1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   * Kernel-based Virtual Machine driver for Linux
4   *
5   * This header defines architecture specific interfaces, x86 version
6   */
7  
8  #ifndef _ASM_X86_KVM_HOST_H
9  #define _ASM_X86_KVM_HOST_H
10  
11  #include <linux/types.h>
12  #include <linux/mm.h>
13  #include <linux/mmu_notifier.h>
14  #include <linux/tracepoint.h>
15  #include <linux/cpumask.h>
16  #include <linux/irq_work.h>
17  #include <linux/irq.h>
18  #include <linux/workqueue.h>
19  
20  #include <linux/kvm.h>
21  #include <linux/kvm_para.h>
22  #include <linux/kvm_types.h>
23  #include <linux/perf_event.h>
24  #include <linux/pvclock_gtod.h>
25  #include <linux/clocksource.h>
26  #include <linux/irqbypass.h>
27  #include <linux/hyperv.h>
28  #include <linux/kfifo.h>
29  
30  #include <asm/apic.h>
31  #include <asm/pvclock-abi.h>
32  #include <asm/desc.h>
33  #include <asm/mtrr.h>
34  #include <asm/msr-index.h>
35  #include <asm/asm.h>
36  #include <asm/kvm_page_track.h>
37  #include <asm/kvm_vcpu_regs.h>
38  #include <asm/hyperv-tlfs.h>
39  #include <asm/reboot.h>
40  
41  #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
42  
43  /*
44   * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
45   * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
46   */
47  #ifdef CONFIG_KVM_MAX_NR_VCPUS
48  #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
49  #else
50  #define KVM_MAX_VCPUS 1024
51  #endif
52  
53  /*
54   * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
55   * might be larger than the actual number of VCPUs because the
56   * APIC ID encodes CPU topology information.
57   *
58   * In the worst case, we'll need less than one extra bit for the
59   * Core ID, and less than one extra bit for the Package (Die) ID,
60   * so ratio of 4 should be enough.
61   */
62  #define KVM_VCPU_ID_RATIO 4
63  #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
64  
65  /* memory slots that are not exposed to userspace */
66  #define KVM_INTERNAL_MEM_SLOTS 3
67  
68  #define KVM_HALT_POLL_NS_DEFAULT 200000
69  
70  #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
71  
72  #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
73  					KVM_DIRTY_LOG_INITIALLY_SET)
74  
75  #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
76  						 KVM_BUS_LOCK_DETECTION_EXIT)
77  
78  #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
79  						 KVM_X86_NOTIFY_VMEXIT_USER)
80  
81  /* x86-specific vcpu->requests bit members */
82  #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
83  #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
84  #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
85  #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
86  #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
87  #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
88  #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
89  #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
90  #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
91  #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
92  #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
93  #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
94  #ifdef CONFIG_KVM_SMM
95  #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
96  #endif
97  #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
98  #define KVM_REQ_MCLOCK_INPROGRESS \
99  	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
100  #define KVM_REQ_SCAN_IOAPIC \
101  	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
102  #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
103  #define KVM_REQ_APIC_PAGE_RELOAD \
104  	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105  #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
106  #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
107  #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
108  #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
109  #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
110  #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
111  #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
112  #define KVM_REQ_APICV_UPDATE \
113  	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
114  #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
115  #define KVM_REQ_TLB_FLUSH_GUEST \
116  	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
117  #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
118  #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
119  #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
120  	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
121  #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
122  	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
123  #define KVM_REQ_HV_TLB_FLUSH \
124  	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
125  #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE	KVM_ARCH_REQ(34)
126  
127  #define CR0_RESERVED_BITS                                               \
128  	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
129  			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
130  			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
131  
132  #define CR4_RESERVED_BITS                                               \
133  	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
134  			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
135  			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
136  			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
137  			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
138  			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
139  			  | X86_CR4_LAM_SUP))
140  
141  #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
142  
143  
144  
145  #define INVALID_PAGE (~(hpa_t)0)
146  #define VALID_PAGE(x) ((x) != INVALID_PAGE)
147  
148  /* KVM Hugepage definitions for x86 */
149  #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
150  #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
151  #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
152  #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
153  #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
154  #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
155  #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
156  
157  #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
158  #define KVM_MIN_ALLOC_MMU_PAGES 64UL
159  #define KVM_MMU_HASH_SHIFT 12
160  #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
161  #define KVM_MIN_FREE_MMU_PAGES 5
162  #define KVM_REFILL_PAGES 25
163  #define KVM_MAX_CPUID_ENTRIES 256
164  #define KVM_NR_VAR_MTRR 8
165  
166  #define ASYNC_PF_PER_VCPU 64
167  
168  enum kvm_reg {
169  	VCPU_REGS_RAX = __VCPU_REGS_RAX,
170  	VCPU_REGS_RCX = __VCPU_REGS_RCX,
171  	VCPU_REGS_RDX = __VCPU_REGS_RDX,
172  	VCPU_REGS_RBX = __VCPU_REGS_RBX,
173  	VCPU_REGS_RSP = __VCPU_REGS_RSP,
174  	VCPU_REGS_RBP = __VCPU_REGS_RBP,
175  	VCPU_REGS_RSI = __VCPU_REGS_RSI,
176  	VCPU_REGS_RDI = __VCPU_REGS_RDI,
177  #ifdef CONFIG_X86_64
178  	VCPU_REGS_R8  = __VCPU_REGS_R8,
179  	VCPU_REGS_R9  = __VCPU_REGS_R9,
180  	VCPU_REGS_R10 = __VCPU_REGS_R10,
181  	VCPU_REGS_R11 = __VCPU_REGS_R11,
182  	VCPU_REGS_R12 = __VCPU_REGS_R12,
183  	VCPU_REGS_R13 = __VCPU_REGS_R13,
184  	VCPU_REGS_R14 = __VCPU_REGS_R14,
185  	VCPU_REGS_R15 = __VCPU_REGS_R15,
186  #endif
187  	VCPU_REGS_RIP,
188  	NR_VCPU_REGS,
189  
190  	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
191  	VCPU_EXREG_CR0,
192  	VCPU_EXREG_CR3,
193  	VCPU_EXREG_CR4,
194  	VCPU_EXREG_RFLAGS,
195  	VCPU_EXREG_SEGMENTS,
196  	VCPU_EXREG_EXIT_INFO_1,
197  	VCPU_EXREG_EXIT_INFO_2,
198  };
199  
200  enum {
201  	VCPU_SREG_ES,
202  	VCPU_SREG_CS,
203  	VCPU_SREG_SS,
204  	VCPU_SREG_DS,
205  	VCPU_SREG_FS,
206  	VCPU_SREG_GS,
207  	VCPU_SREG_TR,
208  	VCPU_SREG_LDTR,
209  };
210  
211  enum exit_fastpath_completion {
212  	EXIT_FASTPATH_NONE,
213  	EXIT_FASTPATH_REENTER_GUEST,
214  	EXIT_FASTPATH_EXIT_HANDLED,
215  	EXIT_FASTPATH_EXIT_USERSPACE,
216  };
217  typedef enum exit_fastpath_completion fastpath_t;
218  
219  struct x86_emulate_ctxt;
220  struct x86_exception;
221  union kvm_smram;
222  enum x86_intercept;
223  enum x86_intercept_stage;
224  
225  #define KVM_NR_DB_REGS	4
226  
227  #define DR6_BUS_LOCK   (1 << 11)
228  #define DR6_BD		(1 << 13)
229  #define DR6_BS		(1 << 14)
230  #define DR6_BT		(1 << 15)
231  #define DR6_RTM		(1 << 16)
232  /*
233   * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
234   * We can regard all the bits in DR6_FIXED_1 as active_low bits;
235   * they will never be 0 for now, but when they are defined
236   * in the future it will require no code change.
237   *
238   * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
239   */
240  #define DR6_ACTIVE_LOW	0xffff0ff0
241  #define DR6_VOLATILE	0x0001e80f
242  #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
243  
244  #define DR7_BP_EN_MASK	0x000000ff
245  #define DR7_GE		(1 << 9)
246  #define DR7_GD		(1 << 13)
247  #define DR7_FIXED_1	0x00000400
248  #define DR7_VOLATILE	0xffff2bff
249  
250  #define KVM_GUESTDBG_VALID_MASK \
251  	(KVM_GUESTDBG_ENABLE | \
252  	KVM_GUESTDBG_SINGLESTEP | \
253  	KVM_GUESTDBG_USE_HW_BP | \
254  	KVM_GUESTDBG_USE_SW_BP | \
255  	KVM_GUESTDBG_INJECT_BP | \
256  	KVM_GUESTDBG_INJECT_DB | \
257  	KVM_GUESTDBG_BLOCKIRQ)
258  
259  #define PFERR_PRESENT_MASK	BIT(0)
260  #define PFERR_WRITE_MASK	BIT(1)
261  #define PFERR_USER_MASK		BIT(2)
262  #define PFERR_RSVD_MASK		BIT(3)
263  #define PFERR_FETCH_MASK	BIT(4)
264  #define PFERR_PK_MASK		BIT(5)
265  #define PFERR_SGX_MASK		BIT(15)
266  #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
267  #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
268  #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
269  #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
270  #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
271  #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
272  
273  /*
274   * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
275   * when emulating instructions that triggers implicit access.
276   */
277  #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
278  /*
279   * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
280   * when the guest was accessing private memory.
281   */
282  #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
283  #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
284  
285  /* apic attention bits */
286  #define KVM_APIC_CHECK_VAPIC	0
287  /*
288   * The following bit is set with PV-EOI, unset on EOI.
289   * We detect PV-EOI changes by guest by comparing
290   * this bit with PV-EOI in guest memory.
291   * See the implementation in apic_update_pv_eoi.
292   */
293  #define KVM_APIC_PV_EOI_PENDING	1
294  
295  struct kvm_kernel_irq_routing_entry;
296  
297  /*
298   * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
299   * also includes TDP pages) to determine whether or not a page can be used in
300   * the given MMU context.  This is a subset of the overall kvm_cpu_role to
301   * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
302   * allocating 2 bytes per gfn instead of 4 bytes per gfn.
303   *
304   * Upper-level shadow pages having gptes are tracked for write-protection via
305   * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
306   * not create more than 2^16-1 upper-level shadow pages at a single gfn,
307   * otherwise gfn_write_track will overflow and explosions will ensue.
308   *
309   * A unique shadow page (SP) for a gfn is created if and only if an existing SP
310   * cannot be reused.  The ability to reuse a SP is tracked by its role, which
311   * incorporates various mode bits and properties of the SP.  Roughly speaking,
312   * the number of unique SPs that can theoretically be created is 2^n, where n
313   * is the number of bits that are used to compute the role.
314   *
315   * But, even though there are 19 bits in the mask below, not all combinations
316   * of modes and flags are possible:
317   *
318   *   - invalid shadow pages are not accounted, so the bits are effectively 18
319   *
320   *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
321   *     execonly and ad_disabled are only used for nested EPT which has
322   *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
323   *
324   *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
325   *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
326   *     paging has exactly one upper level, making level completely redundant
327   *     when has_4_byte_gpte=1.
328   *
329   *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
330   *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
331   *
332   * Therefore, the maximum number of possible upper-level shadow pages for a
333   * single gfn is a bit less than 2^13.
334   */
335  union kvm_mmu_page_role {
336  	u32 word;
337  	struct {
338  		unsigned level:4;
339  		unsigned has_4_byte_gpte:1;
340  		unsigned quadrant:2;
341  		unsigned direct:1;
342  		unsigned access:3;
343  		unsigned invalid:1;
344  		unsigned efer_nx:1;
345  		unsigned cr0_wp:1;
346  		unsigned smep_andnot_wp:1;
347  		unsigned smap_andnot_wp:1;
348  		unsigned ad_disabled:1;
349  		unsigned guest_mode:1;
350  		unsigned passthrough:1;
351  		unsigned :5;
352  
353  		/*
354  		 * This is left at the top of the word so that
355  		 * kvm_memslots_for_spte_role can extract it with a
356  		 * simple shift.  While there is room, give it a whole
357  		 * byte so it is also faster to load it from memory.
358  		 */
359  		unsigned smm:8;
360  	};
361  };
362  
363  /*
364   * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
365   * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
366   * including on nested transitions, if nothing in the full role changes then
367   * MMU re-configuration can be skipped. @valid bit is set on first usage so we
368   * don't treat all-zero structure as valid data.
369   *
370   * The properties that are tracked in the extended role but not the page role
371   * are for things that either (a) do not affect the validity of the shadow page
372   * or (b) are indirectly reflected in the shadow page's role.  For example,
373   * CR4.PKE only affects permission checks for software walks of the guest page
374   * tables (because KVM doesn't support Protection Keys with shadow paging), and
375   * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
376   *
377   * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
378   * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
379   * SMAP, but the MMU's permission checks for software walks need to be SMEP and
380   * SMAP aware regardless of CR0.WP.
381   */
382  union kvm_mmu_extended_role {
383  	u32 word;
384  	struct {
385  		unsigned int valid:1;
386  		unsigned int execonly:1;
387  		unsigned int cr4_pse:1;
388  		unsigned int cr4_pke:1;
389  		unsigned int cr4_smap:1;
390  		unsigned int cr4_smep:1;
391  		unsigned int cr4_la57:1;
392  		unsigned int efer_lma:1;
393  	};
394  };
395  
396  union kvm_cpu_role {
397  	u64 as_u64;
398  	struct {
399  		union kvm_mmu_page_role base;
400  		union kvm_mmu_extended_role ext;
401  	};
402  };
403  
404  struct kvm_rmap_head {
405  	unsigned long val;
406  };
407  
408  struct kvm_pio_request {
409  	unsigned long linear_rip;
410  	unsigned long count;
411  	int in;
412  	int port;
413  	int size;
414  };
415  
416  #define PT64_ROOT_MAX_LEVEL 5
417  
418  struct rsvd_bits_validate {
419  	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
420  	u64 bad_mt_xwr;
421  };
422  
423  struct kvm_mmu_root_info {
424  	gpa_t pgd;
425  	hpa_t hpa;
426  };
427  
428  #define KVM_MMU_ROOT_INFO_INVALID \
429  	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
430  
431  #define KVM_MMU_NUM_PREV_ROOTS 3
432  
433  #define KVM_MMU_ROOT_CURRENT		BIT(0)
434  #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
435  #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
436  
437  #define KVM_HAVE_MMU_RWLOCK
438  
439  struct kvm_mmu_page;
440  struct kvm_page_fault;
441  
442  /*
443   * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
444   * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
445   * current mmu mode.
446   */
447  struct kvm_mmu {
448  	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
449  	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
450  	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
451  	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
452  				  struct x86_exception *fault);
453  	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
454  			    gpa_t gva_or_gpa, u64 access,
455  			    struct x86_exception *exception);
456  	int (*sync_spte)(struct kvm_vcpu *vcpu,
457  			 struct kvm_mmu_page *sp, int i);
458  	struct kvm_mmu_root_info root;
459  	union kvm_cpu_role cpu_role;
460  	union kvm_mmu_page_role root_role;
461  
462  	/*
463  	* The pkru_mask indicates if protection key checks are needed.  It
464  	* consists of 16 domains indexed by page fault error code bits [4:1],
465  	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
466  	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
467  	*/
468  	u32 pkru_mask;
469  
470  	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
471  
472  	/*
473  	 * Bitmap; bit set = permission fault
474  	 * Byte index: page fault error code [4:1]
475  	 * Bit index: pte permissions in ACC_* format
476  	 */
477  	u8 permissions[16];
478  
479  	u64 *pae_root;
480  	u64 *pml4_root;
481  	u64 *pml5_root;
482  
483  	/*
484  	 * check zero bits on shadow page table entries, these
485  	 * bits include not only hardware reserved bits but also
486  	 * the bits spte never used.
487  	 */
488  	struct rsvd_bits_validate shadow_zero_check;
489  
490  	struct rsvd_bits_validate guest_rsvd_check;
491  
492  	u64 pdptrs[4]; /* pae */
493  };
494  
495  enum pmc_type {
496  	KVM_PMC_GP = 0,
497  	KVM_PMC_FIXED,
498  };
499  
500  struct kvm_pmc {
501  	enum pmc_type type;
502  	u8 idx;
503  	bool is_paused;
504  	bool intr;
505  	/*
506  	 * Base value of the PMC counter, relative to the *consumed* count in
507  	 * the associated perf_event.  This value includes counter updates from
508  	 * the perf_event and emulated_count since the last time the counter
509  	 * was reprogrammed, but it is *not* the current value as seen by the
510  	 * guest or userspace.
511  	 *
512  	 * The count is relative to the associated perf_event so that KVM
513  	 * doesn't need to reprogram the perf_event every time the guest writes
514  	 * to the counter.
515  	 */
516  	u64 counter;
517  	/*
518  	 * PMC events triggered by KVM emulation that haven't been fully
519  	 * processed, i.e. haven't undergone overflow detection.
520  	 */
521  	u64 emulated_counter;
522  	u64 eventsel;
523  	struct perf_event *perf_event;
524  	struct kvm_vcpu *vcpu;
525  	/*
526  	 * only for creating or reusing perf_event,
527  	 * eventsel value for general purpose counters,
528  	 * ctrl value for fixed counters.
529  	 */
530  	u64 current_config;
531  };
532  
533  /* More counters may conflict with other existing Architectural MSRs */
534  #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
535  #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
536  #define KVM_MAX_NR_AMD_GP_COUNTERS	6
537  #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
538  						KVM_MAX_NR_AMD_GP_COUNTERS)
539  
540  #define KVM_MAX_NR_INTEL_FIXED_COUTNERS	3
541  #define KVM_MAX_NR_AMD_FIXED_COUTNERS	0
542  #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
543  						KVM_MAX_NR_AMD_FIXED_COUTNERS)
544  
545  struct kvm_pmu {
546  	u8 version;
547  	unsigned nr_arch_gp_counters;
548  	unsigned nr_arch_fixed_counters;
549  	unsigned available_event_types;
550  	u64 fixed_ctr_ctrl;
551  	u64 fixed_ctr_ctrl_rsvd;
552  	u64 global_ctrl;
553  	u64 global_status;
554  	u64 counter_bitmask[2];
555  	u64 global_ctrl_rsvd;
556  	u64 global_status_rsvd;
557  	u64 reserved_bits;
558  	u64 raw_event_mask;
559  	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
560  	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
561  
562  	/*
563  	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
564  	 * set in a single access, e.g. to reprogram all counters when the PMU
565  	 * filter changes.
566  	 */
567  	union {
568  		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
569  		atomic64_t __reprogram_pmi;
570  	};
571  	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
572  	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
573  
574  	u64 ds_area;
575  	u64 pebs_enable;
576  	u64 pebs_enable_rsvd;
577  	u64 pebs_data_cfg;
578  	u64 pebs_data_cfg_rsvd;
579  
580  	/*
581  	 * If a guest counter is cross-mapped to host counter with different
582  	 * index, its PEBS capability will be temporarily disabled.
583  	 *
584  	 * The user should make sure that this mask is updated
585  	 * after disabling interrupts and before perf_guest_get_msrs();
586  	 */
587  	u64 host_cross_mapped_mask;
588  
589  	/*
590  	 * The gate to release perf_events not marked in
591  	 * pmc_in_use only once in a vcpu time slice.
592  	 */
593  	bool need_cleanup;
594  
595  	/*
596  	 * The total number of programmed perf_events and it helps to avoid
597  	 * redundant check before cleanup if guest don't use vPMU at all.
598  	 */
599  	u8 event_count;
600  };
601  
602  struct kvm_pmu_ops;
603  
604  enum {
605  	KVM_DEBUGREG_BP_ENABLED = 1,
606  	KVM_DEBUGREG_WONT_EXIT = 2,
607  };
608  
609  struct kvm_mtrr {
610  	u64 var[KVM_NR_VAR_MTRR * 2];
611  	u64 fixed_64k;
612  	u64 fixed_16k[2];
613  	u64 fixed_4k[8];
614  	u64 deftype;
615  };
616  
617  /* Hyper-V SynIC timer */
618  struct kvm_vcpu_hv_stimer {
619  	struct hrtimer timer;
620  	int index;
621  	union hv_stimer_config config;
622  	u64 count;
623  	u64 exp_time;
624  	struct hv_message msg;
625  	bool msg_pending;
626  };
627  
628  /* Hyper-V synthetic interrupt controller (SynIC)*/
629  struct kvm_vcpu_hv_synic {
630  	u64 version;
631  	u64 control;
632  	u64 msg_page;
633  	u64 evt_page;
634  	atomic64_t sint[HV_SYNIC_SINT_COUNT];
635  	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
636  	DECLARE_BITMAP(auto_eoi_bitmap, 256);
637  	DECLARE_BITMAP(vec_bitmap, 256);
638  	bool active;
639  	bool dont_zero_synic_pages;
640  };
641  
642  /* The maximum number of entries on the TLB flush fifo. */
643  #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
644  /*
645   * Note: the following 'magic' entry is made up by KVM to avoid putting
646   * anything besides GVA on the TLB flush fifo. It is theoretically possible
647   * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
648   * which will look identical. KVM's action to 'flush everything' instead of
649   * flushing these particular addresses is, however, fully legitimate as
650   * flushing more than requested is always OK.
651   */
652  #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
653  
654  enum hv_tlb_flush_fifos {
655  	HV_L1_TLB_FLUSH_FIFO,
656  	HV_L2_TLB_FLUSH_FIFO,
657  	HV_NR_TLB_FLUSH_FIFOS,
658  };
659  
660  struct kvm_vcpu_hv_tlb_flush_fifo {
661  	spinlock_t write_lock;
662  	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
663  };
664  
665  /* Hyper-V per vcpu emulation context */
666  struct kvm_vcpu_hv {
667  	struct kvm_vcpu *vcpu;
668  	u32 vp_index;
669  	u64 hv_vapic;
670  	s64 runtime_offset;
671  	struct kvm_vcpu_hv_synic synic;
672  	struct kvm_hyperv_exit exit;
673  	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
674  	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
675  	bool enforce_cpuid;
676  	struct {
677  		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
678  		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
679  		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
680  		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
681  		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
682  		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
683  		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
684  		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
685  	} cpuid_cache;
686  
687  	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
688  
689  	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
690  	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
691  
692  	struct hv_vp_assist_page vp_assist_page;
693  
694  	struct {
695  		u64 pa_page_gpa;
696  		u64 vm_id;
697  		u32 vp_id;
698  	} nested;
699  };
700  
701  struct kvm_hypervisor_cpuid {
702  	u32 base;
703  	u32 limit;
704  };
705  
706  #ifdef CONFIG_KVM_XEN
707  /* Xen HVM per vcpu emulation context */
708  struct kvm_vcpu_xen {
709  	u64 hypercall_rip;
710  	u32 current_runstate;
711  	u8 upcall_vector;
712  	struct gfn_to_pfn_cache vcpu_info_cache;
713  	struct gfn_to_pfn_cache vcpu_time_info_cache;
714  	struct gfn_to_pfn_cache runstate_cache;
715  	struct gfn_to_pfn_cache runstate2_cache;
716  	u64 last_steal;
717  	u64 runstate_entry_time;
718  	u64 runstate_times[4];
719  	unsigned long evtchn_pending_sel;
720  	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
721  	u32 timer_virq;
722  	u64 timer_expires; /* In guest epoch */
723  	atomic_t timer_pending;
724  	struct hrtimer timer;
725  	int poll_evtchn;
726  	struct timer_list poll_timer;
727  	struct kvm_hypervisor_cpuid cpuid;
728  };
729  #endif
730  
731  struct kvm_queued_exception {
732  	bool pending;
733  	bool injected;
734  	bool has_error_code;
735  	u8 vector;
736  	u32 error_code;
737  	unsigned long payload;
738  	bool has_payload;
739  };
740  
741  struct kvm_vcpu_arch {
742  	/*
743  	 * rip and regs accesses must go through
744  	 * kvm_{register,rip}_{read,write} functions.
745  	 */
746  	unsigned long regs[NR_VCPU_REGS];
747  	u32 regs_avail;
748  	u32 regs_dirty;
749  
750  	unsigned long cr0;
751  	unsigned long cr0_guest_owned_bits;
752  	unsigned long cr2;
753  	unsigned long cr3;
754  	unsigned long cr4;
755  	unsigned long cr4_guest_owned_bits;
756  	unsigned long cr4_guest_rsvd_bits;
757  	unsigned long cr8;
758  	u32 host_pkru;
759  	u32 pkru;
760  	u32 hflags;
761  	u64 efer;
762  	u64 apic_base;
763  	struct kvm_lapic *apic;    /* kernel irqchip context */
764  	bool load_eoi_exitmap_pending;
765  	DECLARE_BITMAP(ioapic_handled_vectors, 256);
766  	unsigned long apic_attention;
767  	int32_t apic_arb_prio;
768  	int mp_state;
769  	u64 ia32_misc_enable_msr;
770  	u64 smbase;
771  	u64 smi_count;
772  	bool at_instruction_boundary;
773  	bool tpr_access_reporting;
774  	bool xfd_no_write_intercept;
775  	u64 ia32_xss;
776  	u64 microcode_version;
777  	u64 arch_capabilities;
778  	u64 perf_capabilities;
779  
780  	/*
781  	 * Paging state of the vcpu
782  	 *
783  	 * If the vcpu runs in guest mode with two level paging this still saves
784  	 * the paging mode of the l1 guest. This context is always used to
785  	 * handle faults.
786  	 */
787  	struct kvm_mmu *mmu;
788  
789  	/* Non-nested MMU for L1 */
790  	struct kvm_mmu root_mmu;
791  
792  	/* L1 MMU when running nested */
793  	struct kvm_mmu guest_mmu;
794  
795  	/*
796  	 * Paging state of an L2 guest (used for nested npt)
797  	 *
798  	 * This context will save all necessary information to walk page tables
799  	 * of an L2 guest. This context is only initialized for page table
800  	 * walking and not for faulting since we never handle l2 page faults on
801  	 * the host.
802  	 */
803  	struct kvm_mmu nested_mmu;
804  
805  	/*
806  	 * Pointer to the mmu context currently used for
807  	 * gva_to_gpa translations.
808  	 */
809  	struct kvm_mmu *walk_mmu;
810  
811  	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
812  	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
813  	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
814  	struct kvm_mmu_memory_cache mmu_page_header_cache;
815  
816  	/*
817  	 * QEMU userspace and the guest each have their own FPU state.
818  	 * In vcpu_run, we switch between the user and guest FPU contexts.
819  	 * While running a VCPU, the VCPU thread will have the guest FPU
820  	 * context.
821  	 *
822  	 * Note that while the PKRU state lives inside the fpu registers,
823  	 * it is switched out separately at VMENTER and VMEXIT time. The
824  	 * "guest_fpstate" state here contains the guest FPU context, with the
825  	 * host PRKU bits.
826  	 */
827  	struct fpu_guest guest_fpu;
828  
829  	u64 xcr0;
830  	u64 guest_supported_xcr0;
831  
832  	struct kvm_pio_request pio;
833  	void *pio_data;
834  	void *sev_pio_data;
835  	unsigned sev_pio_count;
836  
837  	u8 event_exit_inst_len;
838  
839  	bool exception_from_userspace;
840  
841  	/* Exceptions to be injected to the guest. */
842  	struct kvm_queued_exception exception;
843  	/* Exception VM-Exits to be synthesized to L1. */
844  	struct kvm_queued_exception exception_vmexit;
845  
846  	struct kvm_queued_interrupt {
847  		bool injected;
848  		bool soft;
849  		u8 nr;
850  	} interrupt;
851  
852  	int halt_request; /* real mode on Intel only */
853  
854  	int cpuid_nent;
855  	struct kvm_cpuid_entry2 *cpuid_entries;
856  	struct kvm_hypervisor_cpuid kvm_cpuid;
857  	bool is_amd_compatible;
858  
859  	/*
860  	 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
861  	 * when "struct kvm_vcpu_arch" is no longer defined in an
862  	 * arch/x86/include/asm header.  The max is mostly arbitrary, i.e.
863  	 * can be increased as necessary.
864  	 */
865  #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
866  
867  	/*
868  	 * Track whether or not the guest is allowed to use features that are
869  	 * governed by KVM, where "governed" means KVM needs to manage state
870  	 * and/or explicitly enable the feature in hardware.  Typically, but
871  	 * not always, governed features can be used by the guest if and only
872  	 * if both KVM and userspace want to expose the feature to the guest.
873  	 */
874  	struct {
875  		DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
876  	} governed_features;
877  
878  	u64 reserved_gpa_bits;
879  	int maxphyaddr;
880  
881  	/* emulate context */
882  
883  	struct x86_emulate_ctxt *emulate_ctxt;
884  	bool emulate_regs_need_sync_to_vcpu;
885  	bool emulate_regs_need_sync_from_vcpu;
886  	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
887  
888  	gpa_t time;
889  	struct pvclock_vcpu_time_info hv_clock;
890  	unsigned int hw_tsc_khz;
891  	struct gfn_to_pfn_cache pv_time;
892  	/* set guest stopped flag in pvclock flags field */
893  	bool pvclock_set_guest_stopped_request;
894  
895  	struct {
896  		u8 preempted;
897  		u64 msr_val;
898  		u64 last_steal;
899  		struct gfn_to_hva_cache cache;
900  	} st;
901  
902  	u64 l1_tsc_offset;
903  	u64 tsc_offset; /* current tsc offset */
904  	u64 last_guest_tsc;
905  	u64 last_host_tsc;
906  	u64 tsc_offset_adjustment;
907  	u64 this_tsc_nsec;
908  	u64 this_tsc_write;
909  	u64 this_tsc_generation;
910  	bool tsc_catchup;
911  	bool tsc_always_catchup;
912  	s8 virtual_tsc_shift;
913  	u32 virtual_tsc_mult;
914  	u32 virtual_tsc_khz;
915  	s64 ia32_tsc_adjust_msr;
916  	u64 msr_ia32_power_ctl;
917  	u64 l1_tsc_scaling_ratio;
918  	u64 tsc_scaling_ratio; /* current scaling ratio */
919  
920  	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
921  	/* Number of NMIs pending injection, not including hardware vNMIs. */
922  	unsigned int nmi_pending;
923  	bool nmi_injected;    /* Trying to inject an NMI this entry */
924  	bool smi_pending;    /* SMI queued after currently running handler */
925  	u8 handling_intr_from_guest;
926  
927  	struct kvm_mtrr mtrr_state;
928  	u64 pat;
929  
930  	unsigned switch_db_regs;
931  	unsigned long db[KVM_NR_DB_REGS];
932  	unsigned long dr6;
933  	unsigned long dr7;
934  	unsigned long eff_db[KVM_NR_DB_REGS];
935  	unsigned long guest_debug_dr7;
936  	u64 msr_platform_info;
937  	u64 msr_misc_features_enables;
938  
939  	u64 mcg_cap;
940  	u64 mcg_status;
941  	u64 mcg_ctl;
942  	u64 mcg_ext_ctl;
943  	u64 *mce_banks;
944  	u64 *mci_ctl2_banks;
945  
946  	/* Cache MMIO info */
947  	u64 mmio_gva;
948  	unsigned mmio_access;
949  	gfn_t mmio_gfn;
950  	u64 mmio_gen;
951  
952  	struct kvm_pmu pmu;
953  
954  	/* used for guest single stepping over the given code position */
955  	unsigned long singlestep_rip;
956  
957  #ifdef CONFIG_KVM_HYPERV
958  	bool hyperv_enabled;
959  	struct kvm_vcpu_hv *hyperv;
960  #endif
961  #ifdef CONFIG_KVM_XEN
962  	struct kvm_vcpu_xen xen;
963  #endif
964  	cpumask_var_t wbinvd_dirty_mask;
965  
966  	unsigned long last_retry_eip;
967  	unsigned long last_retry_addr;
968  
969  	struct {
970  		bool halted;
971  		gfn_t gfns[ASYNC_PF_PER_VCPU];
972  		struct gfn_to_hva_cache data;
973  		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
974  		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
975  		u16 vec;
976  		u32 id;
977  		bool send_user_only;
978  		u32 host_apf_flags;
979  		bool delivery_as_pf_vmexit;
980  		bool pageready_pending;
981  	} apf;
982  
983  	/* OSVW MSRs (AMD only) */
984  	struct {
985  		u64 length;
986  		u64 status;
987  	} osvw;
988  
989  	struct {
990  		u64 msr_val;
991  		struct gfn_to_hva_cache data;
992  	} pv_eoi;
993  
994  	u64 msr_kvm_poll_control;
995  
996  	/* pv related host specific info */
997  	struct {
998  		bool pv_unhalted;
999  	} pv;
1000  
1001  	int pending_ioapic_eoi;
1002  	int pending_external_vector;
1003  
1004  	/* be preempted when it's in kernel-mode(cpl=0) */
1005  	bool preempted_in_kernel;
1006  
1007  	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1008  	bool l1tf_flush_l1d;
1009  
1010  	/* Host CPU on which VM-entry was most recently attempted */
1011  	int last_vmentry_cpu;
1012  
1013  	/* AMD MSRC001_0015 Hardware Configuration */
1014  	u64 msr_hwcr;
1015  
1016  	/* pv related cpuid info */
1017  	struct {
1018  		/*
1019  		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1020  		 * leaf.
1021  		 */
1022  		u32 features;
1023  
1024  		/*
1025  		 * indicates whether pv emulation should be disabled if features
1026  		 * are not present in the guest's cpuid
1027  		 */
1028  		bool enforce;
1029  	} pv_cpuid;
1030  
1031  	/* Protected Guests */
1032  	bool guest_state_protected;
1033  
1034  	/*
1035  	 * Set when PDPTS were loaded directly by the userspace without
1036  	 * reading the guest memory
1037  	 */
1038  	bool pdptrs_from_userspace;
1039  
1040  #if IS_ENABLED(CONFIG_HYPERV)
1041  	hpa_t hv_root_tdp;
1042  #endif
1043  };
1044  
1045  struct kvm_lpage_info {
1046  	int disallow_lpage;
1047  };
1048  
1049  struct kvm_arch_memory_slot {
1050  	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1051  	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1052  	unsigned short *gfn_write_track;
1053  };
1054  
1055  /*
1056   * Track the mode of the optimized logical map, as the rules for decoding the
1057   * destination vary per mode.  Enabling the optimized logical map requires all
1058   * software-enabled local APIs to be in the same mode, each addressable APIC to
1059   * be mapped to only one MDA, and each MDA to map to at most one APIC.
1060   */
1061  enum kvm_apic_logical_mode {
1062  	/* All local APICs are software disabled. */
1063  	KVM_APIC_MODE_SW_DISABLED,
1064  	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1065  	KVM_APIC_MODE_XAPIC_CLUSTER,
1066  	/* All software enabled local APICs in xAPIC flat addressing mode. */
1067  	KVM_APIC_MODE_XAPIC_FLAT,
1068  	/* All software enabled local APICs in x2APIC mode. */
1069  	KVM_APIC_MODE_X2APIC,
1070  	/*
1071  	 * Optimized map disabled, e.g. not all local APICs in the same logical
1072  	 * mode, same logical ID assigned to multiple APICs, etc.
1073  	 */
1074  	KVM_APIC_MODE_MAP_DISABLED,
1075  };
1076  
1077  struct kvm_apic_map {
1078  	struct rcu_head rcu;
1079  	enum kvm_apic_logical_mode logical_mode;
1080  	u32 max_apic_id;
1081  	union {
1082  		struct kvm_lapic *xapic_flat_map[8];
1083  		struct kvm_lapic *xapic_cluster_map[16][4];
1084  	};
1085  	struct kvm_lapic *phys_map[];
1086  };
1087  
1088  /* Hyper-V synthetic debugger (SynDbg)*/
1089  struct kvm_hv_syndbg {
1090  	struct {
1091  		u64 control;
1092  		u64 status;
1093  		u64 send_page;
1094  		u64 recv_page;
1095  		u64 pending_page;
1096  	} control;
1097  	u64 options;
1098  };
1099  
1100  /* Current state of Hyper-V TSC page clocksource */
1101  enum hv_tsc_page_status {
1102  	/* TSC page was not set up or disabled */
1103  	HV_TSC_PAGE_UNSET = 0,
1104  	/* TSC page MSR was written by the guest, update pending */
1105  	HV_TSC_PAGE_GUEST_CHANGED,
1106  	/* TSC page update was triggered from the host side */
1107  	HV_TSC_PAGE_HOST_CHANGED,
1108  	/* TSC page was properly set up and is currently active  */
1109  	HV_TSC_PAGE_SET,
1110  	/* TSC page was set up with an inaccessible GPA */
1111  	HV_TSC_PAGE_BROKEN,
1112  };
1113  
1114  #ifdef CONFIG_KVM_HYPERV
1115  /* Hyper-V emulation context */
1116  struct kvm_hv {
1117  	struct mutex hv_lock;
1118  	u64 hv_guest_os_id;
1119  	u64 hv_hypercall;
1120  	u64 hv_tsc_page;
1121  	enum hv_tsc_page_status hv_tsc_page_status;
1122  
1123  	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1124  	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1125  	u64 hv_crash_ctl;
1126  
1127  	struct ms_hyperv_tsc_page tsc_ref;
1128  
1129  	struct idr conn_to_evt;
1130  
1131  	u64 hv_reenlightenment_control;
1132  	u64 hv_tsc_emulation_control;
1133  	u64 hv_tsc_emulation_status;
1134  	u64 hv_invtsc_control;
1135  
1136  	/* How many vCPUs have VP index != vCPU index */
1137  	atomic_t num_mismatched_vp_indexes;
1138  
1139  	/*
1140  	 * How many SynICs use 'AutoEOI' feature
1141  	 * (protected by arch.apicv_update_lock)
1142  	 */
1143  	unsigned int synic_auto_eoi_used;
1144  
1145  	struct kvm_hv_syndbg hv_syndbg;
1146  
1147  	bool xsaves_xsavec_checked;
1148  };
1149  #endif
1150  
1151  struct msr_bitmap_range {
1152  	u32 flags;
1153  	u32 nmsrs;
1154  	u32 base;
1155  	unsigned long *bitmap;
1156  };
1157  
1158  #ifdef CONFIG_KVM_XEN
1159  /* Xen emulation context */
1160  struct kvm_xen {
1161  	struct mutex xen_lock;
1162  	u32 xen_version;
1163  	bool long_mode;
1164  	bool runstate_update_flag;
1165  	u8 upcall_vector;
1166  	struct gfn_to_pfn_cache shinfo_cache;
1167  	struct idr evtchn_ports;
1168  	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1169  };
1170  #endif
1171  
1172  enum kvm_irqchip_mode {
1173  	KVM_IRQCHIP_NONE,
1174  	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1175  	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1176  };
1177  
1178  struct kvm_x86_msr_filter {
1179  	u8 count;
1180  	bool default_allow:1;
1181  	struct msr_bitmap_range ranges[16];
1182  };
1183  
1184  struct kvm_x86_pmu_event_filter {
1185  	__u32 action;
1186  	__u32 nevents;
1187  	__u32 fixed_counter_bitmap;
1188  	__u32 flags;
1189  	__u32 nr_includes;
1190  	__u32 nr_excludes;
1191  	__u64 *includes;
1192  	__u64 *excludes;
1193  	__u64 events[];
1194  };
1195  
1196  enum kvm_apicv_inhibit {
1197  
1198  	/********************************************************************/
1199  	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1200  	/********************************************************************/
1201  
1202  	/*
1203  	 * APIC acceleration is disabled by a module parameter
1204  	 * and/or not supported in hardware.
1205  	 */
1206  	APICV_INHIBIT_REASON_DISABLED,
1207  
1208  	/*
1209  	 * APIC acceleration is inhibited because AutoEOI feature is
1210  	 * being used by a HyperV guest.
1211  	 */
1212  	APICV_INHIBIT_REASON_HYPERV,
1213  
1214  	/*
1215  	 * APIC acceleration is inhibited because the userspace didn't yet
1216  	 * enable the kernel/split irqchip.
1217  	 */
1218  	APICV_INHIBIT_REASON_ABSENT,
1219  
1220  	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1221  	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1222  	 * was enabled, to avoid AVIC/APICv bypassing it.
1223  	 */
1224  	APICV_INHIBIT_REASON_BLOCKIRQ,
1225  
1226  	/*
1227  	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1228  	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1229  	 */
1230  	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1231  
1232  	/*
1233  	 * For simplicity, the APIC acceleration is inhibited
1234  	 * first time either APIC ID or APIC base are changed by the guest
1235  	 * from their reset values.
1236  	 */
1237  	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1238  	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1239  
1240  	/******************************************************/
1241  	/* INHIBITs that are relevant only to the AMD's AVIC. */
1242  	/******************************************************/
1243  
1244  	/*
1245  	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1246  	 *
1247  	 * This is needed because unlike APICv, the peers of this vCPU
1248  	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1249  	 * a vCPU runs nested.
1250  	 */
1251  	APICV_INHIBIT_REASON_NESTED,
1252  
1253  	/*
1254  	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1255  	 * which cannot be injected when the AVIC is enabled, thus AVIC
1256  	 * is inhibited while KVM waits for IRQ window.
1257  	 */
1258  	APICV_INHIBIT_REASON_IRQWIN,
1259  
1260  	/*
1261  	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1262  	 * which AVIC doesn't support for edge triggered interrupts.
1263  	 */
1264  	APICV_INHIBIT_REASON_PIT_REINJ,
1265  
1266  	/*
1267  	 * AVIC is disabled because SEV doesn't support it.
1268  	 */
1269  	APICV_INHIBIT_REASON_SEV,
1270  
1271  	/*
1272  	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1273  	 * mapping between logical ID and vCPU.
1274  	 */
1275  	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1276  
1277  	NR_APICV_INHIBIT_REASONS,
1278  };
1279  
1280  #define __APICV_INHIBIT_REASON(reason)			\
1281  	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1282  
1283  #define APICV_INHIBIT_REASONS				\
1284  	__APICV_INHIBIT_REASON(DISABLED),		\
1285  	__APICV_INHIBIT_REASON(HYPERV),			\
1286  	__APICV_INHIBIT_REASON(ABSENT),			\
1287  	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1288  	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1289  	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1290  	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1291  	__APICV_INHIBIT_REASON(NESTED),			\
1292  	__APICV_INHIBIT_REASON(IRQWIN),			\
1293  	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1294  	__APICV_INHIBIT_REASON(SEV),			\
1295  	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1296  
1297  struct kvm_arch {
1298  	unsigned long n_used_mmu_pages;
1299  	unsigned long n_requested_mmu_pages;
1300  	unsigned long n_max_mmu_pages;
1301  	unsigned int indirect_shadow_pages;
1302  	u8 mmu_valid_gen;
1303  	u8 vm_type;
1304  	bool has_private_mem;
1305  	bool has_protected_state;
1306  	bool pre_fault_allowed;
1307  	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1308  	struct list_head active_mmu_pages;
1309  	struct list_head zapped_obsolete_pages;
1310  	/*
1311  	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1312  	 * replaced by an NX huge page.  A shadow page is on this list if its
1313  	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1314  	 * and there are no other conditions that prevent a huge page, e.g.
1315  	 * the backing host page is huge, dirtly logging is not enabled for its
1316  	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1317  	 * guarantee an NX huge page will be created in its stead, e.g. if the
1318  	 * guest attempts to execute from the region then KVM obviously can't
1319  	 * create an NX huge page (without hanging the guest).
1320  	 */
1321  	struct list_head possible_nx_huge_pages;
1322  #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1323  	struct kvm_page_track_notifier_head track_notifier_head;
1324  #endif
1325  	/*
1326  	 * Protects marking pages unsync during page faults, as TDP MMU page
1327  	 * faults only take mmu_lock for read.  For simplicity, the unsync
1328  	 * pages lock is always taken when marking pages unsync regardless of
1329  	 * whether mmu_lock is held for read or write.
1330  	 */
1331  	spinlock_t mmu_unsync_pages_lock;
1332  
1333  	u64 shadow_mmio_value;
1334  
1335  	struct iommu_domain *iommu_domain;
1336  	bool iommu_noncoherent;
1337  #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1338  	atomic_t noncoherent_dma_count;
1339  #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1340  	atomic_t assigned_device_count;
1341  	struct kvm_pic *vpic;
1342  	struct kvm_ioapic *vioapic;
1343  	struct kvm_pit *vpit;
1344  	atomic_t vapics_in_nmi_mode;
1345  	struct mutex apic_map_lock;
1346  	struct kvm_apic_map __rcu *apic_map;
1347  	atomic_t apic_map_dirty;
1348  
1349  	bool apic_access_memslot_enabled;
1350  	bool apic_access_memslot_inhibited;
1351  
1352  	/* Protects apicv_inhibit_reasons */
1353  	struct rw_semaphore apicv_update_lock;
1354  	unsigned long apicv_inhibit_reasons;
1355  
1356  	gpa_t wall_clock;
1357  
1358  	bool mwait_in_guest;
1359  	bool hlt_in_guest;
1360  	bool pause_in_guest;
1361  	bool cstate_in_guest;
1362  
1363  	unsigned long irq_sources_bitmap;
1364  	s64 kvmclock_offset;
1365  
1366  	/*
1367  	 * This also protects nr_vcpus_matched_tsc which is read from a
1368  	 * preemption-disabled region, so it must be a raw spinlock.
1369  	 */
1370  	raw_spinlock_t tsc_write_lock;
1371  	u64 last_tsc_nsec;
1372  	u64 last_tsc_write;
1373  	u32 last_tsc_khz;
1374  	u64 last_tsc_offset;
1375  	u64 cur_tsc_nsec;
1376  	u64 cur_tsc_write;
1377  	u64 cur_tsc_offset;
1378  	u64 cur_tsc_generation;
1379  	int nr_vcpus_matched_tsc;
1380  
1381  	u32 default_tsc_khz;
1382  	bool user_set_tsc;
1383  	u64 apic_bus_cycle_ns;
1384  
1385  	seqcount_raw_spinlock_t pvclock_sc;
1386  	bool use_master_clock;
1387  	u64 master_kernel_ns;
1388  	u64 master_cycle_now;
1389  	struct delayed_work kvmclock_update_work;
1390  	struct delayed_work kvmclock_sync_work;
1391  
1392  	struct kvm_xen_hvm_config xen_hvm_config;
1393  
1394  	/* reads protected by irq_srcu, writes by irq_lock */
1395  	struct hlist_head mask_notifier_list;
1396  
1397  #ifdef CONFIG_KVM_HYPERV
1398  	struct kvm_hv hyperv;
1399  #endif
1400  
1401  #ifdef CONFIG_KVM_XEN
1402  	struct kvm_xen xen;
1403  #endif
1404  
1405  	bool backwards_tsc_observed;
1406  	bool boot_vcpu_runs_old_kvmclock;
1407  	u32 bsp_vcpu_id;
1408  
1409  	u64 disabled_quirks;
1410  
1411  	enum kvm_irqchip_mode irqchip_mode;
1412  	u8 nr_reserved_ioapic_pins;
1413  
1414  	bool disabled_lapic_found;
1415  
1416  	bool x2apic_format;
1417  	bool x2apic_broadcast_quirk_disabled;
1418  
1419  	bool guest_can_read_msr_platform_info;
1420  	bool exception_payload_enabled;
1421  
1422  	bool triple_fault_event;
1423  
1424  	bool bus_lock_detection_enabled;
1425  	bool enable_pmu;
1426  
1427  	u32 notify_window;
1428  	u32 notify_vmexit_flags;
1429  	/*
1430  	 * If exit_on_emulation_error is set, and the in-kernel instruction
1431  	 * emulator fails to emulate an instruction, allow userspace
1432  	 * the opportunity to look at it.
1433  	 */
1434  	bool exit_on_emulation_error;
1435  
1436  	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1437  	u32 user_space_msr_mask;
1438  	struct kvm_x86_msr_filter __rcu *msr_filter;
1439  
1440  	u32 hypercall_exit_enabled;
1441  
1442  	/* Guest can access the SGX PROVISIONKEY. */
1443  	bool sgx_provisioning_allowed;
1444  
1445  	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1446  	struct task_struct *nx_huge_page_recovery_thread;
1447  
1448  #ifdef CONFIG_X86_64
1449  	/* The number of TDP MMU pages across all roots. */
1450  	atomic64_t tdp_mmu_pages;
1451  
1452  	/*
1453  	 * List of struct kvm_mmu_pages being used as roots.
1454  	 * All struct kvm_mmu_pages in the list should have
1455  	 * tdp_mmu_page set.
1456  	 *
1457  	 * For reads, this list is protected by:
1458  	 *	the MMU lock in read mode + RCU or
1459  	 *	the MMU lock in write mode
1460  	 *
1461  	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1462  	 * below for the details.
1463  	 *
1464  	 * Roots will remain in the list until their tdp_mmu_root_count
1465  	 * drops to zero, at which point the thread that decremented the
1466  	 * count to zero should removed the root from the list and clean
1467  	 * it up, freeing the root after an RCU grace period.
1468  	 */
1469  	struct list_head tdp_mmu_roots;
1470  
1471  	/*
1472  	 * Protects accesses to the following fields when the MMU lock
1473  	 * is held in read mode:
1474  	 *  - tdp_mmu_roots (above)
1475  	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1476  	 *  - possible_nx_huge_pages;
1477  	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1478  	 *    by the TDP MMU
1479  	 * Because the lock is only taken within the MMU lock, strictly
1480  	 * speaking it is redundant to acquire this lock when the thread
1481  	 * holds the MMU lock in write mode.  However it often simplifies
1482  	 * the code to do so.
1483  	 */
1484  	spinlock_t tdp_mmu_pages_lock;
1485  #endif /* CONFIG_X86_64 */
1486  
1487  	/*
1488  	 * If set, at least one shadow root has been allocated. This flag
1489  	 * is used as one input when determining whether certain memslot
1490  	 * related allocations are necessary.
1491  	 */
1492  	bool shadow_root_allocated;
1493  
1494  #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1495  	/*
1496  	 * If set, the VM has (or had) an external write tracking user, and
1497  	 * thus all write tracking metadata has been allocated, even if KVM
1498  	 * itself isn't using write tracking.
1499  	 */
1500  	bool external_write_tracking_enabled;
1501  #endif
1502  
1503  #if IS_ENABLED(CONFIG_HYPERV)
1504  	hpa_t	hv_root_tdp;
1505  	spinlock_t hv_root_tdp_lock;
1506  	struct hv_partition_assist_pg *hv_pa_pg;
1507  #endif
1508  	/*
1509  	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1510  	 * that increase along with the maximum vCPU ID, in which case, using
1511  	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1512  	 */
1513  	u32 max_vcpu_ids;
1514  
1515  	bool disable_nx_huge_pages;
1516  
1517  	/*
1518  	 * Memory caches used to allocate shadow pages when performing eager
1519  	 * page splitting. No need for a shadowed_info_cache since eager page
1520  	 * splitting only allocates direct shadow pages.
1521  	 *
1522  	 * Protected by kvm->slots_lock.
1523  	 */
1524  	struct kvm_mmu_memory_cache split_shadow_page_cache;
1525  	struct kvm_mmu_memory_cache split_page_header_cache;
1526  
1527  	/*
1528  	 * Memory cache used to allocate pte_list_desc structs while splitting
1529  	 * huge pages. In the worst case, to split one huge page, 512
1530  	 * pte_list_desc structs are needed to add each lower level leaf sptep
1531  	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1532  	 * page table.
1533  	 *
1534  	 * Protected by kvm->slots_lock.
1535  	 */
1536  #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1537  	struct kvm_mmu_memory_cache split_desc_cache;
1538  };
1539  
1540  struct kvm_vm_stat {
1541  	struct kvm_vm_stat_generic generic;
1542  	u64 mmu_shadow_zapped;
1543  	u64 mmu_pte_write;
1544  	u64 mmu_pde_zapped;
1545  	u64 mmu_flooded;
1546  	u64 mmu_recycled;
1547  	u64 mmu_cache_miss;
1548  	u64 mmu_unsync;
1549  	union {
1550  		struct {
1551  			atomic64_t pages_4k;
1552  			atomic64_t pages_2m;
1553  			atomic64_t pages_1g;
1554  		};
1555  		atomic64_t pages[KVM_NR_PAGE_SIZES];
1556  	};
1557  	u64 nx_lpage_splits;
1558  	u64 max_mmu_page_hash_collisions;
1559  	u64 max_mmu_rmap_size;
1560  };
1561  
1562  struct kvm_vcpu_stat {
1563  	struct kvm_vcpu_stat_generic generic;
1564  	u64 pf_taken;
1565  	u64 pf_fixed;
1566  	u64 pf_emulate;
1567  	u64 pf_spurious;
1568  	u64 pf_fast;
1569  	u64 pf_mmio_spte_created;
1570  	u64 pf_guest;
1571  	u64 tlb_flush;
1572  	u64 invlpg;
1573  
1574  	u64 exits;
1575  	u64 io_exits;
1576  	u64 mmio_exits;
1577  	u64 signal_exits;
1578  	u64 irq_window_exits;
1579  	u64 nmi_window_exits;
1580  	u64 l1d_flush;
1581  	u64 halt_exits;
1582  	u64 request_irq_exits;
1583  	u64 irq_exits;
1584  	u64 host_state_reload;
1585  	u64 fpu_reload;
1586  	u64 insn_emulation;
1587  	u64 insn_emulation_fail;
1588  	u64 hypercalls;
1589  	u64 irq_injections;
1590  	u64 nmi_injections;
1591  	u64 req_event;
1592  	u64 nested_run;
1593  	u64 directed_yield_attempted;
1594  	u64 directed_yield_successful;
1595  	u64 preemption_reported;
1596  	u64 preemption_other;
1597  	u64 guest_mode;
1598  	u64 notify_window_exits;
1599  };
1600  
1601  struct x86_instruction_info;
1602  
1603  struct msr_data {
1604  	bool host_initiated;
1605  	u32 index;
1606  	u64 data;
1607  };
1608  
1609  struct kvm_lapic_irq {
1610  	u32 vector;
1611  	u16 delivery_mode;
1612  	u16 dest_mode;
1613  	bool level;
1614  	u16 trig_mode;
1615  	u32 shorthand;
1616  	u32 dest_id;
1617  	bool msi_redir_hint;
1618  };
1619  
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1620  static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1621  {
1622  	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1623  }
1624  
1625  struct kvm_x86_ops {
1626  	const char *name;
1627  
1628  	int (*check_processor_compatibility)(void);
1629  
1630  	int (*enable_virtualization_cpu)(void);
1631  	void (*disable_virtualization_cpu)(void);
1632  	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1633  
1634  	void (*hardware_unsetup)(void);
1635  	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1636  	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1637  
1638  	unsigned int vm_size;
1639  	int (*vm_init)(struct kvm *kvm);
1640  	void (*vm_destroy)(struct kvm *kvm);
1641  
1642  	/* Create, but do not attach this VCPU */
1643  	int (*vcpu_precreate)(struct kvm *kvm);
1644  	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1645  	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1646  	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1647  
1648  	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1649  	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1650  	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1651  
1652  	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1653  	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1654  	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1655  	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1656  	void (*get_segment)(struct kvm_vcpu *vcpu,
1657  			    struct kvm_segment *var, int seg);
1658  	int (*get_cpl)(struct kvm_vcpu *vcpu);
1659  	void (*set_segment)(struct kvm_vcpu *vcpu,
1660  			    struct kvm_segment *var, int seg);
1661  	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1662  	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1663  	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1664  	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1665  	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1666  	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1667  	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1668  	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1669  	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1670  	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1671  	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1672  	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1673  	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1674  	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1675  	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1676  	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1677  	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1678  
1679  	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1680  	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1681  #if IS_ENABLED(CONFIG_HYPERV)
1682  	int  (*flush_remote_tlbs)(struct kvm *kvm);
1683  	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1684  					gfn_t nr_pages);
1685  #endif
1686  
1687  	/*
1688  	 * Flush any TLB entries associated with the given GVA.
1689  	 * Does not need to flush GPA->HPA mappings.
1690  	 * Can potentially get non-canonical addresses through INVLPGs, which
1691  	 * the implementation may choose to ignore if appropriate.
1692  	 */
1693  	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1694  
1695  	/*
1696  	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1697  	 * does not need to flush GPA->HPA mappings.
1698  	 */
1699  	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1700  
1701  	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1702  	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1703  						  bool force_immediate_exit);
1704  	int (*handle_exit)(struct kvm_vcpu *vcpu,
1705  		enum exit_fastpath_completion exit_fastpath);
1706  	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1707  	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1708  	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1709  	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1710  	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1711  				unsigned char *hypercall_addr);
1712  	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1713  	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1714  	void (*inject_exception)(struct kvm_vcpu *vcpu);
1715  	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1716  	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1717  	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1718  	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1719  	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1720  	/* Whether or not a virtual NMI is pending in hardware. */
1721  	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1722  	/*
1723  	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1724  	 * to allow using static_call_ret0 as the fallback.
1725  	 */
1726  	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1727  	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1728  	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1729  	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1730  
1731  	const bool x2apic_icr_is_split;
1732  	const unsigned long required_apicv_inhibits;
1733  	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1734  	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1735  	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1736  	void (*hwapic_isr_update)(int isr);
1737  	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1738  	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1739  	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1740  	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1741  				  int trig_mode, int vector);
1742  	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1743  	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1744  	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1745  	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1746  
1747  	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1748  			     int root_level);
1749  
1750  	bool (*has_wbinvd_exit)(void);
1751  
1752  	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1753  	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1754  	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1755  	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1756  
1757  	/*
1758  	 * Retrieve somewhat arbitrary exit information.  Intended to
1759  	 * be used only from within tracepoints or error paths.
1760  	 */
1761  	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1762  			      u64 *info1, u64 *info2,
1763  			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1764  
1765  	int (*check_intercept)(struct kvm_vcpu *vcpu,
1766  			       struct x86_instruction_info *info,
1767  			       enum x86_intercept_stage stage,
1768  			       struct x86_exception *exception);
1769  	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1770  
1771  	/*
1772  	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1773  	 * value indicates CPU dirty logging is unsupported or disabled.
1774  	 */
1775  	int cpu_dirty_log_size;
1776  	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1777  
1778  	const struct kvm_x86_nested_ops *nested_ops;
1779  
1780  	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1781  	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1782  
1783  	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1784  			      uint32_t guest_irq, bool set);
1785  	void (*pi_start_assignment)(struct kvm *kvm);
1786  	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1787  	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1788  	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1789  
1790  	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1791  			    bool *expired);
1792  	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1793  
1794  	void (*setup_mce)(struct kvm_vcpu *vcpu);
1795  
1796  #ifdef CONFIG_KVM_SMM
1797  	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1798  	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1799  	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1800  	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1801  #endif
1802  
1803  	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1804  	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1805  	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1806  	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1807  	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1808  	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1809  	void (*guest_memory_reclaimed)(struct kvm *kvm);
1810  
1811  	int (*get_feature_msr)(u32 msr, u64 *data);
1812  
1813  	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1814  					 void *insn, int insn_len);
1815  
1816  	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1817  	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1818  
1819  	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1820  	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1821  	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1822  
1823  	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1824  
1825  	/*
1826  	 * Returns vCPU specific APICv inhibit reasons
1827  	 */
1828  	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1829  
1830  	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1831  	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1832  	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1833  	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1834  	int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1835  };
1836  
1837  struct kvm_x86_nested_ops {
1838  	void (*leave_nested)(struct kvm_vcpu *vcpu);
1839  	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1840  				    u32 error_code);
1841  	int (*check_events)(struct kvm_vcpu *vcpu);
1842  	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1843  	void (*triple_fault)(struct kvm_vcpu *vcpu);
1844  	int (*get_state)(struct kvm_vcpu *vcpu,
1845  			 struct kvm_nested_state __user *user_kvm_nested_state,
1846  			 unsigned user_data_size);
1847  	int (*set_state)(struct kvm_vcpu *vcpu,
1848  			 struct kvm_nested_state __user *user_kvm_nested_state,
1849  			 struct kvm_nested_state *kvm_state);
1850  	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1851  	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1852  
1853  	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1854  			    uint16_t *vmcs_version);
1855  	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1856  	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1857  };
1858  
1859  struct kvm_x86_init_ops {
1860  	int (*hardware_setup)(void);
1861  	unsigned int (*handle_intel_pt_intr)(void);
1862  
1863  	struct kvm_x86_ops *runtime_ops;
1864  	struct kvm_pmu_ops *pmu_ops;
1865  };
1866  
1867  struct kvm_arch_async_pf {
1868  	u32 token;
1869  	gfn_t gfn;
1870  	unsigned long cr3;
1871  	bool direct_map;
1872  	u64 error_code;
1873  };
1874  
1875  extern u32 __read_mostly kvm_nr_uret_msrs;
1876  extern bool __read_mostly allow_smaller_maxphyaddr;
1877  extern bool __read_mostly enable_apicv;
1878  extern struct kvm_x86_ops kvm_x86_ops;
1879  
1880  #define kvm_x86_call(func) static_call(kvm_x86_##func)
1881  #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1882  
1883  #define KVM_X86_OP(func) \
1884  	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1885  #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1886  #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1887  #include <asm/kvm-x86-ops.h>
1888  
1889  int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1890  void kvm_x86_vendor_exit(void);
1891  
1892  #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1893  static inline struct kvm *kvm_arch_alloc_vm(void)
1894  {
1895  	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1896  }
1897  
1898  #define __KVM_HAVE_ARCH_VM_FREE
1899  void kvm_arch_free_vm(struct kvm *kvm);
1900  
1901  #if IS_ENABLED(CONFIG_HYPERV)
1902  #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1903  static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1904  {
1905  	if (kvm_x86_ops.flush_remote_tlbs &&
1906  	    !kvm_x86_call(flush_remote_tlbs)(kvm))
1907  		return 0;
1908  	else
1909  		return -ENOTSUPP;
1910  }
1911  
1912  #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1913  static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1914  						   u64 nr_pages)
1915  {
1916  	if (!kvm_x86_ops.flush_remote_tlbs_range)
1917  		return -EOPNOTSUPP;
1918  
1919  	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1920  }
1921  #endif /* CONFIG_HYPERV */
1922  
1923  enum kvm_intr_type {
1924  	/* Values are arbitrary, but must be non-zero. */
1925  	KVM_HANDLING_IRQ = 1,
1926  	KVM_HANDLING_NMI,
1927  };
1928  
1929  /* Enable perf NMI and timer modes to work, and minimise false positives. */
1930  #define kvm_arch_pmi_in_guest(vcpu) \
1931  	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1932  	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1933  
1934  void __init kvm_mmu_x86_module_init(void);
1935  int kvm_mmu_vendor_module_init(void);
1936  void kvm_mmu_vendor_module_exit(void);
1937  
1938  void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1939  int kvm_mmu_create(struct kvm_vcpu *vcpu);
1940  void kvm_mmu_init_vm(struct kvm *kvm);
1941  void kvm_mmu_uninit_vm(struct kvm *kvm);
1942  
1943  void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1944  					    struct kvm_memory_slot *slot);
1945  
1946  void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1947  void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1948  void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1949  				      const struct kvm_memory_slot *memslot,
1950  				      int start_level);
1951  void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1952  				       const struct kvm_memory_slot *memslot,
1953  				       int target_level);
1954  void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1955  				  const struct kvm_memory_slot *memslot,
1956  				  u64 start, u64 end,
1957  				  int target_level);
1958  void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1959  				   const struct kvm_memory_slot *memslot);
1960  void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1961  				   const struct kvm_memory_slot *memslot);
1962  void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1963  void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1964  void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
1965  
1966  int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1967  
1968  int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1969  			  const void *val, int bytes);
1970  
1971  struct kvm_irq_mask_notifier {
1972  	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1973  	int irq;
1974  	struct hlist_node link;
1975  };
1976  
1977  void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1978  				    struct kvm_irq_mask_notifier *kimn);
1979  void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1980  				      struct kvm_irq_mask_notifier *kimn);
1981  void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1982  			     bool mask);
1983  
1984  extern bool tdp_enabled;
1985  
1986  u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1987  
1988  /*
1989   * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1990   *			userspace I/O) to indicate that the emulation context
1991   *			should be reused as is, i.e. skip initialization of
1992   *			emulation context, instruction fetch and decode.
1993   *
1994   * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1995   *		      Indicates that only select instructions (tagged with
1996   *		      EmulateOnUD) should be emulated (to minimize the emulator
1997   *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1998   *
1999   * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2000   *		   decode the instruction length.  For use *only* by
2001   *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2002   *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2003   *
2004   * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2005   *			     retry native execution under certain conditions,
2006   *			     Can only be set in conjunction with EMULTYPE_PF.
2007   *
2008   * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2009   *			     triggered by KVM's magic "force emulation" prefix,
2010   *			     which is opt in via module param (off by default).
2011   *			     Bypasses EmulateOnUD restriction despite emulating
2012   *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2013   *			     Used to test the full emulator from userspace.
2014   *
2015   * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2016   *			backdoor emulation, which is opt in via module param.
2017   *			VMware backdoor emulation handles select instructions
2018   *			and reinjects the #GP for all other cases.
2019   *
2020   * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
2021   *		 case the CR2/GPA value pass on the stack is valid.
2022   *
2023   * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2024   *				 state and inject single-step #DBs after skipping
2025   *				 an instruction (after completing userspace I/O).
2026   *
2027   * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2028   *			     is attempting to write a gfn that contains one or
2029   *			     more of the PTEs used to translate the write itself,
2030   *			     and the owning page table is being shadowed by KVM.
2031   *			     If emulation of the faulting instruction fails and
2032   *			     this flag is set, KVM will exit to userspace instead
2033   *			     of retrying emulation as KVM cannot make forward
2034   *			     progress.
2035   *
2036   *			     If emulation fails for a write to guest page tables,
2037   *			     KVM unprotects (zaps) the shadow page for the target
2038   *			     gfn and resumes the guest to retry the non-emulatable
2039   *			     instruction (on hardware).  Unprotecting the gfn
2040   *			     doesn't allow forward progress for a self-changing
2041   *			     access because doing so also zaps the translation for
2042   *			     the gfn, i.e. retrying the instruction will hit a
2043   *			     !PRESENT fault, which results in a new shadow page
2044   *			     and sends KVM back to square one.
2045   */
2046  #define EMULTYPE_NO_DECODE	    (1 << 0)
2047  #define EMULTYPE_TRAP_UD	    (1 << 1)
2048  #define EMULTYPE_SKIP		    (1 << 2)
2049  #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2050  #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2051  #define EMULTYPE_VMWARE_GP	    (1 << 5)
2052  #define EMULTYPE_PF		    (1 << 6)
2053  #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2054  #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2055  
2056  int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2057  int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2058  					void *insn, int insn_len);
2059  void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2060  					  u64 *data, u8 ndata);
2061  void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2062  
2063  void kvm_enable_efer_bits(u64);
2064  bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2065  int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2066  int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2067  int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2068  int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2069  int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2070  int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2071  int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2072  int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2073  int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2074  int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2075  int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2076  int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2077  
2078  int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2079  int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2080  int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2081  int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2082  int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2083  int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2084  
2085  void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2086  void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2087  int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2088  void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2089  
2090  int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2091  		    int reason, bool has_error_code, u32 error_code);
2092  
2093  void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2094  void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2095  int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2096  int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2097  int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2098  int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2099  int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2100  unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2101  unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2102  void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2103  int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2104  
2105  int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2106  int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2107  
2108  unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2109  void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2110  int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2111  
2112  void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2113  void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2114  void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2115  void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2116  void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2117  void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2118  void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2119  				    struct x86_exception *fault);
2120  bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2121  bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2122  
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2123  static inline int __kvm_irq_line_state(unsigned long *irq_state,
2124  				       int irq_source_id, int level)
2125  {
2126  	/* Logical OR for level trig interrupt */
2127  	if (level)
2128  		__set_bit(irq_source_id, irq_state);
2129  	else
2130  		__clear_bit(irq_source_id, irq_state);
2131  
2132  	return !!(*irq_state);
2133  }
2134  
2135  int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2136  void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2137  
2138  void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2139  int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2140  
2141  void kvm_update_dr7(struct kvm_vcpu *vcpu);
2142  
2143  bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2144  				       bool always_retry);
2145  
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2146  static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2147  						   gpa_t cr2_or_gpa)
2148  {
2149  	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2150  }
2151  
2152  void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2153  			ulong roots_to_free);
2154  void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2155  gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2156  			      struct x86_exception *exception);
2157  gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2158  			       struct x86_exception *exception);
2159  gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2160  				struct x86_exception *exception);
2161  
2162  bool kvm_apicv_activated(struct kvm *kvm);
2163  bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2164  void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2165  void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2166  				      enum kvm_apicv_inhibit reason, bool set);
2167  void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2168  				    enum kvm_apicv_inhibit reason, bool set);
2169  
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2170  static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2171  					 enum kvm_apicv_inhibit reason)
2172  {
2173  	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2174  }
2175  
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2176  static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2177  					   enum kvm_apicv_inhibit reason)
2178  {
2179  	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2180  }
2181  
2182  unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
2183  				      unsigned long a0, unsigned long a1,
2184  				      unsigned long a2, unsigned long a3,
2185  				      int op_64_bit, int cpl);
2186  int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2187  
2188  int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2189  		       void *insn, int insn_len);
2190  void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2191  void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2192  void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2193  			     u64 addr, unsigned long roots);
2194  void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2195  void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2196  
2197  void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2198  		       int tdp_max_root_level, int tdp_huge_page_level);
2199  
2200  
2201  #ifdef CONFIG_KVM_PRIVATE_MEM
2202  #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2203  #else
2204  #define kvm_arch_has_private_mem(kvm) false
2205  #endif
2206  
2207  #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2208  
kvm_read_ldt(void)2209  static inline u16 kvm_read_ldt(void)
2210  {
2211  	u16 ldt;
2212  	asm("sldt %0" : "=g"(ldt));
2213  	return ldt;
2214  }
2215  
kvm_load_ldt(u16 sel)2216  static inline void kvm_load_ldt(u16 sel)
2217  {
2218  	asm("lldt %0" : : "rm"(sel));
2219  }
2220  
2221  #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2222  static inline unsigned long read_msr(unsigned long msr)
2223  {
2224  	u64 value;
2225  
2226  	rdmsrl(msr, value);
2227  	return value;
2228  }
2229  #endif
2230  
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2231  static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2232  {
2233  	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2234  }
2235  
2236  #define TSS_IOPB_BASE_OFFSET 0x66
2237  #define TSS_BASE_SIZE 0x68
2238  #define TSS_IOPB_SIZE (65536 / 8)
2239  #define TSS_REDIRECTION_SIZE (256 / 8)
2240  #define RMODE_TSS_SIZE							\
2241  	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2242  
2243  enum {
2244  	TASK_SWITCH_CALL = 0,
2245  	TASK_SWITCH_IRET = 1,
2246  	TASK_SWITCH_JMP = 2,
2247  	TASK_SWITCH_GATE = 3,
2248  };
2249  
2250  #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2251  
2252  #ifdef CONFIG_KVM_SMM
2253  #define HF_SMM_MASK		(1 << 1)
2254  #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2255  
2256  # define KVM_MAX_NR_ADDRESS_SPACES	2
2257  /* SMM is currently unsupported for guests with private memory. */
2258  # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2259  # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2260  # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2261  #else
2262  # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2263  #endif
2264  
2265  int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2266  int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2267  int kvm_cpu_has_extint(struct kvm_vcpu *v);
2268  int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2269  int kvm_cpu_get_extint(struct kvm_vcpu *v);
2270  int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2271  void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2272  
2273  int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2274  		    unsigned long ipi_bitmap_high, u32 min,
2275  		    unsigned long icr, int op_64_bit);
2276  
2277  int kvm_add_user_return_msr(u32 msr);
2278  int kvm_find_user_return_msr(u32 msr);
2279  int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2280  
kvm_is_supported_user_return_msr(u32 msr)2281  static inline bool kvm_is_supported_user_return_msr(u32 msr)
2282  {
2283  	return kvm_find_user_return_msr(msr) >= 0;
2284  }
2285  
2286  u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2287  u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2288  u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2289  u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2290  
2291  unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2292  bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2293  
2294  void kvm_make_scan_ioapic_request(struct kvm *kvm);
2295  void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2296  				       unsigned long *vcpu_bitmap);
2297  
2298  bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2299  				     struct kvm_async_pf *work);
2300  void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2301  				 struct kvm_async_pf *work);
2302  void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2303  			       struct kvm_async_pf *work);
2304  void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2305  bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2306  extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2307  
2308  int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2309  int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2310  
2311  void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2312  				     u32 size);
2313  bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2314  bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2315  
2316  bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2317  			     struct kvm_vcpu **dest_vcpu);
2318  
2319  void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2320  		     struct kvm_lapic_irq *irq);
2321  
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2322  static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2323  {
2324  	/* We can only post Fixed and LowPrio IRQs */
2325  	return (irq->delivery_mode == APIC_DM_FIXED ||
2326  		irq->delivery_mode == APIC_DM_LOWEST);
2327  }
2328  
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2329  static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2330  {
2331  	kvm_x86_call(vcpu_blocking)(vcpu);
2332  }
2333  
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2334  static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2335  {
2336  	kvm_x86_call(vcpu_unblocking)(vcpu);
2337  }
2338  
kvm_cpu_get_apicid(int mps_cpu)2339  static inline int kvm_cpu_get_apicid(int mps_cpu)
2340  {
2341  #ifdef CONFIG_X86_LOCAL_APIC
2342  	return default_cpu_present_to_apicid(mps_cpu);
2343  #else
2344  	WARN_ON_ONCE(1);
2345  	return BAD_APICID;
2346  #endif
2347  }
2348  
2349  int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2350  
2351  #define KVM_CLOCK_VALID_FLAGS						\
2352  	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2353  
2354  #define KVM_X86_VALID_QUIRKS			\
2355  	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2356  	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2357  	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2358  	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2359  	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2360  	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2361  	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2362  	 KVM_X86_QUIRK_SLOT_ZAP_ALL)
2363  
2364  /*
2365   * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2366   * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2367   * remaining 31 lower bits must be 0 to preserve ABI.
2368   */
2369  #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2370  
2371  #endif /* _ASM_X86_KVM_HOST_H */
2372