1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _BCACHEFS_H
3  #define _BCACHEFS_H
4  
5  /*
6   * SOME HIGH LEVEL CODE DOCUMENTATION:
7   *
8   * Bcache mostly works with cache sets, cache devices, and backing devices.
9   *
10   * Support for multiple cache devices hasn't quite been finished off yet, but
11   * it's about 95% plumbed through. A cache set and its cache devices is sort of
12   * like a md raid array and its component devices. Most of the code doesn't care
13   * about individual cache devices, the main abstraction is the cache set.
14   *
15   * Multiple cache devices is intended to give us the ability to mirror dirty
16   * cached data and metadata, without mirroring clean cached data.
17   *
18   * Backing devices are different, in that they have a lifetime independent of a
19   * cache set. When you register a newly formatted backing device it'll come up
20   * in passthrough mode, and then you can attach and detach a backing device from
21   * a cache set at runtime - while it's mounted and in use. Detaching implicitly
22   * invalidates any cached data for that backing device.
23   *
24   * A cache set can have multiple (many) backing devices attached to it.
25   *
26   * There's also flash only volumes - this is the reason for the distinction
27   * between struct cached_dev and struct bcache_device. A flash only volume
28   * works much like a bcache device that has a backing device, except the
29   * "cached" data is always dirty. The end result is that we get thin
30   * provisioning with very little additional code.
31   *
32   * Flash only volumes work but they're not production ready because the moving
33   * garbage collector needs more work. More on that later.
34   *
35   * BUCKETS/ALLOCATION:
36   *
37   * Bcache is primarily designed for caching, which means that in normal
38   * operation all of our available space will be allocated. Thus, we need an
39   * efficient way of deleting things from the cache so we can write new things to
40   * it.
41   *
42   * To do this, we first divide the cache device up into buckets. A bucket is the
43   * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44   * works efficiently.
45   *
46   * Each bucket has a 16 bit priority, and an 8 bit generation associated with
47   * it. The gens and priorities for all the buckets are stored contiguously and
48   * packed on disk (in a linked list of buckets - aside from the superblock, all
49   * of bcache's metadata is stored in buckets).
50   *
51   * The priority is used to implement an LRU. We reset a bucket's priority when
52   * we allocate it or on cache it, and every so often we decrement the priority
53   * of each bucket. It could be used to implement something more sophisticated,
54   * if anyone ever gets around to it.
55   *
56   * The generation is used for invalidating buckets. Each pointer also has an 8
57   * bit generation embedded in it; for a pointer to be considered valid, its gen
58   * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
59   * we have to do is increment its gen (and write its new gen to disk; we batch
60   * this up).
61   *
62   * Bcache is entirely COW - we never write twice to a bucket, even buckets that
63   * contain metadata (including btree nodes).
64   *
65   * THE BTREE:
66   *
67   * Bcache is in large part design around the btree.
68   *
69   * At a high level, the btree is just an index of key -> ptr tuples.
70   *
71   * Keys represent extents, and thus have a size field. Keys also have a variable
72   * number of pointers attached to them (potentially zero, which is handy for
73   * invalidating the cache).
74   *
75   * The key itself is an inode:offset pair. The inode number corresponds to a
76   * backing device or a flash only volume. The offset is the ending offset of the
77   * extent within the inode - not the starting offset; this makes lookups
78   * slightly more convenient.
79   *
80   * Pointers contain the cache device id, the offset on that device, and an 8 bit
81   * generation number. More on the gen later.
82   *
83   * Index lookups are not fully abstracted - cache lookups in particular are
84   * still somewhat mixed in with the btree code, but things are headed in that
85   * direction.
86   *
87   * Updates are fairly well abstracted, though. There are two different ways of
88   * updating the btree; insert and replace.
89   *
90   * BTREE_INSERT will just take a list of keys and insert them into the btree -
91   * overwriting (possibly only partially) any extents they overlap with. This is
92   * used to update the index after a write.
93   *
94   * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95   * overwriting a key that matches another given key. This is used for inserting
96   * data into the cache after a cache miss, and for background writeback, and for
97   * the moving garbage collector.
98   *
99   * There is no "delete" operation; deleting things from the index is
100   * accomplished by either by invalidating pointers (by incrementing a bucket's
101   * gen) or by inserting a key with 0 pointers - which will overwrite anything
102   * previously present at that location in the index.
103   *
104   * This means that there are always stale/invalid keys in the btree. They're
105   * filtered out by the code that iterates through a btree node, and removed when
106   * a btree node is rewritten.
107   *
108   * BTREE NODES:
109   *
110   * Our unit of allocation is a bucket, and we can't arbitrarily allocate and
111   * free smaller than a bucket - so, that's how big our btree nodes are.
112   *
113   * (If buckets are really big we'll only use part of the bucket for a btree node
114   * - no less than 1/4th - but a bucket still contains no more than a single
115   * btree node. I'd actually like to change this, but for now we rely on the
116   * bucket's gen for deleting btree nodes when we rewrite/split a node.)
117   *
118   * Anyways, btree nodes are big - big enough to be inefficient with a textbook
119   * btree implementation.
120   *
121   * The way this is solved is that btree nodes are internally log structured; we
122   * can append new keys to an existing btree node without rewriting it. This
123   * means each set of keys we write is sorted, but the node is not.
124   *
125   * We maintain this log structure in memory - keeping 1Mb of keys sorted would
126   * be expensive, and we have to distinguish between the keys we have written and
127   * the keys we haven't. So to do a lookup in a btree node, we have to search
128   * each sorted set. But we do merge written sets together lazily, so the cost of
129   * these extra searches is quite low (normally most of the keys in a btree node
130   * will be in one big set, and then there'll be one or two sets that are much
131   * smaller).
132   *
133   * This log structure makes bcache's btree more of a hybrid between a
134   * conventional btree and a compacting data structure, with some of the
135   * advantages of both.
136   *
137   * GARBAGE COLLECTION:
138   *
139   * We can't just invalidate any bucket - it might contain dirty data or
140   * metadata. If it once contained dirty data, other writes might overwrite it
141   * later, leaving no valid pointers into that bucket in the index.
142   *
143   * Thus, the primary purpose of garbage collection is to find buckets to reuse.
144   * It also counts how much valid data it each bucket currently contains, so that
145   * allocation can reuse buckets sooner when they've been mostly overwritten.
146   *
147   * It also does some things that are really internal to the btree
148   * implementation. If a btree node contains pointers that are stale by more than
149   * some threshold, it rewrites the btree node to avoid the bucket's generation
150   * wrapping around. It also merges adjacent btree nodes if they're empty enough.
151   *
152   * THE JOURNAL:
153   *
154   * Bcache's journal is not necessary for consistency; we always strictly
155   * order metadata writes so that the btree and everything else is consistent on
156   * disk in the event of an unclean shutdown, and in fact bcache had writeback
157   * caching (with recovery from unclean shutdown) before journalling was
158   * implemented.
159   *
160   * Rather, the journal is purely a performance optimization; we can't complete a
161   * write until we've updated the index on disk, otherwise the cache would be
162   * inconsistent in the event of an unclean shutdown. This means that without the
163   * journal, on random write workloads we constantly have to update all the leaf
164   * nodes in the btree, and those writes will be mostly empty (appending at most
165   * a few keys each) - highly inefficient in terms of amount of metadata writes,
166   * and it puts more strain on the various btree resorting/compacting code.
167   *
168   * The journal is just a log of keys we've inserted; on startup we just reinsert
169   * all the keys in the open journal entries. That means that when we're updating
170   * a node in the btree, we can wait until a 4k block of keys fills up before
171   * writing them out.
172   *
173   * For simplicity, we only journal updates to leaf nodes; updates to parent
174   * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175   * the complexity to deal with journalling them (in particular, journal replay)
176   * - updates to non leaf nodes just happen synchronously (see btree_split()).
177   */
178  
179  #undef pr_fmt
180  #ifdef __KERNEL__
181  #define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__
182  #else
183  #define pr_fmt(fmt) "%s() " fmt "\n", __func__
184  #endif
185  
186  #include <linux/backing-dev-defs.h>
187  #include <linux/bug.h>
188  #include <linux/bio.h>
189  #include <linux/closure.h>
190  #include <linux/kobject.h>
191  #include <linux/list.h>
192  #include <linux/math64.h>
193  #include <linux/mutex.h>
194  #include <linux/percpu-refcount.h>
195  #include <linux/percpu-rwsem.h>
196  #include <linux/refcount.h>
197  #include <linux/rhashtable.h>
198  #include <linux/rwsem.h>
199  #include <linux/semaphore.h>
200  #include <linux/seqlock.h>
201  #include <linux/shrinker.h>
202  #include <linux/srcu.h>
203  #include <linux/types.h>
204  #include <linux/workqueue.h>
205  #include <linux/zstd.h>
206  
207  #include "bcachefs_format.h"
208  #include "disk_accounting_types.h"
209  #include "errcode.h"
210  #include "fifo.h"
211  #include "nocow_locking_types.h"
212  #include "opts.h"
213  #include "recovery_passes_types.h"
214  #include "sb-errors_types.h"
215  #include "seqmutex.h"
216  #include "time_stats.h"
217  #include "util.h"
218  
219  #ifdef CONFIG_BCACHEFS_DEBUG
220  #define BCH_WRITE_REF_DEBUG
221  #endif
222  
223  #ifndef dynamic_fault
224  #define dynamic_fault(...)		0
225  #endif
226  
227  #define race_fault(...)			dynamic_fault("bcachefs:race")
228  
229  #define count_event(_c, _name)	this_cpu_inc((_c)->counters[BCH_COUNTER_##_name])
230  
231  #define trace_and_count(_c, _name, ...)					\
232  do {									\
233  	count_event(_c, _name);						\
234  	trace_##_name(__VA_ARGS__);					\
235  } while (0)
236  
237  #define bch2_fs_init_fault(name)					\
238  	dynamic_fault("bcachefs:bch_fs_init:" name)
239  #define bch2_meta_read_fault(name)					\
240  	 dynamic_fault("bcachefs:meta:read:" name)
241  #define bch2_meta_write_fault(name)					\
242  	 dynamic_fault("bcachefs:meta:write:" name)
243  
244  #ifdef __KERNEL__
245  #define BCACHEFS_LOG_PREFIX
246  #endif
247  
248  #ifdef BCACHEFS_LOG_PREFIX
249  
250  #define bch2_log_msg(_c, fmt)			"bcachefs (%s): " fmt, ((_c)->name)
251  #define bch2_fmt_dev(_ca, fmt)			"bcachefs (%s): " fmt "\n", ((_ca)->name)
252  #define bch2_fmt_dev_offset(_ca, _offset, fmt)	"bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset)
253  #define bch2_fmt_inum(_c, _inum, fmt)		"bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum)
254  #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt)			\
255  	 "bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset)
256  
257  #else
258  
259  #define bch2_log_msg(_c, fmt)			fmt
260  #define bch2_fmt_dev(_ca, fmt)			"%s: " fmt "\n", ((_ca)->name)
261  #define bch2_fmt_dev_offset(_ca, _offset, fmt)	"%s sector %llu: " fmt "\n", ((_ca)->name), (_offset)
262  #define bch2_fmt_inum(_c, _inum, fmt)		"inum %llu: " fmt "\n", (_inum)
263  #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt)				\
264  	 "inum %llu offset %llu: " fmt "\n", (_inum), (_offset)
265  
266  #endif
267  
268  #define bch2_fmt(_c, fmt)		bch2_log_msg(_c, fmt "\n")
269  
270  void bch2_print_str(struct bch_fs *, const char *);
271  
272  __printf(2, 3)
273  void bch2_print_opts(struct bch_opts *, const char *, ...);
274  
275  __printf(2, 3)
276  void __bch2_print(struct bch_fs *c, const char *fmt, ...);
277  
278  #define maybe_dev_to_fs(_c)	_Generic((_c),				\
279  	struct bch_dev *:	((struct bch_dev *) (_c))->fs,		\
280  	struct bch_fs *:	(_c))
281  
282  #define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__)
283  
284  #define bch2_print_ratelimited(_c, ...)					\
285  do {									\
286  	static DEFINE_RATELIMIT_STATE(_rs,				\
287  				      DEFAULT_RATELIMIT_INTERVAL,	\
288  				      DEFAULT_RATELIMIT_BURST);		\
289  									\
290  	if (__ratelimit(&_rs))						\
291  		bch2_print(_c, __VA_ARGS__);				\
292  } while (0)
293  
294  #define bch_info(c, fmt, ...) \
295  	bch2_print(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__)
296  #define bch_notice(c, fmt, ...) \
297  	bch2_print(c, KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__)
298  #define bch_warn(c, fmt, ...) \
299  	bch2_print(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
300  #define bch_warn_ratelimited(c, fmt, ...) \
301  	bch2_print_ratelimited(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
302  
303  #define bch_err(c, fmt, ...) \
304  	bch2_print(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
305  #define bch_err_dev(ca, fmt, ...) \
306  	bch2_print(c, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
307  #define bch_err_dev_offset(ca, _offset, fmt, ...) \
308  	bch2_print(c, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
309  #define bch_err_inum(c, _inum, fmt, ...) \
310  	bch2_print(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
311  #define bch_err_inum_offset(c, _inum, _offset, fmt, ...) \
312  	bch2_print(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
313  
314  #define bch_err_ratelimited(c, fmt, ...) \
315  	bch2_print_ratelimited(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
316  #define bch_err_dev_ratelimited(ca, fmt, ...) \
317  	bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
318  #define bch_err_dev_offset_ratelimited(ca, _offset, fmt, ...) \
319  	bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
320  #define bch_err_inum_ratelimited(c, _inum, fmt, ...) \
321  	bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
322  #define bch_err_inum_offset_ratelimited(c, _inum, _offset, fmt, ...) \
323  	bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
324  
should_print_err(int err)325  static inline bool should_print_err(int err)
326  {
327  	return err && !bch2_err_matches(err, BCH_ERR_transaction_restart);
328  }
329  
330  #define bch_err_fn(_c, _ret)						\
331  do {									\
332  	if (should_print_err(_ret))					\
333  		bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
334  } while (0)
335  
336  #define bch_err_fn_ratelimited(_c, _ret)				\
337  do {									\
338  	if (should_print_err(_ret))					\
339  		bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
340  } while (0)
341  
342  #define bch_err_msg(_c, _ret, _msg, ...)				\
343  do {									\
344  	if (should_print_err(_ret))					\
345  		bch_err(_c, "%s(): error " _msg " %s", __func__,	\
346  			##__VA_ARGS__, bch2_err_str(_ret));		\
347  } while (0)
348  
349  #define bch_verbose(c, fmt, ...)					\
350  do {									\
351  	if ((c)->opts.verbose)						\
352  		bch_info(c, fmt, ##__VA_ARGS__);			\
353  } while (0)
354  
355  #define pr_verbose_init(opts, fmt, ...)					\
356  do {									\
357  	if (opt_get(opts, verbose))					\
358  		pr_info(fmt, ##__VA_ARGS__);				\
359  } while (0)
360  
361  /* Parameters that are useful for debugging, but should always be compiled in: */
362  #define BCH_DEBUG_PARAMS_ALWAYS()					\
363  	BCH_DEBUG_PARAM(key_merging_disabled,				\
364  		"Disables merging of extents")				\
365  	BCH_DEBUG_PARAM(btree_node_merging_disabled,			\
366  		"Disables merging of btree nodes")			\
367  	BCH_DEBUG_PARAM(btree_gc_always_rewrite,			\
368  		"Causes mark and sweep to compact and rewrite every "	\
369  		"btree node it traverses")				\
370  	BCH_DEBUG_PARAM(btree_gc_rewrite_disabled,			\
371  		"Disables rewriting of btree nodes during mark and sweep")\
372  	BCH_DEBUG_PARAM(btree_shrinker_disabled,			\
373  		"Disables the shrinker callback for the btree node cache")\
374  	BCH_DEBUG_PARAM(verify_btree_ondisk,				\
375  		"Reread btree nodes at various points to verify the "	\
376  		"mergesort in the read path against modifications "	\
377  		"done in memory")					\
378  	BCH_DEBUG_PARAM(verify_all_btree_replicas,			\
379  		"When reading btree nodes, read all replicas and "	\
380  		"compare them")						\
381  	BCH_DEBUG_PARAM(backpointers_no_use_write_buffer,		\
382  		"Don't use the write buffer for backpointers, enabling "\
383  		"extra runtime checks")
384  
385  /* Parameters that should only be compiled in debug mode: */
386  #define BCH_DEBUG_PARAMS_DEBUG()					\
387  	BCH_DEBUG_PARAM(expensive_debug_checks,				\
388  		"Enables various runtime debugging checks that "	\
389  		"significantly affect performance")			\
390  	BCH_DEBUG_PARAM(debug_check_iterators,				\
391  		"Enables extra verification for btree iterators")	\
392  	BCH_DEBUG_PARAM(debug_check_btree_accounting,			\
393  		"Verify btree accounting for keys within a node")	\
394  	BCH_DEBUG_PARAM(journal_seq_verify,				\
395  		"Store the journal sequence number in the version "	\
396  		"number of every btree key, and verify that btree "	\
397  		"update ordering is preserved during recovery")		\
398  	BCH_DEBUG_PARAM(inject_invalid_keys,				\
399  		"Store the journal sequence number in the version "	\
400  		"number of every btree key, and verify that btree "	\
401  		"update ordering is preserved during recovery")		\
402  	BCH_DEBUG_PARAM(test_alloc_startup,				\
403  		"Force allocator startup to use the slowpath where it"	\
404  		"can't find enough free buckets without invalidating"	\
405  		"cached data")						\
406  	BCH_DEBUG_PARAM(force_reconstruct_read,				\
407  		"Force reads to use the reconstruct path, when reading"	\
408  		"from erasure coded extents")				\
409  	BCH_DEBUG_PARAM(test_restart_gc,				\
410  		"Test restarting mark and sweep gc when bucket gens change")
411  
412  #define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG()
413  
414  #ifdef CONFIG_BCACHEFS_DEBUG
415  #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL()
416  #else
417  #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS()
418  #endif
419  
420  #define BCH_DEBUG_PARAM(name, description) extern bool bch2_##name;
421  BCH_DEBUG_PARAMS()
422  #undef BCH_DEBUG_PARAM
423  
424  #ifndef CONFIG_BCACHEFS_DEBUG
425  #define BCH_DEBUG_PARAM(name, description) static const __maybe_unused bool bch2_##name;
426  BCH_DEBUG_PARAMS_DEBUG()
427  #undef BCH_DEBUG_PARAM
428  #endif
429  
430  #define BCH_TIME_STATS()			\
431  	x(btree_node_mem_alloc)			\
432  	x(btree_node_split)			\
433  	x(btree_node_compact)			\
434  	x(btree_node_merge)			\
435  	x(btree_node_sort)			\
436  	x(btree_node_read)			\
437  	x(btree_node_read_done)			\
438  	x(btree_interior_update_foreground)	\
439  	x(btree_interior_update_total)		\
440  	x(btree_gc)				\
441  	x(data_write)				\
442  	x(data_read)				\
443  	x(data_promote)				\
444  	x(journal_flush_write)			\
445  	x(journal_noflush_write)		\
446  	x(journal_flush_seq)			\
447  	x(blocked_journal_low_on_space)		\
448  	x(blocked_journal_low_on_pin)		\
449  	x(blocked_journal_max_in_flight)	\
450  	x(blocked_key_cache_flush)		\
451  	x(blocked_allocate)			\
452  	x(blocked_allocate_open_bucket)		\
453  	x(blocked_write_buffer_full)		\
454  	x(nocow_lock_contended)
455  
456  enum bch_time_stats {
457  #define x(name) BCH_TIME_##name,
458  	BCH_TIME_STATS()
459  #undef x
460  	BCH_TIME_STAT_NR
461  };
462  
463  #include "alloc_types.h"
464  #include "btree_gc_types.h"
465  #include "btree_types.h"
466  #include "btree_node_scan_types.h"
467  #include "btree_write_buffer_types.h"
468  #include "buckets_types.h"
469  #include "buckets_waiting_for_journal_types.h"
470  #include "clock_types.h"
471  #include "disk_groups_types.h"
472  #include "ec_types.h"
473  #include "journal_types.h"
474  #include "keylist_types.h"
475  #include "quota_types.h"
476  #include "rebalance_types.h"
477  #include "replicas_types.h"
478  #include "sb-members_types.h"
479  #include "subvolume_types.h"
480  #include "super_types.h"
481  #include "thread_with_file_types.h"
482  
483  /* Number of nodes btree coalesce will try to coalesce at once */
484  #define GC_MERGE_NODES		4U
485  
486  /* Maximum number of nodes we might need to allocate atomically: */
487  #define BTREE_RESERVE_MAX	(BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1))
488  
489  /* Size of the freelist we allocate btree nodes from: */
490  #define BTREE_NODE_RESERVE	(BTREE_RESERVE_MAX * 4)
491  
492  #define BTREE_NODE_OPEN_BUCKET_RESERVE	(BTREE_RESERVE_MAX * BCH_REPLICAS_MAX)
493  
494  struct btree;
495  
496  struct io_count {
497  	u64			sectors[2][BCH_DATA_NR];
498  };
499  
500  struct discard_in_flight {
501  	bool			in_progress:1;
502  	u64			bucket:63;
503  };
504  
505  struct bch_dev {
506  	struct kobject		kobj;
507  #ifdef CONFIG_BCACHEFS_DEBUG
508  	atomic_long_t		ref;
509  	bool			dying;
510  	unsigned long		last_put;
511  #else
512  	struct percpu_ref	ref;
513  #endif
514  	struct completion	ref_completion;
515  	struct percpu_ref	io_ref;
516  	struct completion	io_ref_completion;
517  
518  	struct bch_fs		*fs;
519  
520  	u8			dev_idx;
521  	/*
522  	 * Cached version of this device's member info from superblock
523  	 * Committed by bch2_write_super() -> bch_fs_mi_update()
524  	 */
525  	struct bch_member_cpu	mi;
526  	atomic64_t		errors[BCH_MEMBER_ERROR_NR];
527  
528  	__uuid_t		uuid;
529  	char			name[BDEVNAME_SIZE];
530  
531  	struct bch_sb_handle	disk_sb;
532  	struct bch_sb		*sb_read_scratch;
533  	int			sb_write_error;
534  	dev_t			dev;
535  	atomic_t		flush_seq;
536  
537  	struct bch_devs_mask	self;
538  
539  	/*
540  	 * Buckets:
541  	 * Per-bucket arrays are protected by c->mark_lock, bucket_lock and
542  	 * gc_gens_lock, for device resize - holding any is sufficient for
543  	 * access: Or rcu_read_lock(), but only for dev_ptr_stale():
544  	 */
545  	GENRADIX(struct bucket)	buckets_gc;
546  	struct bucket_gens __rcu *bucket_gens;
547  	u8			*oldest_gen;
548  	unsigned long		*buckets_nouse;
549  	struct rw_semaphore	bucket_lock;
550  
551  	struct bch_dev_usage __percpu	*usage;
552  
553  	/* Allocator: */
554  	u64			new_fs_bucket_idx;
555  	u64			alloc_cursor[3];
556  
557  	unsigned		nr_open_buckets;
558  	unsigned		nr_partial_buckets;
559  	unsigned		nr_btree_reserve;
560  
561  	size_t			inc_gen_needs_gc;
562  	size_t			inc_gen_really_needs_gc;
563  	size_t			buckets_waiting_on_journal;
564  
565  	struct work_struct	invalidate_work;
566  	struct work_struct	discard_work;
567  	struct mutex		discard_buckets_in_flight_lock;
568  	DARRAY(struct discard_in_flight)	discard_buckets_in_flight;
569  	struct work_struct	discard_fast_work;
570  
571  	atomic64_t		rebalance_work;
572  
573  	struct journal_device	journal;
574  	u64			prev_journal_sector;
575  
576  	struct work_struct	io_error_work;
577  
578  	/* The rest of this all shows up in sysfs */
579  	atomic64_t		cur_latency[2];
580  	struct bch2_time_stats_quantiles io_latency[2];
581  
582  #define CONGESTED_MAX		1024
583  	atomic_t		congested;
584  	u64			congested_last;
585  
586  	struct io_count __percpu *io_done;
587  };
588  
589  /*
590   * initial_gc_unfixed
591   * error
592   * topology error
593   */
594  
595  #define BCH_FS_FLAGS()			\
596  	x(new_fs)			\
597  	x(started)			\
598  	x(clean_recovery)		\
599  	x(btree_running)		\
600  	x(accounting_replay_done)	\
601  	x(may_go_rw)			\
602  	x(rw)				\
603  	x(was_rw)			\
604  	x(stopping)			\
605  	x(emergency_ro)			\
606  	x(going_ro)			\
607  	x(write_disable_complete)	\
608  	x(clean_shutdown)		\
609  	x(fsck_running)			\
610  	x(initial_gc_unfixed)		\
611  	x(need_delete_dead_snapshots)	\
612  	x(error)			\
613  	x(topology_error)		\
614  	x(errors_fixed)			\
615  	x(errors_not_fixed)		\
616  	x(no_invalid_checks)
617  
618  enum bch_fs_flags {
619  #define x(n)		BCH_FS_##n,
620  	BCH_FS_FLAGS()
621  #undef x
622  };
623  
624  struct btree_debug {
625  	unsigned		id;
626  };
627  
628  #define BCH_TRANSACTIONS_NR 128
629  
630  struct btree_transaction_stats {
631  	struct bch2_time_stats	duration;
632  	struct bch2_time_stats	lock_hold_times;
633  	struct mutex		lock;
634  	unsigned		nr_max_paths;
635  	unsigned		journal_entries_size;
636  	unsigned		max_mem;
637  	char			*max_paths_text;
638  };
639  
640  struct bch_fs_pcpu {
641  	u64			sectors_available;
642  };
643  
644  struct journal_seq_blacklist_table {
645  	size_t			nr;
646  	struct journal_seq_blacklist_table_entry {
647  		u64		start;
648  		u64		end;
649  		bool		dirty;
650  	}			entries[];
651  };
652  
653  struct journal_keys {
654  	/* must match layout in darray_types.h */
655  	size_t			nr, size;
656  	struct journal_key {
657  		u64		journal_seq;
658  		u32		journal_offset;
659  		enum btree_id	btree_id:8;
660  		unsigned	level:8;
661  		bool		allocated;
662  		bool		overwritten;
663  		struct bkey_i	*k;
664  	}			*data;
665  	/*
666  	 * Gap buffer: instead of all the empty space in the array being at the
667  	 * end of the buffer - from @nr to @size - the empty space is at @gap.
668  	 * This means that sequential insertions are O(n) instead of O(n^2).
669  	 */
670  	size_t			gap;
671  	atomic_t		ref;
672  	bool			initial_ref_held;
673  };
674  
675  struct btree_trans_buf {
676  	struct btree_trans	*trans;
677  };
678  
679  #define BCACHEFS_ROOT_SUBVOL_INUM					\
680  	((subvol_inum) { BCACHEFS_ROOT_SUBVOL,	BCACHEFS_ROOT_INO })
681  
682  #define BCH_WRITE_REFS()						\
683  	x(trans)							\
684  	x(write)							\
685  	x(promote)							\
686  	x(node_rewrite)							\
687  	x(stripe_create)						\
688  	x(stripe_delete)						\
689  	x(reflink)							\
690  	x(fallocate)							\
691  	x(fsync)							\
692  	x(dio_write)							\
693  	x(discard)							\
694  	x(discard_fast)							\
695  	x(invalidate)							\
696  	x(delete_dead_snapshots)					\
697  	x(gc_gens)							\
698  	x(snapshot_delete_pagecache)					\
699  	x(sysfs)							\
700  	x(btree_write_buffer)
701  
702  enum bch_write_ref {
703  #define x(n) BCH_WRITE_REF_##n,
704  	BCH_WRITE_REFS()
705  #undef x
706  	BCH_WRITE_REF_NR,
707  };
708  
709  struct bch_fs {
710  	struct closure		cl;
711  
712  	struct list_head	list;
713  	struct kobject		kobj;
714  	struct kobject		counters_kobj;
715  	struct kobject		internal;
716  	struct kobject		opts_dir;
717  	struct kobject		time_stats;
718  	unsigned long		flags;
719  
720  	int			minor;
721  	struct device		*chardev;
722  	struct super_block	*vfs_sb;
723  	dev_t			dev;
724  	char			name[40];
725  	struct stdio_redirect	*stdio;
726  	struct task_struct	*stdio_filter;
727  
728  	/* ro/rw, add/remove/resize devices: */
729  	struct rw_semaphore	state_lock;
730  
731  	/* Counts outstanding writes, for clean transition to read-only */
732  #ifdef BCH_WRITE_REF_DEBUG
733  	atomic_long_t		writes[BCH_WRITE_REF_NR];
734  #else
735  	struct percpu_ref	writes;
736  #endif
737  	/*
738  	 * Analagous to c->writes, for asynchronous ops that don't necessarily
739  	 * need fs to be read-write
740  	 */
741  	refcount_t		ro_ref;
742  	wait_queue_head_t	ro_ref_wait;
743  
744  	struct work_struct	read_only_work;
745  
746  	struct bch_dev __rcu	*devs[BCH_SB_MEMBERS_MAX];
747  
748  	struct bch_accounting_mem accounting;
749  
750  	struct bch_replicas_cpu replicas;
751  	struct bch_replicas_cpu replicas_gc;
752  	struct mutex		replicas_gc_lock;
753  
754  	struct journal_entry_res btree_root_journal_res;
755  	struct journal_entry_res clock_journal_res;
756  
757  	struct bch_disk_groups_cpu __rcu *disk_groups;
758  
759  	struct bch_opts		opts;
760  
761  	/* Updated by bch2_sb_update():*/
762  	struct {
763  		__uuid_t	uuid;
764  		__uuid_t	user_uuid;
765  
766  		u16		version;
767  		u16		version_min;
768  		u16		version_upgrade_complete;
769  
770  		u8		nr_devices;
771  		u8		clean;
772  
773  		u8		encryption_type;
774  
775  		u64		time_base_lo;
776  		u32		time_base_hi;
777  		unsigned	time_units_per_sec;
778  		unsigned	nsec_per_time_unit;
779  		u64		features;
780  		u64		compat;
781  		unsigned long	errors_silent[BITS_TO_LONGS(BCH_FSCK_ERR_MAX)];
782  		u64		btrees_lost_data;
783  	}			sb;
784  
785  
786  	struct bch_sb_handle	disk_sb;
787  
788  	unsigned short		block_bits;	/* ilog2(block_size) */
789  
790  	u16			btree_foreground_merge_threshold;
791  
792  	struct closure		sb_write;
793  	struct mutex		sb_lock;
794  
795  	/* snapshot.c: */
796  	struct snapshot_table __rcu *snapshots;
797  	struct mutex		snapshot_table_lock;
798  	struct rw_semaphore	snapshot_create_lock;
799  
800  	struct work_struct	snapshot_delete_work;
801  	struct work_struct	snapshot_wait_for_pagecache_and_delete_work;
802  	snapshot_id_list	snapshots_unlinked;
803  	struct mutex		snapshots_unlinked_lock;
804  
805  	/* BTREE CACHE */
806  	struct bio_set		btree_bio;
807  	struct workqueue_struct	*btree_read_complete_wq;
808  	struct workqueue_struct	*btree_write_submit_wq;
809  
810  	struct btree_root	btree_roots_known[BTREE_ID_NR];
811  	DARRAY(struct btree_root) btree_roots_extra;
812  	struct mutex		btree_root_lock;
813  
814  	struct btree_cache	btree_cache;
815  
816  	/*
817  	 * Cache of allocated btree nodes - if we allocate a btree node and
818  	 * don't use it, if we free it that space can't be reused until going
819  	 * _all_ the way through the allocator (which exposes us to a livelock
820  	 * when allocating btree reserves fail halfway through) - instead, we
821  	 * can stick them here:
822  	 */
823  	struct btree_alloc	btree_reserve_cache[BTREE_NODE_RESERVE * 2];
824  	unsigned		btree_reserve_cache_nr;
825  	struct mutex		btree_reserve_cache_lock;
826  
827  	mempool_t		btree_interior_update_pool;
828  	struct list_head	btree_interior_update_list;
829  	struct list_head	btree_interior_updates_unwritten;
830  	struct mutex		btree_interior_update_lock;
831  	struct closure_waitlist	btree_interior_update_wait;
832  
833  	struct workqueue_struct	*btree_interior_update_worker;
834  	struct work_struct	btree_interior_update_work;
835  
836  	struct workqueue_struct	*btree_node_rewrite_worker;
837  
838  	struct list_head	pending_node_rewrites;
839  	struct mutex		pending_node_rewrites_lock;
840  
841  	/* btree_io.c: */
842  	spinlock_t		btree_write_error_lock;
843  	struct btree_write_stats {
844  		atomic64_t	nr;
845  		atomic64_t	bytes;
846  	}			btree_write_stats[BTREE_WRITE_TYPE_NR];
847  
848  	/* btree_iter.c: */
849  	struct seqmutex		btree_trans_lock;
850  	struct list_head	btree_trans_list;
851  	mempool_t		btree_trans_pool;
852  	mempool_t		btree_trans_mem_pool;
853  	struct btree_trans_buf  __percpu	*btree_trans_bufs;
854  
855  	struct srcu_struct	btree_trans_barrier;
856  	bool			btree_trans_barrier_initialized;
857  
858  	struct btree_key_cache	btree_key_cache;
859  	unsigned		btree_key_cache_btrees;
860  
861  	struct btree_write_buffer btree_write_buffer;
862  
863  	struct workqueue_struct	*btree_update_wq;
864  	struct workqueue_struct	*btree_io_complete_wq;
865  	/* copygc needs its own workqueue for index updates.. */
866  	struct workqueue_struct	*copygc_wq;
867  	/*
868  	 * Use a dedicated wq for write ref holder tasks. Required to avoid
869  	 * dependency problems with other wq tasks that can block on ref
870  	 * draining, such as read-only transition.
871  	 */
872  	struct workqueue_struct *write_ref_wq;
873  
874  	/* ALLOCATION */
875  	struct bch_devs_mask	rw_devs[BCH_DATA_NR];
876  	unsigned long		rw_devs_change_count;
877  
878  	u64			capacity; /* sectors */
879  	u64			reserved; /* sectors */
880  
881  	/*
882  	 * When capacity _decreases_ (due to a disk being removed), we
883  	 * increment capacity_gen - this invalidates outstanding reservations
884  	 * and forces them to be revalidated
885  	 */
886  	u32			capacity_gen;
887  	unsigned		bucket_size_max;
888  
889  	atomic64_t		sectors_available;
890  	struct mutex		sectors_available_lock;
891  
892  	struct bch_fs_pcpu __percpu	*pcpu;
893  
894  	struct percpu_rw_semaphore	mark_lock;
895  
896  	seqcount_t			usage_lock;
897  	struct bch_fs_usage_base __percpu *usage;
898  	u64 __percpu		*online_reserved;
899  
900  	unsigned long		allocator_last_stuck;
901  
902  	struct io_clock		io_clock[2];
903  
904  	/* JOURNAL SEQ BLACKLIST */
905  	struct journal_seq_blacklist_table *
906  				journal_seq_blacklist_table;
907  
908  	/* ALLOCATOR */
909  	spinlock_t		freelist_lock;
910  	struct closure_waitlist	freelist_wait;
911  
912  	open_bucket_idx_t	open_buckets_freelist;
913  	open_bucket_idx_t	open_buckets_nr_free;
914  	struct closure_waitlist	open_buckets_wait;
915  	struct open_bucket	open_buckets[OPEN_BUCKETS_COUNT];
916  	open_bucket_idx_t	open_buckets_hash[OPEN_BUCKETS_COUNT];
917  
918  	open_bucket_idx_t	open_buckets_partial[OPEN_BUCKETS_COUNT];
919  	open_bucket_idx_t	open_buckets_partial_nr;
920  
921  	struct write_point	btree_write_point;
922  	struct write_point	rebalance_write_point;
923  
924  	struct write_point	write_points[WRITE_POINT_MAX];
925  	struct hlist_head	write_points_hash[WRITE_POINT_HASH_NR];
926  	struct mutex		write_points_hash_lock;
927  	unsigned		write_points_nr;
928  
929  	struct buckets_waiting_for_journal buckets_waiting_for_journal;
930  
931  	/* GARBAGE COLLECTION */
932  	struct work_struct	gc_gens_work;
933  	unsigned long		gc_count;
934  
935  	enum btree_id		gc_gens_btree;
936  	struct bpos		gc_gens_pos;
937  
938  	/*
939  	 * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos]
940  	 * has been marked by GC.
941  	 *
942  	 * gc_cur_phase is a superset of btree_ids (BTREE_ID_extents etc.)
943  	 *
944  	 * Protected by gc_pos_lock. Only written to by GC thread, so GC thread
945  	 * can read without a lock.
946  	 */
947  	seqcount_t		gc_pos_lock;
948  	struct gc_pos		gc_pos;
949  
950  	/*
951  	 * The allocation code needs gc_mark in struct bucket to be correct, but
952  	 * it's not while a gc is in progress.
953  	 */
954  	struct rw_semaphore	gc_lock;
955  	struct mutex		gc_gens_lock;
956  
957  	/* IO PATH */
958  	struct semaphore	io_in_flight;
959  	struct bio_set		bio_read;
960  	struct bio_set		bio_read_split;
961  	struct bio_set		bio_write;
962  	struct bio_set		replica_set;
963  	struct mutex		bio_bounce_pages_lock;
964  	mempool_t		bio_bounce_pages;
965  	struct bucket_nocow_lock_table
966  				nocow_locks;
967  	struct rhashtable	promote_table;
968  
969  	mempool_t		compression_bounce[2];
970  	mempool_t		compress_workspace[BCH_COMPRESSION_TYPE_NR];
971  	mempool_t		decompress_workspace;
972  	size_t			zstd_workspace_size;
973  
974  	struct crypto_shash	*sha256;
975  	struct crypto_sync_skcipher *chacha20;
976  	struct crypto_shash	*poly1305;
977  
978  	atomic64_t		key_version;
979  
980  	mempool_t		large_bkey_pool;
981  
982  	/* MOVE.C */
983  	struct list_head	moving_context_list;
984  	struct mutex		moving_context_lock;
985  
986  	/* REBALANCE */
987  	struct bch_fs_rebalance	rebalance;
988  
989  	/* COPYGC */
990  	struct task_struct	*copygc_thread;
991  	struct write_point	copygc_write_point;
992  	s64			copygc_wait_at;
993  	s64			copygc_wait;
994  	bool			copygc_running;
995  	wait_queue_head_t	copygc_running_wq;
996  
997  	/* STRIPES: */
998  	GENRADIX(struct stripe) stripes;
999  	GENRADIX(struct gc_stripe) gc_stripes;
1000  
1001  	struct hlist_head	ec_stripes_new[32];
1002  	spinlock_t		ec_stripes_new_lock;
1003  
1004  	ec_stripes_heap		ec_stripes_heap;
1005  	struct mutex		ec_stripes_heap_lock;
1006  
1007  	/* ERASURE CODING */
1008  	struct list_head	ec_stripe_head_list;
1009  	struct mutex		ec_stripe_head_lock;
1010  
1011  	struct list_head	ec_stripe_new_list;
1012  	struct mutex		ec_stripe_new_lock;
1013  	wait_queue_head_t	ec_stripe_new_wait;
1014  
1015  	struct work_struct	ec_stripe_create_work;
1016  	u64			ec_stripe_hint;
1017  
1018  	struct work_struct	ec_stripe_delete_work;
1019  
1020  	struct bio_set		ec_bioset;
1021  
1022  	/* REFLINK */
1023  	reflink_gc_table	reflink_gc_table;
1024  	size_t			reflink_gc_nr;
1025  
1026  	/* fs.c */
1027  	struct list_head	vfs_inodes_list;
1028  	struct mutex		vfs_inodes_lock;
1029  	struct rhashtable	vfs_inodes_table;
1030  
1031  	/* VFS IO PATH - fs-io.c */
1032  	struct bio_set		writepage_bioset;
1033  	struct bio_set		dio_write_bioset;
1034  	struct bio_set		dio_read_bioset;
1035  	struct bio_set		nocow_flush_bioset;
1036  
1037  	/* QUOTAS */
1038  	struct bch_memquota_type quotas[QTYP_NR];
1039  
1040  	/* RECOVERY */
1041  	u64			journal_replay_seq_start;
1042  	u64			journal_replay_seq_end;
1043  	/*
1044  	 * Two different uses:
1045  	 * "Has this fsck pass?" - i.e. should this type of error be an
1046  	 * emergency read-only
1047  	 * And, in certain situations fsck will rewind to an earlier pass: used
1048  	 * for signaling to the toplevel code which pass we want to run now.
1049  	 */
1050  	enum bch_recovery_pass	curr_recovery_pass;
1051  	/* bitmask of recovery passes that we actually ran */
1052  	u64			recovery_passes_complete;
1053  	/* never rewinds version of curr_recovery_pass */
1054  	enum bch_recovery_pass	recovery_pass_done;
1055  	struct semaphore	online_fsck_mutex;
1056  
1057  	/* DEBUG JUNK */
1058  	struct dentry		*fs_debug_dir;
1059  	struct dentry		*btree_debug_dir;
1060  	struct btree_debug	btree_debug[BTREE_ID_NR];
1061  	struct btree		*verify_data;
1062  	struct btree_node	*verify_ondisk;
1063  	struct mutex		verify_lock;
1064  
1065  	u64			*unused_inode_hints;
1066  	unsigned		inode_shard_bits;
1067  
1068  	/*
1069  	 * A btree node on disk could have too many bsets for an iterator to fit
1070  	 * on the stack - have to dynamically allocate them
1071  	 */
1072  	mempool_t		fill_iter;
1073  
1074  	mempool_t		btree_bounce_pool;
1075  
1076  	struct journal		journal;
1077  	GENRADIX(struct journal_replay *) journal_entries;
1078  	u64			journal_entries_base_seq;
1079  	struct journal_keys	journal_keys;
1080  	struct list_head	journal_iters;
1081  
1082  	struct find_btree_nodes	found_btree_nodes;
1083  
1084  	u64			last_bucket_seq_cleanup;
1085  
1086  	u64			counters_on_mount[BCH_COUNTER_NR];
1087  	u64 __percpu		*counters;
1088  
1089  	unsigned		copy_gc_enabled:1;
1090  
1091  	struct bch2_time_stats	times[BCH_TIME_STAT_NR];
1092  
1093  	struct btree_transaction_stats btree_transaction_stats[BCH_TRANSACTIONS_NR];
1094  
1095  	/* ERRORS */
1096  	struct list_head	fsck_error_msgs;
1097  	struct mutex		fsck_error_msgs_lock;
1098  	bool			fsck_alloc_msgs_err;
1099  
1100  	bch_sb_errors_cpu	fsck_error_counts;
1101  	struct mutex		fsck_error_counts_lock;
1102  };
1103  
1104  extern struct wait_queue_head bch2_read_only_wait;
1105  
bch2_write_ref_get(struct bch_fs * c,enum bch_write_ref ref)1106  static inline void bch2_write_ref_get(struct bch_fs *c, enum bch_write_ref ref)
1107  {
1108  #ifdef BCH_WRITE_REF_DEBUG
1109  	atomic_long_inc(&c->writes[ref]);
1110  #else
1111  	percpu_ref_get(&c->writes);
1112  #endif
1113  }
1114  
__bch2_write_ref_tryget(struct bch_fs * c,enum bch_write_ref ref)1115  static inline bool __bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref)
1116  {
1117  #ifdef BCH_WRITE_REF_DEBUG
1118  	return !test_bit(BCH_FS_going_ro, &c->flags) &&
1119  		atomic_long_inc_not_zero(&c->writes[ref]);
1120  #else
1121  	return percpu_ref_tryget(&c->writes);
1122  #endif
1123  }
1124  
bch2_write_ref_tryget(struct bch_fs * c,enum bch_write_ref ref)1125  static inline bool bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref)
1126  {
1127  #ifdef BCH_WRITE_REF_DEBUG
1128  	return !test_bit(BCH_FS_going_ro, &c->flags) &&
1129  		atomic_long_inc_not_zero(&c->writes[ref]);
1130  #else
1131  	return percpu_ref_tryget_live(&c->writes);
1132  #endif
1133  }
1134  
bch2_write_ref_put(struct bch_fs * c,enum bch_write_ref ref)1135  static inline void bch2_write_ref_put(struct bch_fs *c, enum bch_write_ref ref)
1136  {
1137  #ifdef BCH_WRITE_REF_DEBUG
1138  	long v = atomic_long_dec_return(&c->writes[ref]);
1139  
1140  	BUG_ON(v < 0);
1141  	if (v)
1142  		return;
1143  	for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
1144  		if (atomic_long_read(&c->writes[i]))
1145  			return;
1146  
1147  	set_bit(BCH_FS_write_disable_complete, &c->flags);
1148  	wake_up(&bch2_read_only_wait);
1149  #else
1150  	percpu_ref_put(&c->writes);
1151  #endif
1152  }
1153  
bch2_ro_ref_tryget(struct bch_fs * c)1154  static inline bool bch2_ro_ref_tryget(struct bch_fs *c)
1155  {
1156  	if (test_bit(BCH_FS_stopping, &c->flags))
1157  		return false;
1158  
1159  	return refcount_inc_not_zero(&c->ro_ref);
1160  }
1161  
bch2_ro_ref_put(struct bch_fs * c)1162  static inline void bch2_ro_ref_put(struct bch_fs *c)
1163  {
1164  	if (refcount_dec_and_test(&c->ro_ref))
1165  		wake_up(&c->ro_ref_wait);
1166  }
1167  
bch2_set_ra_pages(struct bch_fs * c,unsigned ra_pages)1168  static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages)
1169  {
1170  #ifndef NO_BCACHEFS_FS
1171  	if (c->vfs_sb)
1172  		c->vfs_sb->s_bdi->ra_pages = ra_pages;
1173  #endif
1174  }
1175  
bucket_bytes(const struct bch_dev * ca)1176  static inline unsigned bucket_bytes(const struct bch_dev *ca)
1177  {
1178  	return ca->mi.bucket_size << 9;
1179  }
1180  
block_bytes(const struct bch_fs * c)1181  static inline unsigned block_bytes(const struct bch_fs *c)
1182  {
1183  	return c->opts.block_size;
1184  }
1185  
block_sectors(const struct bch_fs * c)1186  static inline unsigned block_sectors(const struct bch_fs *c)
1187  {
1188  	return c->opts.block_size >> 9;
1189  }
1190  
btree_id_cached(const struct bch_fs * c,enum btree_id btree)1191  static inline bool btree_id_cached(const struct bch_fs *c, enum btree_id btree)
1192  {
1193  	return c->btree_key_cache_btrees & (1U << btree);
1194  }
1195  
bch2_time_to_timespec(const struct bch_fs * c,s64 time)1196  static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time)
1197  {
1198  	struct timespec64 t;
1199  	s64 sec;
1200  	s32 rem;
1201  
1202  	time += c->sb.time_base_lo;
1203  
1204  	sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem);
1205  
1206  	set_normalized_timespec64(&t, sec, rem * (s64)c->sb.nsec_per_time_unit);
1207  
1208  	return t;
1209  }
1210  
timespec_to_bch2_time(const struct bch_fs * c,struct timespec64 ts)1211  static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts)
1212  {
1213  	return (ts.tv_sec * c->sb.time_units_per_sec +
1214  		(int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo;
1215  }
1216  
bch2_current_time(const struct bch_fs * c)1217  static inline s64 bch2_current_time(const struct bch_fs *c)
1218  {
1219  	struct timespec64 now;
1220  
1221  	ktime_get_coarse_real_ts64(&now);
1222  	return timespec_to_bch2_time(c, now);
1223  }
1224  
bch2_current_io_time(const struct bch_fs * c,int rw)1225  static inline u64 bch2_current_io_time(const struct bch_fs *c, int rw)
1226  {
1227  	return max(1ULL, (u64) atomic64_read(&c->io_clock[rw].now) & LRU_TIME_MAX);
1228  }
1229  
bch2_fs_stdio_redirect(struct bch_fs * c)1230  static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c)
1231  {
1232  	struct stdio_redirect *stdio = c->stdio;
1233  
1234  	if (c->stdio_filter && c->stdio_filter != current)
1235  		stdio = NULL;
1236  	return stdio;
1237  }
1238  
metadata_replicas_required(struct bch_fs * c)1239  static inline unsigned metadata_replicas_required(struct bch_fs *c)
1240  {
1241  	return min(c->opts.metadata_replicas,
1242  		   c->opts.metadata_replicas_required);
1243  }
1244  
data_replicas_required(struct bch_fs * c)1245  static inline unsigned data_replicas_required(struct bch_fs *c)
1246  {
1247  	return min(c->opts.data_replicas,
1248  		   c->opts.data_replicas_required);
1249  }
1250  
1251  #define BKEY_PADDED_ONSTACK(key, pad)				\
1252  	struct { struct bkey_i key; __u64 key ## _pad[pad]; }
1253  
1254  #endif /* _BCACHEFS_H */
1255