1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_node_scan.h"
19 #include "btree_update_interior.h"
20 #include "btree_io.h"
21 #include "btree_write_buffer.h"
22 #include "buckets_waiting_for_journal.h"
23 #include "chardev.h"
24 #include "checksum.h"
25 #include "clock.h"
26 #include "compress.h"
27 #include "debug.h"
28 #include "disk_accounting.h"
29 #include "disk_groups.h"
30 #include "ec.h"
31 #include "errcode.h"
32 #include "error.h"
33 #include "fs.h"
34 #include "fs-io.h"
35 #include "fs-io-buffered.h"
36 #include "fs-io-direct.h"
37 #include "fsck.h"
38 #include "inode.h"
39 #include "io_read.h"
40 #include "io_write.h"
41 #include "journal.h"
42 #include "journal_reclaim.h"
43 #include "journal_seq_blacklist.h"
44 #include "move.h"
45 #include "migrate.h"
46 #include "movinggc.h"
47 #include "nocow_locking.h"
48 #include "quota.h"
49 #include "rebalance.h"
50 #include "recovery.h"
51 #include "replicas.h"
52 #include "sb-clean.h"
53 #include "sb-counters.h"
54 #include "sb-errors.h"
55 #include "sb-members.h"
56 #include "snapshot.h"
57 #include "subvolume.h"
58 #include "super.h"
59 #include "super-io.h"
60 #include "sysfs.h"
61 #include "thread_with_file.h"
62 #include "trace.h"
63 
64 #include <linux/backing-dev.h>
65 #include <linux/blkdev.h>
66 #include <linux/debugfs.h>
67 #include <linux/device.h>
68 #include <linux/idr.h>
69 #include <linux/module.h>
70 #include <linux/percpu.h>
71 #include <linux/random.h>
72 #include <linux/sysfs.h>
73 #include <crypto/hash.h>
74 
75 MODULE_LICENSE("GPL");
76 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
77 MODULE_DESCRIPTION("bcachefs filesystem");
78 MODULE_SOFTDEP("pre: crc32c");
79 MODULE_SOFTDEP("pre: crc64");
80 MODULE_SOFTDEP("pre: sha256");
81 MODULE_SOFTDEP("pre: chacha20");
82 MODULE_SOFTDEP("pre: poly1305");
83 MODULE_SOFTDEP("pre: xxhash");
84 
85 const char * const bch2_fs_flag_strs[] = {
86 #define x(n)		#n,
87 	BCH_FS_FLAGS()
88 #undef x
89 	NULL
90 };
91 
bch2_print_str(struct bch_fs * c,const char * str)92 void bch2_print_str(struct bch_fs *c, const char *str)
93 {
94 #ifdef __KERNEL__
95 	struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
96 
97 	if (unlikely(stdio)) {
98 		bch2_stdio_redirect_printf(stdio, true, "%s", str);
99 		return;
100 	}
101 #endif
102 	bch2_print_string_as_lines(KERN_ERR, str);
103 }
104 
105 __printf(2, 0)
bch2_print_maybe_redirect(struct stdio_redirect * stdio,const char * fmt,va_list args)106 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
107 {
108 #ifdef __KERNEL__
109 	if (unlikely(stdio)) {
110 		if (fmt[0] == KERN_SOH[0])
111 			fmt += 2;
112 
113 		bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
114 		return;
115 	}
116 #endif
117 	vprintk(fmt, args);
118 }
119 
bch2_print_opts(struct bch_opts * opts,const char * fmt,...)120 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
121 {
122 	struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
123 
124 	va_list args;
125 	va_start(args, fmt);
126 	bch2_print_maybe_redirect(stdio, fmt, args);
127 	va_end(args);
128 }
129 
__bch2_print(struct bch_fs * c,const char * fmt,...)130 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
131 {
132 	struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
133 
134 	va_list args;
135 	va_start(args, fmt);
136 	bch2_print_maybe_redirect(stdio, fmt, args);
137 	va_end(args);
138 }
139 
140 #define KTYPE(type)							\
141 static const struct attribute_group type ## _group = {			\
142 	.attrs = type ## _files						\
143 };									\
144 									\
145 static const struct attribute_group *type ## _groups[] = {		\
146 	&type ## _group,						\
147 	NULL								\
148 };									\
149 									\
150 static const struct kobj_type type ## _ktype = {			\
151 	.release	= type ## _release,				\
152 	.sysfs_ops	= &type ## _sysfs_ops,				\
153 	.default_groups = type ## _groups				\
154 }
155 
156 static void bch2_fs_release(struct kobject *);
157 static void bch2_dev_release(struct kobject *);
bch2_fs_counters_release(struct kobject * k)158 static void bch2_fs_counters_release(struct kobject *k)
159 {
160 }
161 
bch2_fs_internal_release(struct kobject * k)162 static void bch2_fs_internal_release(struct kobject *k)
163 {
164 }
165 
bch2_fs_opts_dir_release(struct kobject * k)166 static void bch2_fs_opts_dir_release(struct kobject *k)
167 {
168 }
169 
bch2_fs_time_stats_release(struct kobject * k)170 static void bch2_fs_time_stats_release(struct kobject *k)
171 {
172 }
173 
174 KTYPE(bch2_fs);
175 KTYPE(bch2_fs_counters);
176 KTYPE(bch2_fs_internal);
177 KTYPE(bch2_fs_opts_dir);
178 KTYPE(bch2_fs_time_stats);
179 KTYPE(bch2_dev);
180 
181 static struct kset *bcachefs_kset;
182 static LIST_HEAD(bch_fs_list);
183 static DEFINE_MUTEX(bch_fs_list_lock);
184 
185 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
186 
187 static void bch2_dev_unlink(struct bch_dev *);
188 static void bch2_dev_free(struct bch_dev *);
189 static int bch2_dev_alloc(struct bch_fs *, unsigned);
190 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
191 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
192 
bch2_dev_to_fs(dev_t dev)193 struct bch_fs *bch2_dev_to_fs(dev_t dev)
194 {
195 	struct bch_fs *c;
196 
197 	mutex_lock(&bch_fs_list_lock);
198 	rcu_read_lock();
199 
200 	list_for_each_entry(c, &bch_fs_list, list)
201 		for_each_member_device_rcu(c, ca, NULL)
202 			if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
203 				closure_get(&c->cl);
204 				goto found;
205 			}
206 	c = NULL;
207 found:
208 	rcu_read_unlock();
209 	mutex_unlock(&bch_fs_list_lock);
210 
211 	return c;
212 }
213 
__bch2_uuid_to_fs(__uuid_t uuid)214 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
215 {
216 	struct bch_fs *c;
217 
218 	lockdep_assert_held(&bch_fs_list_lock);
219 
220 	list_for_each_entry(c, &bch_fs_list, list)
221 		if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
222 			return c;
223 
224 	return NULL;
225 }
226 
bch2_uuid_to_fs(__uuid_t uuid)227 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
228 {
229 	struct bch_fs *c;
230 
231 	mutex_lock(&bch_fs_list_lock);
232 	c = __bch2_uuid_to_fs(uuid);
233 	if (c)
234 		closure_get(&c->cl);
235 	mutex_unlock(&bch_fs_list_lock);
236 
237 	return c;
238 }
239 
240 /* Filesystem RO/RW: */
241 
242 /*
243  * For startup/shutdown of RW stuff, the dependencies are:
244  *
245  * - foreground writes depend on copygc and rebalance (to free up space)
246  *
247  * - copygc and rebalance depend on mark and sweep gc (they actually probably
248  *   don't because they either reserve ahead of time or don't block if
249  *   allocations fail, but allocations can require mark and sweep gc to run
250  *   because of generation number wraparound)
251  *
252  * - all of the above depends on the allocator threads
253  *
254  * - allocator depends on the journal (when it rewrites prios and gens)
255  */
256 
__bch2_fs_read_only(struct bch_fs * c)257 static void __bch2_fs_read_only(struct bch_fs *c)
258 {
259 	unsigned clean_passes = 0;
260 	u64 seq = 0;
261 
262 	bch2_fs_ec_stop(c);
263 	bch2_open_buckets_stop(c, NULL, true);
264 	bch2_rebalance_stop(c);
265 	bch2_copygc_stop(c);
266 	bch2_fs_ec_flush(c);
267 
268 	bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
269 		    journal_cur_seq(&c->journal));
270 
271 	do {
272 		clean_passes++;
273 
274 		if (bch2_btree_interior_updates_flush(c) ||
275 		    bch2_btree_write_buffer_flush_going_ro(c) ||
276 		    bch2_journal_flush_all_pins(&c->journal) ||
277 		    bch2_btree_flush_all_writes(c) ||
278 		    seq != atomic64_read(&c->journal.seq)) {
279 			seq = atomic64_read(&c->journal.seq);
280 			clean_passes = 0;
281 		}
282 	} while (clean_passes < 2);
283 
284 	bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
285 		    journal_cur_seq(&c->journal));
286 
287 	if (test_bit(JOURNAL_replay_done, &c->journal.flags) &&
288 	    !test_bit(BCH_FS_emergency_ro, &c->flags))
289 		set_bit(BCH_FS_clean_shutdown, &c->flags);
290 
291 	bch2_fs_journal_stop(&c->journal);
292 
293 	bch_info(c, "%sshutdown complete, journal seq %llu",
294 		 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un",
295 		 c->journal.seq_ondisk);
296 
297 	/*
298 	 * After stopping journal:
299 	 */
300 	for_each_member_device(c, ca)
301 		bch2_dev_allocator_remove(c, ca);
302 }
303 
304 #ifndef BCH_WRITE_REF_DEBUG
bch2_writes_disabled(struct percpu_ref * writes)305 static void bch2_writes_disabled(struct percpu_ref *writes)
306 {
307 	struct bch_fs *c = container_of(writes, struct bch_fs, writes);
308 
309 	set_bit(BCH_FS_write_disable_complete, &c->flags);
310 	wake_up(&bch2_read_only_wait);
311 }
312 #endif
313 
bch2_fs_read_only(struct bch_fs * c)314 void bch2_fs_read_only(struct bch_fs *c)
315 {
316 	if (!test_bit(BCH_FS_rw, &c->flags)) {
317 		bch2_journal_reclaim_stop(&c->journal);
318 		return;
319 	}
320 
321 	BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
322 
323 	bch_verbose(c, "going read-only");
324 
325 	/*
326 	 * Block new foreground-end write operations from starting - any new
327 	 * writes will return -EROFS:
328 	 */
329 	set_bit(BCH_FS_going_ro, &c->flags);
330 #ifndef BCH_WRITE_REF_DEBUG
331 	percpu_ref_kill(&c->writes);
332 #else
333 	for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
334 		bch2_write_ref_put(c, i);
335 #endif
336 
337 	/*
338 	 * If we're not doing an emergency shutdown, we want to wait on
339 	 * outstanding writes to complete so they don't see spurious errors due
340 	 * to shutting down the allocator:
341 	 *
342 	 * If we are doing an emergency shutdown outstanding writes may
343 	 * hang until we shutdown the allocator so we don't want to wait
344 	 * on outstanding writes before shutting everything down - but
345 	 * we do need to wait on them before returning and signalling
346 	 * that going RO is complete:
347 	 */
348 	wait_event(bch2_read_only_wait,
349 		   test_bit(BCH_FS_write_disable_complete, &c->flags) ||
350 		   test_bit(BCH_FS_emergency_ro, &c->flags));
351 
352 	bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
353 	if (writes_disabled)
354 		bch_verbose(c, "finished waiting for writes to stop");
355 
356 	__bch2_fs_read_only(c);
357 
358 	wait_event(bch2_read_only_wait,
359 		   test_bit(BCH_FS_write_disable_complete, &c->flags));
360 
361 	if (!writes_disabled)
362 		bch_verbose(c, "finished waiting for writes to stop");
363 
364 	clear_bit(BCH_FS_write_disable_complete, &c->flags);
365 	clear_bit(BCH_FS_going_ro, &c->flags);
366 	clear_bit(BCH_FS_rw, &c->flags);
367 
368 	if (!bch2_journal_error(&c->journal) &&
369 	    !test_bit(BCH_FS_error, &c->flags) &&
370 	    !test_bit(BCH_FS_emergency_ro, &c->flags) &&
371 	    test_bit(BCH_FS_started, &c->flags) &&
372 	    test_bit(BCH_FS_clean_shutdown, &c->flags) &&
373 	    c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) {
374 		BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
375 		BUG_ON(atomic_long_read(&c->btree_cache.nr_dirty));
376 		BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
377 		BUG_ON(c->btree_write_buffer.inc.keys.nr);
378 		BUG_ON(c->btree_write_buffer.flushing.keys.nr);
379 		bch2_verify_accounting_clean(c);
380 
381 		bch_verbose(c, "marking filesystem clean");
382 		bch2_fs_mark_clean(c);
383 	} else {
384 		bch_verbose(c, "done going read-only, filesystem not clean");
385 	}
386 }
387 
bch2_fs_read_only_work(struct work_struct * work)388 static void bch2_fs_read_only_work(struct work_struct *work)
389 {
390 	struct bch_fs *c =
391 		container_of(work, struct bch_fs, read_only_work);
392 
393 	down_write(&c->state_lock);
394 	bch2_fs_read_only(c);
395 	up_write(&c->state_lock);
396 }
397 
bch2_fs_read_only_async(struct bch_fs * c)398 static void bch2_fs_read_only_async(struct bch_fs *c)
399 {
400 	queue_work(system_long_wq, &c->read_only_work);
401 }
402 
bch2_fs_emergency_read_only(struct bch_fs * c)403 bool bch2_fs_emergency_read_only(struct bch_fs *c)
404 {
405 	bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
406 
407 	bch2_journal_halt(&c->journal);
408 	bch2_fs_read_only_async(c);
409 
410 	wake_up(&bch2_read_only_wait);
411 	return ret;
412 }
413 
bch2_fs_read_write_late(struct bch_fs * c)414 static int bch2_fs_read_write_late(struct bch_fs *c)
415 {
416 	int ret;
417 
418 	/*
419 	 * Data move operations can't run until after check_snapshots has
420 	 * completed, and bch2_snapshot_is_ancestor() is available.
421 	 *
422 	 * Ideally we'd start copygc/rebalance earlier instead of waiting for
423 	 * all of recovery/fsck to complete:
424 	 */
425 	ret = bch2_copygc_start(c);
426 	if (ret) {
427 		bch_err(c, "error starting copygc thread");
428 		return ret;
429 	}
430 
431 	ret = bch2_rebalance_start(c);
432 	if (ret) {
433 		bch_err(c, "error starting rebalance thread");
434 		return ret;
435 	}
436 
437 	return 0;
438 }
439 
__bch2_fs_read_write(struct bch_fs * c,bool early)440 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
441 {
442 	int ret;
443 
444 	if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
445 		bch_err(c, "cannot go rw, unfixed btree errors");
446 		return -BCH_ERR_erofs_unfixed_errors;
447 	}
448 
449 	if (test_bit(BCH_FS_rw, &c->flags))
450 		return 0;
451 
452 	bch_info(c, "going read-write");
453 
454 	ret = bch2_sb_members_v2_init(c);
455 	if (ret)
456 		goto err;
457 
458 	ret = bch2_fs_mark_dirty(c);
459 	if (ret)
460 		goto err;
461 
462 	clear_bit(BCH_FS_clean_shutdown, &c->flags);
463 
464 	/*
465 	 * First journal write must be a flush write: after a clean shutdown we
466 	 * don't read the journal, so the first journal write may end up
467 	 * overwriting whatever was there previously, and there must always be
468 	 * at least one non-flush write in the journal or recovery will fail:
469 	 */
470 	set_bit(JOURNAL_need_flush_write, &c->journal.flags);
471 	set_bit(JOURNAL_running, &c->journal.flags);
472 
473 	for_each_rw_member(c, ca)
474 		bch2_dev_allocator_add(c, ca);
475 	bch2_recalc_capacity(c);
476 
477 	set_bit(BCH_FS_rw, &c->flags);
478 	set_bit(BCH_FS_was_rw, &c->flags);
479 
480 #ifndef BCH_WRITE_REF_DEBUG
481 	percpu_ref_reinit(&c->writes);
482 #else
483 	for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
484 		BUG_ON(atomic_long_read(&c->writes[i]));
485 		atomic_long_inc(&c->writes[i]);
486 	}
487 #endif
488 
489 	ret = bch2_journal_reclaim_start(&c->journal);
490 	if (ret)
491 		goto err;
492 
493 	if (!early) {
494 		ret = bch2_fs_read_write_late(c);
495 		if (ret)
496 			goto err;
497 	}
498 
499 	bch2_do_discards(c);
500 	bch2_do_invalidates(c);
501 	bch2_do_stripe_deletes(c);
502 	bch2_do_pending_node_rewrites(c);
503 	return 0;
504 err:
505 	if (test_bit(BCH_FS_rw, &c->flags))
506 		bch2_fs_read_only(c);
507 	else
508 		__bch2_fs_read_only(c);
509 	return ret;
510 }
511 
bch2_fs_read_write(struct bch_fs * c)512 int bch2_fs_read_write(struct bch_fs *c)
513 {
514 	if (c->opts.recovery_pass_last &&
515 	    c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay)
516 		return -BCH_ERR_erofs_norecovery;
517 
518 	if (c->opts.nochanges)
519 		return -BCH_ERR_erofs_nochanges;
520 
521 	return __bch2_fs_read_write(c, false);
522 }
523 
bch2_fs_read_write_early(struct bch_fs * c)524 int bch2_fs_read_write_early(struct bch_fs *c)
525 {
526 	lockdep_assert_held(&c->state_lock);
527 
528 	return __bch2_fs_read_write(c, true);
529 }
530 
531 /* Filesystem startup/shutdown: */
532 
__bch2_fs_free(struct bch_fs * c)533 static void __bch2_fs_free(struct bch_fs *c)
534 {
535 	for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++)
536 		bch2_time_stats_exit(&c->times[i]);
537 
538 	bch2_find_btree_nodes_exit(&c->found_btree_nodes);
539 	bch2_free_pending_node_rewrites(c);
540 	bch2_fs_accounting_exit(c);
541 	bch2_fs_sb_errors_exit(c);
542 	bch2_fs_counters_exit(c);
543 	bch2_fs_snapshots_exit(c);
544 	bch2_fs_quota_exit(c);
545 	bch2_fs_fs_io_direct_exit(c);
546 	bch2_fs_fs_io_buffered_exit(c);
547 	bch2_fs_fsio_exit(c);
548 	bch2_fs_vfs_exit(c);
549 	bch2_fs_ec_exit(c);
550 	bch2_fs_encryption_exit(c);
551 	bch2_fs_nocow_locking_exit(c);
552 	bch2_fs_io_write_exit(c);
553 	bch2_fs_io_read_exit(c);
554 	bch2_fs_buckets_waiting_for_journal_exit(c);
555 	bch2_fs_btree_interior_update_exit(c);
556 	bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
557 	bch2_fs_btree_cache_exit(c);
558 	bch2_fs_btree_iter_exit(c);
559 	bch2_fs_replicas_exit(c);
560 	bch2_fs_journal_exit(&c->journal);
561 	bch2_io_clock_exit(&c->io_clock[WRITE]);
562 	bch2_io_clock_exit(&c->io_clock[READ]);
563 	bch2_fs_compress_exit(c);
564 	bch2_journal_keys_put_initial(c);
565 	bch2_find_btree_nodes_exit(&c->found_btree_nodes);
566 	BUG_ON(atomic_read(&c->journal_keys.ref));
567 	bch2_fs_btree_write_buffer_exit(c);
568 	percpu_free_rwsem(&c->mark_lock);
569 	if (c->online_reserved) {
570 		u64 v = percpu_u64_get(c->online_reserved);
571 		WARN(v, "online_reserved not 0 at shutdown: %lli", v);
572 		free_percpu(c->online_reserved);
573 	}
574 
575 	darray_exit(&c->btree_roots_extra);
576 	free_percpu(c->pcpu);
577 	free_percpu(c->usage);
578 	mempool_exit(&c->large_bkey_pool);
579 	mempool_exit(&c->btree_bounce_pool);
580 	bioset_exit(&c->btree_bio);
581 	mempool_exit(&c->fill_iter);
582 #ifndef BCH_WRITE_REF_DEBUG
583 	percpu_ref_exit(&c->writes);
584 #endif
585 	kfree(rcu_dereference_protected(c->disk_groups, 1));
586 	kfree(c->journal_seq_blacklist_table);
587 	kfree(c->unused_inode_hints);
588 
589 	if (c->write_ref_wq)
590 		destroy_workqueue(c->write_ref_wq);
591 	if (c->btree_write_submit_wq)
592 		destroy_workqueue(c->btree_write_submit_wq);
593 	if (c->btree_read_complete_wq)
594 		destroy_workqueue(c->btree_read_complete_wq);
595 	if (c->copygc_wq)
596 		destroy_workqueue(c->copygc_wq);
597 	if (c->btree_io_complete_wq)
598 		destroy_workqueue(c->btree_io_complete_wq);
599 	if (c->btree_update_wq)
600 		destroy_workqueue(c->btree_update_wq);
601 
602 	bch2_free_super(&c->disk_sb);
603 	kvfree(c);
604 	module_put(THIS_MODULE);
605 }
606 
bch2_fs_release(struct kobject * kobj)607 static void bch2_fs_release(struct kobject *kobj)
608 {
609 	struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
610 
611 	__bch2_fs_free(c);
612 }
613 
__bch2_fs_stop(struct bch_fs * c)614 void __bch2_fs_stop(struct bch_fs *c)
615 {
616 	bch_verbose(c, "shutting down");
617 
618 	set_bit(BCH_FS_stopping, &c->flags);
619 
620 	down_write(&c->state_lock);
621 	bch2_fs_read_only(c);
622 	up_write(&c->state_lock);
623 
624 	for_each_member_device(c, ca)
625 		bch2_dev_unlink(ca);
626 
627 	if (c->kobj.state_in_sysfs)
628 		kobject_del(&c->kobj);
629 
630 	bch2_fs_debug_exit(c);
631 	bch2_fs_chardev_exit(c);
632 
633 	bch2_ro_ref_put(c);
634 	wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
635 
636 	kobject_put(&c->counters_kobj);
637 	kobject_put(&c->time_stats);
638 	kobject_put(&c->opts_dir);
639 	kobject_put(&c->internal);
640 
641 	/* btree prefetch might have kicked off reads in the background: */
642 	bch2_btree_flush_all_reads(c);
643 
644 	for_each_member_device(c, ca)
645 		cancel_work_sync(&ca->io_error_work);
646 
647 	cancel_work_sync(&c->read_only_work);
648 }
649 
bch2_fs_free(struct bch_fs * c)650 void bch2_fs_free(struct bch_fs *c)
651 {
652 	unsigned i;
653 
654 	mutex_lock(&bch_fs_list_lock);
655 	list_del(&c->list);
656 	mutex_unlock(&bch_fs_list_lock);
657 
658 	closure_sync(&c->cl);
659 	closure_debug_destroy(&c->cl);
660 
661 	for (i = 0; i < c->sb.nr_devices; i++) {
662 		struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
663 
664 		if (ca) {
665 			EBUG_ON(atomic_long_read(&ca->ref) != 1);
666 			bch2_free_super(&ca->disk_sb);
667 			bch2_dev_free(ca);
668 		}
669 	}
670 
671 	bch_verbose(c, "shutdown complete");
672 
673 	kobject_put(&c->kobj);
674 }
675 
bch2_fs_stop(struct bch_fs * c)676 void bch2_fs_stop(struct bch_fs *c)
677 {
678 	__bch2_fs_stop(c);
679 	bch2_fs_free(c);
680 }
681 
bch2_fs_online(struct bch_fs * c)682 static int bch2_fs_online(struct bch_fs *c)
683 {
684 	int ret = 0;
685 
686 	lockdep_assert_held(&bch_fs_list_lock);
687 
688 	if (__bch2_uuid_to_fs(c->sb.uuid)) {
689 		bch_err(c, "filesystem UUID already open");
690 		return -EINVAL;
691 	}
692 
693 	ret = bch2_fs_chardev_init(c);
694 	if (ret) {
695 		bch_err(c, "error creating character device");
696 		return ret;
697 	}
698 
699 	bch2_fs_debug_init(c);
700 
701 	ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
702 	    kobject_add(&c->internal, &c->kobj, "internal") ?:
703 	    kobject_add(&c->opts_dir, &c->kobj, "options") ?:
704 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
705 	    kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
706 #endif
707 	    kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
708 	    bch2_opts_create_sysfs_files(&c->opts_dir);
709 	if (ret) {
710 		bch_err(c, "error creating sysfs objects");
711 		return ret;
712 	}
713 
714 	down_write(&c->state_lock);
715 
716 	for_each_member_device(c, ca) {
717 		ret = bch2_dev_sysfs_online(c, ca);
718 		if (ret) {
719 			bch_err(c, "error creating sysfs objects");
720 			bch2_dev_put(ca);
721 			goto err;
722 		}
723 	}
724 
725 	BUG_ON(!list_empty(&c->list));
726 	list_add(&c->list, &bch_fs_list);
727 err:
728 	up_write(&c->state_lock);
729 	return ret;
730 }
731 
bch2_fs_alloc(struct bch_sb * sb,struct bch_opts opts)732 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
733 {
734 	struct bch_fs *c;
735 	struct printbuf name = PRINTBUF;
736 	unsigned i, iter_size;
737 	int ret = 0;
738 
739 	c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
740 	if (!c) {
741 		c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
742 		goto out;
743 	}
744 
745 	c->stdio = (void *)(unsigned long) opts.stdio;
746 
747 	__module_get(THIS_MODULE);
748 
749 	closure_init(&c->cl, NULL);
750 
751 	c->kobj.kset = bcachefs_kset;
752 	kobject_init(&c->kobj, &bch2_fs_ktype);
753 	kobject_init(&c->internal, &bch2_fs_internal_ktype);
754 	kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
755 	kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
756 	kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
757 
758 	c->minor		= -1;
759 	c->disk_sb.fs_sb	= true;
760 
761 	init_rwsem(&c->state_lock);
762 	mutex_init(&c->sb_lock);
763 	mutex_init(&c->replicas_gc_lock);
764 	mutex_init(&c->btree_root_lock);
765 	INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
766 
767 	refcount_set(&c->ro_ref, 1);
768 	init_waitqueue_head(&c->ro_ref_wait);
769 	sema_init(&c->online_fsck_mutex, 1);
770 
771 	init_rwsem(&c->gc_lock);
772 	mutex_init(&c->gc_gens_lock);
773 	atomic_set(&c->journal_keys.ref, 1);
774 	c->journal_keys.initial_ref_held = true;
775 
776 	for (i = 0; i < BCH_TIME_STAT_NR; i++)
777 		bch2_time_stats_init(&c->times[i]);
778 
779 	bch2_fs_gc_init(c);
780 	bch2_fs_copygc_init(c);
781 	bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
782 	bch2_fs_btree_iter_init_early(c);
783 	bch2_fs_btree_interior_update_init_early(c);
784 	bch2_fs_allocator_background_init(c);
785 	bch2_fs_allocator_foreground_init(c);
786 	bch2_fs_rebalance_init(c);
787 	bch2_fs_quota_init(c);
788 	bch2_fs_ec_init_early(c);
789 	bch2_fs_move_init(c);
790 	bch2_fs_sb_errors_init_early(c);
791 
792 	INIT_LIST_HEAD(&c->list);
793 
794 	mutex_init(&c->bio_bounce_pages_lock);
795 	mutex_init(&c->snapshot_table_lock);
796 	init_rwsem(&c->snapshot_create_lock);
797 
798 	spin_lock_init(&c->btree_write_error_lock);
799 
800 	INIT_LIST_HEAD(&c->journal_iters);
801 
802 	INIT_LIST_HEAD(&c->fsck_error_msgs);
803 	mutex_init(&c->fsck_error_msgs_lock);
804 
805 	seqcount_init(&c->usage_lock);
806 
807 	sema_init(&c->io_in_flight, 128);
808 
809 	INIT_LIST_HEAD(&c->vfs_inodes_list);
810 	mutex_init(&c->vfs_inodes_lock);
811 
812 	c->copy_gc_enabled		= 1;
813 	c->rebalance.enabled		= 1;
814 
815 	c->journal.flush_write_time	= &c->times[BCH_TIME_journal_flush_write];
816 	c->journal.noflush_write_time	= &c->times[BCH_TIME_journal_noflush_write];
817 	c->journal.flush_seq_time	= &c->times[BCH_TIME_journal_flush_seq];
818 
819 	bch2_fs_btree_cache_init_early(&c->btree_cache);
820 
821 	mutex_init(&c->sectors_available_lock);
822 
823 	ret = percpu_init_rwsem(&c->mark_lock);
824 	if (ret)
825 		goto err;
826 
827 	mutex_lock(&c->sb_lock);
828 	ret = bch2_sb_to_fs(c, sb);
829 	mutex_unlock(&c->sb_lock);
830 
831 	if (ret)
832 		goto err;
833 
834 	pr_uuid(&name, c->sb.user_uuid.b);
835 	ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
836 	if (ret)
837 		goto err;
838 
839 	strscpy(c->name, name.buf, sizeof(c->name));
840 	printbuf_exit(&name);
841 
842 	/* Compat: */
843 	if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
844 	    !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
845 		SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
846 
847 	if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
848 	    !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
849 		SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
850 
851 	c->opts = bch2_opts_default;
852 	ret = bch2_opts_from_sb(&c->opts, sb);
853 	if (ret)
854 		goto err;
855 
856 	bch2_opts_apply(&c->opts, opts);
857 
858 	c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
859 	if (c->opts.inodes_use_key_cache)
860 		c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
861 	c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
862 
863 	c->block_bits		= ilog2(block_sectors(c));
864 	c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
865 
866 	if (bch2_fs_init_fault("fs_alloc")) {
867 		bch_err(c, "fs_alloc fault injected");
868 		ret = -EFAULT;
869 		goto err;
870 	}
871 
872 	iter_size = sizeof(struct sort_iter) +
873 		(btree_blocks(c) + 1) * 2 *
874 		sizeof(struct sort_iter_set);
875 
876 	c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
877 
878 	if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
879 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
880 	    !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
881 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
882 	    !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
883 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
884 	    !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete",
885 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
886 	    !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit",
887 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
888 	    !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
889 				WQ_FREEZABLE, 0)) ||
890 #ifndef BCH_WRITE_REF_DEBUG
891 	    percpu_ref_init(&c->writes, bch2_writes_disabled,
892 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
893 #endif
894 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
895 	    bioset_init(&c->btree_bio, 1,
896 			max(offsetof(struct btree_read_bio, bio),
897 			    offsetof(struct btree_write_bio, wbio.bio)),
898 			BIOSET_NEED_BVECS) ||
899 	    !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
900 	    !(c->usage = alloc_percpu(struct bch_fs_usage_base)) ||
901 	    !(c->online_reserved = alloc_percpu(u64)) ||
902 	    mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
903 				       c->opts.btree_node_size) ||
904 	    mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
905 	    !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
906 					      sizeof(u64), GFP_KERNEL))) {
907 		ret = -BCH_ERR_ENOMEM_fs_other_alloc;
908 		goto err;
909 	}
910 
911 	ret = bch2_fs_counters_init(c) ?:
912 	    bch2_fs_sb_errors_init(c) ?:
913 	    bch2_io_clock_init(&c->io_clock[READ]) ?:
914 	    bch2_io_clock_init(&c->io_clock[WRITE]) ?:
915 	    bch2_fs_journal_init(&c->journal) ?:
916 	    bch2_fs_btree_iter_init(c) ?:
917 	    bch2_fs_btree_cache_init(c) ?:
918 	    bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
919 	    bch2_fs_btree_interior_update_init(c) ?:
920 	    bch2_fs_buckets_waiting_for_journal_init(c) ?:
921 	    bch2_fs_btree_write_buffer_init(c) ?:
922 	    bch2_fs_subvolumes_init(c) ?:
923 	    bch2_fs_io_read_init(c) ?:
924 	    bch2_fs_io_write_init(c) ?:
925 	    bch2_fs_nocow_locking_init(c) ?:
926 	    bch2_fs_encryption_init(c) ?:
927 	    bch2_fs_compress_init(c) ?:
928 	    bch2_fs_ec_init(c) ?:
929 	    bch2_fs_vfs_init(c) ?:
930 	    bch2_fs_fsio_init(c) ?:
931 	    bch2_fs_fs_io_buffered_init(c) ?:
932 	    bch2_fs_fs_io_direct_init(c);
933 	if (ret)
934 		goto err;
935 
936 	for (i = 0; i < c->sb.nr_devices; i++) {
937 		if (!bch2_member_exists(c->disk_sb.sb, i))
938 			continue;
939 		ret = bch2_dev_alloc(c, i);
940 		if (ret)
941 			goto err;
942 	}
943 
944 	bch2_journal_entry_res_resize(&c->journal,
945 			&c->btree_root_journal_res,
946 			BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
947 	bch2_journal_entry_res_resize(&c->journal,
948 			&c->clock_journal_res,
949 			(sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
950 
951 	mutex_lock(&bch_fs_list_lock);
952 	ret = bch2_fs_online(c);
953 	mutex_unlock(&bch_fs_list_lock);
954 
955 	if (ret)
956 		goto err;
957 out:
958 	return c;
959 err:
960 	bch2_fs_free(c);
961 	c = ERR_PTR(ret);
962 	goto out;
963 }
964 
965 noinline_for_stack
print_mount_opts(struct bch_fs * c)966 static void print_mount_opts(struct bch_fs *c)
967 {
968 	enum bch_opt_id i;
969 	struct printbuf p = PRINTBUF;
970 	bool first = true;
971 
972 	prt_str(&p, "starting version ");
973 	bch2_version_to_text(&p, c->sb.version);
974 
975 	if (c->opts.read_only) {
976 		prt_str(&p, " opts=");
977 		first = false;
978 		prt_printf(&p, "ro");
979 	}
980 
981 	for (i = 0; i < bch2_opts_nr; i++) {
982 		const struct bch_option *opt = &bch2_opt_table[i];
983 		u64 v = bch2_opt_get_by_id(&c->opts, i);
984 
985 		if (!(opt->flags & OPT_MOUNT))
986 			continue;
987 
988 		if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
989 			continue;
990 
991 		prt_str(&p, first ? " opts=" : ",");
992 		first = false;
993 		bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
994 	}
995 
996 	bch_info(c, "%s", p.buf);
997 	printbuf_exit(&p);
998 }
999 
bch2_fs_start(struct bch_fs * c)1000 int bch2_fs_start(struct bch_fs *c)
1001 {
1002 	time64_t now = ktime_get_real_seconds();
1003 	int ret;
1004 
1005 	print_mount_opts(c);
1006 
1007 	down_write(&c->state_lock);
1008 
1009 	BUG_ON(test_bit(BCH_FS_started, &c->flags));
1010 
1011 	mutex_lock(&c->sb_lock);
1012 
1013 	ret = bch2_sb_members_v2_init(c);
1014 	if (ret) {
1015 		mutex_unlock(&c->sb_lock);
1016 		goto err;
1017 	}
1018 
1019 	for_each_online_member(c, ca)
1020 		bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1021 
1022 	struct bch_sb_field_ext *ext =
1023 		bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
1024 	mutex_unlock(&c->sb_lock);
1025 
1026 	if (!ext) {
1027 		bch_err(c, "insufficient space in superblock for sb_field_ext");
1028 		ret = -BCH_ERR_ENOSPC_sb;
1029 		goto err;
1030 	}
1031 
1032 	for_each_rw_member(c, ca)
1033 		bch2_dev_allocator_add(c, ca);
1034 	bch2_recalc_capacity(c);
1035 
1036 	ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1037 		? bch2_fs_recovery(c)
1038 		: bch2_fs_initialize(c);
1039 	if (ret)
1040 		goto err;
1041 
1042 	ret = bch2_opts_check_may_set(c);
1043 	if (ret)
1044 		goto err;
1045 
1046 	if (bch2_fs_init_fault("fs_start")) {
1047 		bch_err(c, "fs_start fault injected");
1048 		ret = -EINVAL;
1049 		goto err;
1050 	}
1051 
1052 	set_bit(BCH_FS_started, &c->flags);
1053 
1054 	if (c->opts.read_only) {
1055 		bch2_fs_read_only(c);
1056 	} else {
1057 		ret = !test_bit(BCH_FS_rw, &c->flags)
1058 			? bch2_fs_read_write(c)
1059 			: bch2_fs_read_write_late(c);
1060 		if (ret)
1061 			goto err;
1062 	}
1063 
1064 	ret = 0;
1065 err:
1066 	if (ret)
1067 		bch_err_msg(c, ret, "starting filesystem");
1068 	else
1069 		bch_verbose(c, "done starting filesystem");
1070 	up_write(&c->state_lock);
1071 	return ret;
1072 }
1073 
bch2_dev_may_add(struct bch_sb * sb,struct bch_fs * c)1074 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1075 {
1076 	struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1077 
1078 	if (le16_to_cpu(sb->block_size) != block_sectors(c))
1079 		return -BCH_ERR_mismatched_block_size;
1080 
1081 	if (le16_to_cpu(m.bucket_size) <
1082 	    BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1083 		return -BCH_ERR_bucket_size_too_small;
1084 
1085 	return 0;
1086 }
1087 
bch2_dev_in_fs(struct bch_sb_handle * fs,struct bch_sb_handle * sb,struct bch_opts * opts)1088 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1089 			  struct bch_sb_handle *sb,
1090 			  struct bch_opts *opts)
1091 {
1092 	if (fs == sb)
1093 		return 0;
1094 
1095 	if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1096 		return -BCH_ERR_device_not_a_member_of_filesystem;
1097 
1098 	if (!bch2_member_exists(fs->sb, sb->sb->dev_idx))
1099 		return -BCH_ERR_device_has_been_removed;
1100 
1101 	if (fs->sb->block_size != sb->sb->block_size)
1102 		return -BCH_ERR_mismatched_block_size;
1103 
1104 	if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1105 	    le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1106 		return 0;
1107 
1108 	if (fs->sb->seq == sb->sb->seq &&
1109 	    fs->sb->write_time != sb->sb->write_time) {
1110 		struct printbuf buf = PRINTBUF;
1111 
1112 		prt_str(&buf, "Split brain detected between ");
1113 		prt_bdevname(&buf, sb->bdev);
1114 		prt_str(&buf, " and ");
1115 		prt_bdevname(&buf, fs->bdev);
1116 		prt_char(&buf, ':');
1117 		prt_newline(&buf);
1118 		prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1119 		prt_newline(&buf);
1120 
1121 		prt_bdevname(&buf, fs->bdev);
1122 		prt_char(&buf, ' ');
1123 		bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));;
1124 		prt_newline(&buf);
1125 
1126 		prt_bdevname(&buf, sb->bdev);
1127 		prt_char(&buf, ' ');
1128 		bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));;
1129 		prt_newline(&buf);
1130 
1131 		if (!opts->no_splitbrain_check)
1132 			prt_printf(&buf, "Not using older sb");
1133 
1134 		pr_err("%s", buf.buf);
1135 		printbuf_exit(&buf);
1136 
1137 		if (!opts->no_splitbrain_check)
1138 			return -BCH_ERR_device_splitbrain;
1139 	}
1140 
1141 	struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1142 	u64 seq_from_fs		= le64_to_cpu(m.seq);
1143 	u64 seq_from_member	= le64_to_cpu(sb->sb->seq);
1144 
1145 	if (seq_from_fs && seq_from_fs < seq_from_member) {
1146 		struct printbuf buf = PRINTBUF;
1147 
1148 		prt_str(&buf, "Split brain detected between ");
1149 		prt_bdevname(&buf, sb->bdev);
1150 		prt_str(&buf, " and ");
1151 		prt_bdevname(&buf, fs->bdev);
1152 		prt_char(&buf, ':');
1153 		prt_newline(&buf);
1154 
1155 		prt_bdevname(&buf, fs->bdev);
1156 		prt_str(&buf, " believes seq of ");
1157 		prt_bdevname(&buf, sb->bdev);
1158 		prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1159 		prt_bdevname(&buf, sb->bdev);
1160 		prt_printf(&buf, " has %llu\n", seq_from_member);
1161 
1162 		if (!opts->no_splitbrain_check) {
1163 			prt_str(&buf, "Not using ");
1164 			prt_bdevname(&buf, sb->bdev);
1165 		}
1166 
1167 		pr_err("%s", buf.buf);
1168 		printbuf_exit(&buf);
1169 
1170 		if (!opts->no_splitbrain_check)
1171 			return -BCH_ERR_device_splitbrain;
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 /* Device startup/shutdown: */
1178 
bch2_dev_release(struct kobject * kobj)1179 static void bch2_dev_release(struct kobject *kobj)
1180 {
1181 	struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1182 
1183 	kfree(ca);
1184 }
1185 
bch2_dev_free(struct bch_dev * ca)1186 static void bch2_dev_free(struct bch_dev *ca)
1187 {
1188 	cancel_work_sync(&ca->io_error_work);
1189 
1190 	bch2_dev_unlink(ca);
1191 
1192 	if (ca->kobj.state_in_sysfs)
1193 		kobject_del(&ca->kobj);
1194 
1195 	bch2_free_super(&ca->disk_sb);
1196 	bch2_dev_allocator_background_exit(ca);
1197 	bch2_dev_journal_exit(ca);
1198 
1199 	free_percpu(ca->io_done);
1200 	bch2_dev_buckets_free(ca);
1201 	free_page((unsigned long) ca->sb_read_scratch);
1202 
1203 	bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1204 	bch2_time_stats_quantiles_exit(&ca->io_latency[READ]);
1205 
1206 	percpu_ref_exit(&ca->io_ref);
1207 #ifndef CONFIG_BCACHEFS_DEBUG
1208 	percpu_ref_exit(&ca->ref);
1209 #endif
1210 	kobject_put(&ca->kobj);
1211 }
1212 
__bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca)1213 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1214 {
1215 
1216 	lockdep_assert_held(&c->state_lock);
1217 
1218 	if (percpu_ref_is_zero(&ca->io_ref))
1219 		return;
1220 
1221 	__bch2_dev_read_only(c, ca);
1222 
1223 	reinit_completion(&ca->io_ref_completion);
1224 	percpu_ref_kill(&ca->io_ref);
1225 	wait_for_completion(&ca->io_ref_completion);
1226 
1227 	bch2_dev_unlink(ca);
1228 
1229 	bch2_free_super(&ca->disk_sb);
1230 	bch2_dev_journal_exit(ca);
1231 }
1232 
1233 #ifndef CONFIG_BCACHEFS_DEBUG
bch2_dev_ref_complete(struct percpu_ref * ref)1234 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1235 {
1236 	struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1237 
1238 	complete(&ca->ref_completion);
1239 }
1240 #endif
1241 
bch2_dev_io_ref_complete(struct percpu_ref * ref)1242 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1243 {
1244 	struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1245 
1246 	complete(&ca->io_ref_completion);
1247 }
1248 
bch2_dev_unlink(struct bch_dev * ca)1249 static void bch2_dev_unlink(struct bch_dev *ca)
1250 {
1251 	struct kobject *b;
1252 
1253 	/*
1254 	 * This is racy w.r.t. the underlying block device being hot-removed,
1255 	 * which removes it from sysfs.
1256 	 *
1257 	 * It'd be lovely if we had a way to handle this race, but the sysfs
1258 	 * code doesn't appear to provide a good method and block/holder.c is
1259 	 * susceptible as well:
1260 	 */
1261 	if (ca->kobj.state_in_sysfs &&
1262 	    ca->disk_sb.bdev &&
1263 	    (b = bdev_kobj(ca->disk_sb.bdev))->state_in_sysfs) {
1264 		sysfs_remove_link(b, "bcachefs");
1265 		sysfs_remove_link(&ca->kobj, "block");
1266 	}
1267 }
1268 
bch2_dev_sysfs_online(struct bch_fs * c,struct bch_dev * ca)1269 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1270 {
1271 	int ret;
1272 
1273 	if (!c->kobj.state_in_sysfs)
1274 		return 0;
1275 
1276 	if (!ca->kobj.state_in_sysfs) {
1277 		ret = kobject_add(&ca->kobj, &c->kobj,
1278 				  "dev-%u", ca->dev_idx);
1279 		if (ret)
1280 			return ret;
1281 	}
1282 
1283 	if (ca->disk_sb.bdev) {
1284 		struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1285 
1286 		ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1287 		if (ret)
1288 			return ret;
1289 
1290 		ret = sysfs_create_link(&ca->kobj, block, "block");
1291 		if (ret)
1292 			return ret;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
__bch2_dev_alloc(struct bch_fs * c,struct bch_member * member)1298 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1299 					struct bch_member *member)
1300 {
1301 	struct bch_dev *ca;
1302 	unsigned i;
1303 
1304 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1305 	if (!ca)
1306 		return NULL;
1307 
1308 	kobject_init(&ca->kobj, &bch2_dev_ktype);
1309 	init_completion(&ca->ref_completion);
1310 	init_completion(&ca->io_ref_completion);
1311 
1312 	init_rwsem(&ca->bucket_lock);
1313 
1314 	INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1315 
1316 	bch2_time_stats_quantiles_init(&ca->io_latency[READ]);
1317 	bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]);
1318 
1319 	ca->mi = bch2_mi_to_cpu(member);
1320 
1321 	for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1322 		atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1323 
1324 	ca->uuid = member->uuid;
1325 
1326 	ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1327 			     ca->mi.bucket_size / btree_sectors(c));
1328 
1329 #ifndef CONFIG_BCACHEFS_DEBUG
1330 	if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL))
1331 		goto err;
1332 #else
1333 	atomic_long_set(&ca->ref, 1);
1334 #endif
1335 
1336 	bch2_dev_allocator_background_init(ca);
1337 
1338 	if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1339 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1340 	    !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1341 	    bch2_dev_buckets_alloc(c, ca) ||
1342 	    !(ca->io_done	= alloc_percpu(*ca->io_done)))
1343 		goto err;
1344 
1345 	return ca;
1346 err:
1347 	bch2_dev_free(ca);
1348 	return NULL;
1349 }
1350 
bch2_dev_attach(struct bch_fs * c,struct bch_dev * ca,unsigned dev_idx)1351 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1352 			    unsigned dev_idx)
1353 {
1354 	ca->dev_idx = dev_idx;
1355 	__set_bit(ca->dev_idx, ca->self.d);
1356 	scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1357 
1358 	ca->fs = c;
1359 	rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1360 
1361 	if (bch2_dev_sysfs_online(c, ca))
1362 		pr_warn("error creating sysfs objects");
1363 }
1364 
bch2_dev_alloc(struct bch_fs * c,unsigned dev_idx)1365 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1366 {
1367 	struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1368 	struct bch_dev *ca = NULL;
1369 	int ret = 0;
1370 
1371 	if (bch2_fs_init_fault("dev_alloc"))
1372 		goto err;
1373 
1374 	ca = __bch2_dev_alloc(c, &member);
1375 	if (!ca)
1376 		goto err;
1377 
1378 	ca->fs = c;
1379 
1380 	bch2_dev_attach(c, ca, dev_idx);
1381 	return ret;
1382 err:
1383 	if (ca)
1384 		bch2_dev_free(ca);
1385 	return -BCH_ERR_ENOMEM_dev_alloc;
1386 }
1387 
__bch2_dev_attach_bdev(struct bch_dev * ca,struct bch_sb_handle * sb)1388 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1389 {
1390 	unsigned ret;
1391 
1392 	if (bch2_dev_is_online(ca)) {
1393 		bch_err(ca, "already have device online in slot %u",
1394 			sb->sb->dev_idx);
1395 		return -BCH_ERR_device_already_online;
1396 	}
1397 
1398 	if (get_capacity(sb->bdev->bd_disk) <
1399 	    ca->mi.bucket_size * ca->mi.nbuckets) {
1400 		bch_err(ca, "cannot online: device too small");
1401 		return -BCH_ERR_device_size_too_small;
1402 	}
1403 
1404 	BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1405 
1406 	ret = bch2_dev_journal_init(ca, sb->sb);
1407 	if (ret)
1408 		return ret;
1409 
1410 	/* Commit: */
1411 	ca->disk_sb = *sb;
1412 	memset(sb, 0, sizeof(*sb));
1413 
1414 	ca->dev = ca->disk_sb.bdev->bd_dev;
1415 
1416 	percpu_ref_reinit(&ca->io_ref);
1417 
1418 	return 0;
1419 }
1420 
bch2_dev_attach_bdev(struct bch_fs * c,struct bch_sb_handle * sb)1421 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1422 {
1423 	struct bch_dev *ca;
1424 	int ret;
1425 
1426 	lockdep_assert_held(&c->state_lock);
1427 
1428 	if (le64_to_cpu(sb->sb->seq) >
1429 	    le64_to_cpu(c->disk_sb.sb->seq))
1430 		bch2_sb_to_fs(c, sb->sb);
1431 
1432 	BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx));
1433 
1434 	ca = bch2_dev_locked(c, sb->sb->dev_idx);
1435 
1436 	ret = __bch2_dev_attach_bdev(ca, sb);
1437 	if (ret)
1438 		return ret;
1439 
1440 	bch2_dev_sysfs_online(c, ca);
1441 
1442 	struct printbuf name = PRINTBUF;
1443 	prt_bdevname(&name, ca->disk_sb.bdev);
1444 
1445 	if (c->sb.nr_devices == 1)
1446 		strscpy(c->name, name.buf, sizeof(c->name));
1447 	strscpy(ca->name, name.buf, sizeof(ca->name));
1448 
1449 	printbuf_exit(&name);
1450 
1451 	rebalance_wakeup(c);
1452 	return 0;
1453 }
1454 
1455 /* Device management: */
1456 
1457 /*
1458  * Note: this function is also used by the error paths - when a particular
1459  * device sees an error, we call it to determine whether we can just set the
1460  * device RO, or - if this function returns false - we'll set the whole
1461  * filesystem RO:
1462  *
1463  * XXX: maybe we should be more explicit about whether we're changing state
1464  * because we got an error or what have you?
1465  */
bch2_dev_state_allowed(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1466 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1467 			    enum bch_member_state new_state, int flags)
1468 {
1469 	struct bch_devs_mask new_online_devs;
1470 	int nr_rw = 0, required;
1471 
1472 	lockdep_assert_held(&c->state_lock);
1473 
1474 	switch (new_state) {
1475 	case BCH_MEMBER_STATE_rw:
1476 		return true;
1477 	case BCH_MEMBER_STATE_ro:
1478 		if (ca->mi.state != BCH_MEMBER_STATE_rw)
1479 			return true;
1480 
1481 		/* do we have enough devices to write to?  */
1482 		for_each_member_device(c, ca2)
1483 			if (ca2 != ca)
1484 				nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1485 
1486 		required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1487 			       ? c->opts.metadata_replicas
1488 			       : metadata_replicas_required(c),
1489 			       !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1490 			       ? c->opts.data_replicas
1491 			       : data_replicas_required(c));
1492 
1493 		return nr_rw >= required;
1494 	case BCH_MEMBER_STATE_failed:
1495 	case BCH_MEMBER_STATE_spare:
1496 		if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1497 		    ca->mi.state != BCH_MEMBER_STATE_ro)
1498 			return true;
1499 
1500 		/* do we have enough devices to read from?  */
1501 		new_online_devs = bch2_online_devs(c);
1502 		__clear_bit(ca->dev_idx, new_online_devs.d);
1503 
1504 		return bch2_have_enough_devs(c, new_online_devs, flags, false);
1505 	default:
1506 		BUG();
1507 	}
1508 }
1509 
bch2_fs_may_start(struct bch_fs * c)1510 static bool bch2_fs_may_start(struct bch_fs *c)
1511 {
1512 	struct bch_dev *ca;
1513 	unsigned i, flags = 0;
1514 
1515 	if (c->opts.very_degraded)
1516 		flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1517 
1518 	if (c->opts.degraded)
1519 		flags |= BCH_FORCE_IF_DEGRADED;
1520 
1521 	if (!c->opts.degraded &&
1522 	    !c->opts.very_degraded) {
1523 		mutex_lock(&c->sb_lock);
1524 
1525 		for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1526 			if (!bch2_member_exists(c->disk_sb.sb, i))
1527 				continue;
1528 
1529 			ca = bch2_dev_locked(c, i);
1530 
1531 			if (!bch2_dev_is_online(ca) &&
1532 			    (ca->mi.state == BCH_MEMBER_STATE_rw ||
1533 			     ca->mi.state == BCH_MEMBER_STATE_ro)) {
1534 				mutex_unlock(&c->sb_lock);
1535 				return false;
1536 			}
1537 		}
1538 		mutex_unlock(&c->sb_lock);
1539 	}
1540 
1541 	return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1542 }
1543 
__bch2_dev_read_only(struct bch_fs * c,struct bch_dev * ca)1544 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1545 {
1546 	/*
1547 	 * The allocator thread itself allocates btree nodes, so stop it first:
1548 	 */
1549 	bch2_dev_allocator_remove(c, ca);
1550 	bch2_recalc_capacity(c);
1551 	bch2_dev_journal_stop(&c->journal, ca);
1552 }
1553 
__bch2_dev_read_write(struct bch_fs * c,struct bch_dev * ca)1554 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1555 {
1556 	lockdep_assert_held(&c->state_lock);
1557 
1558 	BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1559 
1560 	bch2_dev_allocator_add(c, ca);
1561 	bch2_recalc_capacity(c);
1562 	bch2_dev_do_discards(ca);
1563 }
1564 
__bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1565 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1566 			 enum bch_member_state new_state, int flags)
1567 {
1568 	struct bch_member *m;
1569 	int ret = 0;
1570 
1571 	if (ca->mi.state == new_state)
1572 		return 0;
1573 
1574 	if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1575 		return -BCH_ERR_device_state_not_allowed;
1576 
1577 	if (new_state != BCH_MEMBER_STATE_rw)
1578 		__bch2_dev_read_only(c, ca);
1579 
1580 	bch_notice(ca, "%s", bch2_member_states[new_state]);
1581 
1582 	mutex_lock(&c->sb_lock);
1583 	m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1584 	SET_BCH_MEMBER_STATE(m, new_state);
1585 	bch2_write_super(c);
1586 	mutex_unlock(&c->sb_lock);
1587 
1588 	if (new_state == BCH_MEMBER_STATE_rw)
1589 		__bch2_dev_read_write(c, ca);
1590 
1591 	rebalance_wakeup(c);
1592 
1593 	return ret;
1594 }
1595 
bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1596 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1597 		       enum bch_member_state new_state, int flags)
1598 {
1599 	int ret;
1600 
1601 	down_write(&c->state_lock);
1602 	ret = __bch2_dev_set_state(c, ca, new_state, flags);
1603 	up_write(&c->state_lock);
1604 
1605 	return ret;
1606 }
1607 
1608 /* Device add/removal: */
1609 
bch2_dev_remove(struct bch_fs * c,struct bch_dev * ca,int flags)1610 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1611 {
1612 	struct bch_member *m;
1613 	unsigned dev_idx = ca->dev_idx, data;
1614 	int ret;
1615 
1616 	down_write(&c->state_lock);
1617 
1618 	/*
1619 	 * We consume a reference to ca->ref, regardless of whether we succeed
1620 	 * or fail:
1621 	 */
1622 	bch2_dev_put(ca);
1623 
1624 	if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1625 		bch_err(ca, "Cannot remove without losing data");
1626 		ret = -BCH_ERR_device_state_not_allowed;
1627 		goto err;
1628 	}
1629 
1630 	__bch2_dev_read_only(c, ca);
1631 
1632 	ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1633 	bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1634 	if (ret)
1635 		goto err;
1636 
1637 	ret = bch2_dev_remove_alloc(c, ca);
1638 	bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1639 	if (ret)
1640 		goto err;
1641 
1642 	/*
1643 	 * We need to flush the entire journal to get rid of keys that reference
1644 	 * the device being removed before removing the superblock entry
1645 	 */
1646 	bch2_journal_flush_all_pins(&c->journal);
1647 
1648 	/*
1649 	 * this is really just needed for the bch2_replicas_gc_(start|end)
1650 	 * calls, and could be cleaned up:
1651 	 */
1652 	ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1653 	bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1654 	if (ret)
1655 		goto err;
1656 
1657 	ret = bch2_journal_flush(&c->journal);
1658 	bch_err_msg(ca, ret, "bch2_journal_flush()");
1659 	if (ret)
1660 		goto err;
1661 
1662 	ret = bch2_replicas_gc2(c);
1663 	bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1664 	if (ret)
1665 		goto err;
1666 
1667 	data = bch2_dev_has_data(c, ca);
1668 	if (data) {
1669 		struct printbuf data_has = PRINTBUF;
1670 
1671 		prt_bitflags(&data_has, __bch2_data_types, data);
1672 		bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1673 		printbuf_exit(&data_has);
1674 		ret = -EBUSY;
1675 		goto err;
1676 	}
1677 
1678 	__bch2_dev_offline(c, ca);
1679 
1680 	mutex_lock(&c->sb_lock);
1681 	rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1682 	mutex_unlock(&c->sb_lock);
1683 
1684 #ifndef CONFIG_BCACHEFS_DEBUG
1685 	percpu_ref_kill(&ca->ref);
1686 #else
1687 	ca->dying = true;
1688 	bch2_dev_put(ca);
1689 #endif
1690 	wait_for_completion(&ca->ref_completion);
1691 
1692 	bch2_dev_free(ca);
1693 
1694 	/*
1695 	 * Free this device's slot in the bch_member array - all pointers to
1696 	 * this device must be gone:
1697 	 */
1698 	mutex_lock(&c->sb_lock);
1699 	m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1700 	memset(&m->uuid, 0, sizeof(m->uuid));
1701 
1702 	bch2_write_super(c);
1703 
1704 	mutex_unlock(&c->sb_lock);
1705 	up_write(&c->state_lock);
1706 	return 0;
1707 err:
1708 	if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1709 	    !percpu_ref_is_zero(&ca->io_ref))
1710 		__bch2_dev_read_write(c, ca);
1711 	up_write(&c->state_lock);
1712 	return ret;
1713 }
1714 
1715 /* Add new device to running filesystem: */
bch2_dev_add(struct bch_fs * c,const char * path)1716 int bch2_dev_add(struct bch_fs *c, const char *path)
1717 {
1718 	struct bch_opts opts = bch2_opts_empty();
1719 	struct bch_sb_handle sb;
1720 	struct bch_dev *ca = NULL;
1721 	struct printbuf errbuf = PRINTBUF;
1722 	struct printbuf label = PRINTBUF;
1723 	int ret;
1724 
1725 	ret = bch2_read_super(path, &opts, &sb);
1726 	bch_err_msg(c, ret, "reading super");
1727 	if (ret)
1728 		goto err;
1729 
1730 	struct bch_member dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1731 
1732 	if (BCH_MEMBER_GROUP(&dev_mi)) {
1733 		bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1734 		if (label.allocation_failure) {
1735 			ret = -ENOMEM;
1736 			goto err;
1737 		}
1738 	}
1739 
1740 	ret = bch2_dev_may_add(sb.sb, c);
1741 	if (ret)
1742 		goto err;
1743 
1744 	ca = __bch2_dev_alloc(c, &dev_mi);
1745 	if (!ca) {
1746 		ret = -ENOMEM;
1747 		goto err;
1748 	}
1749 
1750 	ret = __bch2_dev_attach_bdev(ca, &sb);
1751 	if (ret)
1752 		goto err;
1753 
1754 	ret = bch2_dev_journal_alloc(ca, true);
1755 	bch_err_msg(c, ret, "allocating journal");
1756 	if (ret)
1757 		goto err;
1758 
1759 	down_write(&c->state_lock);
1760 	mutex_lock(&c->sb_lock);
1761 
1762 	ret = bch2_sb_from_fs(c, ca);
1763 	bch_err_msg(c, ret, "setting up new superblock");
1764 	if (ret)
1765 		goto err_unlock;
1766 
1767 	if (dynamic_fault("bcachefs:add:no_slot"))
1768 		goto err_unlock;
1769 
1770 	ret = bch2_sb_member_alloc(c);
1771 	if (ret < 0) {
1772 		bch_err_msg(c, ret, "setting up new superblock");
1773 		goto err_unlock;
1774 	}
1775 	unsigned dev_idx = ret;
1776 
1777 	/* success: */
1778 
1779 	dev_mi.last_mount = cpu_to_le64(ktime_get_real_seconds());
1780 	*bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx) = dev_mi;
1781 
1782 	ca->disk_sb.sb->dev_idx	= dev_idx;
1783 	bch2_dev_attach(c, ca, dev_idx);
1784 
1785 	if (BCH_MEMBER_GROUP(&dev_mi)) {
1786 		ret = __bch2_dev_group_set(c, ca, label.buf);
1787 		bch_err_msg(c, ret, "creating new label");
1788 		if (ret)
1789 			goto err_unlock;
1790 	}
1791 
1792 	bch2_write_super(c);
1793 	mutex_unlock(&c->sb_lock);
1794 
1795 	ret = bch2_dev_usage_init(ca, false);
1796 	if (ret)
1797 		goto err_late;
1798 
1799 	ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1800 	bch_err_msg(ca, ret, "marking new superblock");
1801 	if (ret)
1802 		goto err_late;
1803 
1804 	ret = bch2_fs_freespace_init(c);
1805 	bch_err_msg(ca, ret, "initializing free space");
1806 	if (ret)
1807 		goto err_late;
1808 
1809 	ca->new_fs_bucket_idx = 0;
1810 
1811 	if (ca->mi.state == BCH_MEMBER_STATE_rw)
1812 		__bch2_dev_read_write(c, ca);
1813 
1814 	up_write(&c->state_lock);
1815 	return 0;
1816 
1817 err_unlock:
1818 	mutex_unlock(&c->sb_lock);
1819 	up_write(&c->state_lock);
1820 err:
1821 	if (ca)
1822 		bch2_dev_free(ca);
1823 	bch2_free_super(&sb);
1824 	printbuf_exit(&label);
1825 	printbuf_exit(&errbuf);
1826 	bch_err_fn(c, ret);
1827 	return ret;
1828 err_late:
1829 	up_write(&c->state_lock);
1830 	ca = NULL;
1831 	goto err;
1832 }
1833 
1834 /* Hot add existing device to running filesystem: */
bch2_dev_online(struct bch_fs * c,const char * path)1835 int bch2_dev_online(struct bch_fs *c, const char *path)
1836 {
1837 	struct bch_opts opts = bch2_opts_empty();
1838 	struct bch_sb_handle sb = { NULL };
1839 	struct bch_dev *ca;
1840 	unsigned dev_idx;
1841 	int ret;
1842 
1843 	down_write(&c->state_lock);
1844 
1845 	ret = bch2_read_super(path, &opts, &sb);
1846 	if (ret) {
1847 		up_write(&c->state_lock);
1848 		return ret;
1849 	}
1850 
1851 	dev_idx = sb.sb->dev_idx;
1852 
1853 	ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts);
1854 	bch_err_msg(c, ret, "bringing %s online", path);
1855 	if (ret)
1856 		goto err;
1857 
1858 	ret = bch2_dev_attach_bdev(c, &sb);
1859 	if (ret)
1860 		goto err;
1861 
1862 	ca = bch2_dev_locked(c, dev_idx);
1863 
1864 	ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1865 	bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1866 	if (ret)
1867 		goto err;
1868 
1869 	if (ca->mi.state == BCH_MEMBER_STATE_rw)
1870 		__bch2_dev_read_write(c, ca);
1871 
1872 	if (!ca->mi.freespace_initialized) {
1873 		ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1874 		bch_err_msg(ca, ret, "initializing free space");
1875 		if (ret)
1876 			goto err;
1877 	}
1878 
1879 	if (!ca->journal.nr) {
1880 		ret = bch2_dev_journal_alloc(ca, false);
1881 		bch_err_msg(ca, ret, "allocating journal");
1882 		if (ret)
1883 			goto err;
1884 	}
1885 
1886 	mutex_lock(&c->sb_lock);
1887 	bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1888 		cpu_to_le64(ktime_get_real_seconds());
1889 	bch2_write_super(c);
1890 	mutex_unlock(&c->sb_lock);
1891 
1892 	up_write(&c->state_lock);
1893 	return 0;
1894 err:
1895 	up_write(&c->state_lock);
1896 	bch2_free_super(&sb);
1897 	return ret;
1898 }
1899 
bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca,int flags)1900 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1901 {
1902 	down_write(&c->state_lock);
1903 
1904 	if (!bch2_dev_is_online(ca)) {
1905 		bch_err(ca, "Already offline");
1906 		up_write(&c->state_lock);
1907 		return 0;
1908 	}
1909 
1910 	if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1911 		bch_err(ca, "Cannot offline required disk");
1912 		up_write(&c->state_lock);
1913 		return -BCH_ERR_device_state_not_allowed;
1914 	}
1915 
1916 	__bch2_dev_offline(c, ca);
1917 
1918 	up_write(&c->state_lock);
1919 	return 0;
1920 }
1921 
bch2_dev_resize(struct bch_fs * c,struct bch_dev * ca,u64 nbuckets)1922 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1923 {
1924 	struct bch_member *m;
1925 	u64 old_nbuckets;
1926 	int ret = 0;
1927 
1928 	down_write(&c->state_lock);
1929 	old_nbuckets = ca->mi.nbuckets;
1930 
1931 	if (nbuckets < ca->mi.nbuckets) {
1932 		bch_err(ca, "Cannot shrink yet");
1933 		ret = -EINVAL;
1934 		goto err;
1935 	}
1936 
1937 	if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) {
1938 		bch_err(ca, "New device size too big (%llu greater than max %u)",
1939 			nbuckets, BCH_MEMBER_NBUCKETS_MAX);
1940 		ret = -BCH_ERR_device_size_too_big;
1941 		goto err;
1942 	}
1943 
1944 	if (bch2_dev_is_online(ca) &&
1945 	    get_capacity(ca->disk_sb.bdev->bd_disk) <
1946 	    ca->mi.bucket_size * nbuckets) {
1947 		bch_err(ca, "New size larger than device");
1948 		ret = -BCH_ERR_device_size_too_small;
1949 		goto err;
1950 	}
1951 
1952 	ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1953 	bch_err_msg(ca, ret, "resizing buckets");
1954 	if (ret)
1955 		goto err;
1956 
1957 	ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1958 	if (ret)
1959 		goto err;
1960 
1961 	mutex_lock(&c->sb_lock);
1962 	m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1963 	m->nbuckets = cpu_to_le64(nbuckets);
1964 
1965 	bch2_write_super(c);
1966 	mutex_unlock(&c->sb_lock);
1967 
1968 	if (ca->mi.freespace_initialized) {
1969 		struct disk_accounting_pos acc = {
1970 			.type = BCH_DISK_ACCOUNTING_dev_data_type,
1971 			.dev_data_type.dev = ca->dev_idx,
1972 			.dev_data_type.data_type = BCH_DATA_free,
1973 		};
1974 		u64 v[3] = { nbuckets - old_nbuckets, 0, 0 };
1975 
1976 		ret   = bch2_trans_commit_do(ca->fs, NULL, NULL, 0,
1977 				bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), false)) ?:
1978 			bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1979 		if (ret)
1980 			goto err;
1981 	}
1982 
1983 	bch2_recalc_capacity(c);
1984 err:
1985 	up_write(&c->state_lock);
1986 	return ret;
1987 }
1988 
1989 /* return with ref on ca->ref: */
bch2_dev_lookup(struct bch_fs * c,const char * name)1990 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
1991 {
1992 	if (!strncmp(name, "/dev/", strlen("/dev/")))
1993 		name += strlen("/dev/");
1994 
1995 	for_each_member_device(c, ca)
1996 		if (!strcmp(name, ca->name))
1997 			return ca;
1998 	return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
1999 }
2000 
2001 /* Filesystem open: */
2002 
sb_cmp(struct bch_sb * l,struct bch_sb * r)2003 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2004 {
2005 	return  cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2006 		cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2007 }
2008 
bch2_fs_open(char * const * devices,unsigned nr_devices,struct bch_opts opts)2009 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2010 			    struct bch_opts opts)
2011 {
2012 	DARRAY(struct bch_sb_handle) sbs = { 0 };
2013 	struct bch_fs *c = NULL;
2014 	struct bch_sb_handle *best = NULL;
2015 	struct printbuf errbuf = PRINTBUF;
2016 	int ret = 0;
2017 
2018 	if (!try_module_get(THIS_MODULE))
2019 		return ERR_PTR(-ENODEV);
2020 
2021 	if (!nr_devices) {
2022 		ret = -EINVAL;
2023 		goto err;
2024 	}
2025 
2026 	ret = darray_make_room(&sbs, nr_devices);
2027 	if (ret)
2028 		goto err;
2029 
2030 	for (unsigned i = 0; i < nr_devices; i++) {
2031 		struct bch_sb_handle sb = { NULL };
2032 
2033 		ret = bch2_read_super(devices[i], &opts, &sb);
2034 		if (ret)
2035 			goto err;
2036 
2037 		BUG_ON(darray_push(&sbs, sb));
2038 	}
2039 
2040 	if (opts.nochanges && !opts.read_only) {
2041 		ret = -BCH_ERR_erofs_nochanges;
2042 		goto err_print;
2043 	}
2044 
2045 	darray_for_each(sbs, sb)
2046 		if (!best || sb_cmp(sb->sb, best->sb) > 0)
2047 			best = sb;
2048 
2049 	darray_for_each_reverse(sbs, sb) {
2050 		ret = bch2_dev_in_fs(best, sb, &opts);
2051 
2052 		if (ret == -BCH_ERR_device_has_been_removed ||
2053 		    ret == -BCH_ERR_device_splitbrain) {
2054 			bch2_free_super(sb);
2055 			darray_remove_item(&sbs, sb);
2056 			best -= best > sb;
2057 			ret = 0;
2058 			continue;
2059 		}
2060 
2061 		if (ret)
2062 			goto err_print;
2063 	}
2064 
2065 	c = bch2_fs_alloc(best->sb, opts);
2066 	ret = PTR_ERR_OR_ZERO(c);
2067 	if (ret)
2068 		goto err;
2069 
2070 	down_write(&c->state_lock);
2071 	darray_for_each(sbs, sb) {
2072 		ret = bch2_dev_attach_bdev(c, sb);
2073 		if (ret) {
2074 			up_write(&c->state_lock);
2075 			goto err;
2076 		}
2077 	}
2078 	up_write(&c->state_lock);
2079 
2080 	if (!bch2_fs_may_start(c)) {
2081 		ret = -BCH_ERR_insufficient_devices_to_start;
2082 		goto err_print;
2083 	}
2084 
2085 	if (!c->opts.nostart) {
2086 		ret = bch2_fs_start(c);
2087 		if (ret)
2088 			goto err;
2089 	}
2090 out:
2091 	darray_for_each(sbs, sb)
2092 		bch2_free_super(sb);
2093 	darray_exit(&sbs);
2094 	printbuf_exit(&errbuf);
2095 	module_put(THIS_MODULE);
2096 	return c;
2097 err_print:
2098 	pr_err("bch_fs_open err opening %s: %s",
2099 	       devices[0], bch2_err_str(ret));
2100 err:
2101 	if (!IS_ERR_OR_NULL(c))
2102 		bch2_fs_stop(c);
2103 	c = ERR_PTR(ret);
2104 	goto out;
2105 }
2106 
2107 /* Global interfaces/init */
2108 
bcachefs_exit(void)2109 static void bcachefs_exit(void)
2110 {
2111 	bch2_debug_exit();
2112 	bch2_vfs_exit();
2113 	bch2_chardev_exit();
2114 	bch2_btree_key_cache_exit();
2115 	if (bcachefs_kset)
2116 		kset_unregister(bcachefs_kset);
2117 }
2118 
bcachefs_init(void)2119 static int __init bcachefs_init(void)
2120 {
2121 	bch2_bkey_pack_test();
2122 
2123 	if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2124 	    bch2_btree_key_cache_init() ||
2125 	    bch2_chardev_init() ||
2126 	    bch2_vfs_init() ||
2127 	    bch2_debug_init())
2128 		goto err;
2129 
2130 	return 0;
2131 err:
2132 	bcachefs_exit();
2133 	return -ENOMEM;
2134 }
2135 
2136 #define BCH_DEBUG_PARAM(name, description)			\
2137 	bool bch2_##name;					\
2138 	module_param_named(name, bch2_##name, bool, 0644);	\
2139 	MODULE_PARM_DESC(name, description);
2140 BCH_DEBUG_PARAMS()
2141 #undef BCH_DEBUG_PARAM
2142 
2143 __maybe_unused
2144 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2145 module_param_named(version, bch2_metadata_version, uint, 0400);
2146 
2147 module_exit(bcachefs_exit);
2148 module_init(bcachefs_init);
2149