1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef INT_BLK_MQ_H
3  #define INT_BLK_MQ_H
4  
5  #include <linux/blk-mq.h>
6  #include "blk-stat.h"
7  
8  struct blk_mq_tag_set;
9  
10  struct blk_mq_ctxs {
11  	struct kobject kobj;
12  	struct blk_mq_ctx __percpu	*queue_ctx;
13  };
14  
15  /**
16   * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17   */
18  struct blk_mq_ctx {
19  	struct {
20  		spinlock_t		lock;
21  		struct list_head	rq_lists[HCTX_MAX_TYPES];
22  	} ____cacheline_aligned_in_smp;
23  
24  	unsigned int		cpu;
25  	unsigned short		index_hw[HCTX_MAX_TYPES];
26  	struct blk_mq_hw_ctx 	*hctxs[HCTX_MAX_TYPES];
27  
28  	struct request_queue	*queue;
29  	struct blk_mq_ctxs      *ctxs;
30  	struct kobject		kobj;
31  } ____cacheline_aligned_in_smp;
32  
33  enum {
34  	BLK_MQ_NO_TAG		= -1U,
35  	BLK_MQ_TAG_MIN		= 1,
36  	BLK_MQ_TAG_MAX		= BLK_MQ_NO_TAG - 1,
37  };
38  
39  #define BLK_MQ_CPU_WORK_BATCH	(8)
40  
41  typedef unsigned int __bitwise blk_insert_t;
42  #define BLK_MQ_INSERT_AT_HEAD		((__force blk_insert_t)0x01)
43  
44  void blk_mq_submit_bio(struct bio *bio);
45  int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
46  		unsigned int flags);
47  void blk_mq_exit_queue(struct request_queue *q);
48  int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
49  void blk_mq_wake_waiters(struct request_queue *q);
50  bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
51  			     unsigned int);
52  void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
53  struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
54  					struct blk_mq_ctx *start);
55  void blk_mq_put_rq_ref(struct request *rq);
56  
57  /*
58   * Internal helpers for allocating/freeing the request map
59   */
60  void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
61  		     unsigned int hctx_idx);
62  void blk_mq_free_rq_map(struct blk_mq_tags *tags);
63  struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
64  				unsigned int hctx_idx, unsigned int depth);
65  void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
66  			     struct blk_mq_tags *tags,
67  			     unsigned int hctx_idx);
68  
69  /*
70   * CPU -> queue mappings
71   */
72  extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
73  
74  /*
75   * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
76   * @q: request queue
77   * @type: the hctx type index
78   * @cpu: CPU
79   */
blk_mq_map_queue_type(struct request_queue * q,enum hctx_type type,unsigned int cpu)80  static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
81  							  enum hctx_type type,
82  							  unsigned int cpu)
83  {
84  	return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]);
85  }
86  
blk_mq_get_hctx_type(blk_opf_t opf)87  static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf)
88  {
89  	enum hctx_type type = HCTX_TYPE_DEFAULT;
90  
91  	/*
92  	 * The caller ensure that if REQ_POLLED, poll must be enabled.
93  	 */
94  	if (opf & REQ_POLLED)
95  		type = HCTX_TYPE_POLL;
96  	else if ((opf & REQ_OP_MASK) == REQ_OP_READ)
97  		type = HCTX_TYPE_READ;
98  	return type;
99  }
100  
101  /*
102   * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
103   * @q: request queue
104   * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED).
105   * @ctx: software queue cpu ctx
106   */
blk_mq_map_queue(struct request_queue * q,blk_opf_t opf,struct blk_mq_ctx * ctx)107  static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
108  						     blk_opf_t opf,
109  						     struct blk_mq_ctx *ctx)
110  {
111  	return ctx->hctxs[blk_mq_get_hctx_type(opf)];
112  }
113  
114  /*
115   * sysfs helpers
116   */
117  extern void blk_mq_sysfs_init(struct request_queue *q);
118  extern void blk_mq_sysfs_deinit(struct request_queue *q);
119  int blk_mq_sysfs_register(struct gendisk *disk);
120  void blk_mq_sysfs_unregister(struct gendisk *disk);
121  int blk_mq_sysfs_register_hctxs(struct request_queue *q);
122  void blk_mq_sysfs_unregister_hctxs(struct request_queue *q);
123  extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
124  void blk_mq_free_plug_rqs(struct blk_plug *plug);
125  void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
126  
127  void blk_mq_cancel_work_sync(struct request_queue *q);
128  
129  void blk_mq_release(struct request_queue *q);
130  
__blk_mq_get_ctx(struct request_queue * q,unsigned int cpu)131  static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
132  					   unsigned int cpu)
133  {
134  	return per_cpu_ptr(q->queue_ctx, cpu);
135  }
136  
137  /*
138   * This assumes per-cpu software queueing queues. They could be per-node
139   * as well, for instance. For now this is hardcoded as-is. Note that we don't
140   * care about preemption, since we know the ctx's are persistent. This does
141   * mean that we can't rely on ctx always matching the currently running CPU.
142   */
blk_mq_get_ctx(struct request_queue * q)143  static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
144  {
145  	return __blk_mq_get_ctx(q, raw_smp_processor_id());
146  }
147  
148  struct blk_mq_alloc_data {
149  	/* input parameter */
150  	struct request_queue *q;
151  	blk_mq_req_flags_t flags;
152  	unsigned int shallow_depth;
153  	blk_opf_t cmd_flags;
154  	req_flags_t rq_flags;
155  
156  	/* allocate multiple requests/tags in one go */
157  	unsigned int nr_tags;
158  	struct request **cached_rq;
159  
160  	/* input & output parameter */
161  	struct blk_mq_ctx *ctx;
162  	struct blk_mq_hw_ctx *hctx;
163  };
164  
165  struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags,
166  		unsigned int reserved_tags, int node, int alloc_policy);
167  void blk_mq_free_tags(struct blk_mq_tags *tags);
168  int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags,
169  		struct sbitmap_queue *breserved_tags, unsigned int queue_depth,
170  		unsigned int reserved, int node, int alloc_policy);
171  
172  unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data);
173  unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
174  		unsigned int *offset);
175  void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
176  		unsigned int tag);
177  void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags);
178  int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
179  		struct blk_mq_tags **tags, unsigned int depth, bool can_grow);
180  void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set,
181  		unsigned int size);
182  void blk_mq_tag_update_sched_shared_tags(struct request_queue *q);
183  
184  void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool);
185  void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
186  		void *priv);
187  void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
188  		void *priv);
189  
bt_wait_ptr(struct sbitmap_queue * bt,struct blk_mq_hw_ctx * hctx)190  static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt,
191  						 struct blk_mq_hw_ctx *hctx)
192  {
193  	if (!hctx)
194  		return &bt->ws[0];
195  	return sbq_wait_ptr(bt, &hctx->wait_index);
196  }
197  
198  void __blk_mq_tag_busy(struct blk_mq_hw_ctx *);
199  void __blk_mq_tag_idle(struct blk_mq_hw_ctx *);
200  
blk_mq_tag_busy(struct blk_mq_hw_ctx * hctx)201  static inline void blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
202  {
203  	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
204  		__blk_mq_tag_busy(hctx);
205  }
206  
blk_mq_tag_idle(struct blk_mq_hw_ctx * hctx)207  static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
208  {
209  	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
210  		__blk_mq_tag_idle(hctx);
211  }
212  
blk_mq_tag_is_reserved(struct blk_mq_tags * tags,unsigned int tag)213  static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags,
214  					  unsigned int tag)
215  {
216  	return tag < tags->nr_reserved_tags;
217  }
218  
blk_mq_is_shared_tags(unsigned int flags)219  static inline bool blk_mq_is_shared_tags(unsigned int flags)
220  {
221  	return flags & BLK_MQ_F_TAG_HCTX_SHARED;
222  }
223  
blk_mq_tags_from_data(struct blk_mq_alloc_data * data)224  static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
225  {
226  	if (data->rq_flags & RQF_SCHED_TAGS)
227  		return data->hctx->sched_tags;
228  	return data->hctx->tags;
229  }
230  
blk_mq_hctx_stopped(struct blk_mq_hw_ctx * hctx)231  static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
232  {
233  	return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
234  }
235  
blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx * hctx)236  static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
237  {
238  	return hctx->nr_ctx && hctx->tags;
239  }
240  
241  unsigned int blk_mq_in_flight(struct request_queue *q,
242  		struct block_device *part);
243  void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
244  		unsigned int inflight[2]);
245  
blk_mq_put_dispatch_budget(struct request_queue * q,int budget_token)246  static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
247  					      int budget_token)
248  {
249  	if (q->mq_ops->put_budget)
250  		q->mq_ops->put_budget(q, budget_token);
251  }
252  
blk_mq_get_dispatch_budget(struct request_queue * q)253  static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
254  {
255  	if (q->mq_ops->get_budget)
256  		return q->mq_ops->get_budget(q);
257  	return 0;
258  }
259  
blk_mq_set_rq_budget_token(struct request * rq,int token)260  static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
261  {
262  	if (token < 0)
263  		return;
264  
265  	if (rq->q->mq_ops->set_rq_budget_token)
266  		rq->q->mq_ops->set_rq_budget_token(rq, token);
267  }
268  
blk_mq_get_rq_budget_token(struct request * rq)269  static inline int blk_mq_get_rq_budget_token(struct request *rq)
270  {
271  	if (rq->q->mq_ops->get_rq_budget_token)
272  		return rq->q->mq_ops->get_rq_budget_token(rq);
273  	return -1;
274  }
275  
__blk_mq_add_active_requests(struct blk_mq_hw_ctx * hctx,int val)276  static inline void __blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
277  						int val)
278  {
279  	if (blk_mq_is_shared_tags(hctx->flags))
280  		atomic_add(val, &hctx->queue->nr_active_requests_shared_tags);
281  	else
282  		atomic_add(val, &hctx->nr_active);
283  }
284  
__blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)285  static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
286  {
287  	__blk_mq_add_active_requests(hctx, 1);
288  }
289  
__blk_mq_sub_active_requests(struct blk_mq_hw_ctx * hctx,int val)290  static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
291  		int val)
292  {
293  	if (blk_mq_is_shared_tags(hctx->flags))
294  		atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
295  	else
296  		atomic_sub(val, &hctx->nr_active);
297  }
298  
__blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)299  static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
300  {
301  	__blk_mq_sub_active_requests(hctx, 1);
302  }
303  
blk_mq_add_active_requests(struct blk_mq_hw_ctx * hctx,int val)304  static inline void blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
305  					      int val)
306  {
307  	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
308  		__blk_mq_add_active_requests(hctx, val);
309  }
310  
blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)311  static inline void blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
312  {
313  	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
314  		__blk_mq_inc_active_requests(hctx);
315  }
316  
blk_mq_sub_active_requests(struct blk_mq_hw_ctx * hctx,int val)317  static inline void blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
318  					      int val)
319  {
320  	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
321  		__blk_mq_sub_active_requests(hctx, val);
322  }
323  
blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)324  static inline void blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
325  {
326  	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
327  		__blk_mq_dec_active_requests(hctx);
328  }
329  
__blk_mq_active_requests(struct blk_mq_hw_ctx * hctx)330  static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
331  {
332  	if (blk_mq_is_shared_tags(hctx->flags))
333  		return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
334  	return atomic_read(&hctx->nr_active);
335  }
__blk_mq_put_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)336  static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
337  					   struct request *rq)
338  {
339  	blk_mq_dec_active_requests(hctx);
340  	blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
341  	rq->tag = BLK_MQ_NO_TAG;
342  }
343  
blk_mq_put_driver_tag(struct request * rq)344  static inline void blk_mq_put_driver_tag(struct request *rq)
345  {
346  	if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
347  		return;
348  
349  	__blk_mq_put_driver_tag(rq->mq_hctx, rq);
350  }
351  
352  bool __blk_mq_alloc_driver_tag(struct request *rq);
353  
blk_mq_get_driver_tag(struct request * rq)354  static inline bool blk_mq_get_driver_tag(struct request *rq)
355  {
356  	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
357  		return false;
358  
359  	return true;
360  }
361  
blk_mq_clear_mq_map(struct blk_mq_queue_map * qmap)362  static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
363  {
364  	int cpu;
365  
366  	for_each_possible_cpu(cpu)
367  		qmap->mq_map[cpu] = 0;
368  }
369  
370  /* Free all requests on the list */
blk_mq_free_requests(struct list_head * list)371  static inline void blk_mq_free_requests(struct list_head *list)
372  {
373  	while (!list_empty(list)) {
374  		struct request *rq = list_entry_rq(list->next);
375  
376  		list_del_init(&rq->queuelist);
377  		blk_mq_free_request(rq);
378  	}
379  }
380  
381  /*
382   * For shared tag users, we track the number of currently active users
383   * and attempt to provide a fair share of the tag depth for each of them.
384   */
hctx_may_queue(struct blk_mq_hw_ctx * hctx,struct sbitmap_queue * bt)385  static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
386  				  struct sbitmap_queue *bt)
387  {
388  	unsigned int depth, users;
389  
390  	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
391  		return true;
392  
393  	/*
394  	 * Don't try dividing an ant
395  	 */
396  	if (bt->sb.depth == 1)
397  		return true;
398  
399  	if (blk_mq_is_shared_tags(hctx->flags)) {
400  		struct request_queue *q = hctx->queue;
401  
402  		if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
403  			return true;
404  	} else {
405  		if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
406  			return true;
407  	}
408  
409  	users = READ_ONCE(hctx->tags->active_queues);
410  	if (!users)
411  		return true;
412  
413  	/*
414  	 * Allow at least some tags
415  	 */
416  	depth = max((bt->sb.depth + users - 1) / users, 4U);
417  	return __blk_mq_active_requests(hctx) < depth;
418  }
419  
420  /* run the code block in @dispatch_ops with rcu/srcu read lock held */
421  #define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops)	\
422  do {								\
423  	if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) {		\
424  		struct blk_mq_tag_set *__tag_set = (q)->tag_set; \
425  		int srcu_idx;					\
426  								\
427  		might_sleep_if(check_sleep);			\
428  		srcu_idx = srcu_read_lock(__tag_set->srcu);	\
429  		(dispatch_ops);					\
430  		srcu_read_unlock(__tag_set->srcu, srcu_idx);	\
431  	} else {						\
432  		rcu_read_lock();				\
433  		(dispatch_ops);					\
434  		rcu_read_unlock();				\
435  	}							\
436  } while (0)
437  
438  #define blk_mq_run_dispatch_ops(q, dispatch_ops)		\
439  	__blk_mq_run_dispatch_ops(q, true, dispatch_ops)	\
440  
441  #endif
442