1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 #include "writeback.h"
29 
sort_key_next(struct btree_iter * iter,struct btree_iter_set * i)30 static void sort_key_next(struct btree_iter *iter,
31 			  struct btree_iter_set *i)
32 {
33 	i->k = bkey_next(i->k);
34 
35 	if (i->k == i->end)
36 		*i = iter->heap.data[--iter->heap.nr];
37 }
38 
new_bch_key_sort_cmp(const void * l,const void * r,void * args)39 static bool new_bch_key_sort_cmp(const void *l, const void *r, void *args)
40 {
41 	struct btree_iter_set *_l = (struct btree_iter_set *)l;
42 	struct btree_iter_set *_r = (struct btree_iter_set *)r;
43 	int64_t c = bkey_cmp(_l->k, _r->k);
44 
45 	return !(c ? c > 0 : _l->k < _r->k);
46 }
47 
__ptr_invalid(struct cache_set * c,const struct bkey * k)48 static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
49 {
50 	unsigned int i;
51 
52 	for (i = 0; i < KEY_PTRS(k); i++)
53 		if (ptr_available(c, k, i)) {
54 			struct cache *ca = c->cache;
55 			size_t bucket = PTR_BUCKET_NR(c, k, i);
56 			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
57 
58 			if (KEY_SIZE(k) + r > c->cache->sb.bucket_size ||
59 			    bucket <  ca->sb.first_bucket ||
60 			    bucket >= ca->sb.nbuckets)
61 				return true;
62 		}
63 
64 	return false;
65 }
66 
67 /* Common among btree and extent ptrs */
68 
bch_ptr_status(struct cache_set * c,const struct bkey * k)69 static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
70 {
71 	unsigned int i;
72 
73 	for (i = 0; i < KEY_PTRS(k); i++)
74 		if (ptr_available(c, k, i)) {
75 			struct cache *ca = c->cache;
76 			size_t bucket = PTR_BUCKET_NR(c, k, i);
77 			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
78 
79 			if (KEY_SIZE(k) + r > c->cache->sb.bucket_size)
80 				return "bad, length too big";
81 			if (bucket <  ca->sb.first_bucket)
82 				return "bad, short offset";
83 			if (bucket >= ca->sb.nbuckets)
84 				return "bad, offset past end of device";
85 			if (ptr_stale(c, k, i))
86 				return "stale";
87 		}
88 
89 	if (!bkey_cmp(k, &ZERO_KEY))
90 		return "bad, null key";
91 	if (!KEY_PTRS(k))
92 		return "bad, no pointers";
93 	if (!KEY_SIZE(k))
94 		return "zeroed key";
95 	return "";
96 }
97 
bch_extent_to_text(char * buf,size_t size,const struct bkey * k)98 void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
99 {
100 	unsigned int i = 0;
101 	char *out = buf, *end = buf + size;
102 
103 #define p(...)	(out += scnprintf(out, end - out, __VA_ARGS__))
104 
105 	p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
106 
107 	for (i = 0; i < KEY_PTRS(k); i++) {
108 		if (i)
109 			p(", ");
110 
111 		if (PTR_DEV(k, i) == PTR_CHECK_DEV)
112 			p("check dev");
113 		else
114 			p("%llu:%llu gen %llu", PTR_DEV(k, i),
115 			  PTR_OFFSET(k, i), PTR_GEN(k, i));
116 	}
117 
118 	p("]");
119 
120 	if (KEY_DIRTY(k))
121 		p(" dirty");
122 	if (KEY_CSUM(k))
123 		p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
124 #undef p
125 }
126 
bch_bkey_dump(struct btree_keys * keys,const struct bkey * k)127 static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
128 {
129 	struct btree *b = container_of(keys, struct btree, keys);
130 	unsigned int j;
131 	char buf[80];
132 
133 	bch_extent_to_text(buf, sizeof(buf), k);
134 	pr_cont(" %s", buf);
135 
136 	for (j = 0; j < KEY_PTRS(k); j++) {
137 		size_t n = PTR_BUCKET_NR(b->c, k, j);
138 
139 		pr_cont(" bucket %zu", n);
140 		if (n >= b->c->cache->sb.first_bucket && n < b->c->cache->sb.nbuckets)
141 			pr_cont(" prio %i",
142 				PTR_BUCKET(b->c, k, j)->prio);
143 	}
144 
145 	pr_cont(" %s\n", bch_ptr_status(b->c, k));
146 }
147 
148 /* Btree ptrs */
149 
__bch_btree_ptr_invalid(struct cache_set * c,const struct bkey * k)150 bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
151 {
152 	char buf[80];
153 
154 	if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
155 		goto bad;
156 
157 	if (__ptr_invalid(c, k))
158 		goto bad;
159 
160 	return false;
161 bad:
162 	bch_extent_to_text(buf, sizeof(buf), k);
163 	cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
164 	return true;
165 }
166 
bch_btree_ptr_invalid(struct btree_keys * bk,const struct bkey * k)167 static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
168 {
169 	struct btree *b = container_of(bk, struct btree, keys);
170 
171 	return __bch_btree_ptr_invalid(b->c, k);
172 }
173 
btree_ptr_bad_expensive(struct btree * b,const struct bkey * k)174 static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
175 {
176 	unsigned int i;
177 	char buf[80];
178 	struct bucket *g;
179 
180 	if (mutex_trylock(&b->c->bucket_lock)) {
181 		for (i = 0; i < KEY_PTRS(k); i++)
182 			if (ptr_available(b->c, k, i)) {
183 				g = PTR_BUCKET(b->c, k, i);
184 
185 				if (KEY_DIRTY(k) ||
186 				    g->prio != BTREE_PRIO ||
187 				    (b->c->gc_mark_valid &&
188 				     GC_MARK(g) != GC_MARK_METADATA))
189 					goto err;
190 			}
191 
192 		mutex_unlock(&b->c->bucket_lock);
193 	}
194 
195 	return false;
196 err:
197 	mutex_unlock(&b->c->bucket_lock);
198 	bch_extent_to_text(buf, sizeof(buf), k);
199 	btree_bug(b,
200 "inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
201 		  buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
202 		  g->prio, g->gen, g->last_gc, GC_MARK(g));
203 	return true;
204 }
205 
bch_btree_ptr_bad(struct btree_keys * bk,const struct bkey * k)206 static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
207 {
208 	struct btree *b = container_of(bk, struct btree, keys);
209 	unsigned int i;
210 
211 	if (!bkey_cmp(k, &ZERO_KEY) ||
212 	    !KEY_PTRS(k) ||
213 	    bch_ptr_invalid(bk, k))
214 		return true;
215 
216 	for (i = 0; i < KEY_PTRS(k); i++)
217 		if (!ptr_available(b->c, k, i) ||
218 		    ptr_stale(b->c, k, i))
219 			return true;
220 
221 	if (expensive_debug_checks(b->c) &&
222 	    btree_ptr_bad_expensive(b, k))
223 		return true;
224 
225 	return false;
226 }
227 
bch_btree_ptr_insert_fixup(struct btree_keys * bk,struct bkey * insert,struct btree_iter * iter,struct bkey * replace_key)228 static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
229 				       struct bkey *insert,
230 				       struct btree_iter *iter,
231 				       struct bkey *replace_key)
232 {
233 	struct btree *b = container_of(bk, struct btree, keys);
234 
235 	if (!KEY_OFFSET(insert))
236 		btree_current_write(b)->prio_blocked++;
237 
238 	return false;
239 }
240 
241 const struct btree_keys_ops bch_btree_keys_ops = {
242 	.sort_cmp	= new_bch_key_sort_cmp,
243 	.insert_fixup	= bch_btree_ptr_insert_fixup,
244 	.key_invalid	= bch_btree_ptr_invalid,
245 	.key_bad	= bch_btree_ptr_bad,
246 	.key_to_text	= bch_extent_to_text,
247 	.key_dump	= bch_bkey_dump,
248 };
249 
250 /* Extents */
251 
252 /*
253  * Returns true if l > r - unless l == r, in which case returns true if l is
254  * older than r.
255  *
256  * Necessary for btree_sort_fixup() - if there are multiple keys that compare
257  * equal in different sets, we have to process them newest to oldest.
258  */
259 
new_bch_extent_sort_cmp(const void * l,const void * r,void __always_unused * args)260 static bool new_bch_extent_sort_cmp(const void *l, const void *r, void __always_unused *args)
261 {
262 	struct btree_iter_set *_l = (struct btree_iter_set *)l;
263 	struct btree_iter_set *_r = (struct btree_iter_set *)r;
264 	int64_t c = bkey_cmp(&START_KEY(_l->k), &START_KEY(_r->k));
265 
266 	return !(c ? c > 0 : _l->k < _r->k);
267 }
268 
new_btree_iter_swap(void * iter1,void * iter2,void __always_unused * args)269 static inline void new_btree_iter_swap(void *iter1, void *iter2, void __always_unused *args)
270 {
271 	struct btree_iter_set *_iter1 = iter1;
272 	struct btree_iter_set *_iter2 = iter2;
273 
274 	swap(*_iter1, *_iter2);
275 }
276 
bch_extent_sort_fixup(struct btree_iter * iter,struct bkey * tmp)277 static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
278 					  struct bkey *tmp)
279 {
280 	const struct min_heap_callbacks callbacks = {
281 		.less = new_bch_extent_sort_cmp,
282 		.swp = new_btree_iter_swap,
283 	};
284 	while (iter->heap.nr > 1) {
285 		struct btree_iter_set *top = iter->heap.data, *i = top + 1;
286 
287 		if (iter->heap.nr > 2 &&
288 		    !new_bch_extent_sort_cmp(&i[0], &i[1], NULL))
289 			i++;
290 
291 		if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
292 			break;
293 
294 		if (!KEY_SIZE(i->k)) {
295 			sort_key_next(iter, i);
296 			min_heap_sift_down(&iter->heap, i - top, &callbacks, NULL);
297 			continue;
298 		}
299 
300 		if (top->k > i->k) {
301 			if (bkey_cmp(top->k, i->k) >= 0)
302 				sort_key_next(iter, i);
303 			else
304 				bch_cut_front(top->k, i->k);
305 
306 			min_heap_sift_down(&iter->heap, i - top, &callbacks, NULL);
307 		} else {
308 			/* can't happen because of comparison func */
309 			BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
310 
311 			if (bkey_cmp(i->k, top->k) < 0) {
312 				bkey_copy(tmp, top->k);
313 
314 				bch_cut_back(&START_KEY(i->k), tmp);
315 				bch_cut_front(i->k, top->k);
316 				min_heap_sift_down(&iter->heap, 0, &callbacks, NULL);
317 
318 				return tmp;
319 			} else {
320 				bch_cut_back(&START_KEY(i->k), top->k);
321 			}
322 		}
323 	}
324 
325 	return NULL;
326 }
327 
bch_subtract_dirty(struct bkey * k,struct cache_set * c,uint64_t offset,int sectors)328 static void bch_subtract_dirty(struct bkey *k,
329 			   struct cache_set *c,
330 			   uint64_t offset,
331 			   int sectors)
332 {
333 	if (KEY_DIRTY(k))
334 		bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
335 					     offset, -sectors);
336 }
337 
bch_extent_insert_fixup(struct btree_keys * b,struct bkey * insert,struct btree_iter * iter,struct bkey * replace_key)338 static bool bch_extent_insert_fixup(struct btree_keys *b,
339 				    struct bkey *insert,
340 				    struct btree_iter *iter,
341 				    struct bkey *replace_key)
342 {
343 	struct cache_set *c = container_of(b, struct btree, keys)->c;
344 
345 	uint64_t old_offset;
346 	unsigned int old_size, sectors_found = 0;
347 
348 	BUG_ON(!KEY_OFFSET(insert));
349 	BUG_ON(!KEY_SIZE(insert));
350 
351 	while (1) {
352 		struct bkey *k = bch_btree_iter_next(iter);
353 
354 		if (!k)
355 			break;
356 
357 		if (bkey_cmp(&START_KEY(k), insert) >= 0) {
358 			if (KEY_SIZE(k))
359 				break;
360 			else
361 				continue;
362 		}
363 
364 		if (bkey_cmp(k, &START_KEY(insert)) <= 0)
365 			continue;
366 
367 		old_offset = KEY_START(k);
368 		old_size = KEY_SIZE(k);
369 
370 		/*
371 		 * We might overlap with 0 size extents; we can't skip these
372 		 * because if they're in the set we're inserting to we have to
373 		 * adjust them so they don't overlap with the key we're
374 		 * inserting. But we don't want to check them for replace
375 		 * operations.
376 		 */
377 
378 		if (replace_key && KEY_SIZE(k)) {
379 			/*
380 			 * k might have been split since we inserted/found the
381 			 * key we're replacing
382 			 */
383 			unsigned int i;
384 			uint64_t offset = KEY_START(k) -
385 				KEY_START(replace_key);
386 
387 			/* But it must be a subset of the replace key */
388 			if (KEY_START(k) < KEY_START(replace_key) ||
389 			    KEY_OFFSET(k) > KEY_OFFSET(replace_key))
390 				goto check_failed;
391 
392 			/* We didn't find a key that we were supposed to */
393 			if (KEY_START(k) > KEY_START(insert) + sectors_found)
394 				goto check_failed;
395 
396 			if (!bch_bkey_equal_header(k, replace_key))
397 				goto check_failed;
398 
399 			/* skip past gen */
400 			offset <<= 8;
401 
402 			BUG_ON(!KEY_PTRS(replace_key));
403 
404 			for (i = 0; i < KEY_PTRS(replace_key); i++)
405 				if (k->ptr[i] != replace_key->ptr[i] + offset)
406 					goto check_failed;
407 
408 			sectors_found = KEY_OFFSET(k) - KEY_START(insert);
409 		}
410 
411 		if (bkey_cmp(insert, k) < 0 &&
412 		    bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
413 			/*
414 			 * We overlapped in the middle of an existing key: that
415 			 * means we have to split the old key. But we have to do
416 			 * slightly different things depending on whether the
417 			 * old key has been written out yet.
418 			 */
419 
420 			struct bkey *top;
421 
422 			bch_subtract_dirty(k, c, KEY_START(insert),
423 				       KEY_SIZE(insert));
424 
425 			if (bkey_written(b, k)) {
426 				/*
427 				 * We insert a new key to cover the top of the
428 				 * old key, and the old key is modified in place
429 				 * to represent the bottom split.
430 				 *
431 				 * It's completely arbitrary whether the new key
432 				 * is the top or the bottom, but it has to match
433 				 * up with what btree_sort_fixup() does - it
434 				 * doesn't check for this kind of overlap, it
435 				 * depends on us inserting a new key for the top
436 				 * here.
437 				 */
438 				top = bch_bset_search(b, bset_tree_last(b),
439 						      insert);
440 				bch_bset_insert(b, top, k);
441 			} else {
442 				BKEY_PADDED(key) temp;
443 				bkey_copy(&temp.key, k);
444 				bch_bset_insert(b, k, &temp.key);
445 				top = bkey_next(k);
446 			}
447 
448 			bch_cut_front(insert, top);
449 			bch_cut_back(&START_KEY(insert), k);
450 			bch_bset_fix_invalidated_key(b, k);
451 			goto out;
452 		}
453 
454 		if (bkey_cmp(insert, k) < 0) {
455 			bch_cut_front(insert, k);
456 		} else {
457 			if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
458 				old_offset = KEY_START(insert);
459 
460 			if (bkey_written(b, k) &&
461 			    bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
462 				/*
463 				 * Completely overwrote, so we don't have to
464 				 * invalidate the binary search tree
465 				 */
466 				bch_cut_front(k, k);
467 			} else {
468 				__bch_cut_back(&START_KEY(insert), k);
469 				bch_bset_fix_invalidated_key(b, k);
470 			}
471 		}
472 
473 		bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
474 	}
475 
476 check_failed:
477 	if (replace_key) {
478 		if (!sectors_found) {
479 			return true;
480 		} else if (sectors_found < KEY_SIZE(insert)) {
481 			SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
482 				       (KEY_SIZE(insert) - sectors_found));
483 			SET_KEY_SIZE(insert, sectors_found);
484 		}
485 	}
486 out:
487 	if (KEY_DIRTY(insert))
488 		bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
489 					     KEY_START(insert),
490 					     KEY_SIZE(insert));
491 
492 	return false;
493 }
494 
__bch_extent_invalid(struct cache_set * c,const struct bkey * k)495 bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
496 {
497 	char buf[80];
498 
499 	if (!KEY_SIZE(k))
500 		return true;
501 
502 	if (KEY_SIZE(k) > KEY_OFFSET(k))
503 		goto bad;
504 
505 	if (__ptr_invalid(c, k))
506 		goto bad;
507 
508 	return false;
509 bad:
510 	bch_extent_to_text(buf, sizeof(buf), k);
511 	cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
512 	return true;
513 }
514 
bch_extent_invalid(struct btree_keys * bk,const struct bkey * k)515 static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
516 {
517 	struct btree *b = container_of(bk, struct btree, keys);
518 
519 	return __bch_extent_invalid(b->c, k);
520 }
521 
bch_extent_bad_expensive(struct btree * b,const struct bkey * k,unsigned int ptr)522 static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
523 				     unsigned int ptr)
524 {
525 	struct bucket *g = PTR_BUCKET(b->c, k, ptr);
526 	char buf[80];
527 
528 	if (mutex_trylock(&b->c->bucket_lock)) {
529 		if (b->c->gc_mark_valid &&
530 		    (!GC_MARK(g) ||
531 		     GC_MARK(g) == GC_MARK_METADATA ||
532 		     (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
533 			goto err;
534 
535 		if (g->prio == BTREE_PRIO)
536 			goto err;
537 
538 		mutex_unlock(&b->c->bucket_lock);
539 	}
540 
541 	return false;
542 err:
543 	mutex_unlock(&b->c->bucket_lock);
544 	bch_extent_to_text(buf, sizeof(buf), k);
545 	btree_bug(b,
546 "inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
547 		  buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
548 		  g->prio, g->gen, g->last_gc, GC_MARK(g));
549 	return true;
550 }
551 
bch_extent_bad(struct btree_keys * bk,const struct bkey * k)552 static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
553 {
554 	struct btree *b = container_of(bk, struct btree, keys);
555 	unsigned int i, stale;
556 	char buf[80];
557 
558 	if (!KEY_PTRS(k) ||
559 	    bch_extent_invalid(bk, k))
560 		return true;
561 
562 	for (i = 0; i < KEY_PTRS(k); i++)
563 		if (!ptr_available(b->c, k, i))
564 			return true;
565 
566 	for (i = 0; i < KEY_PTRS(k); i++) {
567 		stale = ptr_stale(b->c, k, i);
568 
569 		if (stale && KEY_DIRTY(k)) {
570 			bch_extent_to_text(buf, sizeof(buf), k);
571 			pr_info("stale dirty pointer, stale %u, key: %s\n",
572 				stale, buf);
573 		}
574 
575 		btree_bug_on(stale > BUCKET_GC_GEN_MAX, b,
576 			     "key too stale: %i, need_gc %u",
577 			     stale, b->c->need_gc);
578 
579 		if (stale)
580 			return true;
581 
582 		if (expensive_debug_checks(b->c) &&
583 		    bch_extent_bad_expensive(b, k, i))
584 			return true;
585 	}
586 
587 	return false;
588 }
589 
merge_chksums(struct bkey * l,struct bkey * r)590 static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
591 {
592 	return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
593 		~((uint64_t)1 << 63);
594 }
595 
bch_extent_merge(struct btree_keys * bk,struct bkey * l,struct bkey * r)596 static bool bch_extent_merge(struct btree_keys *bk,
597 			     struct bkey *l,
598 			     struct bkey *r)
599 {
600 	struct btree *b = container_of(bk, struct btree, keys);
601 	unsigned int i;
602 
603 	if (key_merging_disabled(b->c))
604 		return false;
605 
606 	for (i = 0; i < KEY_PTRS(l); i++)
607 		if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
608 		    PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
609 			return false;
610 
611 	/* Keys with no pointers aren't restricted to one bucket and could
612 	 * overflow KEY_SIZE
613 	 */
614 	if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
615 		SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
616 		SET_KEY_SIZE(l, USHRT_MAX);
617 
618 		bch_cut_front(l, r);
619 		return false;
620 	}
621 
622 	if (KEY_CSUM(l)) {
623 		if (KEY_CSUM(r))
624 			l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
625 		else
626 			SET_KEY_CSUM(l, 0);
627 	}
628 
629 	SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
630 	SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
631 
632 	return true;
633 }
634 
635 const struct btree_keys_ops bch_extent_keys_ops = {
636 	.sort_cmp	= new_bch_extent_sort_cmp,
637 	.sort_fixup	= bch_extent_sort_fixup,
638 	.insert_fixup	= bch_extent_insert_fixup,
639 	.key_invalid	= bch_extent_invalid,
640 	.key_bad	= bch_extent_bad,
641 	.key_merge	= bch_extent_merge,
642 	.key_to_text	= bch_extent_to_text,
643 	.key_dump	= bch_bkey_dump,
644 	.is_extents	= true,
645 };
646