1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * blk-mq scheduling framework
4   *
5   * Copyright (C) 2016 Jens Axboe
6   */
7  #include <linux/kernel.h>
8  #include <linux/module.h>
9  #include <linux/list_sort.h>
10  
11  #include <trace/events/block.h>
12  
13  #include "blk.h"
14  #include "blk-mq.h"
15  #include "blk-mq-debugfs.h"
16  #include "blk-mq-sched.h"
17  #include "blk-wbt.h"
18  
19  /*
20   * Mark a hardware queue as needing a restart.
21   */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)22  void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
23  {
24  	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
25  		return;
26  
27  	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
28  }
29  EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
30  
__blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)31  void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
32  {
33  	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
34  
35  	/*
36  	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
37  	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
38  	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
39  	 * meantime new request added to hctx->dispatch is missed to check in
40  	 * blk_mq_run_hw_queue().
41  	 */
42  	smp_mb();
43  
44  	blk_mq_run_hw_queue(hctx, true);
45  }
46  
sched_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)47  static int sched_rq_cmp(void *priv, const struct list_head *a,
48  			const struct list_head *b)
49  {
50  	struct request *rqa = container_of(a, struct request, queuelist);
51  	struct request *rqb = container_of(b, struct request, queuelist);
52  
53  	return rqa->mq_hctx > rqb->mq_hctx;
54  }
55  
blk_mq_dispatch_hctx_list(struct list_head * rq_list)56  static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
57  {
58  	struct blk_mq_hw_ctx *hctx =
59  		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
60  	struct request *rq;
61  	LIST_HEAD(hctx_list);
62  	unsigned int count = 0;
63  
64  	list_for_each_entry(rq, rq_list, queuelist) {
65  		if (rq->mq_hctx != hctx) {
66  			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
67  			goto dispatch;
68  		}
69  		count++;
70  	}
71  	list_splice_tail_init(rq_list, &hctx_list);
72  
73  dispatch:
74  	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
75  }
76  
77  #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
78  
79  /*
80   * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
81   * its queue by itself in its completion handler, so we don't need to
82   * restart queue if .get_budget() fails to get the budget.
83   *
84   * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
85   * be run again.  This is necessary to avoid starving flushes.
86   */
__blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)87  static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
88  {
89  	struct request_queue *q = hctx->queue;
90  	struct elevator_queue *e = q->elevator;
91  	bool multi_hctxs = false, run_queue = false;
92  	bool dispatched = false, busy = false;
93  	unsigned int max_dispatch;
94  	LIST_HEAD(rq_list);
95  	int count = 0;
96  
97  	if (hctx->dispatch_busy)
98  		max_dispatch = 1;
99  	else
100  		max_dispatch = hctx->queue->nr_requests;
101  
102  	do {
103  		struct request *rq;
104  		int budget_token;
105  
106  		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
107  			break;
108  
109  		if (!list_empty_careful(&hctx->dispatch)) {
110  			busy = true;
111  			break;
112  		}
113  
114  		budget_token = blk_mq_get_dispatch_budget(q);
115  		if (budget_token < 0)
116  			break;
117  
118  		rq = e->type->ops.dispatch_request(hctx);
119  		if (!rq) {
120  			blk_mq_put_dispatch_budget(q, budget_token);
121  			/*
122  			 * We're releasing without dispatching. Holding the
123  			 * budget could have blocked any "hctx"s with the
124  			 * same queue and if we didn't dispatch then there's
125  			 * no guarantee anyone will kick the queue.  Kick it
126  			 * ourselves.
127  			 */
128  			run_queue = true;
129  			break;
130  		}
131  
132  		blk_mq_set_rq_budget_token(rq, budget_token);
133  
134  		/*
135  		 * Now this rq owns the budget which has to be released
136  		 * if this rq won't be queued to driver via .queue_rq()
137  		 * in blk_mq_dispatch_rq_list().
138  		 */
139  		list_add_tail(&rq->queuelist, &rq_list);
140  		count++;
141  		if (rq->mq_hctx != hctx)
142  			multi_hctxs = true;
143  
144  		/*
145  		 * If we cannot get tag for the request, stop dequeueing
146  		 * requests from the IO scheduler. We are unlikely to be able
147  		 * to submit them anyway and it creates false impression for
148  		 * scheduling heuristics that the device can take more IO.
149  		 */
150  		if (!blk_mq_get_driver_tag(rq))
151  			break;
152  	} while (count < max_dispatch);
153  
154  	if (!count) {
155  		if (run_queue)
156  			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
157  	} else if (multi_hctxs) {
158  		/*
159  		 * Requests from different hctx may be dequeued from some
160  		 * schedulers, such as bfq and deadline.
161  		 *
162  		 * Sort the requests in the list according to their hctx,
163  		 * dispatch batching requests from same hctx at a time.
164  		 */
165  		list_sort(NULL, &rq_list, sched_rq_cmp);
166  		do {
167  			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
168  		} while (!list_empty(&rq_list));
169  	} else {
170  		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
171  	}
172  
173  	if (busy)
174  		return -EAGAIN;
175  	return !!dispatched;
176  }
177  
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)178  static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
179  {
180  	unsigned long end = jiffies + HZ;
181  	int ret;
182  
183  	do {
184  		ret = __blk_mq_do_dispatch_sched(hctx);
185  		if (ret != 1)
186  			break;
187  		if (need_resched() || time_is_before_jiffies(end)) {
188  			blk_mq_delay_run_hw_queue(hctx, 0);
189  			break;
190  		}
191  	} while (1);
192  
193  	return ret;
194  }
195  
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)196  static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
197  					  struct blk_mq_ctx *ctx)
198  {
199  	unsigned short idx = ctx->index_hw[hctx->type];
200  
201  	if (++idx == hctx->nr_ctx)
202  		idx = 0;
203  
204  	return hctx->ctxs[idx];
205  }
206  
207  /*
208   * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
209   * its queue by itself in its completion handler, so we don't need to
210   * restart queue if .get_budget() fails to get the budget.
211   *
212   * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
213   * be run again.  This is necessary to avoid starving flushes.
214   */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)215  static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
216  {
217  	struct request_queue *q = hctx->queue;
218  	LIST_HEAD(rq_list);
219  	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
220  	int ret = 0;
221  	struct request *rq;
222  
223  	do {
224  		int budget_token;
225  
226  		if (!list_empty_careful(&hctx->dispatch)) {
227  			ret = -EAGAIN;
228  			break;
229  		}
230  
231  		if (!sbitmap_any_bit_set(&hctx->ctx_map))
232  			break;
233  
234  		budget_token = blk_mq_get_dispatch_budget(q);
235  		if (budget_token < 0)
236  			break;
237  
238  		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
239  		if (!rq) {
240  			blk_mq_put_dispatch_budget(q, budget_token);
241  			/*
242  			 * We're releasing without dispatching. Holding the
243  			 * budget could have blocked any "hctx"s with the
244  			 * same queue and if we didn't dispatch then there's
245  			 * no guarantee anyone will kick the queue.  Kick it
246  			 * ourselves.
247  			 */
248  			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
249  			break;
250  		}
251  
252  		blk_mq_set_rq_budget_token(rq, budget_token);
253  
254  		/*
255  		 * Now this rq owns the budget which has to be released
256  		 * if this rq won't be queued to driver via .queue_rq()
257  		 * in blk_mq_dispatch_rq_list().
258  		 */
259  		list_add(&rq->queuelist, &rq_list);
260  
261  		/* round robin for fair dispatch */
262  		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
263  
264  	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
265  
266  	WRITE_ONCE(hctx->dispatch_from, ctx);
267  	return ret;
268  }
269  
__blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)270  static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
271  {
272  	bool need_dispatch = false;
273  	LIST_HEAD(rq_list);
274  
275  	/*
276  	 * If we have previous entries on our dispatch list, grab them first for
277  	 * more fair dispatch.
278  	 */
279  	if (!list_empty_careful(&hctx->dispatch)) {
280  		spin_lock(&hctx->lock);
281  		if (!list_empty(&hctx->dispatch))
282  			list_splice_init(&hctx->dispatch, &rq_list);
283  		spin_unlock(&hctx->lock);
284  	}
285  
286  	/*
287  	 * Only ask the scheduler for requests, if we didn't have residual
288  	 * requests from the dispatch list. This is to avoid the case where
289  	 * we only ever dispatch a fraction of the requests available because
290  	 * of low device queue depth. Once we pull requests out of the IO
291  	 * scheduler, we can no longer merge or sort them. So it's best to
292  	 * leave them there for as long as we can. Mark the hw queue as
293  	 * needing a restart in that case.
294  	 *
295  	 * We want to dispatch from the scheduler if there was nothing
296  	 * on the dispatch list or we were able to dispatch from the
297  	 * dispatch list.
298  	 */
299  	if (!list_empty(&rq_list)) {
300  		blk_mq_sched_mark_restart_hctx(hctx);
301  		if (!blk_mq_dispatch_rq_list(hctx, &rq_list, 0))
302  			return 0;
303  		need_dispatch = true;
304  	} else {
305  		need_dispatch = hctx->dispatch_busy;
306  	}
307  
308  	if (hctx->queue->elevator)
309  		return blk_mq_do_dispatch_sched(hctx);
310  
311  	/* dequeue request one by one from sw queue if queue is busy */
312  	if (need_dispatch)
313  		return blk_mq_do_dispatch_ctx(hctx);
314  	blk_mq_flush_busy_ctxs(hctx, &rq_list);
315  	blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
316  	return 0;
317  }
318  
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)319  void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
320  {
321  	struct request_queue *q = hctx->queue;
322  
323  	/* RCU or SRCU read lock is needed before checking quiesced flag */
324  	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
325  		return;
326  
327  	/*
328  	 * A return of -EAGAIN is an indication that hctx->dispatch is not
329  	 * empty and we must run again in order to avoid starving flushes.
330  	 */
331  	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
332  		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
333  			blk_mq_run_hw_queue(hctx, true);
334  	}
335  }
336  
blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)337  bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
338  		unsigned int nr_segs)
339  {
340  	struct elevator_queue *e = q->elevator;
341  	struct blk_mq_ctx *ctx;
342  	struct blk_mq_hw_ctx *hctx;
343  	bool ret = false;
344  	enum hctx_type type;
345  
346  	if (e && e->type->ops.bio_merge) {
347  		ret = e->type->ops.bio_merge(q, bio, nr_segs);
348  		goto out_put;
349  	}
350  
351  	ctx = blk_mq_get_ctx(q);
352  	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
353  	type = hctx->type;
354  	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
355  	    list_empty_careful(&ctx->rq_lists[type]))
356  		goto out_put;
357  
358  	/* default per sw-queue merge */
359  	spin_lock(&ctx->lock);
360  	/*
361  	 * Reverse check our software queue for entries that we could
362  	 * potentially merge with. Currently includes a hand-wavy stop
363  	 * count of 8, to not spend too much time checking for merges.
364  	 */
365  	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs))
366  		ret = true;
367  
368  	spin_unlock(&ctx->lock);
369  out_put:
370  	return ret;
371  }
372  
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)373  bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
374  				   struct list_head *free)
375  {
376  	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
377  }
378  EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
379  
blk_mq_sched_alloc_map_and_rqs(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)380  static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q,
381  					  struct blk_mq_hw_ctx *hctx,
382  					  unsigned int hctx_idx)
383  {
384  	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
385  		hctx->sched_tags = q->sched_shared_tags;
386  		return 0;
387  	}
388  
389  	hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx,
390  						    q->nr_requests);
391  
392  	if (!hctx->sched_tags)
393  		return -ENOMEM;
394  	return 0;
395  }
396  
blk_mq_exit_sched_shared_tags(struct request_queue * queue)397  static void blk_mq_exit_sched_shared_tags(struct request_queue *queue)
398  {
399  	blk_mq_free_rq_map(queue->sched_shared_tags);
400  	queue->sched_shared_tags = NULL;
401  }
402  
403  /* called in queue's release handler, tagset has gone away */
blk_mq_sched_tags_teardown(struct request_queue * q,unsigned int flags)404  static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags)
405  {
406  	struct blk_mq_hw_ctx *hctx;
407  	unsigned long i;
408  
409  	queue_for_each_hw_ctx(q, hctx, i) {
410  		if (hctx->sched_tags) {
411  			if (!blk_mq_is_shared_tags(flags))
412  				blk_mq_free_rq_map(hctx->sched_tags);
413  			hctx->sched_tags = NULL;
414  		}
415  	}
416  
417  	if (blk_mq_is_shared_tags(flags))
418  		blk_mq_exit_sched_shared_tags(q);
419  }
420  
blk_mq_init_sched_shared_tags(struct request_queue * queue)421  static int blk_mq_init_sched_shared_tags(struct request_queue *queue)
422  {
423  	struct blk_mq_tag_set *set = queue->tag_set;
424  
425  	/*
426  	 * Set initial depth at max so that we don't need to reallocate for
427  	 * updating nr_requests.
428  	 */
429  	queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set,
430  						BLK_MQ_NO_HCTX_IDX,
431  						MAX_SCHED_RQ);
432  	if (!queue->sched_shared_tags)
433  		return -ENOMEM;
434  
435  	blk_mq_tag_update_sched_shared_tags(queue);
436  
437  	return 0;
438  }
439  
440  /* caller must have a reference to @e, will grab another one if successful */
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)441  int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
442  {
443  	unsigned int flags = q->tag_set->flags;
444  	struct blk_mq_hw_ctx *hctx;
445  	struct elevator_queue *eq;
446  	unsigned long i;
447  	int ret;
448  
449  	/*
450  	 * Default to double of smaller one between hw queue_depth and 128,
451  	 * since we don't split into sync/async like the old code did.
452  	 * Additionally, this is a per-hw queue depth.
453  	 */
454  	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
455  				   BLKDEV_DEFAULT_RQ);
456  
457  	if (blk_mq_is_shared_tags(flags)) {
458  		ret = blk_mq_init_sched_shared_tags(q);
459  		if (ret)
460  			return ret;
461  	}
462  
463  	queue_for_each_hw_ctx(q, hctx, i) {
464  		ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i);
465  		if (ret)
466  			goto err_free_map_and_rqs;
467  	}
468  
469  	ret = e->ops.init_sched(q, e);
470  	if (ret)
471  		goto err_free_map_and_rqs;
472  
473  	mutex_lock(&q->debugfs_mutex);
474  	blk_mq_debugfs_register_sched(q);
475  	mutex_unlock(&q->debugfs_mutex);
476  
477  	queue_for_each_hw_ctx(q, hctx, i) {
478  		if (e->ops.init_hctx) {
479  			ret = e->ops.init_hctx(hctx, i);
480  			if (ret) {
481  				eq = q->elevator;
482  				blk_mq_sched_free_rqs(q);
483  				blk_mq_exit_sched(q, eq);
484  				kobject_put(&eq->kobj);
485  				return ret;
486  			}
487  		}
488  		mutex_lock(&q->debugfs_mutex);
489  		blk_mq_debugfs_register_sched_hctx(q, hctx);
490  		mutex_unlock(&q->debugfs_mutex);
491  	}
492  
493  	return 0;
494  
495  err_free_map_and_rqs:
496  	blk_mq_sched_free_rqs(q);
497  	blk_mq_sched_tags_teardown(q, flags);
498  
499  	q->elevator = NULL;
500  	return ret;
501  }
502  
503  /*
504   * called in either blk_queue_cleanup or elevator_switch, tagset
505   * is required for freeing requests
506   */
blk_mq_sched_free_rqs(struct request_queue * q)507  void blk_mq_sched_free_rqs(struct request_queue *q)
508  {
509  	struct blk_mq_hw_ctx *hctx;
510  	unsigned long i;
511  
512  	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
513  		blk_mq_free_rqs(q->tag_set, q->sched_shared_tags,
514  				BLK_MQ_NO_HCTX_IDX);
515  	} else {
516  		queue_for_each_hw_ctx(q, hctx, i) {
517  			if (hctx->sched_tags)
518  				blk_mq_free_rqs(q->tag_set,
519  						hctx->sched_tags, i);
520  		}
521  	}
522  }
523  
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)524  void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
525  {
526  	struct blk_mq_hw_ctx *hctx;
527  	unsigned long i;
528  	unsigned int flags = 0;
529  
530  	queue_for_each_hw_ctx(q, hctx, i) {
531  		mutex_lock(&q->debugfs_mutex);
532  		blk_mq_debugfs_unregister_sched_hctx(hctx);
533  		mutex_unlock(&q->debugfs_mutex);
534  
535  		if (e->type->ops.exit_hctx && hctx->sched_data) {
536  			e->type->ops.exit_hctx(hctx, i);
537  			hctx->sched_data = NULL;
538  		}
539  		flags = hctx->flags;
540  	}
541  
542  	mutex_lock(&q->debugfs_mutex);
543  	blk_mq_debugfs_unregister_sched(q);
544  	mutex_unlock(&q->debugfs_mutex);
545  
546  	if (e->type->ops.exit_sched)
547  		e->type->ops.exit_sched(e);
548  	blk_mq_sched_tags_teardown(q, flags);
549  	q->elevator = NULL;
550  }
551