1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4   */
5  #ifndef __LINUX_BIO_H
6  #define __LINUX_BIO_H
7  
8  #include <linux/mempool.h>
9  /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10  #include <linux/blk_types.h>
11  #include <linux/uio.h>
12  
13  #define BIO_MAX_VECS		256U
14  
15  struct queue_limits;
16  
bio_max_segs(unsigned int nr_segs)17  static inline unsigned int bio_max_segs(unsigned int nr_segs)
18  {
19  	return min(nr_segs, BIO_MAX_VECS);
20  }
21  
22  #define bio_prio(bio)			(bio)->bi_ioprio
23  #define bio_set_prio(bio, prio)		((bio)->bi_ioprio = prio)
24  
25  #define bio_iter_iovec(bio, iter)				\
26  	bvec_iter_bvec((bio)->bi_io_vec, (iter))
27  
28  #define bio_iter_page(bio, iter)				\
29  	bvec_iter_page((bio)->bi_io_vec, (iter))
30  #define bio_iter_len(bio, iter)					\
31  	bvec_iter_len((bio)->bi_io_vec, (iter))
32  #define bio_iter_offset(bio, iter)				\
33  	bvec_iter_offset((bio)->bi_io_vec, (iter))
34  
35  #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
36  #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
37  #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
38  
39  #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
40  #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
41  
42  #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
43  #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
44  
45  /*
46   * Return the data direction, READ or WRITE.
47   */
48  #define bio_data_dir(bio) \
49  	(op_is_write(bio_op(bio)) ? WRITE : READ)
50  
51  /*
52   * Check whether this bio carries any data or not. A NULL bio is allowed.
53   */
bio_has_data(struct bio * bio)54  static inline bool bio_has_data(struct bio *bio)
55  {
56  	if (bio &&
57  	    bio->bi_iter.bi_size &&
58  	    bio_op(bio) != REQ_OP_DISCARD &&
59  	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
60  	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
61  		return true;
62  
63  	return false;
64  }
65  
bio_no_advance_iter(const struct bio * bio)66  static inline bool bio_no_advance_iter(const struct bio *bio)
67  {
68  	return bio_op(bio) == REQ_OP_DISCARD ||
69  	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
70  	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
71  }
72  
bio_data(struct bio * bio)73  static inline void *bio_data(struct bio *bio)
74  {
75  	if (bio_has_data(bio))
76  		return page_address(bio_page(bio)) + bio_offset(bio);
77  
78  	return NULL;
79  }
80  
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)81  static inline bool bio_next_segment(const struct bio *bio,
82  				    struct bvec_iter_all *iter)
83  {
84  	if (iter->idx >= bio->bi_vcnt)
85  		return false;
86  
87  	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
88  	return true;
89  }
90  
91  /*
92   * drivers should _never_ use the all version - the bio may have been split
93   * before it got to the driver and the driver won't own all of it
94   */
95  #define bio_for_each_segment_all(bvl, bio, iter) \
96  	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
97  
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)98  static inline void bio_advance_iter(const struct bio *bio,
99  				    struct bvec_iter *iter, unsigned int bytes)
100  {
101  	iter->bi_sector += bytes >> 9;
102  
103  	if (bio_no_advance_iter(bio))
104  		iter->bi_size -= bytes;
105  	else
106  		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
107  		/* TODO: It is reasonable to complete bio with error here. */
108  }
109  
110  /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)111  static inline void bio_advance_iter_single(const struct bio *bio,
112  					   struct bvec_iter *iter,
113  					   unsigned int bytes)
114  {
115  	iter->bi_sector += bytes >> 9;
116  
117  	if (bio_no_advance_iter(bio))
118  		iter->bi_size -= bytes;
119  	else
120  		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
121  }
122  
123  void __bio_advance(struct bio *, unsigned bytes);
124  
125  /**
126   * bio_advance - increment/complete a bio by some number of bytes
127   * @bio:	bio to advance
128   * @nbytes:	number of bytes to complete
129   *
130   * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
131   * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
132   * be updated on the last bvec as well.
133   *
134   * @bio will then represent the remaining, uncompleted portion of the io.
135   */
bio_advance(struct bio * bio,unsigned int nbytes)136  static inline void bio_advance(struct bio *bio, unsigned int nbytes)
137  {
138  	if (nbytes == bio->bi_iter.bi_size) {
139  		bio->bi_iter.bi_size = 0;
140  		return;
141  	}
142  	__bio_advance(bio, nbytes);
143  }
144  
145  #define __bio_for_each_segment(bvl, bio, iter, start)			\
146  	for (iter = (start);						\
147  	     (iter).bi_size &&						\
148  		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
149  	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
150  
151  #define bio_for_each_segment(bvl, bio, iter)				\
152  	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
153  
154  #define __bio_for_each_bvec(bvl, bio, iter, start)		\
155  	for (iter = (start);						\
156  	     (iter).bi_size &&						\
157  		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
158  	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
159  
160  /* iterate over multi-page bvec */
161  #define bio_for_each_bvec(bvl, bio, iter)			\
162  	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
163  
164  /*
165   * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
166   * same reasons as bio_for_each_segment_all().
167   */
168  #define bio_for_each_bvec_all(bvl, bio, i)		\
169  	for (i = 0, bvl = bio_first_bvec_all(bio);	\
170  	     i < (bio)->bi_vcnt; i++, bvl++)
171  
172  #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
173  
bio_segments(struct bio * bio)174  static inline unsigned bio_segments(struct bio *bio)
175  {
176  	unsigned segs = 0;
177  	struct bio_vec bv;
178  	struct bvec_iter iter;
179  
180  	/*
181  	 * We special case discard/write same/write zeroes, because they
182  	 * interpret bi_size differently:
183  	 */
184  
185  	switch (bio_op(bio)) {
186  	case REQ_OP_DISCARD:
187  	case REQ_OP_SECURE_ERASE:
188  	case REQ_OP_WRITE_ZEROES:
189  		return 0;
190  	default:
191  		break;
192  	}
193  
194  	bio_for_each_segment(bv, bio, iter)
195  		segs++;
196  
197  	return segs;
198  }
199  
200  /*
201   * get a reference to a bio, so it won't disappear. the intended use is
202   * something like:
203   *
204   * bio_get(bio);
205   * submit_bio(rw, bio);
206   * if (bio->bi_flags ...)
207   *	do_something
208   * bio_put(bio);
209   *
210   * without the bio_get(), it could potentially complete I/O before submit_bio
211   * returns. and then bio would be freed memory when if (bio->bi_flags ...)
212   * runs
213   */
bio_get(struct bio * bio)214  static inline void bio_get(struct bio *bio)
215  {
216  	bio->bi_flags |= (1 << BIO_REFFED);
217  	smp_mb__before_atomic();
218  	atomic_inc(&bio->__bi_cnt);
219  }
220  
bio_cnt_set(struct bio * bio,unsigned int count)221  static inline void bio_cnt_set(struct bio *bio, unsigned int count)
222  {
223  	if (count != 1) {
224  		bio->bi_flags |= (1 << BIO_REFFED);
225  		smp_mb();
226  	}
227  	atomic_set(&bio->__bi_cnt, count);
228  }
229  
bio_flagged(struct bio * bio,unsigned int bit)230  static inline bool bio_flagged(struct bio *bio, unsigned int bit)
231  {
232  	return bio->bi_flags & (1U << bit);
233  }
234  
bio_set_flag(struct bio * bio,unsigned int bit)235  static inline void bio_set_flag(struct bio *bio, unsigned int bit)
236  {
237  	bio->bi_flags |= (1U << bit);
238  }
239  
bio_clear_flag(struct bio * bio,unsigned int bit)240  static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
241  {
242  	bio->bi_flags &= ~(1U << bit);
243  }
244  
bio_first_bvec_all(struct bio * bio)245  static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
246  {
247  	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
248  	return bio->bi_io_vec;
249  }
250  
bio_first_page_all(struct bio * bio)251  static inline struct page *bio_first_page_all(struct bio *bio)
252  {
253  	return bio_first_bvec_all(bio)->bv_page;
254  }
255  
bio_first_folio_all(struct bio * bio)256  static inline struct folio *bio_first_folio_all(struct bio *bio)
257  {
258  	return page_folio(bio_first_page_all(bio));
259  }
260  
bio_last_bvec_all(struct bio * bio)261  static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
262  {
263  	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
264  	return &bio->bi_io_vec[bio->bi_vcnt - 1];
265  }
266  
267  /**
268   * struct folio_iter - State for iterating all folios in a bio.
269   * @folio: The current folio we're iterating.  NULL after the last folio.
270   * @offset: The byte offset within the current folio.
271   * @length: The number of bytes in this iteration (will not cross folio
272   *	boundary).
273   */
274  struct folio_iter {
275  	struct folio *folio;
276  	size_t offset;
277  	size_t length;
278  	/* private: for use by the iterator */
279  	struct folio *_next;
280  	size_t _seg_count;
281  	int _i;
282  };
283  
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)284  static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
285  				   int i)
286  {
287  	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
288  
289  	if (unlikely(i >= bio->bi_vcnt)) {
290  		fi->folio = NULL;
291  		return;
292  	}
293  
294  	fi->folio = page_folio(bvec->bv_page);
295  	fi->offset = bvec->bv_offset +
296  			PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
297  	fi->_seg_count = bvec->bv_len;
298  	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
299  	fi->_next = folio_next(fi->folio);
300  	fi->_i = i;
301  }
302  
bio_next_folio(struct folio_iter * fi,struct bio * bio)303  static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
304  {
305  	fi->_seg_count -= fi->length;
306  	if (fi->_seg_count) {
307  		fi->folio = fi->_next;
308  		fi->offset = 0;
309  		fi->length = min(folio_size(fi->folio), fi->_seg_count);
310  		fi->_next = folio_next(fi->folio);
311  	} else {
312  		bio_first_folio(fi, bio, fi->_i + 1);
313  	}
314  }
315  
316  /**
317   * bio_for_each_folio_all - Iterate over each folio in a bio.
318   * @fi: struct folio_iter which is updated for each folio.
319   * @bio: struct bio to iterate over.
320   */
321  #define bio_for_each_folio_all(fi, bio)				\
322  	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
323  
324  void bio_trim(struct bio *bio, sector_t offset, sector_t size);
325  extern struct bio *bio_split(struct bio *bio, int sectors,
326  			     gfp_t gfp, struct bio_set *bs);
327  int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
328  		unsigned *segs, unsigned max_bytes);
329  
330  /**
331   * bio_next_split - get next @sectors from a bio, splitting if necessary
332   * @bio:	bio to split
333   * @sectors:	number of sectors to split from the front of @bio
334   * @gfp:	gfp mask
335   * @bs:		bio set to allocate from
336   *
337   * Return: a bio representing the next @sectors of @bio - if the bio is smaller
338   * than @sectors, returns the original bio unchanged.
339   */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)340  static inline struct bio *bio_next_split(struct bio *bio, int sectors,
341  					 gfp_t gfp, struct bio_set *bs)
342  {
343  	if (sectors >= bio_sectors(bio))
344  		return bio;
345  
346  	return bio_split(bio, sectors, gfp, bs);
347  }
348  
349  enum {
350  	BIOSET_NEED_BVECS = BIT(0),
351  	BIOSET_NEED_RESCUER = BIT(1),
352  	BIOSET_PERCPU_CACHE = BIT(2),
353  };
354  extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
355  extern void bioset_exit(struct bio_set *);
356  extern int biovec_init_pool(mempool_t *pool, int pool_entries);
357  
358  struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
359  			     blk_opf_t opf, gfp_t gfp_mask,
360  			     struct bio_set *bs);
361  struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
362  extern void bio_put(struct bio *);
363  
364  struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
365  		gfp_t gfp, struct bio_set *bs);
366  int bio_init_clone(struct block_device *bdev, struct bio *bio,
367  		struct bio *bio_src, gfp_t gfp);
368  
369  extern struct bio_set fs_bio_set;
370  
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)371  static inline struct bio *bio_alloc(struct block_device *bdev,
372  		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
373  {
374  	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
375  }
376  
377  void submit_bio(struct bio *bio);
378  
379  extern void bio_endio(struct bio *);
380  
bio_io_error(struct bio * bio)381  static inline void bio_io_error(struct bio *bio)
382  {
383  	bio->bi_status = BLK_STS_IOERR;
384  	bio_endio(bio);
385  }
386  
bio_wouldblock_error(struct bio * bio)387  static inline void bio_wouldblock_error(struct bio *bio)
388  {
389  	bio_set_flag(bio, BIO_QUIET);
390  	bio->bi_status = BLK_STS_AGAIN;
391  	bio_endio(bio);
392  }
393  
394  /*
395   * Calculate number of bvec segments that should be allocated to fit data
396   * pointed by @iter. If @iter is backed by bvec it's going to be reused
397   * instead of allocating a new one.
398   */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)399  static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
400  {
401  	if (iov_iter_is_bvec(iter))
402  		return 0;
403  	return iov_iter_npages(iter, max_segs);
404  }
405  
406  struct request_queue;
407  
408  extern int submit_bio_wait(struct bio *bio);
409  void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
410  	      unsigned short max_vecs, blk_opf_t opf);
411  extern void bio_uninit(struct bio *);
412  void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
413  void bio_chain(struct bio *, struct bio *);
414  
415  int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
416  			      unsigned off);
417  bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
418  				size_t len, size_t off);
419  extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
420  			   unsigned int, unsigned int);
421  int bio_add_zone_append_page(struct bio *bio, struct page *page,
422  			     unsigned int len, unsigned int offset);
423  void __bio_add_page(struct bio *bio, struct page *page,
424  		unsigned int len, unsigned int off);
425  void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
426  			  size_t off);
427  int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
428  void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
429  void __bio_release_pages(struct bio *bio, bool mark_dirty);
430  extern void bio_set_pages_dirty(struct bio *bio);
431  extern void bio_check_pages_dirty(struct bio *bio);
432  
433  extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
434  			       struct bio *src, struct bvec_iter *src_iter);
435  extern void bio_copy_data(struct bio *dst, struct bio *src);
436  extern void bio_free_pages(struct bio *bio);
437  void guard_bio_eod(struct bio *bio);
438  void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
439  
zero_fill_bio(struct bio * bio)440  static inline void zero_fill_bio(struct bio *bio)
441  {
442  	zero_fill_bio_iter(bio, bio->bi_iter);
443  }
444  
bio_release_pages(struct bio * bio,bool mark_dirty)445  static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
446  {
447  	if (bio_flagged(bio, BIO_PAGE_PINNED))
448  		__bio_release_pages(bio, mark_dirty);
449  }
450  
451  #define bio_dev(bio) \
452  	disk_devt((bio)->bi_bdev->bd_disk)
453  
454  #ifdef CONFIG_BLK_CGROUP
455  void bio_associate_blkg(struct bio *bio);
456  void bio_associate_blkg_from_css(struct bio *bio,
457  				 struct cgroup_subsys_state *css);
458  void bio_clone_blkg_association(struct bio *dst, struct bio *src);
459  void blkcg_punt_bio_submit(struct bio *bio);
460  #else	/* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)461  static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)462  static inline void bio_associate_blkg_from_css(struct bio *bio,
463  					       struct cgroup_subsys_state *css)
464  { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)465  static inline void bio_clone_blkg_association(struct bio *dst,
466  					      struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)467  static inline void blkcg_punt_bio_submit(struct bio *bio)
468  {
469  	submit_bio(bio);
470  }
471  #endif	/* CONFIG_BLK_CGROUP */
472  
bio_set_dev(struct bio * bio,struct block_device * bdev)473  static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
474  {
475  	bio_clear_flag(bio, BIO_REMAPPED);
476  	if (bio->bi_bdev != bdev)
477  		bio_clear_flag(bio, BIO_BPS_THROTTLED);
478  	bio->bi_bdev = bdev;
479  	bio_associate_blkg(bio);
480  }
481  
482  /*
483   * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
484   *
485   * A bio_list anchors a singly-linked list of bios chained through the bi_next
486   * member of the bio.  The bio_list also caches the last list member to allow
487   * fast access to the tail.
488   */
489  struct bio_list {
490  	struct bio *head;
491  	struct bio *tail;
492  };
493  
bio_list_empty(const struct bio_list * bl)494  static inline int bio_list_empty(const struct bio_list *bl)
495  {
496  	return bl->head == NULL;
497  }
498  
bio_list_init(struct bio_list * bl)499  static inline void bio_list_init(struct bio_list *bl)
500  {
501  	bl->head = bl->tail = NULL;
502  }
503  
504  #define BIO_EMPTY_LIST	{ NULL, NULL }
505  
506  #define bio_list_for_each(bio, bl) \
507  	for (bio = (bl)->head; bio; bio = bio->bi_next)
508  
bio_list_size(const struct bio_list * bl)509  static inline unsigned bio_list_size(const struct bio_list *bl)
510  {
511  	unsigned sz = 0;
512  	struct bio *bio;
513  
514  	bio_list_for_each(bio, bl)
515  		sz++;
516  
517  	return sz;
518  }
519  
bio_list_add(struct bio_list * bl,struct bio * bio)520  static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
521  {
522  	bio->bi_next = NULL;
523  
524  	if (bl->tail)
525  		bl->tail->bi_next = bio;
526  	else
527  		bl->head = bio;
528  
529  	bl->tail = bio;
530  }
531  
bio_list_add_head(struct bio_list * bl,struct bio * bio)532  static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
533  {
534  	bio->bi_next = bl->head;
535  
536  	bl->head = bio;
537  
538  	if (!bl->tail)
539  		bl->tail = bio;
540  }
541  
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)542  static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
543  {
544  	if (!bl2->head)
545  		return;
546  
547  	if (bl->tail)
548  		bl->tail->bi_next = bl2->head;
549  	else
550  		bl->head = bl2->head;
551  
552  	bl->tail = bl2->tail;
553  }
554  
bio_list_merge_init(struct bio_list * bl,struct bio_list * bl2)555  static inline void bio_list_merge_init(struct bio_list *bl,
556  		struct bio_list *bl2)
557  {
558  	bio_list_merge(bl, bl2);
559  	bio_list_init(bl2);
560  }
561  
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)562  static inline void bio_list_merge_head(struct bio_list *bl,
563  				       struct bio_list *bl2)
564  {
565  	if (!bl2->head)
566  		return;
567  
568  	if (bl->head)
569  		bl2->tail->bi_next = bl->head;
570  	else
571  		bl->tail = bl2->tail;
572  
573  	bl->head = bl2->head;
574  }
575  
bio_list_peek(struct bio_list * bl)576  static inline struct bio *bio_list_peek(struct bio_list *bl)
577  {
578  	return bl->head;
579  }
580  
bio_list_pop(struct bio_list * bl)581  static inline struct bio *bio_list_pop(struct bio_list *bl)
582  {
583  	struct bio *bio = bl->head;
584  
585  	if (bio) {
586  		bl->head = bl->head->bi_next;
587  		if (!bl->head)
588  			bl->tail = NULL;
589  
590  		bio->bi_next = NULL;
591  	}
592  
593  	return bio;
594  }
595  
bio_list_get(struct bio_list * bl)596  static inline struct bio *bio_list_get(struct bio_list *bl)
597  {
598  	struct bio *bio = bl->head;
599  
600  	bl->head = bl->tail = NULL;
601  
602  	return bio;
603  }
604  
605  /*
606   * Increment chain count for the bio. Make sure the CHAIN flag update
607   * is visible before the raised count.
608   */
bio_inc_remaining(struct bio * bio)609  static inline void bio_inc_remaining(struct bio *bio)
610  {
611  	bio_set_flag(bio, BIO_CHAIN);
612  	smp_mb__before_atomic();
613  	atomic_inc(&bio->__bi_remaining);
614  }
615  
616  /*
617   * bio_set is used to allow other portions of the IO system to
618   * allocate their own private memory pools for bio and iovec structures.
619   * These memory pools in turn all allocate from the bio_slab
620   * and the bvec_slabs[].
621   */
622  #define BIO_POOL_SIZE 2
623  
624  struct bio_set {
625  	struct kmem_cache *bio_slab;
626  	unsigned int front_pad;
627  
628  	/*
629  	 * per-cpu bio alloc cache
630  	 */
631  	struct bio_alloc_cache __percpu *cache;
632  
633  	mempool_t bio_pool;
634  	mempool_t bvec_pool;
635  #if defined(CONFIG_BLK_DEV_INTEGRITY)
636  	mempool_t bio_integrity_pool;
637  	mempool_t bvec_integrity_pool;
638  #endif
639  
640  	unsigned int back_pad;
641  	/*
642  	 * Deadlock avoidance for stacking block drivers: see comments in
643  	 * bio_alloc_bioset() for details
644  	 */
645  	spinlock_t		rescue_lock;
646  	struct bio_list		rescue_list;
647  	struct work_struct	rescue_work;
648  	struct workqueue_struct	*rescue_workqueue;
649  
650  	/*
651  	 * Hot un-plug notifier for the per-cpu cache, if used
652  	 */
653  	struct hlist_node cpuhp_dead;
654  };
655  
bioset_initialized(struct bio_set * bs)656  static inline bool bioset_initialized(struct bio_set *bs)
657  {
658  	return bs->bio_slab != NULL;
659  }
660  
661  /*
662   * Mark a bio as polled. Note that for async polled IO, the caller must
663   * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
664   * We cannot block waiting for requests on polled IO, as those completions
665   * must be found by the caller. This is different than IRQ driven IO, where
666   * it's safe to wait for IO to complete.
667   */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)668  static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
669  {
670  	bio->bi_opf |= REQ_POLLED;
671  	if (kiocb->ki_flags & IOCB_NOWAIT)
672  		bio->bi_opf |= REQ_NOWAIT;
673  }
674  
bio_clear_polled(struct bio * bio)675  static inline void bio_clear_polled(struct bio *bio)
676  {
677  	bio->bi_opf &= ~REQ_POLLED;
678  }
679  
680  struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
681  		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
682  struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
683  
684  struct bio *blk_alloc_discard_bio(struct block_device *bdev,
685  		sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
686  
687  #endif /* __LINUX_BIO_H */
688