1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BMI160 - Bosch IMU (accel, gyro plus external magnetometer)
4  *
5  * Copyright (c) 2016, Intel Corporation.
6  * Copyright (c) 2019, Martin Kelly.
7  *
8  * IIO core driver for BMI160, with support for I2C/SPI busses
9  *
10  * TODO: magnetometer, hardware FIFO
11  */
12 #include <linux/module.h>
13 #include <linux/regmap.h>
14 #include <linux/delay.h>
15 #include <linux/irq.h>
16 #include <linux/property.h>
17 #include <linux/regulator/consumer.h>
18 
19 #include <linux/iio/iio.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/buffer.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/trigger.h>
25 
26 #include "bmi160.h"
27 
28 #define BMI160_REG_CHIP_ID	0x00
29 #define BMI120_CHIP_ID_VAL	0xD3
30 #define BMI160_CHIP_ID_VAL	0xD1
31 
32 #define BMI160_REG_PMU_STATUS	0x03
33 
34 /* X axis data low byte address, the rest can be obtained using axis offset */
35 #define BMI160_REG_DATA_MAGN_XOUT_L	0x04
36 #define BMI160_REG_DATA_GYRO_XOUT_L	0x0C
37 #define BMI160_REG_DATA_ACCEL_XOUT_L	0x12
38 
39 #define BMI160_REG_ACCEL_CONFIG		0x40
40 #define BMI160_ACCEL_CONFIG_ODR_MASK	GENMASK(3, 0)
41 #define BMI160_ACCEL_CONFIG_BWP_MASK	GENMASK(6, 4)
42 
43 #define BMI160_REG_ACCEL_RANGE		0x41
44 #define BMI160_ACCEL_RANGE_2G		0x03
45 #define BMI160_ACCEL_RANGE_4G		0x05
46 #define BMI160_ACCEL_RANGE_8G		0x08
47 #define BMI160_ACCEL_RANGE_16G		0x0C
48 
49 #define BMI160_REG_GYRO_CONFIG		0x42
50 #define BMI160_GYRO_CONFIG_ODR_MASK	GENMASK(3, 0)
51 #define BMI160_GYRO_CONFIG_BWP_MASK	GENMASK(5, 4)
52 
53 #define BMI160_REG_GYRO_RANGE		0x43
54 #define BMI160_GYRO_RANGE_2000DPS	0x00
55 #define BMI160_GYRO_RANGE_1000DPS	0x01
56 #define BMI160_GYRO_RANGE_500DPS	0x02
57 #define BMI160_GYRO_RANGE_250DPS	0x03
58 #define BMI160_GYRO_RANGE_125DPS	0x04
59 
60 #define BMI160_REG_CMD			0x7E
61 #define BMI160_CMD_ACCEL_PM_SUSPEND	0x10
62 #define BMI160_CMD_ACCEL_PM_NORMAL	0x11
63 #define BMI160_CMD_ACCEL_PM_LOW_POWER	0x12
64 #define BMI160_CMD_GYRO_PM_SUSPEND	0x14
65 #define BMI160_CMD_GYRO_PM_NORMAL	0x15
66 #define BMI160_CMD_GYRO_PM_FAST_STARTUP	0x17
67 #define BMI160_CMD_SOFTRESET		0xB6
68 
69 #define BMI160_REG_INT_EN		0x51
70 #define BMI160_DRDY_INT_EN		BIT(4)
71 
72 #define BMI160_REG_INT_OUT_CTRL		0x53
73 #define BMI160_INT_OUT_CTRL_MASK	0x0f
74 #define BMI160_INT1_OUT_CTRL_SHIFT	0
75 #define BMI160_INT2_OUT_CTRL_SHIFT	4
76 #define BMI160_EDGE_TRIGGERED		BIT(0)
77 #define BMI160_ACTIVE_HIGH		BIT(1)
78 #define BMI160_OPEN_DRAIN		BIT(2)
79 #define BMI160_OUTPUT_EN		BIT(3)
80 
81 #define BMI160_REG_INT_LATCH		0x54
82 #define BMI160_INT1_LATCH_MASK		BIT(4)
83 #define BMI160_INT2_LATCH_MASK		BIT(5)
84 
85 /* INT1 and INT2 are in the opposite order as in INT_OUT_CTRL! */
86 #define BMI160_REG_INT_MAP		0x56
87 #define BMI160_INT1_MAP_DRDY_EN		0x80
88 #define BMI160_INT2_MAP_DRDY_EN		0x08
89 
90 #define BMI160_REG_DUMMY		0x7F
91 
92 #define BMI160_NORMAL_WRITE_USLEEP	2
93 #define BMI160_SUSPENDED_WRITE_USLEEP	450
94 
95 #define BMI160_ACCEL_PMU_MIN_USLEEP	3800
96 #define BMI160_GYRO_PMU_MIN_USLEEP	80000
97 #define BMI160_SOFTRESET_USLEEP		1000
98 
99 #define BMI160_CHANNEL(_type, _axis, _index) {			\
100 	.type = _type,						\
101 	.modified = 1,						\
102 	.channel2 = IIO_MOD_##_axis,				\
103 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
104 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
105 		BIT(IIO_CHAN_INFO_SAMP_FREQ),			\
106 	.scan_index = _index,					\
107 	.scan_type = {						\
108 		.sign = 's',					\
109 		.realbits = 16,					\
110 		.storagebits = 16,				\
111 		.endianness = IIO_LE,				\
112 	},							\
113 	.ext_info = bmi160_ext_info,				\
114 }
115 
116 static const u8 bmi_chip_ids[] = {
117 	BMI120_CHIP_ID_VAL,
118 	BMI160_CHIP_ID_VAL,
119 };
120 
121 /* scan indexes follow DATA register order */
122 enum bmi160_scan_axis {
123 	BMI160_SCAN_EXT_MAGN_X = 0,
124 	BMI160_SCAN_EXT_MAGN_Y,
125 	BMI160_SCAN_EXT_MAGN_Z,
126 	BMI160_SCAN_RHALL,
127 	BMI160_SCAN_GYRO_X,
128 	BMI160_SCAN_GYRO_Y,
129 	BMI160_SCAN_GYRO_Z,
130 	BMI160_SCAN_ACCEL_X,
131 	BMI160_SCAN_ACCEL_Y,
132 	BMI160_SCAN_ACCEL_Z,
133 	BMI160_SCAN_TIMESTAMP,
134 };
135 
136 enum bmi160_sensor_type {
137 	BMI160_ACCEL	= 0,
138 	BMI160_GYRO,
139 	BMI160_EXT_MAGN,
140 	BMI160_NUM_SENSORS /* must be last */
141 };
142 
143 enum bmi160_int_pin {
144 	BMI160_PIN_INT1,
145 	BMI160_PIN_INT2
146 };
147 
148 const struct regmap_config bmi160_regmap_config = {
149 	.reg_bits = 8,
150 	.val_bits = 8,
151 };
152 EXPORT_SYMBOL_NS(bmi160_regmap_config, IIO_BMI160);
153 
154 struct bmi160_regs {
155 	u8 data; /* LSB byte register for X-axis */
156 	u8 config;
157 	u8 config_odr_mask;
158 	u8 config_bwp_mask;
159 	u8 range;
160 	u8 pmu_cmd_normal;
161 	u8 pmu_cmd_suspend;
162 };
163 
164 static struct bmi160_regs bmi160_regs[] = {
165 	[BMI160_ACCEL] = {
166 		.data	= BMI160_REG_DATA_ACCEL_XOUT_L,
167 		.config	= BMI160_REG_ACCEL_CONFIG,
168 		.config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK,
169 		.config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK,
170 		.range	= BMI160_REG_ACCEL_RANGE,
171 		.pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL,
172 		.pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND,
173 	},
174 	[BMI160_GYRO] = {
175 		.data	= BMI160_REG_DATA_GYRO_XOUT_L,
176 		.config	= BMI160_REG_GYRO_CONFIG,
177 		.config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK,
178 		.config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK,
179 		.range	= BMI160_REG_GYRO_RANGE,
180 		.pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL,
181 		.pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND,
182 	},
183 };
184 
185 static unsigned long bmi160_pmu_time[] = {
186 	[BMI160_ACCEL] = BMI160_ACCEL_PMU_MIN_USLEEP,
187 	[BMI160_GYRO] = BMI160_GYRO_PMU_MIN_USLEEP,
188 };
189 
190 struct bmi160_scale {
191 	u8 bits;
192 	int uscale;
193 };
194 
195 struct bmi160_odr {
196 	u8 bits;
197 	int odr;
198 	int uodr;
199 };
200 
201 static const struct bmi160_scale bmi160_accel_scale[] = {
202 	{ BMI160_ACCEL_RANGE_2G, 598},
203 	{ BMI160_ACCEL_RANGE_4G, 1197},
204 	{ BMI160_ACCEL_RANGE_8G, 2394},
205 	{ BMI160_ACCEL_RANGE_16G, 4788},
206 };
207 
208 static const struct bmi160_scale bmi160_gyro_scale[] = {
209 	{ BMI160_GYRO_RANGE_2000DPS, 1065},
210 	{ BMI160_GYRO_RANGE_1000DPS, 532},
211 	{ BMI160_GYRO_RANGE_500DPS, 266},
212 	{ BMI160_GYRO_RANGE_250DPS, 133},
213 	{ BMI160_GYRO_RANGE_125DPS, 66},
214 };
215 
216 struct bmi160_scale_item {
217 	const struct bmi160_scale *tbl;
218 	int num;
219 };
220 
221 static const struct  bmi160_scale_item bmi160_scale_table[] = {
222 	[BMI160_ACCEL] = {
223 		.tbl	= bmi160_accel_scale,
224 		.num	= ARRAY_SIZE(bmi160_accel_scale),
225 	},
226 	[BMI160_GYRO] = {
227 		.tbl	= bmi160_gyro_scale,
228 		.num	= ARRAY_SIZE(bmi160_gyro_scale),
229 	},
230 };
231 
232 static const struct bmi160_odr bmi160_accel_odr[] = {
233 	{0x01, 0, 781250},
234 	{0x02, 1, 562500},
235 	{0x03, 3, 125000},
236 	{0x04, 6, 250000},
237 	{0x05, 12, 500000},
238 	{0x06, 25, 0},
239 	{0x07, 50, 0},
240 	{0x08, 100, 0},
241 	{0x09, 200, 0},
242 	{0x0A, 400, 0},
243 	{0x0B, 800, 0},
244 	{0x0C, 1600, 0},
245 };
246 
247 static const struct bmi160_odr bmi160_gyro_odr[] = {
248 	{0x06, 25, 0},
249 	{0x07, 50, 0},
250 	{0x08, 100, 0},
251 	{0x09, 200, 0},
252 	{0x0A, 400, 0},
253 	{0x0B, 800, 0},
254 	{0x0C, 1600, 0},
255 	{0x0D, 3200, 0},
256 };
257 
258 struct bmi160_odr_item {
259 	const struct bmi160_odr *tbl;
260 	int num;
261 };
262 
263 static const struct  bmi160_odr_item bmi160_odr_table[] = {
264 	[BMI160_ACCEL] = {
265 		.tbl	= bmi160_accel_odr,
266 		.num	= ARRAY_SIZE(bmi160_accel_odr),
267 	},
268 	[BMI160_GYRO] = {
269 		.tbl	= bmi160_gyro_odr,
270 		.num	= ARRAY_SIZE(bmi160_gyro_odr),
271 	},
272 };
273 
274 static const struct iio_mount_matrix *
bmi160_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)275 bmi160_get_mount_matrix(const struct iio_dev *indio_dev,
276 			const struct iio_chan_spec *chan)
277 {
278 	struct bmi160_data *data = iio_priv(indio_dev);
279 
280 	return &data->orientation;
281 }
282 
283 static const struct iio_chan_spec_ext_info bmi160_ext_info[] = {
284 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmi160_get_mount_matrix),
285 	{ }
286 };
287 
288 static const struct iio_chan_spec bmi160_channels[] = {
289 	BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X),
290 	BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y),
291 	BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z),
292 	BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X),
293 	BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y),
294 	BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z),
295 	IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP),
296 };
297 
bmi160_to_sensor(enum iio_chan_type iio_type)298 static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type)
299 {
300 	switch (iio_type) {
301 	case IIO_ACCEL:
302 		return BMI160_ACCEL;
303 	case IIO_ANGL_VEL:
304 		return BMI160_GYRO;
305 	default:
306 		return -EINVAL;
307 	}
308 }
309 
310 static
bmi160_set_mode(struct bmi160_data * data,enum bmi160_sensor_type t,bool mode)311 int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t,
312 		    bool mode)
313 {
314 	int ret;
315 	u8 cmd;
316 
317 	if (mode)
318 		cmd = bmi160_regs[t].pmu_cmd_normal;
319 	else
320 		cmd = bmi160_regs[t].pmu_cmd_suspend;
321 
322 	ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd);
323 	if (ret)
324 		return ret;
325 
326 	usleep_range(bmi160_pmu_time[t], bmi160_pmu_time[t] + 1000);
327 
328 	return 0;
329 }
330 
331 static
bmi160_set_scale(struct bmi160_data * data,enum bmi160_sensor_type t,int uscale)332 int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
333 		     int uscale)
334 {
335 	int i;
336 
337 	for (i = 0; i < bmi160_scale_table[t].num; i++)
338 		if (bmi160_scale_table[t].tbl[i].uscale == uscale)
339 			break;
340 
341 	if (i == bmi160_scale_table[t].num)
342 		return -EINVAL;
343 
344 	return regmap_write(data->regmap, bmi160_regs[t].range,
345 			    bmi160_scale_table[t].tbl[i].bits);
346 }
347 
348 static
bmi160_get_scale(struct bmi160_data * data,enum bmi160_sensor_type t,int * uscale)349 int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
350 		     int *uscale)
351 {
352 	int i, ret, val;
353 
354 	ret = regmap_read(data->regmap, bmi160_regs[t].range, &val);
355 	if (ret)
356 		return ret;
357 
358 	for (i = 0; i < bmi160_scale_table[t].num; i++)
359 		if (bmi160_scale_table[t].tbl[i].bits == val) {
360 			*uscale = bmi160_scale_table[t].tbl[i].uscale;
361 			return 0;
362 		}
363 
364 	return -EINVAL;
365 }
366 
bmi160_get_data(struct bmi160_data * data,int chan_type,int axis,int * val)367 static int bmi160_get_data(struct bmi160_data *data, int chan_type,
368 			   int axis, int *val)
369 {
370 	u8 reg;
371 	int ret;
372 	__le16 sample;
373 	enum bmi160_sensor_type t = bmi160_to_sensor(chan_type);
374 
375 	reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(sample);
376 
377 	ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(sample));
378 	if (ret)
379 		return ret;
380 
381 	*val = sign_extend32(le16_to_cpu(sample), 15);
382 
383 	return 0;
384 }
385 
386 static
bmi160_set_odr(struct bmi160_data * data,enum bmi160_sensor_type t,int odr,int uodr)387 int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
388 		   int odr, int uodr)
389 {
390 	int i;
391 
392 	for (i = 0; i < bmi160_odr_table[t].num; i++)
393 		if (bmi160_odr_table[t].tbl[i].odr == odr &&
394 		    bmi160_odr_table[t].tbl[i].uodr == uodr)
395 			break;
396 
397 	if (i >= bmi160_odr_table[t].num)
398 		return -EINVAL;
399 
400 	return regmap_update_bits(data->regmap,
401 				  bmi160_regs[t].config,
402 				  bmi160_regs[t].config_odr_mask,
403 				  bmi160_odr_table[t].tbl[i].bits);
404 }
405 
bmi160_get_odr(struct bmi160_data * data,enum bmi160_sensor_type t,int * odr,int * uodr)406 static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
407 			  int *odr, int *uodr)
408 {
409 	int i, val, ret;
410 
411 	ret = regmap_read(data->regmap, bmi160_regs[t].config, &val);
412 	if (ret)
413 		return ret;
414 
415 	val &= bmi160_regs[t].config_odr_mask;
416 
417 	for (i = 0; i < bmi160_odr_table[t].num; i++)
418 		if (val == bmi160_odr_table[t].tbl[i].bits)
419 			break;
420 
421 	if (i >= bmi160_odr_table[t].num)
422 		return -EINVAL;
423 
424 	*odr = bmi160_odr_table[t].tbl[i].odr;
425 	*uodr = bmi160_odr_table[t].tbl[i].uodr;
426 
427 	return 0;
428 }
429 
bmi160_trigger_handler(int irq,void * p)430 static irqreturn_t bmi160_trigger_handler(int irq, void *p)
431 {
432 	struct iio_poll_func *pf = p;
433 	struct iio_dev *indio_dev = pf->indio_dev;
434 	struct bmi160_data *data = iio_priv(indio_dev);
435 	int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L;
436 	__le16 sample;
437 
438 	iio_for_each_active_channel(indio_dev, i) {
439 		ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample),
440 				       &sample, sizeof(sample));
441 		if (ret)
442 			goto done;
443 		data->buf[j++] = sample;
444 	}
445 
446 	iio_push_to_buffers_with_timestamp(indio_dev, data->buf, pf->timestamp);
447 done:
448 	iio_trigger_notify_done(indio_dev->trig);
449 	return IRQ_HANDLED;
450 }
451 
bmi160_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)452 static int bmi160_read_raw(struct iio_dev *indio_dev,
453 			   struct iio_chan_spec const *chan,
454 			   int *val, int *val2, long mask)
455 {
456 	int ret;
457 	struct bmi160_data *data = iio_priv(indio_dev);
458 
459 	switch (mask) {
460 	case IIO_CHAN_INFO_RAW:
461 		ret = bmi160_get_data(data, chan->type, chan->channel2, val);
462 		if (ret)
463 			return ret;
464 		return IIO_VAL_INT;
465 	case IIO_CHAN_INFO_SCALE:
466 		*val = 0;
467 		ret = bmi160_get_scale(data,
468 				       bmi160_to_sensor(chan->type), val2);
469 		return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
470 	case IIO_CHAN_INFO_SAMP_FREQ:
471 		ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type),
472 				     val, val2);
473 		return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
474 	default:
475 		return -EINVAL;
476 	}
477 
478 	return 0;
479 }
480 
bmi160_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)481 static int bmi160_write_raw(struct iio_dev *indio_dev,
482 			    struct iio_chan_spec const *chan,
483 			    int val, int val2, long mask)
484 {
485 	struct bmi160_data *data = iio_priv(indio_dev);
486 
487 	switch (mask) {
488 	case IIO_CHAN_INFO_SCALE:
489 		return bmi160_set_scale(data,
490 					bmi160_to_sensor(chan->type), val2);
491 	case IIO_CHAN_INFO_SAMP_FREQ:
492 		return bmi160_set_odr(data, bmi160_to_sensor(chan->type),
493 				      val, val2);
494 	default:
495 		return -EINVAL;
496 	}
497 
498 	return 0;
499 }
500 
501 static
502 IIO_CONST_ATTR(in_accel_sampling_frequency_available,
503 	       "0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600");
504 static
505 IIO_CONST_ATTR(in_anglvel_sampling_frequency_available,
506 	       "25 50 100 200 400 800 1600 3200");
507 static
508 IIO_CONST_ATTR(in_accel_scale_available,
509 	       "0.000598 0.001197 0.002394 0.004788");
510 static
511 IIO_CONST_ATTR(in_anglvel_scale_available,
512 	       "0.001065 0.000532 0.000266 0.000133 0.000066");
513 
514 static struct attribute *bmi160_attrs[] = {
515 	&iio_const_attr_in_accel_sampling_frequency_available.dev_attr.attr,
516 	&iio_const_attr_in_anglvel_sampling_frequency_available.dev_attr.attr,
517 	&iio_const_attr_in_accel_scale_available.dev_attr.attr,
518 	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
519 	NULL,
520 };
521 
522 static const struct attribute_group bmi160_attrs_group = {
523 	.attrs = bmi160_attrs,
524 };
525 
526 static const struct iio_info bmi160_info = {
527 	.read_raw = bmi160_read_raw,
528 	.write_raw = bmi160_write_raw,
529 	.attrs = &bmi160_attrs_group,
530 };
531 
bmi160_write_conf_reg(struct regmap * regmap,unsigned int reg,unsigned int mask,unsigned int bits,unsigned int write_usleep)532 static int bmi160_write_conf_reg(struct regmap *regmap, unsigned int reg,
533 				 unsigned int mask, unsigned int bits,
534 				 unsigned int write_usleep)
535 {
536 	int ret;
537 	unsigned int val;
538 
539 	ret = regmap_read(regmap, reg, &val);
540 	if (ret)
541 		return ret;
542 
543 	val = (val & ~mask) | bits;
544 
545 	ret = regmap_write(regmap, reg, val);
546 	if (ret)
547 		return ret;
548 
549 	/*
550 	 * We need to wait after writing before we can write again. See the
551 	 * datasheet, page 93.
552 	 */
553 	usleep_range(write_usleep, write_usleep + 1000);
554 
555 	return 0;
556 }
557 
bmi160_config_pin(struct regmap * regmap,enum bmi160_int_pin pin,bool open_drain,u8 irq_mask,unsigned long write_usleep)558 static int bmi160_config_pin(struct regmap *regmap, enum bmi160_int_pin pin,
559 			     bool open_drain, u8 irq_mask,
560 			     unsigned long write_usleep)
561 {
562 	int ret;
563 	struct device *dev = regmap_get_device(regmap);
564 	u8 int_out_ctrl_shift;
565 	u8 int_latch_mask;
566 	u8 int_map_mask;
567 	u8 int_out_ctrl_mask;
568 	u8 int_out_ctrl_bits;
569 	const char *pin_name;
570 
571 	switch (pin) {
572 	case BMI160_PIN_INT1:
573 		int_out_ctrl_shift = BMI160_INT1_OUT_CTRL_SHIFT;
574 		int_latch_mask = BMI160_INT1_LATCH_MASK;
575 		int_map_mask = BMI160_INT1_MAP_DRDY_EN;
576 		break;
577 	case BMI160_PIN_INT2:
578 		int_out_ctrl_shift = BMI160_INT2_OUT_CTRL_SHIFT;
579 		int_latch_mask = BMI160_INT2_LATCH_MASK;
580 		int_map_mask = BMI160_INT2_MAP_DRDY_EN;
581 		break;
582 	}
583 	int_out_ctrl_mask = BMI160_INT_OUT_CTRL_MASK << int_out_ctrl_shift;
584 
585 	/*
586 	 * Enable the requested pin with the right settings:
587 	 * - Push-pull/open-drain
588 	 * - Active low/high
589 	 * - Edge/level triggered
590 	 */
591 	int_out_ctrl_bits = BMI160_OUTPUT_EN;
592 	if (open_drain)
593 		/* Default is push-pull. */
594 		int_out_ctrl_bits |= BMI160_OPEN_DRAIN;
595 	int_out_ctrl_bits |= irq_mask;
596 	int_out_ctrl_bits <<= int_out_ctrl_shift;
597 
598 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_OUT_CTRL,
599 				    int_out_ctrl_mask, int_out_ctrl_bits,
600 				    write_usleep);
601 	if (ret)
602 		return ret;
603 
604 	/* Set the pin to input mode with no latching. */
605 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_LATCH,
606 				    int_latch_mask, int_latch_mask,
607 				    write_usleep);
608 	if (ret)
609 		return ret;
610 
611 	/* Map interrupts to the requested pin. */
612 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_MAP,
613 				    int_map_mask, int_map_mask,
614 				    write_usleep);
615 	if (ret) {
616 		switch (pin) {
617 		case BMI160_PIN_INT1:
618 			pin_name = "INT1";
619 			break;
620 		case BMI160_PIN_INT2:
621 			pin_name = "INT2";
622 			break;
623 		}
624 		dev_err(dev, "Failed to configure %s IRQ pin", pin_name);
625 	}
626 
627 	return ret;
628 }
629 
bmi160_enable_irq(struct regmap * regmap,bool enable)630 int bmi160_enable_irq(struct regmap *regmap, bool enable)
631 {
632 	unsigned int enable_bit = 0;
633 
634 	if (enable)
635 		enable_bit = BMI160_DRDY_INT_EN;
636 
637 	return bmi160_write_conf_reg(regmap, BMI160_REG_INT_EN,
638 				     BMI160_DRDY_INT_EN, enable_bit,
639 				     BMI160_NORMAL_WRITE_USLEEP);
640 }
641 EXPORT_SYMBOL_NS(bmi160_enable_irq, IIO_BMI160);
642 
bmi160_get_irq(struct fwnode_handle * fwnode,enum bmi160_int_pin * pin)643 static int bmi160_get_irq(struct fwnode_handle *fwnode, enum bmi160_int_pin *pin)
644 {
645 	int irq;
646 
647 	/* Use INT1 if possible, otherwise fall back to INT2. */
648 	irq = fwnode_irq_get_byname(fwnode, "INT1");
649 	if (irq > 0) {
650 		*pin = BMI160_PIN_INT1;
651 		return irq;
652 	}
653 
654 	irq = fwnode_irq_get_byname(fwnode, "INT2");
655 	if (irq > 0)
656 		*pin = BMI160_PIN_INT2;
657 
658 	return irq;
659 }
660 
bmi160_config_device_irq(struct iio_dev * indio_dev,int irq_type,enum bmi160_int_pin pin)661 static int bmi160_config_device_irq(struct iio_dev *indio_dev, int irq_type,
662 				    enum bmi160_int_pin pin)
663 {
664 	bool open_drain;
665 	u8 irq_mask;
666 	struct bmi160_data *data = iio_priv(indio_dev);
667 	struct device *dev = regmap_get_device(data->regmap);
668 
669 	/* Level-triggered, active-low is the default if we set all zeroes. */
670 	if (irq_type == IRQF_TRIGGER_RISING)
671 		irq_mask = BMI160_ACTIVE_HIGH | BMI160_EDGE_TRIGGERED;
672 	else if (irq_type == IRQF_TRIGGER_FALLING)
673 		irq_mask = BMI160_EDGE_TRIGGERED;
674 	else if (irq_type == IRQF_TRIGGER_HIGH)
675 		irq_mask = BMI160_ACTIVE_HIGH;
676 	else if (irq_type == IRQF_TRIGGER_LOW)
677 		irq_mask = 0;
678 	else {
679 		dev_err(&indio_dev->dev,
680 			"Invalid interrupt type 0x%x specified\n", irq_type);
681 		return -EINVAL;
682 	}
683 
684 	open_drain = device_property_read_bool(dev, "drive-open-drain");
685 
686 	return bmi160_config_pin(data->regmap, pin, open_drain, irq_mask,
687 				 BMI160_NORMAL_WRITE_USLEEP);
688 }
689 
bmi160_setup_irq(struct iio_dev * indio_dev,int irq,enum bmi160_int_pin pin)690 static int bmi160_setup_irq(struct iio_dev *indio_dev, int irq,
691 			    enum bmi160_int_pin pin)
692 {
693 	struct irq_data *desc;
694 	u32 irq_type;
695 	int ret;
696 
697 	desc = irq_get_irq_data(irq);
698 	if (!desc) {
699 		dev_err(&indio_dev->dev, "Could not find IRQ %d\n", irq);
700 		return -EINVAL;
701 	}
702 
703 	irq_type = irqd_get_trigger_type(desc);
704 
705 	ret = bmi160_config_device_irq(indio_dev, irq_type, pin);
706 	if (ret)
707 		return ret;
708 
709 	return bmi160_probe_trigger(indio_dev, irq, irq_type);
710 }
711 
bmi160_check_chip_id(const u8 chip_id)712 static int bmi160_check_chip_id(const u8 chip_id)
713 {
714 	for (int i = 0; i < ARRAY_SIZE(bmi_chip_ids); i++) {
715 		if (chip_id == bmi_chip_ids[i])
716 			return 0;
717 	}
718 
719 	return -ENODEV;
720 }
721 
bmi160_chip_init(struct bmi160_data * data,bool use_spi)722 static int bmi160_chip_init(struct bmi160_data *data, bool use_spi)
723 {
724 	int ret;
725 	unsigned int val;
726 	struct device *dev = regmap_get_device(data->regmap);
727 
728 	ret = regulator_bulk_enable(ARRAY_SIZE(data->supplies), data->supplies);
729 	if (ret) {
730 		dev_err(dev, "Failed to enable regulators: %d\n", ret);
731 		return ret;
732 	}
733 
734 	ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET);
735 	if (ret)
736 		goto disable_regulator;
737 
738 	usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1);
739 
740 	/*
741 	 * CS rising edge is needed before starting SPI, so do a dummy read
742 	 * See Section 3.2.1, page 86 of the datasheet
743 	 */
744 	if (use_spi) {
745 		ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val);
746 		if (ret)
747 			goto disable_regulator;
748 	}
749 
750 	ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val);
751 	if (ret) {
752 		dev_err(dev, "Error reading chip id\n");
753 		goto disable_regulator;
754 	}
755 
756 	ret = bmi160_check_chip_id(val);
757 	if (ret)
758 		dev_warn(dev, "Chip id not found: %x\n", val);
759 
760 	ret = bmi160_set_mode(data, BMI160_ACCEL, true);
761 	if (ret)
762 		goto disable_regulator;
763 
764 	ret = bmi160_set_mode(data, BMI160_GYRO, true);
765 	if (ret)
766 		goto disable_accel;
767 
768 	return 0;
769 
770 disable_accel:
771 	bmi160_set_mode(data, BMI160_ACCEL, false);
772 
773 disable_regulator:
774 	regulator_bulk_disable(ARRAY_SIZE(data->supplies), data->supplies);
775 	return ret;
776 }
777 
bmi160_data_rdy_trigger_set_state(struct iio_trigger * trig,bool enable)778 static int bmi160_data_rdy_trigger_set_state(struct iio_trigger *trig,
779 					     bool enable)
780 {
781 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
782 	struct bmi160_data *data = iio_priv(indio_dev);
783 
784 	return bmi160_enable_irq(data->regmap, enable);
785 }
786 
787 static const struct iio_trigger_ops bmi160_trigger_ops = {
788 	.set_trigger_state = &bmi160_data_rdy_trigger_set_state,
789 };
790 
bmi160_probe_trigger(struct iio_dev * indio_dev,int irq,u32 irq_type)791 int bmi160_probe_trigger(struct iio_dev *indio_dev, int irq, u32 irq_type)
792 {
793 	struct bmi160_data *data = iio_priv(indio_dev);
794 	int ret;
795 
796 	data->trig = devm_iio_trigger_alloc(&indio_dev->dev, "%s-dev%d",
797 					    indio_dev->name,
798 					    iio_device_id(indio_dev));
799 
800 	if (data->trig == NULL)
801 		return -ENOMEM;
802 
803 	ret = devm_request_irq(&indio_dev->dev, irq,
804 			       &iio_trigger_generic_data_rdy_poll,
805 			       irq_type, "bmi160", data->trig);
806 	if (ret)
807 		return ret;
808 
809 	data->trig->dev.parent = regmap_get_device(data->regmap);
810 	data->trig->ops = &bmi160_trigger_ops;
811 	iio_trigger_set_drvdata(data->trig, indio_dev);
812 
813 	ret = devm_iio_trigger_register(&indio_dev->dev, data->trig);
814 	if (ret)
815 		return ret;
816 
817 	indio_dev->trig = iio_trigger_get(data->trig);
818 
819 	return 0;
820 }
821 
bmi160_chip_uninit(void * data)822 static void bmi160_chip_uninit(void *data)
823 {
824 	struct bmi160_data *bmi_data = data;
825 	struct device *dev = regmap_get_device(bmi_data->regmap);
826 	int ret;
827 
828 	bmi160_set_mode(bmi_data, BMI160_GYRO, false);
829 	bmi160_set_mode(bmi_data, BMI160_ACCEL, false);
830 
831 	ret = regulator_bulk_disable(ARRAY_SIZE(bmi_data->supplies),
832 				     bmi_data->supplies);
833 	if (ret)
834 		dev_err(dev, "Failed to disable regulators: %d\n", ret);
835 }
836 
bmi160_core_probe(struct device * dev,struct regmap * regmap,const char * name,bool use_spi)837 int bmi160_core_probe(struct device *dev, struct regmap *regmap,
838 		      const char *name, bool use_spi)
839 {
840 	struct iio_dev *indio_dev;
841 	struct bmi160_data *data;
842 	int irq;
843 	enum bmi160_int_pin int_pin;
844 	int ret;
845 
846 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
847 	if (!indio_dev)
848 		return -ENOMEM;
849 
850 	data = iio_priv(indio_dev);
851 	dev_set_drvdata(dev, indio_dev);
852 	data->regmap = regmap;
853 
854 	data->supplies[0].supply = "vdd";
855 	data->supplies[1].supply = "vddio";
856 	ret = devm_regulator_bulk_get(dev,
857 				      ARRAY_SIZE(data->supplies),
858 				      data->supplies);
859 	if (ret) {
860 		dev_err(dev, "Failed to get regulators: %d\n", ret);
861 		return ret;
862 	}
863 
864 	ret = iio_read_mount_matrix(dev, &data->orientation);
865 	if (ret)
866 		return ret;
867 
868 	ret = bmi160_chip_init(data, use_spi);
869 	if (ret)
870 		return ret;
871 
872 	ret = devm_add_action_or_reset(dev, bmi160_chip_uninit, data);
873 	if (ret)
874 		return ret;
875 
876 	indio_dev->channels = bmi160_channels;
877 	indio_dev->num_channels = ARRAY_SIZE(bmi160_channels);
878 	indio_dev->name = name;
879 	indio_dev->modes = INDIO_DIRECT_MODE;
880 	indio_dev->info = &bmi160_info;
881 
882 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
883 					      iio_pollfunc_store_time,
884 					      bmi160_trigger_handler, NULL);
885 	if (ret)
886 		return ret;
887 
888 	irq = bmi160_get_irq(dev_fwnode(dev), &int_pin);
889 	if (irq > 0) {
890 		ret = bmi160_setup_irq(indio_dev, irq, int_pin);
891 		if (ret)
892 			dev_err(&indio_dev->dev, "Failed to setup IRQ %d\n",
893 				irq);
894 	} else {
895 		dev_info(&indio_dev->dev, "Not setting up IRQ trigger\n");
896 	}
897 
898 	return devm_iio_device_register(dev, indio_dev);
899 }
900 EXPORT_SYMBOL_NS_GPL(bmi160_core_probe, IIO_BMI160);
901 
902 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
903 MODULE_DESCRIPTION("Bosch BMI160 driver");
904 MODULE_LICENSE("GPL v2");
905