1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_BYTEORDER_GENERIC_H
3  #define _LINUX_BYTEORDER_GENERIC_H
4  
5  /*
6   * linux/byteorder/generic.h
7   * Generic Byte-reordering support
8   *
9   * The "... p" macros, like le64_to_cpup, can be used with pointers
10   * to unaligned data, but there will be a performance penalty on
11   * some architectures.  Use get_unaligned for unaligned data.
12   *
13   * Francois-Rene Rideau <fare@tunes.org> 19970707
14   *    gathered all the good ideas from all asm-foo/byteorder.h into one file,
15   *    cleaned them up.
16   *    I hope it is compliant with non-GCC compilers.
17   *    I decided to put __BYTEORDER_HAS_U64__ in byteorder.h,
18   *    because I wasn't sure it would be ok to put it in types.h
19   *    Upgraded it to 2.1.43
20   * Francois-Rene Rideau <fare@tunes.org> 19971012
21   *    Upgraded it to 2.1.57
22   *    to please Linus T., replaced huge #ifdef's between little/big endian
23   *    by nestedly #include'd files.
24   * Francois-Rene Rideau <fare@tunes.org> 19971205
25   *    Made it to 2.1.71; now a facelift:
26   *    Put files under include/linux/byteorder/
27   *    Split swab from generic support.
28   *
29   * TODO:
30   *   = Regular kernel maintainers could also replace all these manual
31   *    byteswap macros that remain, disseminated among drivers,
32   *    after some grep or the sources...
33   *   = Linus might want to rename all these macros and files to fit his taste,
34   *    to fit his personal naming scheme.
35   *   = it seems that a few drivers would also appreciate
36   *    nybble swapping support...
37   *   = every architecture could add their byteswap macro in asm/byteorder.h
38   *    see how some architectures already do (i386, alpha, ppc, etc)
39   *   = cpu_to_beXX and beXX_to_cpu might some day need to be well
40   *    distinguished throughout the kernel. This is not the case currently,
41   *    since little endian, big endian, and pdp endian machines needn't it.
42   *    But this might be the case for, say, a port of Linux to 20/21 bit
43   *    architectures (and F21 Linux addict around?).
44   */
45  
46  /*
47   * The following macros are to be defined by <asm/byteorder.h>:
48   *
49   * Conversion of long and short int between network and host format
50   *	ntohl(__u32 x)
51   *	ntohs(__u16 x)
52   *	htonl(__u32 x)
53   *	htons(__u16 x)
54   * It seems that some programs (which? where? or perhaps a standard? POSIX?)
55   * might like the above to be functions, not macros (why?).
56   * if that's true, then detect them, and take measures.
57   * Anyway, the measure is: define only ___ntohl as a macro instead,
58   * and in a separate file, have
59   * unsigned long inline ntohl(x){return ___ntohl(x);}
60   *
61   * The same for constant arguments
62   *	__constant_ntohl(__u32 x)
63   *	__constant_ntohs(__u16 x)
64   *	__constant_htonl(__u32 x)
65   *	__constant_htons(__u16 x)
66   *
67   * Conversion of XX-bit integers (16- 32- or 64-)
68   * between native CPU format and little/big endian format
69   * 64-bit stuff only defined for proper architectures
70   *	cpu_to_[bl]eXX(__uXX x)
71   *	[bl]eXX_to_cpu(__uXX x)
72   *
73   * The same, but takes a pointer to the value to convert
74   *	cpu_to_[bl]eXXp(__uXX x)
75   *	[bl]eXX_to_cpup(__uXX x)
76   *
77   * The same, but change in situ
78   *	cpu_to_[bl]eXXs(__uXX x)
79   *	[bl]eXX_to_cpus(__uXX x)
80   *
81   * See asm-foo/byteorder.h for examples of how to provide
82   * architecture-optimized versions
83   *
84   */
85  
86  #define cpu_to_le64 __cpu_to_le64
87  #define le64_to_cpu __le64_to_cpu
88  #define cpu_to_le32 __cpu_to_le32
89  #define le32_to_cpu __le32_to_cpu
90  #define cpu_to_le16 __cpu_to_le16
91  #define le16_to_cpu __le16_to_cpu
92  #define cpu_to_be64 __cpu_to_be64
93  #define be64_to_cpu __be64_to_cpu
94  #define cpu_to_be32 __cpu_to_be32
95  #define be32_to_cpu __be32_to_cpu
96  #define cpu_to_be16 __cpu_to_be16
97  #define be16_to_cpu __be16_to_cpu
98  #define cpu_to_le64p __cpu_to_le64p
99  #define le64_to_cpup __le64_to_cpup
100  #define cpu_to_le32p __cpu_to_le32p
101  #define le32_to_cpup __le32_to_cpup
102  #define cpu_to_le16p __cpu_to_le16p
103  #define le16_to_cpup __le16_to_cpup
104  #define cpu_to_be64p __cpu_to_be64p
105  #define be64_to_cpup __be64_to_cpup
106  #define cpu_to_be32p __cpu_to_be32p
107  #define be32_to_cpup __be32_to_cpup
108  #define cpu_to_be16p __cpu_to_be16p
109  #define be16_to_cpup __be16_to_cpup
110  #define cpu_to_le64s __cpu_to_le64s
111  #define le64_to_cpus __le64_to_cpus
112  #define cpu_to_le32s __cpu_to_le32s
113  #define le32_to_cpus __le32_to_cpus
114  #define cpu_to_le16s __cpu_to_le16s
115  #define le16_to_cpus __le16_to_cpus
116  #define cpu_to_be64s __cpu_to_be64s
117  #define be64_to_cpus __be64_to_cpus
118  #define cpu_to_be32s __cpu_to_be32s
119  #define be32_to_cpus __be32_to_cpus
120  #define cpu_to_be16s __cpu_to_be16s
121  #define be16_to_cpus __be16_to_cpus
122  
123  /*
124   * They have to be macros in order to do the constant folding
125   * correctly - if the argument passed into a inline function
126   * it is no longer constant according to gcc..
127   */
128  
129  #undef ntohl
130  #undef ntohs
131  #undef htonl
132  #undef htons
133  
134  #define ___htonl(x) __cpu_to_be32(x)
135  #define ___htons(x) __cpu_to_be16(x)
136  #define ___ntohl(x) __be32_to_cpu(x)
137  #define ___ntohs(x) __be16_to_cpu(x)
138  
139  #define htonl(x) ___htonl(x)
140  #define ntohl(x) ___ntohl(x)
141  #define htons(x) ___htons(x)
142  #define ntohs(x) ___ntohs(x)
143  
le16_add_cpu(__le16 * var,u16 val)144  static inline void le16_add_cpu(__le16 *var, u16 val)
145  {
146  	*var = cpu_to_le16(le16_to_cpu(*var) + val);
147  }
148  
le32_add_cpu(__le32 * var,u32 val)149  static inline void le32_add_cpu(__le32 *var, u32 val)
150  {
151  	*var = cpu_to_le32(le32_to_cpu(*var) + val);
152  }
153  
le64_add_cpu(__le64 * var,u64 val)154  static inline void le64_add_cpu(__le64 *var, u64 val)
155  {
156  	*var = cpu_to_le64(le64_to_cpu(*var) + val);
157  }
158  
159  /* XXX: this stuff can be optimized */
le32_to_cpu_array(u32 * buf,unsigned int words)160  static inline void le32_to_cpu_array(u32 *buf, unsigned int words)
161  {
162  	while (words--) {
163  		__le32_to_cpus(buf);
164  		buf++;
165  	}
166  }
167  
cpu_to_le32_array(u32 * buf,unsigned int words)168  static inline void cpu_to_le32_array(u32 *buf, unsigned int words)
169  {
170  	while (words--) {
171  		__cpu_to_le32s(buf);
172  		buf++;
173  	}
174  }
175  
be16_add_cpu(__be16 * var,u16 val)176  static inline void be16_add_cpu(__be16 *var, u16 val)
177  {
178  	*var = cpu_to_be16(be16_to_cpu(*var) + val);
179  }
180  
be32_add_cpu(__be32 * var,u32 val)181  static inline void be32_add_cpu(__be32 *var, u32 val)
182  {
183  	*var = cpu_to_be32(be32_to_cpu(*var) + val);
184  }
185  
be64_add_cpu(__be64 * var,u64 val)186  static inline void be64_add_cpu(__be64 *var, u64 val)
187  {
188  	*var = cpu_to_be64(be64_to_cpu(*var) + val);
189  }
190  
cpu_to_be32_array(__be32 * dst,const u32 * src,size_t len)191  static inline void cpu_to_be32_array(__be32 *dst, const u32 *src, size_t len)
192  {
193  	size_t i;
194  
195  	for (i = 0; i < len; i++)
196  		dst[i] = cpu_to_be32(src[i]);
197  }
198  
be32_to_cpu_array(u32 * dst,const __be32 * src,size_t len)199  static inline void be32_to_cpu_array(u32 *dst, const __be32 *src, size_t len)
200  {
201  	size_t i;
202  
203  	for (i = 0; i < len; i++)
204  		dst[i] = be32_to_cpu(src[i]);
205  }
206  
207  #endif /* _LINUX_BYTEORDER_GENERIC_H */
208