1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4   */
5  #include <linux/mm.h>
6  #include <linux/swap.h>
7  #include <linux/bio-integrity.h>
8  #include <linux/blkdev.h>
9  #include <linux/uio.h>
10  #include <linux/iocontext.h>
11  #include <linux/slab.h>
12  #include <linux/init.h>
13  #include <linux/kernel.h>
14  #include <linux/export.h>
15  #include <linux/mempool.h>
16  #include <linux/workqueue.h>
17  #include <linux/cgroup.h>
18  #include <linux/highmem.h>
19  #include <linux/blk-crypto.h>
20  #include <linux/xarray.h>
21  
22  #include <trace/events/block.h>
23  #include "blk.h"
24  #include "blk-rq-qos.h"
25  #include "blk-cgroup.h"
26  
27  #define ALLOC_CACHE_THRESHOLD	16
28  #define ALLOC_CACHE_MAX		256
29  
30  struct bio_alloc_cache {
31  	struct bio		*free_list;
32  	struct bio		*free_list_irq;
33  	unsigned int		nr;
34  	unsigned int		nr_irq;
35  };
36  
37  static struct biovec_slab {
38  	int nr_vecs;
39  	char *name;
40  	struct kmem_cache *slab;
41  } bvec_slabs[] __read_mostly = {
42  	{ .nr_vecs = 16, .name = "biovec-16" },
43  	{ .nr_vecs = 64, .name = "biovec-64" },
44  	{ .nr_vecs = 128, .name = "biovec-128" },
45  	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46  };
47  
biovec_slab(unsigned short nr_vecs)48  static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49  {
50  	switch (nr_vecs) {
51  	/* smaller bios use inline vecs */
52  	case 5 ... 16:
53  		return &bvec_slabs[0];
54  	case 17 ... 64:
55  		return &bvec_slabs[1];
56  	case 65 ... 128:
57  		return &bvec_slabs[2];
58  	case 129 ... BIO_MAX_VECS:
59  		return &bvec_slabs[3];
60  	default:
61  		BUG();
62  		return NULL;
63  	}
64  }
65  
66  /*
67   * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68   * IO code that does not need private memory pools.
69   */
70  struct bio_set fs_bio_set;
71  EXPORT_SYMBOL(fs_bio_set);
72  
73  /*
74   * Our slab pool management
75   */
76  struct bio_slab {
77  	struct kmem_cache *slab;
78  	unsigned int slab_ref;
79  	unsigned int slab_size;
80  	char name[8];
81  };
82  static DEFINE_MUTEX(bio_slab_lock);
83  static DEFINE_XARRAY(bio_slabs);
84  
create_bio_slab(unsigned int size)85  static struct bio_slab *create_bio_slab(unsigned int size)
86  {
87  	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88  
89  	if (!bslab)
90  		return NULL;
91  
92  	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93  	bslab->slab = kmem_cache_create(bslab->name, size,
94  			ARCH_KMALLOC_MINALIGN,
95  			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96  	if (!bslab->slab)
97  		goto fail_alloc_slab;
98  
99  	bslab->slab_ref = 1;
100  	bslab->slab_size = size;
101  
102  	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103  		return bslab;
104  
105  	kmem_cache_destroy(bslab->slab);
106  
107  fail_alloc_slab:
108  	kfree(bslab);
109  	return NULL;
110  }
111  
bs_bio_slab_size(struct bio_set * bs)112  static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113  {
114  	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115  }
116  
bio_find_or_create_slab(struct bio_set * bs)117  static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118  {
119  	unsigned int size = bs_bio_slab_size(bs);
120  	struct bio_slab *bslab;
121  
122  	mutex_lock(&bio_slab_lock);
123  	bslab = xa_load(&bio_slabs, size);
124  	if (bslab)
125  		bslab->slab_ref++;
126  	else
127  		bslab = create_bio_slab(size);
128  	mutex_unlock(&bio_slab_lock);
129  
130  	if (bslab)
131  		return bslab->slab;
132  	return NULL;
133  }
134  
bio_put_slab(struct bio_set * bs)135  static void bio_put_slab(struct bio_set *bs)
136  {
137  	struct bio_slab *bslab = NULL;
138  	unsigned int slab_size = bs_bio_slab_size(bs);
139  
140  	mutex_lock(&bio_slab_lock);
141  
142  	bslab = xa_load(&bio_slabs, slab_size);
143  	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144  		goto out;
145  
146  	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147  
148  	WARN_ON(!bslab->slab_ref);
149  
150  	if (--bslab->slab_ref)
151  		goto out;
152  
153  	xa_erase(&bio_slabs, slab_size);
154  
155  	kmem_cache_destroy(bslab->slab);
156  	kfree(bslab);
157  
158  out:
159  	mutex_unlock(&bio_slab_lock);
160  }
161  
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162  void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163  {
164  	BUG_ON(nr_vecs > BIO_MAX_VECS);
165  
166  	if (nr_vecs == BIO_MAX_VECS)
167  		mempool_free(bv, pool);
168  	else if (nr_vecs > BIO_INLINE_VECS)
169  		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170  }
171  
172  /*
173   * Make the first allocation restricted and don't dump info on allocation
174   * failures, since we'll fall back to the mempool in case of failure.
175   */
bvec_alloc_gfp(gfp_t gfp)176  static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177  {
178  	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179  		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180  }
181  
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182  struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183  		gfp_t gfp_mask)
184  {
185  	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186  
187  	if (WARN_ON_ONCE(!bvs))
188  		return NULL;
189  
190  	/*
191  	 * Upgrade the nr_vecs request to take full advantage of the allocation.
192  	 * We also rely on this in the bvec_free path.
193  	 */
194  	*nr_vecs = bvs->nr_vecs;
195  
196  	/*
197  	 * Try a slab allocation first for all smaller allocations.  If that
198  	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199  	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200  	 */
201  	if (*nr_vecs < BIO_MAX_VECS) {
202  		struct bio_vec *bvl;
203  
204  		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205  		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206  			return bvl;
207  		*nr_vecs = BIO_MAX_VECS;
208  	}
209  
210  	return mempool_alloc(pool, gfp_mask);
211  }
212  
bio_uninit(struct bio * bio)213  void bio_uninit(struct bio *bio)
214  {
215  #ifdef CONFIG_BLK_CGROUP
216  	if (bio->bi_blkg) {
217  		blkg_put(bio->bi_blkg);
218  		bio->bi_blkg = NULL;
219  	}
220  #endif
221  	if (bio_integrity(bio))
222  		bio_integrity_free(bio);
223  
224  	bio_crypt_free_ctx(bio);
225  }
226  EXPORT_SYMBOL(bio_uninit);
227  
bio_free(struct bio * bio)228  static void bio_free(struct bio *bio)
229  {
230  	struct bio_set *bs = bio->bi_pool;
231  	void *p = bio;
232  
233  	WARN_ON_ONCE(!bs);
234  
235  	bio_uninit(bio);
236  	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237  	mempool_free(p - bs->front_pad, &bs->bio_pool);
238  }
239  
240  /*
241   * Users of this function have their own bio allocation. Subsequently,
242   * they must remember to pair any call to bio_init() with bio_uninit()
243   * when IO has completed, or when the bio is released.
244   */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245  void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246  	      unsigned short max_vecs, blk_opf_t opf)
247  {
248  	bio->bi_next = NULL;
249  	bio->bi_bdev = bdev;
250  	bio->bi_opf = opf;
251  	bio->bi_flags = 0;
252  	bio->bi_ioprio = 0;
253  	bio->bi_write_hint = 0;
254  	bio->bi_status = 0;
255  	bio->bi_iter.bi_sector = 0;
256  	bio->bi_iter.bi_size = 0;
257  	bio->bi_iter.bi_idx = 0;
258  	bio->bi_iter.bi_bvec_done = 0;
259  	bio->bi_end_io = NULL;
260  	bio->bi_private = NULL;
261  #ifdef CONFIG_BLK_CGROUP
262  	bio->bi_blkg = NULL;
263  	bio->bi_issue.value = 0;
264  	if (bdev)
265  		bio_associate_blkg(bio);
266  #ifdef CONFIG_BLK_CGROUP_IOCOST
267  	bio->bi_iocost_cost = 0;
268  #endif
269  #endif
270  #ifdef CONFIG_BLK_INLINE_ENCRYPTION
271  	bio->bi_crypt_context = NULL;
272  #endif
273  #ifdef CONFIG_BLK_DEV_INTEGRITY
274  	bio->bi_integrity = NULL;
275  #endif
276  	bio->bi_vcnt = 0;
277  
278  	atomic_set(&bio->__bi_remaining, 1);
279  	atomic_set(&bio->__bi_cnt, 1);
280  	bio->bi_cookie = BLK_QC_T_NONE;
281  
282  	bio->bi_max_vecs = max_vecs;
283  	bio->bi_io_vec = table;
284  	bio->bi_pool = NULL;
285  }
286  EXPORT_SYMBOL(bio_init);
287  
288  /**
289   * bio_reset - reinitialize a bio
290   * @bio:	bio to reset
291   * @bdev:	block device to use the bio for
292   * @opf:	operation and flags for bio
293   *
294   * Description:
295   *   After calling bio_reset(), @bio will be in the same state as a freshly
296   *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
297   *   preserved are the ones that are initialized by bio_alloc_bioset(). See
298   *   comment in struct bio.
299   */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)300  void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
301  {
302  	bio_uninit(bio);
303  	memset(bio, 0, BIO_RESET_BYTES);
304  	atomic_set(&bio->__bi_remaining, 1);
305  	bio->bi_bdev = bdev;
306  	if (bio->bi_bdev)
307  		bio_associate_blkg(bio);
308  	bio->bi_opf = opf;
309  }
310  EXPORT_SYMBOL(bio_reset);
311  
__bio_chain_endio(struct bio * bio)312  static struct bio *__bio_chain_endio(struct bio *bio)
313  {
314  	struct bio *parent = bio->bi_private;
315  
316  	if (bio->bi_status && !parent->bi_status)
317  		parent->bi_status = bio->bi_status;
318  	bio_put(bio);
319  	return parent;
320  }
321  
bio_chain_endio(struct bio * bio)322  static void bio_chain_endio(struct bio *bio)
323  {
324  	bio_endio(__bio_chain_endio(bio));
325  }
326  
327  /**
328   * bio_chain - chain bio completions
329   * @bio: the target bio
330   * @parent: the parent bio of @bio
331   *
332   * The caller won't have a bi_end_io called when @bio completes - instead,
333   * @parent's bi_end_io won't be called until both @parent and @bio have
334   * completed; the chained bio will also be freed when it completes.
335   *
336   * The caller must not set bi_private or bi_end_io in @bio.
337   */
bio_chain(struct bio * bio,struct bio * parent)338  void bio_chain(struct bio *bio, struct bio *parent)
339  {
340  	BUG_ON(bio->bi_private || bio->bi_end_io);
341  
342  	bio->bi_private = parent;
343  	bio->bi_end_io	= bio_chain_endio;
344  	bio_inc_remaining(parent);
345  }
346  EXPORT_SYMBOL(bio_chain);
347  
348  /**
349   * bio_chain_and_submit - submit a bio after chaining it to another one
350   * @prev: bio to chain and submit
351   * @new: bio to chain to
352   *
353   * If @prev is non-NULL, chain it to @new and submit it.
354   *
355   * Return: @new.
356   */
bio_chain_and_submit(struct bio * prev,struct bio * new)357  struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
358  {
359  	if (prev) {
360  		bio_chain(prev, new);
361  		submit_bio(prev);
362  	}
363  	return new;
364  }
365  
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)366  struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
367  		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
368  {
369  	return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
370  }
371  EXPORT_SYMBOL_GPL(blk_next_bio);
372  
bio_alloc_rescue(struct work_struct * work)373  static void bio_alloc_rescue(struct work_struct *work)
374  {
375  	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
376  	struct bio *bio;
377  
378  	while (1) {
379  		spin_lock(&bs->rescue_lock);
380  		bio = bio_list_pop(&bs->rescue_list);
381  		spin_unlock(&bs->rescue_lock);
382  
383  		if (!bio)
384  			break;
385  
386  		submit_bio_noacct(bio);
387  	}
388  }
389  
punt_bios_to_rescuer(struct bio_set * bs)390  static void punt_bios_to_rescuer(struct bio_set *bs)
391  {
392  	struct bio_list punt, nopunt;
393  	struct bio *bio;
394  
395  	if (WARN_ON_ONCE(!bs->rescue_workqueue))
396  		return;
397  	/*
398  	 * In order to guarantee forward progress we must punt only bios that
399  	 * were allocated from this bio_set; otherwise, if there was a bio on
400  	 * there for a stacking driver higher up in the stack, processing it
401  	 * could require allocating bios from this bio_set, and doing that from
402  	 * our own rescuer would be bad.
403  	 *
404  	 * Since bio lists are singly linked, pop them all instead of trying to
405  	 * remove from the middle of the list:
406  	 */
407  
408  	bio_list_init(&punt);
409  	bio_list_init(&nopunt);
410  
411  	while ((bio = bio_list_pop(&current->bio_list[0])))
412  		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
413  	current->bio_list[0] = nopunt;
414  
415  	bio_list_init(&nopunt);
416  	while ((bio = bio_list_pop(&current->bio_list[1])))
417  		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
418  	current->bio_list[1] = nopunt;
419  
420  	spin_lock(&bs->rescue_lock);
421  	bio_list_merge(&bs->rescue_list, &punt);
422  	spin_unlock(&bs->rescue_lock);
423  
424  	queue_work(bs->rescue_workqueue, &bs->rescue_work);
425  }
426  
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)427  static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
428  {
429  	unsigned long flags;
430  
431  	/* cache->free_list must be empty */
432  	if (WARN_ON_ONCE(cache->free_list))
433  		return;
434  
435  	local_irq_save(flags);
436  	cache->free_list = cache->free_list_irq;
437  	cache->free_list_irq = NULL;
438  	cache->nr += cache->nr_irq;
439  	cache->nr_irq = 0;
440  	local_irq_restore(flags);
441  }
442  
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)443  static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
444  		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
445  		struct bio_set *bs)
446  {
447  	struct bio_alloc_cache *cache;
448  	struct bio *bio;
449  
450  	cache = per_cpu_ptr(bs->cache, get_cpu());
451  	if (!cache->free_list) {
452  		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
453  			bio_alloc_irq_cache_splice(cache);
454  		if (!cache->free_list) {
455  			put_cpu();
456  			return NULL;
457  		}
458  	}
459  	bio = cache->free_list;
460  	cache->free_list = bio->bi_next;
461  	cache->nr--;
462  	put_cpu();
463  
464  	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
465  	bio->bi_pool = bs;
466  	return bio;
467  }
468  
469  /**
470   * bio_alloc_bioset - allocate a bio for I/O
471   * @bdev:	block device to allocate the bio for (can be %NULL)
472   * @nr_vecs:	number of bvecs to pre-allocate
473   * @opf:	operation and flags for bio
474   * @gfp_mask:   the GFP_* mask given to the slab allocator
475   * @bs:		the bio_set to allocate from.
476   *
477   * Allocate a bio from the mempools in @bs.
478   *
479   * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
480   * allocate a bio.  This is due to the mempool guarantees.  To make this work,
481   * callers must never allocate more than 1 bio at a time from the general pool.
482   * Callers that need to allocate more than 1 bio must always submit the
483   * previously allocated bio for IO before attempting to allocate a new one.
484   * Failure to do so can cause deadlocks under memory pressure.
485   *
486   * Note that when running under submit_bio_noacct() (i.e. any block driver),
487   * bios are not submitted until after you return - see the code in
488   * submit_bio_noacct() that converts recursion into iteration, to prevent
489   * stack overflows.
490   *
491   * This would normally mean allocating multiple bios under submit_bio_noacct()
492   * would be susceptible to deadlocks, but we have
493   * deadlock avoidance code that resubmits any blocked bios from a rescuer
494   * thread.
495   *
496   * However, we do not guarantee forward progress for allocations from other
497   * mempools. Doing multiple allocations from the same mempool under
498   * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
499   * for per bio allocations.
500   *
501   * Returns: Pointer to new bio on success, NULL on failure.
502   */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)503  struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
504  			     blk_opf_t opf, gfp_t gfp_mask,
505  			     struct bio_set *bs)
506  {
507  	gfp_t saved_gfp = gfp_mask;
508  	struct bio *bio;
509  	void *p;
510  
511  	/* should not use nobvec bioset for nr_vecs > 0 */
512  	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
513  		return NULL;
514  
515  	if (opf & REQ_ALLOC_CACHE) {
516  		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
517  			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
518  						     gfp_mask, bs);
519  			if (bio)
520  				return bio;
521  			/*
522  			 * No cached bio available, bio returned below marked with
523  			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
524  			 */
525  		} else {
526  			opf &= ~REQ_ALLOC_CACHE;
527  		}
528  	}
529  
530  	/*
531  	 * submit_bio_noacct() converts recursion to iteration; this means if
532  	 * we're running beneath it, any bios we allocate and submit will not be
533  	 * submitted (and thus freed) until after we return.
534  	 *
535  	 * This exposes us to a potential deadlock if we allocate multiple bios
536  	 * from the same bio_set() while running underneath submit_bio_noacct().
537  	 * If we were to allocate multiple bios (say a stacking block driver
538  	 * that was splitting bios), we would deadlock if we exhausted the
539  	 * mempool's reserve.
540  	 *
541  	 * We solve this, and guarantee forward progress, with a rescuer
542  	 * workqueue per bio_set. If we go to allocate and there are bios on
543  	 * current->bio_list, we first try the allocation without
544  	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
545  	 * blocking to the rescuer workqueue before we retry with the original
546  	 * gfp_flags.
547  	 */
548  	if (current->bio_list &&
549  	    (!bio_list_empty(&current->bio_list[0]) ||
550  	     !bio_list_empty(&current->bio_list[1])) &&
551  	    bs->rescue_workqueue)
552  		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
553  
554  	p = mempool_alloc(&bs->bio_pool, gfp_mask);
555  	if (!p && gfp_mask != saved_gfp) {
556  		punt_bios_to_rescuer(bs);
557  		gfp_mask = saved_gfp;
558  		p = mempool_alloc(&bs->bio_pool, gfp_mask);
559  	}
560  	if (unlikely(!p))
561  		return NULL;
562  	if (!mempool_is_saturated(&bs->bio_pool))
563  		opf &= ~REQ_ALLOC_CACHE;
564  
565  	bio = p + bs->front_pad;
566  	if (nr_vecs > BIO_INLINE_VECS) {
567  		struct bio_vec *bvl = NULL;
568  
569  		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
570  		if (!bvl && gfp_mask != saved_gfp) {
571  			punt_bios_to_rescuer(bs);
572  			gfp_mask = saved_gfp;
573  			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
574  		}
575  		if (unlikely(!bvl))
576  			goto err_free;
577  
578  		bio_init(bio, bdev, bvl, nr_vecs, opf);
579  	} else if (nr_vecs) {
580  		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
581  	} else {
582  		bio_init(bio, bdev, NULL, 0, opf);
583  	}
584  
585  	bio->bi_pool = bs;
586  	return bio;
587  
588  err_free:
589  	mempool_free(p, &bs->bio_pool);
590  	return NULL;
591  }
592  EXPORT_SYMBOL(bio_alloc_bioset);
593  
594  /**
595   * bio_kmalloc - kmalloc a bio
596   * @nr_vecs:	number of bio_vecs to allocate
597   * @gfp_mask:   the GFP_* mask given to the slab allocator
598   *
599   * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
600   * using bio_init() before use.  To free a bio returned from this function use
601   * kfree() after calling bio_uninit().  A bio returned from this function can
602   * be reused by calling bio_uninit() before calling bio_init() again.
603   *
604   * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
605   * function are not backed by a mempool can fail.  Do not use this function
606   * for allocations in the file system I/O path.
607   *
608   * Returns: Pointer to new bio on success, NULL on failure.
609   */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)610  struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
611  {
612  	struct bio *bio;
613  
614  	if (nr_vecs > UIO_MAXIOV)
615  		return NULL;
616  	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
617  }
618  EXPORT_SYMBOL(bio_kmalloc);
619  
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)620  void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
621  {
622  	struct bio_vec bv;
623  	struct bvec_iter iter;
624  
625  	__bio_for_each_segment(bv, bio, iter, start)
626  		memzero_bvec(&bv);
627  }
628  EXPORT_SYMBOL(zero_fill_bio_iter);
629  
630  /**
631   * bio_truncate - truncate the bio to small size of @new_size
632   * @bio:	the bio to be truncated
633   * @new_size:	new size for truncating the bio
634   *
635   * Description:
636   *   Truncate the bio to new size of @new_size. If bio_op(bio) is
637   *   REQ_OP_READ, zero the truncated part. This function should only
638   *   be used for handling corner cases, such as bio eod.
639   */
bio_truncate(struct bio * bio,unsigned new_size)640  static void bio_truncate(struct bio *bio, unsigned new_size)
641  {
642  	struct bio_vec bv;
643  	struct bvec_iter iter;
644  	unsigned int done = 0;
645  	bool truncated = false;
646  
647  	if (new_size >= bio->bi_iter.bi_size)
648  		return;
649  
650  	if (bio_op(bio) != REQ_OP_READ)
651  		goto exit;
652  
653  	bio_for_each_segment(bv, bio, iter) {
654  		if (done + bv.bv_len > new_size) {
655  			unsigned offset;
656  
657  			if (!truncated)
658  				offset = new_size - done;
659  			else
660  				offset = 0;
661  			zero_user(bv.bv_page, bv.bv_offset + offset,
662  				  bv.bv_len - offset);
663  			truncated = true;
664  		}
665  		done += bv.bv_len;
666  	}
667  
668   exit:
669  	/*
670  	 * Don't touch bvec table here and make it really immutable, since
671  	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
672  	 * in its .end_bio() callback.
673  	 *
674  	 * It is enough to truncate bio by updating .bi_size since we can make
675  	 * correct bvec with the updated .bi_size for drivers.
676  	 */
677  	bio->bi_iter.bi_size = new_size;
678  }
679  
680  /**
681   * guard_bio_eod - truncate a BIO to fit the block device
682   * @bio:	bio to truncate
683   *
684   * This allows us to do IO even on the odd last sectors of a device, even if the
685   * block size is some multiple of the physical sector size.
686   *
687   * We'll just truncate the bio to the size of the device, and clear the end of
688   * the buffer head manually.  Truly out-of-range accesses will turn into actual
689   * I/O errors, this only handles the "we need to be able to do I/O at the final
690   * sector" case.
691   */
guard_bio_eod(struct bio * bio)692  void guard_bio_eod(struct bio *bio)
693  {
694  	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
695  
696  	if (!maxsector)
697  		return;
698  
699  	/*
700  	 * If the *whole* IO is past the end of the device,
701  	 * let it through, and the IO layer will turn it into
702  	 * an EIO.
703  	 */
704  	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
705  		return;
706  
707  	maxsector -= bio->bi_iter.bi_sector;
708  	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
709  		return;
710  
711  	bio_truncate(bio, maxsector << 9);
712  }
713  
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)714  static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
715  				   unsigned int nr)
716  {
717  	unsigned int i = 0;
718  	struct bio *bio;
719  
720  	while ((bio = cache->free_list) != NULL) {
721  		cache->free_list = bio->bi_next;
722  		cache->nr--;
723  		bio_free(bio);
724  		if (++i == nr)
725  			break;
726  	}
727  	return i;
728  }
729  
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)730  static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
731  				  unsigned int nr)
732  {
733  	nr -= __bio_alloc_cache_prune(cache, nr);
734  	if (!READ_ONCE(cache->free_list)) {
735  		bio_alloc_irq_cache_splice(cache);
736  		__bio_alloc_cache_prune(cache, nr);
737  	}
738  }
739  
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)740  static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
741  {
742  	struct bio_set *bs;
743  
744  	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
745  	if (bs->cache) {
746  		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
747  
748  		bio_alloc_cache_prune(cache, -1U);
749  	}
750  	return 0;
751  }
752  
bio_alloc_cache_destroy(struct bio_set * bs)753  static void bio_alloc_cache_destroy(struct bio_set *bs)
754  {
755  	int cpu;
756  
757  	if (!bs->cache)
758  		return;
759  
760  	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
761  	for_each_possible_cpu(cpu) {
762  		struct bio_alloc_cache *cache;
763  
764  		cache = per_cpu_ptr(bs->cache, cpu);
765  		bio_alloc_cache_prune(cache, -1U);
766  	}
767  	free_percpu(bs->cache);
768  	bs->cache = NULL;
769  }
770  
bio_put_percpu_cache(struct bio * bio)771  static inline void bio_put_percpu_cache(struct bio *bio)
772  {
773  	struct bio_alloc_cache *cache;
774  
775  	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
776  	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
777  		goto out_free;
778  
779  	if (in_task()) {
780  		bio_uninit(bio);
781  		bio->bi_next = cache->free_list;
782  		/* Not necessary but helps not to iopoll already freed bios */
783  		bio->bi_bdev = NULL;
784  		cache->free_list = bio;
785  		cache->nr++;
786  	} else if (in_hardirq()) {
787  		lockdep_assert_irqs_disabled();
788  
789  		bio_uninit(bio);
790  		bio->bi_next = cache->free_list_irq;
791  		cache->free_list_irq = bio;
792  		cache->nr_irq++;
793  	} else {
794  		goto out_free;
795  	}
796  	put_cpu();
797  	return;
798  out_free:
799  	put_cpu();
800  	bio_free(bio);
801  }
802  
803  /**
804   * bio_put - release a reference to a bio
805   * @bio:   bio to release reference to
806   *
807   * Description:
808   *   Put a reference to a &struct bio, either one you have gotten with
809   *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
810   **/
bio_put(struct bio * bio)811  void bio_put(struct bio *bio)
812  {
813  	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
814  		BUG_ON(!atomic_read(&bio->__bi_cnt));
815  		if (!atomic_dec_and_test(&bio->__bi_cnt))
816  			return;
817  	}
818  	if (bio->bi_opf & REQ_ALLOC_CACHE)
819  		bio_put_percpu_cache(bio);
820  	else
821  		bio_free(bio);
822  }
823  EXPORT_SYMBOL(bio_put);
824  
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)825  static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
826  {
827  	bio_set_flag(bio, BIO_CLONED);
828  	bio->bi_ioprio = bio_src->bi_ioprio;
829  	bio->bi_write_hint = bio_src->bi_write_hint;
830  	bio->bi_iter = bio_src->bi_iter;
831  
832  	if (bio->bi_bdev) {
833  		if (bio->bi_bdev == bio_src->bi_bdev &&
834  		    bio_flagged(bio_src, BIO_REMAPPED))
835  			bio_set_flag(bio, BIO_REMAPPED);
836  		bio_clone_blkg_association(bio, bio_src);
837  	}
838  
839  	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
840  		return -ENOMEM;
841  	if (bio_integrity(bio_src) &&
842  	    bio_integrity_clone(bio, bio_src, gfp) < 0)
843  		return -ENOMEM;
844  	return 0;
845  }
846  
847  /**
848   * bio_alloc_clone - clone a bio that shares the original bio's biovec
849   * @bdev: block_device to clone onto
850   * @bio_src: bio to clone from
851   * @gfp: allocation priority
852   * @bs: bio_set to allocate from
853   *
854   * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
855   * bio, but not the actual data it points to.
856   *
857   * The caller must ensure that the return bio is not freed before @bio_src.
858   */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)859  struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
860  		gfp_t gfp, struct bio_set *bs)
861  {
862  	struct bio *bio;
863  
864  	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
865  	if (!bio)
866  		return NULL;
867  
868  	if (__bio_clone(bio, bio_src, gfp) < 0) {
869  		bio_put(bio);
870  		return NULL;
871  	}
872  	bio->bi_io_vec = bio_src->bi_io_vec;
873  
874  	return bio;
875  }
876  EXPORT_SYMBOL(bio_alloc_clone);
877  
878  /**
879   * bio_init_clone - clone a bio that shares the original bio's biovec
880   * @bdev: block_device to clone onto
881   * @bio: bio to clone into
882   * @bio_src: bio to clone from
883   * @gfp: allocation priority
884   *
885   * Initialize a new bio in caller provided memory that is a clone of @bio_src.
886   * The caller owns the returned bio, but not the actual data it points to.
887   *
888   * The caller must ensure that @bio_src is not freed before @bio.
889   */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)890  int bio_init_clone(struct block_device *bdev, struct bio *bio,
891  		struct bio *bio_src, gfp_t gfp)
892  {
893  	int ret;
894  
895  	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
896  	ret = __bio_clone(bio, bio_src, gfp);
897  	if (ret)
898  		bio_uninit(bio);
899  	return ret;
900  }
901  EXPORT_SYMBOL(bio_init_clone);
902  
903  /**
904   * bio_full - check if the bio is full
905   * @bio:	bio to check
906   * @len:	length of one segment to be added
907   *
908   * Return true if @bio is full and one segment with @len bytes can't be
909   * added to the bio, otherwise return false
910   */
bio_full(struct bio * bio,unsigned len)911  static inline bool bio_full(struct bio *bio, unsigned len)
912  {
913  	if (bio->bi_vcnt >= bio->bi_max_vecs)
914  		return true;
915  	if (bio->bi_iter.bi_size > UINT_MAX - len)
916  		return true;
917  	return false;
918  }
919  
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)920  static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
921  		unsigned int len, unsigned int off, bool *same_page)
922  {
923  	size_t bv_end = bv->bv_offset + bv->bv_len;
924  	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
925  	phys_addr_t page_addr = page_to_phys(page);
926  
927  	if (vec_end_addr + 1 != page_addr + off)
928  		return false;
929  	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
930  		return false;
931  	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
932  		return false;
933  
934  	*same_page = ((vec_end_addr & PAGE_MASK) == ((page_addr + off) &
935  		     PAGE_MASK));
936  	if (!*same_page) {
937  		if (IS_ENABLED(CONFIG_KMSAN))
938  			return false;
939  		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
940  			return false;
941  	}
942  
943  	bv->bv_len += len;
944  	return true;
945  }
946  
947  /*
948   * Try to merge a page into a segment, while obeying the hardware segment
949   * size limit.  This is not for normal read/write bios, but for passthrough
950   * or Zone Append operations that we can't split.
951   */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset,bool * same_page)952  bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
953  		struct page *page, unsigned len, unsigned offset,
954  		bool *same_page)
955  {
956  	unsigned long mask = queue_segment_boundary(q);
957  	phys_addr_t addr1 = bvec_phys(bv);
958  	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
959  
960  	if ((addr1 | mask) != (addr2 | mask))
961  		return false;
962  	if (len > queue_max_segment_size(q) - bv->bv_len)
963  		return false;
964  	return bvec_try_merge_page(bv, page, len, offset, same_page);
965  }
966  
967  /**
968   * bio_add_hw_page - attempt to add a page to a bio with hw constraints
969   * @q: the target queue
970   * @bio: destination bio
971   * @page: page to add
972   * @len: vec entry length
973   * @offset: vec entry offset
974   * @max_sectors: maximum number of sectors that can be added
975   * @same_page: return if the segment has been merged inside the same page
976   *
977   * Add a page to a bio while respecting the hardware max_sectors, max_segment
978   * and gap limitations.
979   */
bio_add_hw_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned int max_sectors,bool * same_page)980  int bio_add_hw_page(struct request_queue *q, struct bio *bio,
981  		struct page *page, unsigned int len, unsigned int offset,
982  		unsigned int max_sectors, bool *same_page)
983  {
984  	unsigned int max_size = max_sectors << SECTOR_SHIFT;
985  
986  	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
987  		return 0;
988  
989  	len = min3(len, max_size, queue_max_segment_size(q));
990  	if (len > max_size - bio->bi_iter.bi_size)
991  		return 0;
992  
993  	if (bio->bi_vcnt > 0) {
994  		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
995  
996  		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
997  				same_page)) {
998  			bio->bi_iter.bi_size += len;
999  			return len;
1000  		}
1001  
1002  		if (bio->bi_vcnt >=
1003  		    min(bio->bi_max_vecs, queue_max_segments(q)))
1004  			return 0;
1005  
1006  		/*
1007  		 * If the queue doesn't support SG gaps and adding this segment
1008  		 * would create a gap, disallow it.
1009  		 */
1010  		if (bvec_gap_to_prev(&q->limits, bv, offset))
1011  			return 0;
1012  	}
1013  
1014  	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
1015  	bio->bi_vcnt++;
1016  	bio->bi_iter.bi_size += len;
1017  	return len;
1018  }
1019  
1020  /**
1021   * bio_add_hw_folio - attempt to add a folio to a bio with hw constraints
1022   * @q: the target queue
1023   * @bio: destination bio
1024   * @folio: folio to add
1025   * @len: vec entry length
1026   * @offset: vec entry offset in the folio
1027   * @max_sectors: maximum number of sectors that can be added
1028   * @same_page: return if the segment has been merged inside the same folio
1029   *
1030   * Add a folio to a bio while respecting the hardware max_sectors, max_segment
1031   * and gap limitations.
1032   */
bio_add_hw_folio(struct request_queue * q,struct bio * bio,struct folio * folio,size_t len,size_t offset,unsigned int max_sectors,bool * same_page)1033  int bio_add_hw_folio(struct request_queue *q, struct bio *bio,
1034  		struct folio *folio, size_t len, size_t offset,
1035  		unsigned int max_sectors, bool *same_page)
1036  {
1037  	if (len > UINT_MAX || offset > UINT_MAX)
1038  		return 0;
1039  	return bio_add_hw_page(q, bio, folio_page(folio, 0), len, offset,
1040  			       max_sectors, same_page);
1041  }
1042  
1043  /**
1044   * bio_add_pc_page	- attempt to add page to passthrough bio
1045   * @q: the target queue
1046   * @bio: destination bio
1047   * @page: page to add
1048   * @len: vec entry length
1049   * @offset: vec entry offset
1050   *
1051   * Attempt to add a page to the bio_vec maplist. This can fail for a
1052   * number of reasons, such as the bio being full or target block device
1053   * limitations. The target block device must allow bio's up to PAGE_SIZE,
1054   * so it is always possible to add a single page to an empty bio.
1055   *
1056   * This should only be used by passthrough bios.
1057   */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1058  int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1059  		struct page *page, unsigned int len, unsigned int offset)
1060  {
1061  	bool same_page = false;
1062  	return bio_add_hw_page(q, bio, page, len, offset,
1063  			queue_max_hw_sectors(q), &same_page);
1064  }
1065  EXPORT_SYMBOL(bio_add_pc_page);
1066  
1067  /**
1068   * bio_add_zone_append_page - attempt to add page to zone-append bio
1069   * @bio: destination bio
1070   * @page: page to add
1071   * @len: vec entry length
1072   * @offset: vec entry offset
1073   *
1074   * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1075   * for a zone-append request. This can fail for a number of reasons, such as the
1076   * bio being full or the target block device is not a zoned block device or
1077   * other limitations of the target block device. The target block device must
1078   * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1079   * to an empty bio.
1080   *
1081   * Returns: number of bytes added to the bio, or 0 in case of a failure.
1082   */
bio_add_zone_append_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1083  int bio_add_zone_append_page(struct bio *bio, struct page *page,
1084  			     unsigned int len, unsigned int offset)
1085  {
1086  	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1087  	bool same_page = false;
1088  
1089  	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1090  		return 0;
1091  
1092  	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1093  		return 0;
1094  
1095  	return bio_add_hw_page(q, bio, page, len, offset,
1096  			       queue_max_zone_append_sectors(q), &same_page);
1097  }
1098  EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1099  
1100  /**
1101   * __bio_add_page - add page(s) to a bio in a new segment
1102   * @bio: destination bio
1103   * @page: start page to add
1104   * @len: length of the data to add, may cross pages
1105   * @off: offset of the data relative to @page, may cross pages
1106   *
1107   * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1108   * that @bio has space for another bvec.
1109   */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)1110  void __bio_add_page(struct bio *bio, struct page *page,
1111  		unsigned int len, unsigned int off)
1112  {
1113  	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1114  	WARN_ON_ONCE(bio_full(bio, len));
1115  
1116  	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
1117  	bio->bi_iter.bi_size += len;
1118  	bio->bi_vcnt++;
1119  }
1120  EXPORT_SYMBOL_GPL(__bio_add_page);
1121  
1122  /**
1123   *	bio_add_page	-	attempt to add page(s) to bio
1124   *	@bio: destination bio
1125   *	@page: start page to add
1126   *	@len: vec entry length, may cross pages
1127   *	@offset: vec entry offset relative to @page, may cross pages
1128   *
1129   *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1130   *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1131   */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1132  int bio_add_page(struct bio *bio, struct page *page,
1133  		 unsigned int len, unsigned int offset)
1134  {
1135  	bool same_page = false;
1136  
1137  	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1138  		return 0;
1139  	if (bio->bi_iter.bi_size > UINT_MAX - len)
1140  		return 0;
1141  
1142  	if (bio->bi_vcnt > 0 &&
1143  	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1144  				page, len, offset, &same_page)) {
1145  		bio->bi_iter.bi_size += len;
1146  		return len;
1147  	}
1148  
1149  	if (bio->bi_vcnt >= bio->bi_max_vecs)
1150  		return 0;
1151  	__bio_add_page(bio, page, len, offset);
1152  	return len;
1153  }
1154  EXPORT_SYMBOL(bio_add_page);
1155  
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1156  void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1157  			  size_t off)
1158  {
1159  	WARN_ON_ONCE(len > UINT_MAX);
1160  	WARN_ON_ONCE(off > UINT_MAX);
1161  	__bio_add_page(bio, &folio->page, len, off);
1162  }
1163  EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1164  
1165  /**
1166   * bio_add_folio - Attempt to add part of a folio to a bio.
1167   * @bio: BIO to add to.
1168   * @folio: Folio to add.
1169   * @len: How many bytes from the folio to add.
1170   * @off: First byte in this folio to add.
1171   *
1172   * Filesystems that use folios can call this function instead of calling
1173   * bio_add_page() for each page in the folio.  If @off is bigger than
1174   * PAGE_SIZE, this function can create a bio_vec that starts in a page
1175   * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1176   *
1177   * Return: Whether the addition was successful.
1178   */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1179  bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1180  		   size_t off)
1181  {
1182  	if (len > UINT_MAX || off > UINT_MAX)
1183  		return false;
1184  	return bio_add_page(bio, &folio->page, len, off) > 0;
1185  }
1186  EXPORT_SYMBOL(bio_add_folio);
1187  
__bio_release_pages(struct bio * bio,bool mark_dirty)1188  void __bio_release_pages(struct bio *bio, bool mark_dirty)
1189  {
1190  	struct folio_iter fi;
1191  
1192  	bio_for_each_folio_all(fi, bio) {
1193  		size_t nr_pages;
1194  
1195  		if (mark_dirty) {
1196  			folio_lock(fi.folio);
1197  			folio_mark_dirty(fi.folio);
1198  			folio_unlock(fi.folio);
1199  		}
1200  		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1201  			   fi.offset / PAGE_SIZE + 1;
1202  		unpin_user_folio(fi.folio, nr_pages);
1203  	}
1204  }
1205  EXPORT_SYMBOL_GPL(__bio_release_pages);
1206  
bio_iov_bvec_set(struct bio * bio,struct iov_iter * iter)1207  void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1208  {
1209  	size_t size = iov_iter_count(iter);
1210  
1211  	WARN_ON_ONCE(bio->bi_max_vecs);
1212  
1213  	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1214  		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1215  		size_t max_sectors = queue_max_zone_append_sectors(q);
1216  
1217  		size = min(size, max_sectors << SECTOR_SHIFT);
1218  	}
1219  
1220  	bio->bi_vcnt = iter->nr_segs;
1221  	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1222  	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1223  	bio->bi_iter.bi_size = size;
1224  	bio_set_flag(bio, BIO_CLONED);
1225  }
1226  
bio_iov_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t offset)1227  static int bio_iov_add_folio(struct bio *bio, struct folio *folio, size_t len,
1228  			     size_t offset)
1229  {
1230  	bool same_page = false;
1231  
1232  	if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1233  		return -EIO;
1234  
1235  	if (bio->bi_vcnt > 0 &&
1236  	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1237  				folio_page(folio, 0), len, offset,
1238  				&same_page)) {
1239  		bio->bi_iter.bi_size += len;
1240  		if (same_page && bio_flagged(bio, BIO_PAGE_PINNED))
1241  			unpin_user_folio(folio, 1);
1242  		return 0;
1243  	}
1244  	bio_add_folio_nofail(bio, folio, len, offset);
1245  	return 0;
1246  }
1247  
bio_iov_add_zone_append_folio(struct bio * bio,struct folio * folio,size_t len,size_t offset)1248  static int bio_iov_add_zone_append_folio(struct bio *bio, struct folio *folio,
1249  					 size_t len, size_t offset)
1250  {
1251  	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1252  	bool same_page = false;
1253  
1254  	if (bio_add_hw_folio(q, bio, folio, len, offset,
1255  			queue_max_zone_append_sectors(q), &same_page) != len)
1256  		return -EINVAL;
1257  	if (same_page && bio_flagged(bio, BIO_PAGE_PINNED))
1258  		unpin_user_folio(folio, 1);
1259  	return 0;
1260  }
1261  
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1262  static unsigned int get_contig_folio_len(unsigned int *num_pages,
1263  					 struct page **pages, unsigned int i,
1264  					 struct folio *folio, size_t left,
1265  					 size_t offset)
1266  {
1267  	size_t bytes = left;
1268  	size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1269  	unsigned int j;
1270  
1271  	/*
1272  	 * We might COW a single page in the middle of
1273  	 * a large folio, so we have to check that all
1274  	 * pages belong to the same folio.
1275  	 */
1276  	bytes -= contig_sz;
1277  	for (j = i + 1; j < i + *num_pages; j++) {
1278  		size_t next = min_t(size_t, PAGE_SIZE, bytes);
1279  
1280  		if (page_folio(pages[j]) != folio ||
1281  		    pages[j] != pages[j - 1] + 1) {
1282  			break;
1283  		}
1284  		contig_sz += next;
1285  		bytes -= next;
1286  	}
1287  	*num_pages = j - i;
1288  
1289  	return contig_sz;
1290  }
1291  
1292  #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1293  
1294  /**
1295   * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1296   * @bio: bio to add pages to
1297   * @iter: iov iterator describing the region to be mapped
1298   *
1299   * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1300   * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1301   * For a multi-segment *iter, this function only adds pages from the next
1302   * non-empty segment of the iov iterator.
1303   */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1304  static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1305  {
1306  	iov_iter_extraction_t extraction_flags = 0;
1307  	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1308  	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1309  	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1310  	struct page **pages = (struct page **)bv;
1311  	ssize_t size;
1312  	unsigned int num_pages, i = 0;
1313  	size_t offset, folio_offset, left, len;
1314  	int ret = 0;
1315  
1316  	/*
1317  	 * Move page array up in the allocated memory for the bio vecs as far as
1318  	 * possible so that we can start filling biovecs from the beginning
1319  	 * without overwriting the temporary page array.
1320  	 */
1321  	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1322  	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1323  
1324  	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1325  		extraction_flags |= ITER_ALLOW_P2PDMA;
1326  
1327  	/*
1328  	 * Each segment in the iov is required to be a block size multiple.
1329  	 * However, we may not be able to get the entire segment if it spans
1330  	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1331  	 * result to ensure the bio's total size is correct. The remainder of
1332  	 * the iov data will be picked up in the next bio iteration.
1333  	 */
1334  	size = iov_iter_extract_pages(iter, &pages,
1335  				      UINT_MAX - bio->bi_iter.bi_size,
1336  				      nr_pages, extraction_flags, &offset);
1337  	if (unlikely(size <= 0))
1338  		return size ? size : -EFAULT;
1339  
1340  	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1341  
1342  	if (bio->bi_bdev) {
1343  		size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1344  		iov_iter_revert(iter, trim);
1345  		size -= trim;
1346  	}
1347  
1348  	if (unlikely(!size)) {
1349  		ret = -EFAULT;
1350  		goto out;
1351  	}
1352  
1353  	for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1354  		struct page *page = pages[i];
1355  		struct folio *folio = page_folio(page);
1356  
1357  		folio_offset = ((size_t)folio_page_idx(folio, page) <<
1358  			       PAGE_SHIFT) + offset;
1359  
1360  		len = min(folio_size(folio) - folio_offset, left);
1361  
1362  		num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1363  
1364  		if (num_pages > 1)
1365  			len = get_contig_folio_len(&num_pages, pages, i,
1366  						   folio, left, offset);
1367  
1368  		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1369  			ret = bio_iov_add_zone_append_folio(bio, folio, len,
1370  					folio_offset);
1371  			if (ret)
1372  				break;
1373  		} else
1374  			bio_iov_add_folio(bio, folio, len, folio_offset);
1375  
1376  		offset = 0;
1377  	}
1378  
1379  	iov_iter_revert(iter, left);
1380  out:
1381  	while (i < nr_pages)
1382  		bio_release_page(bio, pages[i++]);
1383  
1384  	return ret;
1385  }
1386  
1387  /**
1388   * bio_iov_iter_get_pages - add user or kernel pages to a bio
1389   * @bio: bio to add pages to
1390   * @iter: iov iterator describing the region to be added
1391   *
1392   * This takes either an iterator pointing to user memory, or one pointing to
1393   * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1394   * map them into the kernel. On IO completion, the caller should put those
1395   * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1396   * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1397   * to ensure the bvecs and pages stay referenced until the submitted I/O is
1398   * completed by a call to ->ki_complete() or returns with an error other than
1399   * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1400   * on IO completion. If it isn't, then pages should be released.
1401   *
1402   * The function tries, but does not guarantee, to pin as many pages as
1403   * fit into the bio, or are requested in @iter, whatever is smaller. If
1404   * MM encounters an error pinning the requested pages, it stops. Error
1405   * is returned only if 0 pages could be pinned.
1406   */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1407  int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1408  {
1409  	int ret = 0;
1410  
1411  	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1412  		return -EIO;
1413  
1414  	if (iov_iter_is_bvec(iter)) {
1415  		bio_iov_bvec_set(bio, iter);
1416  		iov_iter_advance(iter, bio->bi_iter.bi_size);
1417  		return 0;
1418  	}
1419  
1420  	if (iov_iter_extract_will_pin(iter))
1421  		bio_set_flag(bio, BIO_PAGE_PINNED);
1422  	do {
1423  		ret = __bio_iov_iter_get_pages(bio, iter);
1424  	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1425  
1426  	return bio->bi_vcnt ? 0 : ret;
1427  }
1428  EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1429  
submit_bio_wait_endio(struct bio * bio)1430  static void submit_bio_wait_endio(struct bio *bio)
1431  {
1432  	complete(bio->bi_private);
1433  }
1434  
1435  /**
1436   * submit_bio_wait - submit a bio, and wait until it completes
1437   * @bio: The &struct bio which describes the I/O
1438   *
1439   * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1440   * bio_endio() on failure.
1441   *
1442   * WARNING: Unlike to how submit_bio() is usually used, this function does not
1443   * result in bio reference to be consumed. The caller must drop the reference
1444   * on his own.
1445   */
submit_bio_wait(struct bio * bio)1446  int submit_bio_wait(struct bio *bio)
1447  {
1448  	DECLARE_COMPLETION_ONSTACK_MAP(done,
1449  			bio->bi_bdev->bd_disk->lockdep_map);
1450  
1451  	bio->bi_private = &done;
1452  	bio->bi_end_io = submit_bio_wait_endio;
1453  	bio->bi_opf |= REQ_SYNC;
1454  	submit_bio(bio);
1455  	blk_wait_io(&done);
1456  
1457  	return blk_status_to_errno(bio->bi_status);
1458  }
1459  EXPORT_SYMBOL(submit_bio_wait);
1460  
bio_wait_end_io(struct bio * bio)1461  static void bio_wait_end_io(struct bio *bio)
1462  {
1463  	complete(bio->bi_private);
1464  	bio_put(bio);
1465  }
1466  
1467  /*
1468   * bio_await_chain - ends @bio and waits for every chained bio to complete
1469   */
bio_await_chain(struct bio * bio)1470  void bio_await_chain(struct bio *bio)
1471  {
1472  	DECLARE_COMPLETION_ONSTACK_MAP(done,
1473  			bio->bi_bdev->bd_disk->lockdep_map);
1474  
1475  	bio->bi_private = &done;
1476  	bio->bi_end_io = bio_wait_end_io;
1477  	bio_endio(bio);
1478  	blk_wait_io(&done);
1479  }
1480  
__bio_advance(struct bio * bio,unsigned bytes)1481  void __bio_advance(struct bio *bio, unsigned bytes)
1482  {
1483  	if (bio_integrity(bio))
1484  		bio_integrity_advance(bio, bytes);
1485  
1486  	bio_crypt_advance(bio, bytes);
1487  	bio_advance_iter(bio, &bio->bi_iter, bytes);
1488  }
1489  EXPORT_SYMBOL(__bio_advance);
1490  
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1491  void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1492  			struct bio *src, struct bvec_iter *src_iter)
1493  {
1494  	while (src_iter->bi_size && dst_iter->bi_size) {
1495  		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1496  		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1497  		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1498  		void *src_buf = bvec_kmap_local(&src_bv);
1499  		void *dst_buf = bvec_kmap_local(&dst_bv);
1500  
1501  		memcpy(dst_buf, src_buf, bytes);
1502  
1503  		kunmap_local(dst_buf);
1504  		kunmap_local(src_buf);
1505  
1506  		bio_advance_iter_single(src, src_iter, bytes);
1507  		bio_advance_iter_single(dst, dst_iter, bytes);
1508  	}
1509  }
1510  EXPORT_SYMBOL(bio_copy_data_iter);
1511  
1512  /**
1513   * bio_copy_data - copy contents of data buffers from one bio to another
1514   * @src: source bio
1515   * @dst: destination bio
1516   *
1517   * Stops when it reaches the end of either @src or @dst - that is, copies
1518   * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1519   */
bio_copy_data(struct bio * dst,struct bio * src)1520  void bio_copy_data(struct bio *dst, struct bio *src)
1521  {
1522  	struct bvec_iter src_iter = src->bi_iter;
1523  	struct bvec_iter dst_iter = dst->bi_iter;
1524  
1525  	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1526  }
1527  EXPORT_SYMBOL(bio_copy_data);
1528  
bio_free_pages(struct bio * bio)1529  void bio_free_pages(struct bio *bio)
1530  {
1531  	struct bio_vec *bvec;
1532  	struct bvec_iter_all iter_all;
1533  
1534  	bio_for_each_segment_all(bvec, bio, iter_all)
1535  		__free_page(bvec->bv_page);
1536  }
1537  EXPORT_SYMBOL(bio_free_pages);
1538  
1539  /*
1540   * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1541   * for performing direct-IO in BIOs.
1542   *
1543   * The problem is that we cannot run folio_mark_dirty() from interrupt context
1544   * because the required locks are not interrupt-safe.  So what we can do is to
1545   * mark the pages dirty _before_ performing IO.  And in interrupt context,
1546   * check that the pages are still dirty.   If so, fine.  If not, redirty them
1547   * in process context.
1548   *
1549   * Note that this code is very hard to test under normal circumstances because
1550   * direct-io pins the pages with get_user_pages().  This makes
1551   * is_page_cache_freeable return false, and the VM will not clean the pages.
1552   * But other code (eg, flusher threads) could clean the pages if they are mapped
1553   * pagecache.
1554   *
1555   * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1556   * deferred bio dirtying paths.
1557   */
1558  
1559  /*
1560   * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1561   */
bio_set_pages_dirty(struct bio * bio)1562  void bio_set_pages_dirty(struct bio *bio)
1563  {
1564  	struct folio_iter fi;
1565  
1566  	bio_for_each_folio_all(fi, bio) {
1567  		folio_lock(fi.folio);
1568  		folio_mark_dirty(fi.folio);
1569  		folio_unlock(fi.folio);
1570  	}
1571  }
1572  EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1573  
1574  /*
1575   * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1576   * If they are, then fine.  If, however, some pages are clean then they must
1577   * have been written out during the direct-IO read.  So we take another ref on
1578   * the BIO and re-dirty the pages in process context.
1579   *
1580   * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1581   * here on.  It will unpin each page and will run one bio_put() against the
1582   * BIO.
1583   */
1584  
1585  static void bio_dirty_fn(struct work_struct *work);
1586  
1587  static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1588  static DEFINE_SPINLOCK(bio_dirty_lock);
1589  static struct bio *bio_dirty_list;
1590  
1591  /*
1592   * This runs in process context
1593   */
bio_dirty_fn(struct work_struct * work)1594  static void bio_dirty_fn(struct work_struct *work)
1595  {
1596  	struct bio *bio, *next;
1597  
1598  	spin_lock_irq(&bio_dirty_lock);
1599  	next = bio_dirty_list;
1600  	bio_dirty_list = NULL;
1601  	spin_unlock_irq(&bio_dirty_lock);
1602  
1603  	while ((bio = next) != NULL) {
1604  		next = bio->bi_private;
1605  
1606  		bio_release_pages(bio, true);
1607  		bio_put(bio);
1608  	}
1609  }
1610  
bio_check_pages_dirty(struct bio * bio)1611  void bio_check_pages_dirty(struct bio *bio)
1612  {
1613  	struct folio_iter fi;
1614  	unsigned long flags;
1615  
1616  	bio_for_each_folio_all(fi, bio) {
1617  		if (!folio_test_dirty(fi.folio))
1618  			goto defer;
1619  	}
1620  
1621  	bio_release_pages(bio, false);
1622  	bio_put(bio);
1623  	return;
1624  defer:
1625  	spin_lock_irqsave(&bio_dirty_lock, flags);
1626  	bio->bi_private = bio_dirty_list;
1627  	bio_dirty_list = bio;
1628  	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1629  	schedule_work(&bio_dirty_work);
1630  }
1631  EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1632  
bio_remaining_done(struct bio * bio)1633  static inline bool bio_remaining_done(struct bio *bio)
1634  {
1635  	/*
1636  	 * If we're not chaining, then ->__bi_remaining is always 1 and
1637  	 * we always end io on the first invocation.
1638  	 */
1639  	if (!bio_flagged(bio, BIO_CHAIN))
1640  		return true;
1641  
1642  	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1643  
1644  	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1645  		bio_clear_flag(bio, BIO_CHAIN);
1646  		return true;
1647  	}
1648  
1649  	return false;
1650  }
1651  
1652  /**
1653   * bio_endio - end I/O on a bio
1654   * @bio:	bio
1655   *
1656   * Description:
1657   *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1658   *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1659   *   bio unless they own it and thus know that it has an end_io function.
1660   *
1661   *   bio_endio() can be called several times on a bio that has been chained
1662   *   using bio_chain().  The ->bi_end_io() function will only be called the
1663   *   last time.
1664   **/
bio_endio(struct bio * bio)1665  void bio_endio(struct bio *bio)
1666  {
1667  again:
1668  	if (!bio_remaining_done(bio))
1669  		return;
1670  	if (!bio_integrity_endio(bio))
1671  		return;
1672  
1673  	blk_zone_bio_endio(bio);
1674  
1675  	rq_qos_done_bio(bio);
1676  
1677  	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1678  		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1679  		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1680  	}
1681  
1682  	/*
1683  	 * Need to have a real endio function for chained bios, otherwise
1684  	 * various corner cases will break (like stacking block devices that
1685  	 * save/restore bi_end_io) - however, we want to avoid unbounded
1686  	 * recursion and blowing the stack. Tail call optimization would
1687  	 * handle this, but compiling with frame pointers also disables
1688  	 * gcc's sibling call optimization.
1689  	 */
1690  	if (bio->bi_end_io == bio_chain_endio) {
1691  		bio = __bio_chain_endio(bio);
1692  		goto again;
1693  	}
1694  
1695  #ifdef CONFIG_BLK_CGROUP
1696  	/*
1697  	 * Release cgroup info.  We shouldn't have to do this here, but quite
1698  	 * a few callers of bio_init fail to call bio_uninit, so we cover up
1699  	 * for that here at least for now.
1700  	 */
1701  	if (bio->bi_blkg) {
1702  		blkg_put(bio->bi_blkg);
1703  		bio->bi_blkg = NULL;
1704  	}
1705  #endif
1706  
1707  	if (bio->bi_end_io)
1708  		bio->bi_end_io(bio);
1709  }
1710  EXPORT_SYMBOL(bio_endio);
1711  
1712  /**
1713   * bio_split - split a bio
1714   * @bio:	bio to split
1715   * @sectors:	number of sectors to split from the front of @bio
1716   * @gfp:	gfp mask
1717   * @bs:		bio set to allocate from
1718   *
1719   * Allocates and returns a new bio which represents @sectors from the start of
1720   * @bio, and updates @bio to represent the remaining sectors.
1721   *
1722   * Unless this is a discard request the newly allocated bio will point
1723   * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1724   * neither @bio nor @bs are freed before the split bio.
1725   */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1726  struct bio *bio_split(struct bio *bio, int sectors,
1727  		      gfp_t gfp, struct bio_set *bs)
1728  {
1729  	struct bio *split;
1730  
1731  	BUG_ON(sectors <= 0);
1732  	BUG_ON(sectors >= bio_sectors(bio));
1733  
1734  	/* Zone append commands cannot be split */
1735  	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1736  		return NULL;
1737  
1738  	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1739  	if (!split)
1740  		return NULL;
1741  
1742  	split->bi_iter.bi_size = sectors << 9;
1743  
1744  	if (bio_integrity(split))
1745  		bio_integrity_trim(split);
1746  
1747  	bio_advance(bio, split->bi_iter.bi_size);
1748  
1749  	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1750  		bio_set_flag(split, BIO_TRACE_COMPLETION);
1751  
1752  	return split;
1753  }
1754  EXPORT_SYMBOL(bio_split);
1755  
1756  /**
1757   * bio_trim - trim a bio
1758   * @bio:	bio to trim
1759   * @offset:	number of sectors to trim from the front of @bio
1760   * @size:	size we want to trim @bio to, in sectors
1761   *
1762   * This function is typically used for bios that are cloned and submitted
1763   * to the underlying device in parts.
1764   */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1765  void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1766  {
1767  	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1768  			 offset + size > bio_sectors(bio)))
1769  		return;
1770  
1771  	size <<= 9;
1772  	if (offset == 0 && size == bio->bi_iter.bi_size)
1773  		return;
1774  
1775  	bio_advance(bio, offset << 9);
1776  	bio->bi_iter.bi_size = size;
1777  
1778  	if (bio_integrity(bio))
1779  		bio_integrity_trim(bio);
1780  }
1781  EXPORT_SYMBOL_GPL(bio_trim);
1782  
1783  /*
1784   * create memory pools for biovec's in a bio_set.
1785   * use the global biovec slabs created for general use.
1786   */
biovec_init_pool(mempool_t * pool,int pool_entries)1787  int biovec_init_pool(mempool_t *pool, int pool_entries)
1788  {
1789  	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1790  
1791  	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1792  }
1793  
1794  /*
1795   * bioset_exit - exit a bioset initialized with bioset_init()
1796   *
1797   * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1798   * kzalloc()).
1799   */
bioset_exit(struct bio_set * bs)1800  void bioset_exit(struct bio_set *bs)
1801  {
1802  	bio_alloc_cache_destroy(bs);
1803  	if (bs->rescue_workqueue)
1804  		destroy_workqueue(bs->rescue_workqueue);
1805  	bs->rescue_workqueue = NULL;
1806  
1807  	mempool_exit(&bs->bio_pool);
1808  	mempool_exit(&bs->bvec_pool);
1809  
1810  	bioset_integrity_free(bs);
1811  	if (bs->bio_slab)
1812  		bio_put_slab(bs);
1813  	bs->bio_slab = NULL;
1814  }
1815  EXPORT_SYMBOL(bioset_exit);
1816  
1817  /**
1818   * bioset_init - Initialize a bio_set
1819   * @bs:		pool to initialize
1820   * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1821   * @front_pad:	Number of bytes to allocate in front of the returned bio
1822   * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1823   *              and %BIOSET_NEED_RESCUER
1824   *
1825   * Description:
1826   *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1827   *    to ask for a number of bytes to be allocated in front of the bio.
1828   *    Front pad allocation is useful for embedding the bio inside
1829   *    another structure, to avoid allocating extra data to go with the bio.
1830   *    Note that the bio must be embedded at the END of that structure always,
1831   *    or things will break badly.
1832   *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1833   *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1834   *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1835   *    to dispatch queued requests when the mempool runs out of space.
1836   *
1837   */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1838  int bioset_init(struct bio_set *bs,
1839  		unsigned int pool_size,
1840  		unsigned int front_pad,
1841  		int flags)
1842  {
1843  	bs->front_pad = front_pad;
1844  	if (flags & BIOSET_NEED_BVECS)
1845  		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1846  	else
1847  		bs->back_pad = 0;
1848  
1849  	spin_lock_init(&bs->rescue_lock);
1850  	bio_list_init(&bs->rescue_list);
1851  	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1852  
1853  	bs->bio_slab = bio_find_or_create_slab(bs);
1854  	if (!bs->bio_slab)
1855  		return -ENOMEM;
1856  
1857  	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1858  		goto bad;
1859  
1860  	if ((flags & BIOSET_NEED_BVECS) &&
1861  	    biovec_init_pool(&bs->bvec_pool, pool_size))
1862  		goto bad;
1863  
1864  	if (flags & BIOSET_NEED_RESCUER) {
1865  		bs->rescue_workqueue = alloc_workqueue("bioset",
1866  							WQ_MEM_RECLAIM, 0);
1867  		if (!bs->rescue_workqueue)
1868  			goto bad;
1869  	}
1870  	if (flags & BIOSET_PERCPU_CACHE) {
1871  		bs->cache = alloc_percpu(struct bio_alloc_cache);
1872  		if (!bs->cache)
1873  			goto bad;
1874  		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1875  	}
1876  
1877  	return 0;
1878  bad:
1879  	bioset_exit(bs);
1880  	return -ENOMEM;
1881  }
1882  EXPORT_SYMBOL(bioset_init);
1883  
init_bio(void)1884  static int __init init_bio(void)
1885  {
1886  	int i;
1887  
1888  	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1889  
1890  	bio_integrity_init();
1891  
1892  	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1893  		struct biovec_slab *bvs = bvec_slabs + i;
1894  
1895  		bvs->slab = kmem_cache_create(bvs->name,
1896  				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1897  				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1898  	}
1899  
1900  	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1901  					bio_cpu_dead);
1902  
1903  	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1904  			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1905  		panic("bio: can't allocate bios\n");
1906  
1907  	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1908  		panic("bio: can't create integrity pool\n");
1909  
1910  	return 0;
1911  }
1912  subsys_initcall(init_bio);
1913