_KFUNCS_START(generic_btf_ids)
3044  #ifdef CONFIG_CRASH_DUMP
3045  BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
3046  #endif
3047  BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3048  BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3049  BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
3050  BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
3051  BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
3052  BTF_ID_FLAGS(func, bpf_list_push_front_impl)
3053  BTF_ID_FLAGS(func, bpf_list_push_back_impl)
3054  BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
3055  BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
3056  BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3057  BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
3058  BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
3059  BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
3060  BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
3061  
3062  #ifdef CONFIG_CGROUPS
3063  BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3064  BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
3065  BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3066  BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
3067  BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
3068  BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3069  #endif
3070  BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
3071  BTF_ID_FLAGS(func, bpf_throw)
3072  BTF_KFUNCS_END(generic_btf_ids)
3073  
3074  static const struct btf_kfunc_id_set generic_kfunc_set = {
3075  	.owner = THIS_MODULE,
3076  	.set   = &generic_btf_ids,
3077  };
3078  
3079  
3080  BTF_ID_LIST(generic_dtor_ids)
3081  BTF_ID(struct, task_struct)
3082  BTF_ID(func, bpf_task_release_dtor)
3083  #ifdef CONFIG_CGROUPS
3084  BTF_ID(struct, cgroup)
3085  BTF_ID(func, bpf_cgroup_release_dtor)
3086  #endif
3087  
3088  BTF_KFUNCS_START(common_btf_ids)
3089  BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
3090  BTF_ID_FLAGS(func, bpf_rdonly_cast)
3091  BTF_ID_FLAGS(func, bpf_rcu_read_lock)
3092  BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
3093  BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
3094  BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
3095  BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
3096  BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
3097  BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
3098  BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
3099  BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
3100  BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
3101  #ifdef CONFIG_CGROUPS
3102  BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
3103  BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
3104  BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
3105  BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3106  BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
3107  BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
3108  #endif
3109  BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3110  BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
3111  BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
3112  BTF_ID_FLAGS(func, bpf_dynptr_adjust)
3113  BTF_ID_FLAGS(func, bpf_dynptr_is_null)
3114  BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
3115  BTF_ID_FLAGS(func, bpf_dynptr_size)
3116  BTF_ID_FLAGS(func, bpf_dynptr_clone)
3117  BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
3118  BTF_ID_FLAGS(func, bpf_wq_init)
3119  BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
3120  BTF_ID_FLAGS(func, bpf_wq_start)
3121  BTF_ID_FLAGS(func, bpf_preempt_disable)
3122  BTF_ID_FLAGS(func, bpf_preempt_enable)
3123  BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
3124  BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
3125  BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
3126  BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
3127  BTF_KFUNCS_END(common_btf_ids)
3128  
3129  static const struct btf_kfunc_id_set common_kfunc_set = {
3130  	.owner = THIS_MODULE,
3131  	.set   = &common_btf_ids,
3132  };
3133  
kfunc_init(void)3134  static int __init kfunc_init(void)
3135  {
3136  	int ret;
3137  	const struct btf_id_dtor_kfunc generic_dtors[] = {
3138  		{
3139  			.btf_id       = generic_dtor_ids[0],
3140  			.kfunc_btf_id = generic_dtor_ids[1]
3141  		},
3142  #ifdef CONFIG_CGROUPS
3143  		{
3144  			.btf_id       = generic_dtor_ids[2],
3145  			.kfunc_btf_id = generic_dtor_ids[3]
3146  		},
3147  #endif
3148  	};
3149  
3150  	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
3151  	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
3152  	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
3153  	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
3154  	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
3155  	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
3156  	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
3157  						  ARRAY_SIZE(generic_dtors),
3158  						  THIS_MODULE);
3159  	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
3160  }
3161  
3162  late_initcall(kfunc_init);
3163  
3164  /* Get a pointer to dynptr data up to len bytes for read only access. If
3165   * the dynptr doesn't have continuous data up to len bytes, return NULL.
3166   */
__bpf_dynptr_data(const struct bpf_dynptr_kern * ptr,u32 len)3167  const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
3168  {
3169  	const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
3170  
3171  	return bpf_dynptr_slice(p, 0, NULL, len);
3172  }
3173  
3174  /* Get a pointer to dynptr data up to len bytes for read write access. If
3175   * the dynptr doesn't have continuous data up to len bytes, or the dynptr
3176   * is read only, return NULL.
3177   */
__bpf_dynptr_data_rw(const struct bpf_dynptr_kern * ptr,u32 len)3178  void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
3179  {
3180  	if (__bpf_dynptr_is_rdonly(ptr))
3181  		return NULL;
3182  	return (void *)__bpf_dynptr_data(ptr, len);
3183  }
3184