1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef BLK_INTERNAL_H
3  #define BLK_INTERNAL_H
4  
5  #include <linux/bio-integrity.h>
6  #include <linux/blk-crypto.h>
7  #include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
8  #include <linux/sched/sysctl.h>
9  #include <linux/timekeeping.h>
10  #include <xen/xen.h>
11  #include "blk-crypto-internal.h"
12  
13  struct elevator_type;
14  
15  /* Max future timer expiry for timeouts */
16  #define BLK_MAX_TIMEOUT		(5 * HZ)
17  
18  extern struct dentry *blk_debugfs_root;
19  
20  struct blk_flush_queue {
21  	spinlock_t		mq_flush_lock;
22  	unsigned int		flush_pending_idx:1;
23  	unsigned int		flush_running_idx:1;
24  	blk_status_t 		rq_status;
25  	unsigned long		flush_pending_since;
26  	struct list_head	flush_queue[2];
27  	unsigned long		flush_data_in_flight;
28  	struct request		*flush_rq;
29  };
30  
31  bool is_flush_rq(struct request *req);
32  
33  struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
34  					      gfp_t flags);
35  void blk_free_flush_queue(struct blk_flush_queue *q);
36  
37  void blk_freeze_queue(struct request_queue *q);
38  void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
39  void blk_queue_start_drain(struct request_queue *q);
40  int __bio_queue_enter(struct request_queue *q, struct bio *bio);
41  void submit_bio_noacct_nocheck(struct bio *bio);
42  void bio_await_chain(struct bio *bio);
43  
blk_try_enter_queue(struct request_queue * q,bool pm)44  static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
45  {
46  	rcu_read_lock();
47  	if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
48  		goto fail;
49  
50  	/*
51  	 * The code that increments the pm_only counter must ensure that the
52  	 * counter is globally visible before the queue is unfrozen.
53  	 */
54  	if (blk_queue_pm_only(q) &&
55  	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
56  		goto fail_put;
57  
58  	rcu_read_unlock();
59  	return true;
60  
61  fail_put:
62  	blk_queue_exit(q);
63  fail:
64  	rcu_read_unlock();
65  	return false;
66  }
67  
bio_queue_enter(struct bio * bio)68  static inline int bio_queue_enter(struct bio *bio)
69  {
70  	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
71  
72  	if (blk_try_enter_queue(q, false))
73  		return 0;
74  	return __bio_queue_enter(q, bio);
75  }
76  
blk_wait_io(struct completion * done)77  static inline void blk_wait_io(struct completion *done)
78  {
79  	/* Prevent hang_check timer from firing at us during very long I/O */
80  	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
81  
82  	if (timeout)
83  		while (!wait_for_completion_io_timeout(done, timeout))
84  			;
85  	else
86  		wait_for_completion_io(done);
87  }
88  
89  #define BIO_INLINE_VECS 4
90  struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
91  		gfp_t gfp_mask);
92  void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
93  
94  bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
95  		struct page *page, unsigned len, unsigned offset,
96  		bool *same_page);
97  
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)98  static inline bool biovec_phys_mergeable(struct request_queue *q,
99  		struct bio_vec *vec1, struct bio_vec *vec2)
100  {
101  	unsigned long mask = queue_segment_boundary(q);
102  	phys_addr_t addr1 = bvec_phys(vec1);
103  	phys_addr_t addr2 = bvec_phys(vec2);
104  
105  	/*
106  	 * Merging adjacent physical pages may not work correctly under KMSAN
107  	 * if their metadata pages aren't adjacent. Just disable merging.
108  	 */
109  	if (IS_ENABLED(CONFIG_KMSAN))
110  		return false;
111  
112  	if (addr1 + vec1->bv_len != addr2)
113  		return false;
114  	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
115  		return false;
116  	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
117  		return false;
118  	return true;
119  }
120  
__bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)121  static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
122  		struct bio_vec *bprv, unsigned int offset)
123  {
124  	return (offset & lim->virt_boundary_mask) ||
125  		((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
126  }
127  
128  /*
129   * Check if adding a bio_vec after bprv with offset would create a gap in
130   * the SG list. Most drivers don't care about this, but some do.
131   */
bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)132  static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
133  		struct bio_vec *bprv, unsigned int offset)
134  {
135  	if (!lim->virt_boundary_mask)
136  		return false;
137  	return __bvec_gap_to_prev(lim, bprv, offset);
138  }
139  
rq_mergeable(struct request * rq)140  static inline bool rq_mergeable(struct request *rq)
141  {
142  	if (blk_rq_is_passthrough(rq))
143  		return false;
144  
145  	if (req_op(rq) == REQ_OP_FLUSH)
146  		return false;
147  
148  	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
149  		return false;
150  
151  	if (req_op(rq) == REQ_OP_ZONE_APPEND)
152  		return false;
153  
154  	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
155  		return false;
156  	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
157  		return false;
158  
159  	return true;
160  }
161  
162  /*
163   * There are two different ways to handle DISCARD merges:
164   *  1) If max_discard_segments > 1, the driver treats every bio as a range and
165   *     send the bios to controller together. The ranges don't need to be
166   *     contiguous.
167   *  2) Otherwise, the request will be normal read/write requests.  The ranges
168   *     need to be contiguous.
169   */
blk_discard_mergable(struct request * req)170  static inline bool blk_discard_mergable(struct request *req)
171  {
172  	if (req_op(req) == REQ_OP_DISCARD &&
173  	    queue_max_discard_segments(req->q) > 1)
174  		return true;
175  	return false;
176  }
177  
blk_rq_get_max_segments(struct request * rq)178  static inline unsigned int blk_rq_get_max_segments(struct request *rq)
179  {
180  	if (req_op(rq) == REQ_OP_DISCARD)
181  		return queue_max_discard_segments(rq->q);
182  	return queue_max_segments(rq->q);
183  }
184  
blk_queue_get_max_sectors(struct request * rq)185  static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
186  {
187  	struct request_queue *q = rq->q;
188  	enum req_op op = req_op(rq);
189  
190  	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
191  		return min(q->limits.max_discard_sectors,
192  			   UINT_MAX >> SECTOR_SHIFT);
193  
194  	if (unlikely(op == REQ_OP_WRITE_ZEROES))
195  		return q->limits.max_write_zeroes_sectors;
196  
197  	if (rq->cmd_flags & REQ_ATOMIC)
198  		return q->limits.atomic_write_max_sectors;
199  
200  	return q->limits.max_sectors;
201  }
202  
203  #ifdef CONFIG_BLK_DEV_INTEGRITY
204  void blk_flush_integrity(void);
205  void bio_integrity_free(struct bio *bio);
206  
207  /*
208   * Integrity payloads can either be owned by the submitter, in which case
209   * bio_uninit will free them, or owned and generated by the block layer,
210   * in which case we'll verify them here (for reads) and free them before
211   * the bio is handed back to the submitted.
212   */
213  bool __bio_integrity_endio(struct bio *bio);
bio_integrity_endio(struct bio * bio)214  static inline bool bio_integrity_endio(struct bio *bio)
215  {
216  	struct bio_integrity_payload *bip = bio_integrity(bio);
217  
218  	if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY))
219  		return __bio_integrity_endio(bio);
220  	return true;
221  }
222  
223  bool blk_integrity_merge_rq(struct request_queue *, struct request *,
224  		struct request *);
225  bool blk_integrity_merge_bio(struct request_queue *, struct request *,
226  		struct bio *);
227  
integrity_req_gap_back_merge(struct request * req,struct bio * next)228  static inline bool integrity_req_gap_back_merge(struct request *req,
229  		struct bio *next)
230  {
231  	struct bio_integrity_payload *bip = bio_integrity(req->bio);
232  	struct bio_integrity_payload *bip_next = bio_integrity(next);
233  
234  	return bvec_gap_to_prev(&req->q->limits,
235  				&bip->bip_vec[bip->bip_vcnt - 1],
236  				bip_next->bip_vec[0].bv_offset);
237  }
238  
integrity_req_gap_front_merge(struct request * req,struct bio * bio)239  static inline bool integrity_req_gap_front_merge(struct request *req,
240  		struct bio *bio)
241  {
242  	struct bio_integrity_payload *bip = bio_integrity(bio);
243  	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
244  
245  	return bvec_gap_to_prev(&req->q->limits,
246  				&bip->bip_vec[bip->bip_vcnt - 1],
247  				bip_next->bip_vec[0].bv_offset);
248  }
249  
250  extern const struct attribute_group blk_integrity_attr_group;
251  #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)252  static inline bool blk_integrity_merge_rq(struct request_queue *rq,
253  		struct request *r1, struct request *r2)
254  {
255  	return true;
256  }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)257  static inline bool blk_integrity_merge_bio(struct request_queue *rq,
258  		struct request *r, struct bio *b)
259  {
260  	return true;
261  }
integrity_req_gap_back_merge(struct request * req,struct bio * next)262  static inline bool integrity_req_gap_back_merge(struct request *req,
263  		struct bio *next)
264  {
265  	return false;
266  }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)267  static inline bool integrity_req_gap_front_merge(struct request *req,
268  		struct bio *bio)
269  {
270  	return false;
271  }
272  
blk_flush_integrity(void)273  static inline void blk_flush_integrity(void)
274  {
275  }
bio_integrity_endio(struct bio * bio)276  static inline bool bio_integrity_endio(struct bio *bio)
277  {
278  	return true;
279  }
bio_integrity_free(struct bio * bio)280  static inline void bio_integrity_free(struct bio *bio)
281  {
282  }
283  #endif /* CONFIG_BLK_DEV_INTEGRITY */
284  
285  unsigned long blk_rq_timeout(unsigned long timeout);
286  void blk_add_timer(struct request *req);
287  
288  enum bio_merge_status {
289  	BIO_MERGE_OK,
290  	BIO_MERGE_NONE,
291  	BIO_MERGE_FAILED,
292  };
293  
294  enum bio_merge_status bio_attempt_back_merge(struct request *req,
295  		struct bio *bio, unsigned int nr_segs);
296  bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
297  		unsigned int nr_segs);
298  bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
299  			struct bio *bio, unsigned int nr_segs);
300  
301  /*
302   * Plug flush limits
303   */
304  #define BLK_MAX_REQUEST_COUNT	32
305  #define BLK_PLUG_FLUSH_SIZE	(128 * 1024)
306  
307  /*
308   * Internal elevator interface
309   */
310  #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
311  
312  bool blk_insert_flush(struct request *rq);
313  
314  int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
315  void elevator_disable(struct request_queue *q);
316  void elevator_exit(struct request_queue *q);
317  int elv_register_queue(struct request_queue *q, bool uevent);
318  void elv_unregister_queue(struct request_queue *q);
319  
320  ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
321  		char *buf);
322  ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
323  		char *buf);
324  ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
325  		char *buf);
326  ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
327  		char *buf);
328  ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
329  		const char *buf, size_t count);
330  ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
331  ssize_t part_timeout_store(struct device *, struct device_attribute *,
332  				const char *, size_t);
333  
334  struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
335  		unsigned *nsegs);
336  struct bio *bio_split_write_zeroes(struct bio *bio,
337  		const struct queue_limits *lim, unsigned *nsegs);
338  struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
339  		unsigned *nr_segs);
340  struct bio *bio_split_zone_append(struct bio *bio,
341  		const struct queue_limits *lim, unsigned *nr_segs);
342  
343  /*
344   * All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
345   *
346   * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
347   * always valid if a bio has data.  The check might lead to occasional false
348   * positives when bios are cloned, but compared to the performance impact of
349   * cloned bios themselves the loop below doesn't matter anyway.
350   */
bio_may_need_split(struct bio * bio,const struct queue_limits * lim)351  static inline bool bio_may_need_split(struct bio *bio,
352  		const struct queue_limits *lim)
353  {
354  	return lim->chunk_sectors || bio->bi_vcnt != 1 ||
355  		bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
356  }
357  
358  /**
359   * __bio_split_to_limits - split a bio to fit the queue limits
360   * @bio:     bio to be split
361   * @lim:     queue limits to split based on
362   * @nr_segs: returns the number of segments in the returned bio
363   *
364   * Check if @bio needs splitting based on the queue limits, and if so split off
365   * a bio fitting the limits from the beginning of @bio and return it.  @bio is
366   * shortened to the remainder and re-submitted.
367   *
368   * The split bio is allocated from @q->bio_split, which is provided by the
369   * block layer.
370   */
__bio_split_to_limits(struct bio * bio,const struct queue_limits * lim,unsigned int * nr_segs)371  static inline struct bio *__bio_split_to_limits(struct bio *bio,
372  		const struct queue_limits *lim, unsigned int *nr_segs)
373  {
374  	switch (bio_op(bio)) {
375  	case REQ_OP_READ:
376  	case REQ_OP_WRITE:
377  		if (bio_may_need_split(bio, lim))
378  			return bio_split_rw(bio, lim, nr_segs);
379  		*nr_segs = 1;
380  		return bio;
381  	case REQ_OP_ZONE_APPEND:
382  		return bio_split_zone_append(bio, lim, nr_segs);
383  	case REQ_OP_DISCARD:
384  	case REQ_OP_SECURE_ERASE:
385  		return bio_split_discard(bio, lim, nr_segs);
386  	case REQ_OP_WRITE_ZEROES:
387  		return bio_split_write_zeroes(bio, lim, nr_segs);
388  	default:
389  		/* other operations can't be split */
390  		*nr_segs = 0;
391  		return bio;
392  	}
393  }
394  
395  int ll_back_merge_fn(struct request *req, struct bio *bio,
396  		unsigned int nr_segs);
397  bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
398  				struct request *next);
399  unsigned int blk_recalc_rq_segments(struct request *rq);
400  bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
401  enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
402  
403  int blk_set_default_limits(struct queue_limits *lim);
404  void blk_apply_bdi_limits(struct backing_dev_info *bdi,
405  		struct queue_limits *lim);
406  int blk_dev_init(void);
407  
408  /*
409   * Contribute to IO statistics IFF:
410   *
411   *	a) it's attached to a gendisk, and
412   *	b) the queue had IO stats enabled when this request was started
413   */
blk_do_io_stat(struct request * rq)414  static inline bool blk_do_io_stat(struct request *rq)
415  {
416  	return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq);
417  }
418  
419  void update_io_ticks(struct block_device *part, unsigned long now, bool end);
420  unsigned int part_in_flight(struct block_device *part);
421  
req_set_nomerge(struct request_queue * q,struct request * req)422  static inline void req_set_nomerge(struct request_queue *q, struct request *req)
423  {
424  	req->cmd_flags |= REQ_NOMERGE;
425  	if (req == q->last_merge)
426  		q->last_merge = NULL;
427  }
428  
429  /*
430   * Internal io_context interface
431   */
432  struct io_cq *ioc_find_get_icq(struct request_queue *q);
433  struct io_cq *ioc_lookup_icq(struct request_queue *q);
434  #ifdef CONFIG_BLK_ICQ
435  void ioc_clear_queue(struct request_queue *q);
436  #else
ioc_clear_queue(struct request_queue * q)437  static inline void ioc_clear_queue(struct request_queue *q)
438  {
439  }
440  #endif /* CONFIG_BLK_ICQ */
441  
442  struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
443  
blk_queue_may_bounce(struct request_queue * q)444  static inline bool blk_queue_may_bounce(struct request_queue *q)
445  {
446  	return IS_ENABLED(CONFIG_BOUNCE) &&
447  		(q->limits.features & BLK_FEAT_BOUNCE_HIGH) &&
448  		max_low_pfn >= max_pfn;
449  }
450  
blk_queue_bounce(struct bio * bio,struct request_queue * q)451  static inline struct bio *blk_queue_bounce(struct bio *bio,
452  		struct request_queue *q)
453  {
454  	if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
455  		return __blk_queue_bounce(bio, q);
456  	return bio;
457  }
458  
459  #ifdef CONFIG_BLK_DEV_ZONED
460  void disk_init_zone_resources(struct gendisk *disk);
461  void disk_free_zone_resources(struct gendisk *disk);
bio_zone_write_plugging(struct bio * bio)462  static inline bool bio_zone_write_plugging(struct bio *bio)
463  {
464  	return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
465  }
bio_is_zone_append(struct bio * bio)466  static inline bool bio_is_zone_append(struct bio *bio)
467  {
468  	return bio_op(bio) == REQ_OP_ZONE_APPEND ||
469  		bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
470  }
471  void blk_zone_write_plug_bio_merged(struct bio *bio);
472  void blk_zone_write_plug_init_request(struct request *rq);
blk_zone_update_request_bio(struct request * rq,struct bio * bio)473  static inline void blk_zone_update_request_bio(struct request *rq,
474  					       struct bio *bio)
475  {
476  	/*
477  	 * For zone append requests, the request sector indicates the location
478  	 * at which the BIO data was written. Return this value to the BIO
479  	 * issuer through the BIO iter sector.
480  	 * For plugged zone writes, which include emulated zone append, we need
481  	 * the original BIO sector so that blk_zone_write_plug_bio_endio() can
482  	 * lookup the zone write plug.
483  	 */
484  	if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio))
485  		bio->bi_iter.bi_sector = rq->__sector;
486  }
487  void blk_zone_write_plug_bio_endio(struct bio *bio);
blk_zone_bio_endio(struct bio * bio)488  static inline void blk_zone_bio_endio(struct bio *bio)
489  {
490  	/*
491  	 * For write BIOs to zoned devices, signal the completion of the BIO so
492  	 * that the next write BIO can be submitted by zone write plugging.
493  	 */
494  	if (bio_zone_write_plugging(bio))
495  		blk_zone_write_plug_bio_endio(bio);
496  }
497  
498  void blk_zone_write_plug_finish_request(struct request *rq);
blk_zone_finish_request(struct request * rq)499  static inline void blk_zone_finish_request(struct request *rq)
500  {
501  	if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
502  		blk_zone_write_plug_finish_request(rq);
503  }
504  int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
505  		unsigned long arg);
506  int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
507  		unsigned int cmd, unsigned long arg);
508  #else /* CONFIG_BLK_DEV_ZONED */
disk_init_zone_resources(struct gendisk * disk)509  static inline void disk_init_zone_resources(struct gendisk *disk)
510  {
511  }
disk_free_zone_resources(struct gendisk * disk)512  static inline void disk_free_zone_resources(struct gendisk *disk)
513  {
514  }
bio_zone_write_plugging(struct bio * bio)515  static inline bool bio_zone_write_plugging(struct bio *bio)
516  {
517  	return false;
518  }
bio_is_zone_append(struct bio * bio)519  static inline bool bio_is_zone_append(struct bio *bio)
520  {
521  	return false;
522  }
blk_zone_write_plug_bio_merged(struct bio * bio)523  static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
524  {
525  }
blk_zone_write_plug_init_request(struct request * rq)526  static inline void blk_zone_write_plug_init_request(struct request *rq)
527  {
528  }
blk_zone_update_request_bio(struct request * rq,struct bio * bio)529  static inline void blk_zone_update_request_bio(struct request *rq,
530  					       struct bio *bio)
531  {
532  }
blk_zone_bio_endio(struct bio * bio)533  static inline void blk_zone_bio_endio(struct bio *bio)
534  {
535  }
blk_zone_finish_request(struct request * rq)536  static inline void blk_zone_finish_request(struct request *rq)
537  {
538  }
blkdev_report_zones_ioctl(struct block_device * bdev,unsigned int cmd,unsigned long arg)539  static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
540  		unsigned int cmd, unsigned long arg)
541  {
542  	return -ENOTTY;
543  }
blkdev_zone_mgmt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)544  static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
545  		blk_mode_t mode, unsigned int cmd, unsigned long arg)
546  {
547  	return -ENOTTY;
548  }
549  #endif /* CONFIG_BLK_DEV_ZONED */
550  
551  struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
552  void bdev_add(struct block_device *bdev, dev_t dev);
553  void bdev_unhash(struct block_device *bdev);
554  void bdev_drop(struct block_device *bdev);
555  
556  int blk_alloc_ext_minor(void);
557  void blk_free_ext_minor(unsigned int minor);
558  #define ADDPART_FLAG_NONE	0
559  #define ADDPART_FLAG_RAID	1
560  #define ADDPART_FLAG_WHOLEDISK	2
561  int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
562  		sector_t length);
563  int bdev_del_partition(struct gendisk *disk, int partno);
564  int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
565  		sector_t length);
566  void drop_partition(struct block_device *part);
567  
568  void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
569  
570  struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
571  		struct lock_class_key *lkclass);
572  
573  int bio_add_hw_page(struct request_queue *q, struct bio *bio,
574  		struct page *page, unsigned int len, unsigned int offset,
575  		unsigned int max_sectors, bool *same_page);
576  
577  int bio_add_hw_folio(struct request_queue *q, struct bio *bio,
578  		struct folio *folio, size_t len, size_t offset,
579  		unsigned int max_sectors, bool *same_page);
580  
581  /*
582   * Clean up a page appropriately, where the page may be pinned, may have a
583   * ref taken on it or neither.
584   */
bio_release_page(struct bio * bio,struct page * page)585  static inline void bio_release_page(struct bio *bio, struct page *page)
586  {
587  	if (bio_flagged(bio, BIO_PAGE_PINNED))
588  		unpin_user_page(page);
589  }
590  
591  struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
592  
593  int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
594  
595  int disk_alloc_events(struct gendisk *disk);
596  void disk_add_events(struct gendisk *disk);
597  void disk_del_events(struct gendisk *disk);
598  void disk_release_events(struct gendisk *disk);
599  void disk_block_events(struct gendisk *disk);
600  void disk_unblock_events(struct gendisk *disk);
601  void disk_flush_events(struct gendisk *disk, unsigned int mask);
602  extern struct device_attribute dev_attr_events;
603  extern struct device_attribute dev_attr_events_async;
604  extern struct device_attribute dev_attr_events_poll_msecs;
605  
606  extern struct attribute_group blk_trace_attr_group;
607  
608  blk_mode_t file_to_blk_mode(struct file *file);
609  int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
610  		loff_t lstart, loff_t lend);
611  long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
612  int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags);
613  long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
614  
615  extern const struct address_space_operations def_blk_aops;
616  
617  int disk_register_independent_access_ranges(struct gendisk *disk);
618  void disk_unregister_independent_access_ranges(struct gendisk *disk);
619  
620  #ifdef CONFIG_FAIL_MAKE_REQUEST
621  bool should_fail_request(struct block_device *part, unsigned int bytes);
622  #else /* CONFIG_FAIL_MAKE_REQUEST */
should_fail_request(struct block_device * part,unsigned int bytes)623  static inline bool should_fail_request(struct block_device *part,
624  					unsigned int bytes)
625  {
626  	return false;
627  }
628  #endif /* CONFIG_FAIL_MAKE_REQUEST */
629  
630  /*
631   * Optimized request reference counting. Ideally we'd make timeouts be more
632   * clever, as that's the only reason we need references at all... But until
633   * this happens, this is faster than using refcount_t. Also see:
634   *
635   * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
636   */
637  #define req_ref_zero_or_close_to_overflow(req)	\
638  	((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
639  
req_ref_inc_not_zero(struct request * req)640  static inline bool req_ref_inc_not_zero(struct request *req)
641  {
642  	return atomic_inc_not_zero(&req->ref);
643  }
644  
req_ref_put_and_test(struct request * req)645  static inline bool req_ref_put_and_test(struct request *req)
646  {
647  	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
648  	return atomic_dec_and_test(&req->ref);
649  }
650  
req_ref_set(struct request * req,int value)651  static inline void req_ref_set(struct request *req, int value)
652  {
653  	atomic_set(&req->ref, value);
654  }
655  
req_ref_read(struct request * req)656  static inline int req_ref_read(struct request *req)
657  {
658  	return atomic_read(&req->ref);
659  }
660  
blk_time_get_ns(void)661  static inline u64 blk_time_get_ns(void)
662  {
663  	struct blk_plug *plug = current->plug;
664  
665  	if (!plug || !in_task())
666  		return ktime_get_ns();
667  
668  	/*
669  	 * 0 could very well be a valid time, but rather than flag "this is
670  	 * a valid timestamp" separately, just accept that we'll do an extra
671  	 * ktime_get_ns() if we just happen to get 0 as the current time.
672  	 */
673  	if (!plug->cur_ktime) {
674  		plug->cur_ktime = ktime_get_ns();
675  		current->flags |= PF_BLOCK_TS;
676  	}
677  	return plug->cur_ktime;
678  }
679  
blk_time_get(void)680  static inline ktime_t blk_time_get(void)
681  {
682  	return ns_to_ktime(blk_time_get_ns());
683  }
684  
685  /*
686   * From most significant bit:
687   * 1 bit: reserved for other usage, see below
688   * 12 bits: original size of bio
689   * 51 bits: issue time of bio
690   */
691  #define BIO_ISSUE_RES_BITS      1
692  #define BIO_ISSUE_SIZE_BITS     12
693  #define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
694  #define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
695  #define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
696  #define BIO_ISSUE_SIZE_MASK     \
697  	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
698  #define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
699  
700  /* Reserved bit for blk-throtl */
701  #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
702  
__bio_issue_time(u64 time)703  static inline u64 __bio_issue_time(u64 time)
704  {
705  	return time & BIO_ISSUE_TIME_MASK;
706  }
707  
bio_issue_time(struct bio_issue * issue)708  static inline u64 bio_issue_time(struct bio_issue *issue)
709  {
710  	return __bio_issue_time(issue->value);
711  }
712  
bio_issue_size(struct bio_issue * issue)713  static inline sector_t bio_issue_size(struct bio_issue *issue)
714  {
715  	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
716  }
717  
bio_issue_init(struct bio_issue * issue,sector_t size)718  static inline void bio_issue_init(struct bio_issue *issue,
719  				       sector_t size)
720  {
721  	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
722  	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
723  			(blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
724  			((u64)size << BIO_ISSUE_SIZE_SHIFT));
725  }
726  
727  void bdev_release(struct file *bdev_file);
728  int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
729  	      const struct blk_holder_ops *hops, struct file *bdev_file);
730  int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
731  
732  void blk_integrity_generate(struct bio *bio);
733  void blk_integrity_verify(struct bio *bio);
734  void blk_integrity_prepare(struct request *rq);
735  void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
736  
737  #endif /* BLK_INTERNAL_H */
738