1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42 
43 #include <linux/hash.h>
44 
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50 
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58 
59 #include <linux/ctype.h>
60 #include "symbol/kallsyms.h"
61 #include <internal/lib.h>
62 #include "util/sample.h"
63 
64 /*
65  * Make a group from 'leader' to 'last', requiring that the events were not
66  * already grouped to a different leader.
67  */
evlist__regroup(struct evlist * evlist,struct evsel * leader,struct evsel * last)68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
69 {
70 	struct evsel *evsel;
71 	bool grp;
72 
73 	if (!evsel__is_group_leader(leader))
74 		return -EINVAL;
75 
76 	grp = false;
77 	evlist__for_each_entry(evlist, evsel) {
78 		if (grp) {
79 			if (!(evsel__leader(evsel) == leader ||
80 			     (evsel__leader(evsel) == evsel &&
81 			      evsel->core.nr_members <= 1)))
82 				return -EINVAL;
83 		} else if (evsel == leader) {
84 			grp = true;
85 		}
86 		if (evsel == last)
87 			break;
88 	}
89 
90 	grp = false;
91 	evlist__for_each_entry(evlist, evsel) {
92 		if (grp) {
93 			if (!evsel__has_leader(evsel, leader)) {
94 				evsel__set_leader(evsel, leader);
95 				if (leader->core.nr_members < 1)
96 					leader->core.nr_members = 1;
97 				leader->core.nr_members += 1;
98 			}
99 		} else if (evsel == leader) {
100 			grp = true;
101 		}
102 		if (evsel == last)
103 			break;
104 	}
105 
106 	return 0;
107 }
108 
auxtrace__dont_decode(struct perf_session * session)109 static bool auxtrace__dont_decode(struct perf_session *session)
110 {
111 	return !session->itrace_synth_opts ||
112 	       session->itrace_synth_opts->dont_decode;
113 }
114 
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
116 			struct auxtrace_mmap_params *mp,
117 			void *userpg, int fd)
118 {
119 	struct perf_event_mmap_page *pc = userpg;
120 
121 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
122 
123 	mm->userpg = userpg;
124 	mm->mask = mp->mask;
125 	mm->len = mp->len;
126 	mm->prev = 0;
127 	mm->idx = mp->idx;
128 	mm->tid = mp->tid;
129 	mm->cpu = mp->cpu.cpu;
130 
131 	if (!mp->len || !mp->mmap_needed) {
132 		mm->base = NULL;
133 		return 0;
134 	}
135 
136 	pc->aux_offset = mp->offset;
137 	pc->aux_size = mp->len;
138 
139 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
140 	if (mm->base == MAP_FAILED) {
141 		pr_debug2("failed to mmap AUX area\n");
142 		mm->base = NULL;
143 		return -1;
144 	}
145 
146 	return 0;
147 }
148 
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
150 {
151 	if (mm->base) {
152 		munmap(mm->base, mm->len);
153 		mm->base = NULL;
154 	}
155 }
156 
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
158 				off_t auxtrace_offset,
159 				unsigned int auxtrace_pages,
160 				bool auxtrace_overwrite)
161 {
162 	if (auxtrace_pages) {
163 		mp->offset = auxtrace_offset;
164 		mp->len = auxtrace_pages * (size_t)page_size;
165 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
166 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
167 		pr_debug2("AUX area mmap length %zu\n", mp->len);
168 	} else {
169 		mp->len = 0;
170 	}
171 }
172 
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct evlist * evlist,struct evsel * evsel,int idx)173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
174 				   struct evlist *evlist,
175 				   struct evsel *evsel, int idx)
176 {
177 	bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
178 
179 	mp->mmap_needed = evsel->needs_auxtrace_mmap;
180 
181 	if (!mp->mmap_needed)
182 		return;
183 
184 	mp->idx = idx;
185 
186 	if (per_cpu) {
187 		mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
188 		if (evlist->core.threads)
189 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
190 		else
191 			mp->tid = -1;
192 	} else {
193 		mp->cpu.cpu = -1;
194 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
195 	}
196 }
197 
198 #define AUXTRACE_INIT_NR_QUEUES	32
199 
auxtrace_alloc_queue_array(unsigned int nr_queues)200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
201 {
202 	struct auxtrace_queue *queue_array;
203 	unsigned int max_nr_queues, i;
204 
205 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
206 	if (nr_queues > max_nr_queues)
207 		return NULL;
208 
209 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
210 	if (!queue_array)
211 		return NULL;
212 
213 	for (i = 0; i < nr_queues; i++) {
214 		INIT_LIST_HEAD(&queue_array[i].head);
215 		queue_array[i].priv = NULL;
216 	}
217 
218 	return queue_array;
219 }
220 
auxtrace_queues__init_nr(struct auxtrace_queues * queues,int nr_queues)221 int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues)
222 {
223 	queues->nr_queues = nr_queues;
224 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
225 	if (!queues->queue_array)
226 		return -ENOMEM;
227 	return 0;
228 }
229 
auxtrace_queues__init(struct auxtrace_queues * queues)230 int auxtrace_queues__init(struct auxtrace_queues *queues)
231 {
232 	return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES);
233 }
234 
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)235 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
236 				 unsigned int new_nr_queues)
237 {
238 	unsigned int nr_queues = queues->nr_queues;
239 	struct auxtrace_queue *queue_array;
240 	unsigned int i;
241 
242 	if (!nr_queues)
243 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
244 
245 	while (nr_queues && nr_queues < new_nr_queues)
246 		nr_queues <<= 1;
247 
248 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
249 		return -EINVAL;
250 
251 	queue_array = auxtrace_alloc_queue_array(nr_queues);
252 	if (!queue_array)
253 		return -ENOMEM;
254 
255 	for (i = 0; i < queues->nr_queues; i++) {
256 		list_splice_tail(&queues->queue_array[i].head,
257 				 &queue_array[i].head);
258 		queue_array[i].tid = queues->queue_array[i].tid;
259 		queue_array[i].cpu = queues->queue_array[i].cpu;
260 		queue_array[i].set = queues->queue_array[i].set;
261 		queue_array[i].priv = queues->queue_array[i].priv;
262 	}
263 
264 	queues->nr_queues = nr_queues;
265 	queues->queue_array = queue_array;
266 
267 	return 0;
268 }
269 
auxtrace_copy_data(u64 size,struct perf_session * session)270 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
271 {
272 	int fd = perf_data__fd(session->data);
273 	void *p;
274 	ssize_t ret;
275 
276 	if (size > SSIZE_MAX)
277 		return NULL;
278 
279 	p = malloc(size);
280 	if (!p)
281 		return NULL;
282 
283 	ret = readn(fd, p, size);
284 	if (ret != (ssize_t)size) {
285 		free(p);
286 		return NULL;
287 	}
288 
289 	return p;
290 }
291 
auxtrace_queues__queue_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)292 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
293 					 unsigned int idx,
294 					 struct auxtrace_buffer *buffer)
295 {
296 	struct auxtrace_queue *queue;
297 	int err;
298 
299 	if (idx >= queues->nr_queues) {
300 		err = auxtrace_queues__grow(queues, idx + 1);
301 		if (err)
302 			return err;
303 	}
304 
305 	queue = &queues->queue_array[idx];
306 
307 	if (!queue->set) {
308 		queue->set = true;
309 		queue->tid = buffer->tid;
310 		queue->cpu = buffer->cpu.cpu;
311 	}
312 
313 	buffer->buffer_nr = queues->next_buffer_nr++;
314 
315 	list_add_tail(&buffer->list, &queue->head);
316 
317 	queues->new_data = true;
318 	queues->populated = true;
319 
320 	return 0;
321 }
322 
323 /* Limit buffers to 32MiB on 32-bit */
324 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
325 
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)326 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
327 					 unsigned int idx,
328 					 struct auxtrace_buffer *buffer)
329 {
330 	u64 sz = buffer->size;
331 	bool consecutive = false;
332 	struct auxtrace_buffer *b;
333 	int err;
334 
335 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
336 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
337 		if (!b)
338 			return -ENOMEM;
339 		b->size = BUFFER_LIMIT_FOR_32_BIT;
340 		b->consecutive = consecutive;
341 		err = auxtrace_queues__queue_buffer(queues, idx, b);
342 		if (err) {
343 			auxtrace_buffer__free(b);
344 			return err;
345 		}
346 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
347 		sz -= BUFFER_LIMIT_FOR_32_BIT;
348 		consecutive = true;
349 	}
350 
351 	buffer->size = sz;
352 	buffer->consecutive = consecutive;
353 
354 	return 0;
355 }
356 
filter_cpu(struct perf_session * session,struct perf_cpu cpu)357 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
358 {
359 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
360 
361 	return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
362 }
363 
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer,struct auxtrace_buffer ** buffer_ptr)364 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
365 				       struct perf_session *session,
366 				       unsigned int idx,
367 				       struct auxtrace_buffer *buffer,
368 				       struct auxtrace_buffer **buffer_ptr)
369 {
370 	int err = -ENOMEM;
371 
372 	if (filter_cpu(session, buffer->cpu))
373 		return 0;
374 
375 	buffer = memdup(buffer, sizeof(*buffer));
376 	if (!buffer)
377 		return -ENOMEM;
378 
379 	if (session->one_mmap) {
380 		buffer->data = buffer->data_offset - session->one_mmap_offset +
381 			       session->one_mmap_addr;
382 	} else if (perf_data__is_pipe(session->data)) {
383 		buffer->data = auxtrace_copy_data(buffer->size, session);
384 		if (!buffer->data)
385 			goto out_free;
386 		buffer->data_needs_freeing = true;
387 	} else if (BITS_PER_LONG == 32 &&
388 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
389 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
390 		if (err)
391 			goto out_free;
392 	}
393 
394 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
395 	if (err)
396 		goto out_free;
397 
398 	/* FIXME: Doesn't work for split buffer */
399 	if (buffer_ptr)
400 		*buffer_ptr = buffer;
401 
402 	return 0;
403 
404 out_free:
405 	auxtrace_buffer__free(buffer);
406 	return err;
407 }
408 
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)409 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
410 			       struct perf_session *session,
411 			       union perf_event *event, off_t data_offset,
412 			       struct auxtrace_buffer **buffer_ptr)
413 {
414 	struct auxtrace_buffer buffer = {
415 		.pid = -1,
416 		.tid = event->auxtrace.tid,
417 		.cpu = { event->auxtrace.cpu },
418 		.data_offset = data_offset,
419 		.offset = event->auxtrace.offset,
420 		.reference = event->auxtrace.reference,
421 		.size = event->auxtrace.size,
422 	};
423 	unsigned int idx = event->auxtrace.idx;
424 
425 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
426 					   buffer_ptr);
427 }
428 
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)429 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
430 					      struct perf_session *session,
431 					      off_t file_offset, size_t sz)
432 {
433 	union perf_event *event;
434 	int err;
435 	char buf[PERF_SAMPLE_MAX_SIZE];
436 
437 	err = perf_session__peek_event(session, file_offset, buf,
438 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
439 	if (err)
440 		return err;
441 
442 	if (event->header.type == PERF_RECORD_AUXTRACE) {
443 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
444 		    event->header.size != sz) {
445 			err = -EINVAL;
446 			goto out;
447 		}
448 		file_offset += event->header.size;
449 		err = auxtrace_queues__add_event(queues, session, event,
450 						 file_offset, NULL);
451 	}
452 out:
453 	return err;
454 }
455 
auxtrace_queues__free(struct auxtrace_queues * queues)456 void auxtrace_queues__free(struct auxtrace_queues *queues)
457 {
458 	unsigned int i;
459 
460 	for (i = 0; i < queues->nr_queues; i++) {
461 		while (!list_empty(&queues->queue_array[i].head)) {
462 			struct auxtrace_buffer *buffer;
463 
464 			buffer = list_entry(queues->queue_array[i].head.next,
465 					    struct auxtrace_buffer, list);
466 			list_del_init(&buffer->list);
467 			auxtrace_buffer__free(buffer);
468 		}
469 	}
470 
471 	zfree(&queues->queue_array);
472 	queues->nr_queues = 0;
473 }
474 
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)475 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
476 			     unsigned int pos, unsigned int queue_nr,
477 			     u64 ordinal)
478 {
479 	unsigned int parent;
480 
481 	while (pos) {
482 		parent = (pos - 1) >> 1;
483 		if (heap_array[parent].ordinal <= ordinal)
484 			break;
485 		heap_array[pos] = heap_array[parent];
486 		pos = parent;
487 	}
488 	heap_array[pos].queue_nr = queue_nr;
489 	heap_array[pos].ordinal = ordinal;
490 }
491 
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)492 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
493 		       u64 ordinal)
494 {
495 	struct auxtrace_heap_item *heap_array;
496 
497 	if (queue_nr >= heap->heap_sz) {
498 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
499 
500 		while (heap_sz <= queue_nr)
501 			heap_sz <<= 1;
502 		heap_array = realloc(heap->heap_array,
503 				     heap_sz * sizeof(struct auxtrace_heap_item));
504 		if (!heap_array)
505 			return -ENOMEM;
506 		heap->heap_array = heap_array;
507 		heap->heap_sz = heap_sz;
508 	}
509 
510 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
511 
512 	return 0;
513 }
514 
auxtrace_heap__free(struct auxtrace_heap * heap)515 void auxtrace_heap__free(struct auxtrace_heap *heap)
516 {
517 	zfree(&heap->heap_array);
518 	heap->heap_cnt = 0;
519 	heap->heap_sz = 0;
520 }
521 
auxtrace_heap__pop(struct auxtrace_heap * heap)522 void auxtrace_heap__pop(struct auxtrace_heap *heap)
523 {
524 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
525 	struct auxtrace_heap_item *heap_array;
526 
527 	if (!heap_cnt)
528 		return;
529 
530 	heap->heap_cnt -= 1;
531 
532 	heap_array = heap->heap_array;
533 
534 	pos = 0;
535 	while (1) {
536 		unsigned int left, right;
537 
538 		left = (pos << 1) + 1;
539 		if (left >= heap_cnt)
540 			break;
541 		right = left + 1;
542 		if (right >= heap_cnt) {
543 			heap_array[pos] = heap_array[left];
544 			return;
545 		}
546 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
547 			heap_array[pos] = heap_array[left];
548 			pos = left;
549 		} else {
550 			heap_array[pos] = heap_array[right];
551 			pos = right;
552 		}
553 	}
554 
555 	last = heap_cnt - 1;
556 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
557 			 heap_array[last].ordinal);
558 }
559 
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct evlist * evlist)560 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
561 				       struct evlist *evlist)
562 {
563 	if (itr)
564 		return itr->info_priv_size(itr, evlist);
565 	return 0;
566 }
567 
auxtrace_not_supported(void)568 static int auxtrace_not_supported(void)
569 {
570 	pr_err("AUX area tracing is not supported on this architecture\n");
571 	return -EINVAL;
572 }
573 
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct perf_record_auxtrace_info * auxtrace_info,size_t priv_size)574 int auxtrace_record__info_fill(struct auxtrace_record *itr,
575 			       struct perf_session *session,
576 			       struct perf_record_auxtrace_info *auxtrace_info,
577 			       size_t priv_size)
578 {
579 	if (itr)
580 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
581 	return auxtrace_not_supported();
582 }
583 
auxtrace_record__free(struct auxtrace_record * itr)584 void auxtrace_record__free(struct auxtrace_record *itr)
585 {
586 	if (itr)
587 		itr->free(itr);
588 }
589 
auxtrace_record__snapshot_start(struct auxtrace_record * itr)590 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
591 {
592 	if (itr && itr->snapshot_start)
593 		return itr->snapshot_start(itr);
594 	return 0;
595 }
596 
auxtrace_record__snapshot_finish(struct auxtrace_record * itr,bool on_exit)597 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
598 {
599 	if (!on_exit && itr && itr->snapshot_finish)
600 		return itr->snapshot_finish(itr);
601 	return 0;
602 }
603 
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)604 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
605 				   struct auxtrace_mmap *mm,
606 				   unsigned char *data, u64 *head, u64 *old)
607 {
608 	if (itr && itr->find_snapshot)
609 		return itr->find_snapshot(itr, idx, mm, data, head, old);
610 	return 0;
611 }
612 
auxtrace_record__options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts)613 int auxtrace_record__options(struct auxtrace_record *itr,
614 			     struct evlist *evlist,
615 			     struct record_opts *opts)
616 {
617 	if (itr) {
618 		itr->evlist = evlist;
619 		return itr->recording_options(itr, evlist, opts);
620 	}
621 	return 0;
622 }
623 
auxtrace_record__reference(struct auxtrace_record * itr)624 u64 auxtrace_record__reference(struct auxtrace_record *itr)
625 {
626 	if (itr)
627 		return itr->reference(itr);
628 	return 0;
629 }
630 
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)631 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
632 				    struct record_opts *opts, const char *str)
633 {
634 	if (!str)
635 		return 0;
636 
637 	/* PMU-agnostic options */
638 	switch (*str) {
639 	case 'e':
640 		opts->auxtrace_snapshot_on_exit = true;
641 		str++;
642 		break;
643 	default:
644 		break;
645 	}
646 
647 	if (itr && itr->parse_snapshot_options)
648 		return itr->parse_snapshot_options(itr, opts, str);
649 
650 	pr_err("No AUX area tracing to snapshot\n");
651 	return -EINVAL;
652 }
653 
evlist__enable_event_idx(struct evlist * evlist,struct evsel * evsel,int idx)654 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
655 {
656 	bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
657 
658 	if (per_cpu_mmaps) {
659 		struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
660 		int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
661 
662 		if (cpu_map_idx == -1)
663 			return -EINVAL;
664 		return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
665 	}
666 
667 	return perf_evsel__enable_thread(&evsel->core, idx);
668 }
669 
auxtrace_record__read_finish(struct auxtrace_record * itr,int idx)670 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
671 {
672 	struct evsel *evsel;
673 
674 	if (!itr->evlist)
675 		return -EINVAL;
676 
677 	evlist__for_each_entry(itr->evlist, evsel) {
678 		if (evsel__is_aux_event(evsel)) {
679 			if (evsel->disabled)
680 				return 0;
681 			return evlist__enable_event_idx(itr->evlist, evsel, idx);
682 		}
683 	}
684 	return -EINVAL;
685 }
686 
687 /*
688  * Event record size is 16-bit which results in a maximum size of about 64KiB.
689  * Allow about 4KiB for the rest of the sample record, to give a maximum
690  * AUX area sample size of 60KiB.
691  */
692 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
693 
694 /* Arbitrary default size if no other default provided */
695 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
696 
auxtrace_validate_aux_sample_size(struct evlist * evlist,struct record_opts * opts)697 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
698 					     struct record_opts *opts)
699 {
700 	struct evsel *evsel;
701 	bool has_aux_leader = false;
702 	u32 sz;
703 
704 	evlist__for_each_entry(evlist, evsel) {
705 		sz = evsel->core.attr.aux_sample_size;
706 		if (evsel__is_group_leader(evsel)) {
707 			has_aux_leader = evsel__is_aux_event(evsel);
708 			if (sz) {
709 				if (has_aux_leader)
710 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
711 				else
712 					pr_err("Cannot add AUX area sampling to a group leader\n");
713 				return -EINVAL;
714 			}
715 		}
716 		if (sz > MAX_AUX_SAMPLE_SIZE) {
717 			pr_err("AUX area sample size %u too big, max. %d\n",
718 			       sz, MAX_AUX_SAMPLE_SIZE);
719 			return -EINVAL;
720 		}
721 		if (sz) {
722 			if (!has_aux_leader) {
723 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
724 				return -EINVAL;
725 			}
726 			evsel__set_sample_bit(evsel, AUX);
727 			opts->auxtrace_sample_mode = true;
728 		} else {
729 			evsel__reset_sample_bit(evsel, AUX);
730 		}
731 	}
732 
733 	if (!opts->auxtrace_sample_mode) {
734 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
735 		return -EINVAL;
736 	}
737 
738 	if (!perf_can_aux_sample()) {
739 		pr_err("AUX area sampling is not supported by kernel\n");
740 		return -EINVAL;
741 	}
742 
743 	return 0;
744 }
745 
auxtrace_parse_sample_options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts,const char * str)746 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
747 				  struct evlist *evlist,
748 				  struct record_opts *opts, const char *str)
749 {
750 	struct evsel_config_term *term;
751 	struct evsel *aux_evsel;
752 	bool has_aux_sample_size = false;
753 	bool has_aux_leader = false;
754 	struct evsel *evsel;
755 	char *endptr;
756 	unsigned long sz;
757 
758 	if (!str)
759 		goto no_opt;
760 
761 	if (!itr) {
762 		pr_err("No AUX area event to sample\n");
763 		return -EINVAL;
764 	}
765 
766 	sz = strtoul(str, &endptr, 0);
767 	if (*endptr || sz > UINT_MAX) {
768 		pr_err("Bad AUX area sampling option: '%s'\n", str);
769 		return -EINVAL;
770 	}
771 
772 	if (!sz)
773 		sz = itr->default_aux_sample_size;
774 
775 	if (!sz)
776 		sz = DEFAULT_AUX_SAMPLE_SIZE;
777 
778 	/* Set aux_sample_size based on --aux-sample option */
779 	evlist__for_each_entry(evlist, evsel) {
780 		if (evsel__is_group_leader(evsel)) {
781 			has_aux_leader = evsel__is_aux_event(evsel);
782 		} else if (has_aux_leader) {
783 			evsel->core.attr.aux_sample_size = sz;
784 		}
785 	}
786 no_opt:
787 	aux_evsel = NULL;
788 	/* Override with aux_sample_size from config term */
789 	evlist__for_each_entry(evlist, evsel) {
790 		if (evsel__is_aux_event(evsel))
791 			aux_evsel = evsel;
792 		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
793 		if (term) {
794 			has_aux_sample_size = true;
795 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
796 			/* If possible, group with the AUX event */
797 			if (aux_evsel && evsel->core.attr.aux_sample_size)
798 				evlist__regroup(evlist, aux_evsel, evsel);
799 		}
800 	}
801 
802 	if (!str && !has_aux_sample_size)
803 		return 0;
804 
805 	if (!itr) {
806 		pr_err("No AUX area event to sample\n");
807 		return -EINVAL;
808 	}
809 
810 	return auxtrace_validate_aux_sample_size(evlist, opts);
811 }
812 
auxtrace_regroup_aux_output(struct evlist * evlist)813 void auxtrace_regroup_aux_output(struct evlist *evlist)
814 {
815 	struct evsel *evsel, *aux_evsel = NULL;
816 	struct evsel_config_term *term;
817 
818 	evlist__for_each_entry(evlist, evsel) {
819 		if (evsel__is_aux_event(evsel))
820 			aux_evsel = evsel;
821 		term = evsel__get_config_term(evsel, AUX_OUTPUT);
822 		/* If possible, group with the AUX event */
823 		if (term && aux_evsel)
824 			evlist__regroup(evlist, aux_evsel, evsel);
825 	}
826 }
827 
828 struct auxtrace_record *__weak
auxtrace_record__init(struct evlist * evlist __maybe_unused,int * err)829 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
830 {
831 	*err = 0;
832 	return NULL;
833 }
834 
auxtrace_index__alloc(struct list_head * head)835 static int auxtrace_index__alloc(struct list_head *head)
836 {
837 	struct auxtrace_index *auxtrace_index;
838 
839 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
840 	if (!auxtrace_index)
841 		return -ENOMEM;
842 
843 	auxtrace_index->nr = 0;
844 	INIT_LIST_HEAD(&auxtrace_index->list);
845 
846 	list_add_tail(&auxtrace_index->list, head);
847 
848 	return 0;
849 }
850 
auxtrace_index__free(struct list_head * head)851 void auxtrace_index__free(struct list_head *head)
852 {
853 	struct auxtrace_index *auxtrace_index, *n;
854 
855 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
856 		list_del_init(&auxtrace_index->list);
857 		free(auxtrace_index);
858 	}
859 }
860 
auxtrace_index__last(struct list_head * head)861 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
862 {
863 	struct auxtrace_index *auxtrace_index;
864 	int err;
865 
866 	if (list_empty(head)) {
867 		err = auxtrace_index__alloc(head);
868 		if (err)
869 			return NULL;
870 	}
871 
872 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
873 
874 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
875 		err = auxtrace_index__alloc(head);
876 		if (err)
877 			return NULL;
878 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
879 					    list);
880 	}
881 
882 	return auxtrace_index;
883 }
884 
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)885 int auxtrace_index__auxtrace_event(struct list_head *head,
886 				   union perf_event *event, off_t file_offset)
887 {
888 	struct auxtrace_index *auxtrace_index;
889 	size_t nr;
890 
891 	auxtrace_index = auxtrace_index__last(head);
892 	if (!auxtrace_index)
893 		return -ENOMEM;
894 
895 	nr = auxtrace_index->nr;
896 	auxtrace_index->entries[nr].file_offset = file_offset;
897 	auxtrace_index->entries[nr].sz = event->header.size;
898 	auxtrace_index->nr += 1;
899 
900 	return 0;
901 }
902 
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)903 static int auxtrace_index__do_write(int fd,
904 				    struct auxtrace_index *auxtrace_index)
905 {
906 	struct auxtrace_index_entry ent;
907 	size_t i;
908 
909 	for (i = 0; i < auxtrace_index->nr; i++) {
910 		ent.file_offset = auxtrace_index->entries[i].file_offset;
911 		ent.sz = auxtrace_index->entries[i].sz;
912 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
913 			return -errno;
914 	}
915 	return 0;
916 }
917 
auxtrace_index__write(int fd,struct list_head * head)918 int auxtrace_index__write(int fd, struct list_head *head)
919 {
920 	struct auxtrace_index *auxtrace_index;
921 	u64 total = 0;
922 	int err;
923 
924 	list_for_each_entry(auxtrace_index, head, list)
925 		total += auxtrace_index->nr;
926 
927 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
928 		return -errno;
929 
930 	list_for_each_entry(auxtrace_index, head, list) {
931 		err = auxtrace_index__do_write(fd, auxtrace_index);
932 		if (err)
933 			return err;
934 	}
935 
936 	return 0;
937 }
938 
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)939 static int auxtrace_index__process_entry(int fd, struct list_head *head,
940 					 bool needs_swap)
941 {
942 	struct auxtrace_index *auxtrace_index;
943 	struct auxtrace_index_entry ent;
944 	size_t nr;
945 
946 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
947 		return -1;
948 
949 	auxtrace_index = auxtrace_index__last(head);
950 	if (!auxtrace_index)
951 		return -1;
952 
953 	nr = auxtrace_index->nr;
954 	if (needs_swap) {
955 		auxtrace_index->entries[nr].file_offset =
956 						bswap_64(ent.file_offset);
957 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
958 	} else {
959 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
960 		auxtrace_index->entries[nr].sz = ent.sz;
961 	}
962 
963 	auxtrace_index->nr = nr + 1;
964 
965 	return 0;
966 }
967 
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)968 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
969 			    bool needs_swap)
970 {
971 	struct list_head *head = &session->auxtrace_index;
972 	u64 nr;
973 
974 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
975 		return -1;
976 
977 	if (needs_swap)
978 		nr = bswap_64(nr);
979 
980 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
981 		return -1;
982 
983 	while (nr--) {
984 		int err;
985 
986 		err = auxtrace_index__process_entry(fd, head, needs_swap);
987 		if (err)
988 			return -1;
989 	}
990 
991 	return 0;
992 }
993 
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)994 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
995 						struct perf_session *session,
996 						struct auxtrace_index_entry *ent)
997 {
998 	return auxtrace_queues__add_indexed_event(queues, session,
999 						  ent->file_offset, ent->sz);
1000 }
1001 
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)1002 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
1003 				   struct perf_session *session)
1004 {
1005 	struct auxtrace_index *auxtrace_index;
1006 	struct auxtrace_index_entry *ent;
1007 	size_t i;
1008 	int err;
1009 
1010 	if (auxtrace__dont_decode(session))
1011 		return 0;
1012 
1013 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1014 		for (i = 0; i < auxtrace_index->nr; i++) {
1015 			ent = &auxtrace_index->entries[i];
1016 			err = auxtrace_queues__process_index_entry(queues,
1017 								   session,
1018 								   ent);
1019 			if (err)
1020 				return err;
1021 		}
1022 	}
1023 	return 0;
1024 }
1025 
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)1026 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1027 					      struct auxtrace_buffer *buffer)
1028 {
1029 	if (buffer) {
1030 		if (list_is_last(&buffer->list, &queue->head))
1031 			return NULL;
1032 		return list_entry(buffer->list.next, struct auxtrace_buffer,
1033 				  list);
1034 	} else {
1035 		if (list_empty(&queue->head))
1036 			return NULL;
1037 		return list_entry(queue->head.next, struct auxtrace_buffer,
1038 				  list);
1039 	}
1040 }
1041 
auxtrace_queues__sample_queue(struct auxtrace_queues * queues,struct perf_sample * sample,struct perf_session * session)1042 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1043 						     struct perf_sample *sample,
1044 						     struct perf_session *session)
1045 {
1046 	struct perf_sample_id *sid;
1047 	unsigned int idx;
1048 	u64 id;
1049 
1050 	id = sample->id;
1051 	if (!id)
1052 		return NULL;
1053 
1054 	sid = evlist__id2sid(session->evlist, id);
1055 	if (!sid)
1056 		return NULL;
1057 
1058 	idx = sid->idx;
1059 
1060 	if (idx >= queues->nr_queues)
1061 		return NULL;
1062 
1063 	return &queues->queue_array[idx];
1064 }
1065 
auxtrace_queues__add_sample(struct auxtrace_queues * queues,struct perf_session * session,struct perf_sample * sample,u64 data_offset,u64 reference)1066 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1067 				struct perf_session *session,
1068 				struct perf_sample *sample, u64 data_offset,
1069 				u64 reference)
1070 {
1071 	struct auxtrace_buffer buffer = {
1072 		.pid = -1,
1073 		.data_offset = data_offset,
1074 		.reference = reference,
1075 		.size = sample->aux_sample.size,
1076 	};
1077 	struct perf_sample_id *sid;
1078 	u64 id = sample->id;
1079 	unsigned int idx;
1080 
1081 	if (!id)
1082 		return -EINVAL;
1083 
1084 	sid = evlist__id2sid(session->evlist, id);
1085 	if (!sid)
1086 		return -ENOENT;
1087 
1088 	idx = sid->idx;
1089 	buffer.tid = sid->tid;
1090 	buffer.cpu = sid->cpu;
1091 
1092 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1093 }
1094 
1095 struct queue_data {
1096 	bool samples;
1097 	bool events;
1098 };
1099 
auxtrace_queue_data_cb(struct perf_session * session,union perf_event * event,u64 offset,void * data)1100 static int auxtrace_queue_data_cb(struct perf_session *session,
1101 				  union perf_event *event, u64 offset,
1102 				  void *data)
1103 {
1104 	struct queue_data *qd = data;
1105 	struct perf_sample sample;
1106 	int err;
1107 
1108 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1109 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1110 			return -EINVAL;
1111 		offset += event->header.size;
1112 		return session->auxtrace->queue_data(session, NULL, event,
1113 						     offset);
1114 	}
1115 
1116 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1117 		return 0;
1118 
1119 	err = evlist__parse_sample(session->evlist, event, &sample);
1120 	if (err)
1121 		return err;
1122 
1123 	if (!sample.aux_sample.size)
1124 		return 0;
1125 
1126 	offset += sample.aux_sample.data - (void *)event;
1127 
1128 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1129 }
1130 
auxtrace_queue_data(struct perf_session * session,bool samples,bool events)1131 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1132 {
1133 	struct queue_data qd = {
1134 		.samples = samples,
1135 		.events = events,
1136 	};
1137 
1138 	if (auxtrace__dont_decode(session))
1139 		return 0;
1140 
1141 	if (perf_data__is_pipe(session->data))
1142 		return 0;
1143 
1144 	if (!session->auxtrace || !session->auxtrace->queue_data)
1145 		return -EINVAL;
1146 
1147 	return perf_session__peek_events(session, session->header.data_offset,
1148 					 session->header.data_size,
1149 					 auxtrace_queue_data_cb, &qd);
1150 }
1151 
auxtrace_buffer__get_data_rw(struct auxtrace_buffer * buffer,int fd,bool rw)1152 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1153 {
1154 	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1155 	size_t adj = buffer->data_offset & (page_size - 1);
1156 	size_t size = buffer->size + adj;
1157 	off_t file_offset = buffer->data_offset - adj;
1158 	void *addr;
1159 
1160 	if (buffer->data)
1161 		return buffer->data;
1162 
1163 	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1164 	if (addr == MAP_FAILED)
1165 		return NULL;
1166 
1167 	buffer->mmap_addr = addr;
1168 	buffer->mmap_size = size;
1169 
1170 	buffer->data = addr + adj;
1171 
1172 	return buffer->data;
1173 }
1174 
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)1175 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1176 {
1177 	if (!buffer->data || !buffer->mmap_addr)
1178 		return;
1179 	munmap(buffer->mmap_addr, buffer->mmap_size);
1180 	buffer->mmap_addr = NULL;
1181 	buffer->mmap_size = 0;
1182 	buffer->data = NULL;
1183 	buffer->use_data = NULL;
1184 }
1185 
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)1186 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1187 {
1188 	auxtrace_buffer__put_data(buffer);
1189 	if (buffer->data_needs_freeing) {
1190 		buffer->data_needs_freeing = false;
1191 		zfree(&buffer->data);
1192 		buffer->use_data = NULL;
1193 		buffer->size = 0;
1194 	}
1195 }
1196 
auxtrace_buffer__free(struct auxtrace_buffer * buffer)1197 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1198 {
1199 	auxtrace_buffer__drop_data(buffer);
1200 	free(buffer);
1201 }
1202 
auxtrace_synth_guest_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp,pid_t machine_pid,int vcpu)1203 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1204 				int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1205 				const char *msg, u64 timestamp,
1206 				pid_t machine_pid, int vcpu)
1207 {
1208 	size_t size;
1209 
1210 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1211 
1212 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1213 	auxtrace_error->type = type;
1214 	auxtrace_error->code = code;
1215 	auxtrace_error->cpu = cpu;
1216 	auxtrace_error->pid = pid;
1217 	auxtrace_error->tid = tid;
1218 	auxtrace_error->fmt = 1;
1219 	auxtrace_error->ip = ip;
1220 	auxtrace_error->time = timestamp;
1221 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1222 	if (machine_pid) {
1223 		auxtrace_error->fmt = 2;
1224 		auxtrace_error->machine_pid = machine_pid;
1225 		auxtrace_error->vcpu = vcpu;
1226 		size = sizeof(*auxtrace_error);
1227 	} else {
1228 		size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1229 		       strlen(auxtrace_error->msg) + 1;
1230 	}
1231 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1232 }
1233 
auxtrace_synth_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp)1234 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1235 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1236 			  const char *msg, u64 timestamp)
1237 {
1238 	auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1239 				   ip, msg, timestamp, 0, -1);
1240 }
1241 
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,const struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)1242 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1243 					 const struct perf_tool *tool,
1244 					 struct perf_session *session,
1245 					 perf_event__handler_t process)
1246 {
1247 	union perf_event *ev;
1248 	size_t priv_size;
1249 	int err;
1250 
1251 	pr_debug2("Synthesizing auxtrace information\n");
1252 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1253 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1254 	if (!ev)
1255 		return -ENOMEM;
1256 
1257 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1258 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1259 					priv_size;
1260 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1261 					 priv_size);
1262 	if (err)
1263 		goto out_free;
1264 
1265 	err = process(tool, ev, NULL, NULL);
1266 out_free:
1267 	free(ev);
1268 	return err;
1269 }
1270 
unleader_evsel(struct evlist * evlist,struct evsel * leader)1271 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1272 {
1273 	struct evsel *new_leader = NULL;
1274 	struct evsel *evsel;
1275 
1276 	/* Find new leader for the group */
1277 	evlist__for_each_entry(evlist, evsel) {
1278 		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1279 			continue;
1280 		if (!new_leader)
1281 			new_leader = evsel;
1282 		evsel__set_leader(evsel, new_leader);
1283 	}
1284 
1285 	/* Update group information */
1286 	if (new_leader) {
1287 		zfree(&new_leader->group_name);
1288 		new_leader->group_name = leader->group_name;
1289 		leader->group_name = NULL;
1290 
1291 		new_leader->core.nr_members = leader->core.nr_members - 1;
1292 		leader->core.nr_members = 1;
1293 	}
1294 }
1295 
unleader_auxtrace(struct perf_session * session)1296 static void unleader_auxtrace(struct perf_session *session)
1297 {
1298 	struct evsel *evsel;
1299 
1300 	evlist__for_each_entry(session->evlist, evsel) {
1301 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1302 		    evsel__is_group_leader(evsel)) {
1303 			unleader_evsel(session->evlist, evsel);
1304 		}
1305 	}
1306 }
1307 
perf_event__process_auxtrace_info(struct perf_session * session,union perf_event * event)1308 int perf_event__process_auxtrace_info(struct perf_session *session,
1309 				      union perf_event *event)
1310 {
1311 	enum auxtrace_type type = event->auxtrace_info.type;
1312 	int err;
1313 
1314 	if (dump_trace)
1315 		fprintf(stdout, " type: %u\n", type);
1316 
1317 	switch (type) {
1318 	case PERF_AUXTRACE_INTEL_PT:
1319 		err = intel_pt_process_auxtrace_info(event, session);
1320 		break;
1321 	case PERF_AUXTRACE_INTEL_BTS:
1322 		err = intel_bts_process_auxtrace_info(event, session);
1323 		break;
1324 	case PERF_AUXTRACE_ARM_SPE:
1325 		err = arm_spe_process_auxtrace_info(event, session);
1326 		break;
1327 	case PERF_AUXTRACE_CS_ETM:
1328 		err = cs_etm__process_auxtrace_info(event, session);
1329 		break;
1330 	case PERF_AUXTRACE_S390_CPUMSF:
1331 		err = s390_cpumsf_process_auxtrace_info(event, session);
1332 		break;
1333 	case PERF_AUXTRACE_HISI_PTT:
1334 		err = hisi_ptt_process_auxtrace_info(event, session);
1335 		break;
1336 	case PERF_AUXTRACE_UNKNOWN:
1337 	default:
1338 		return -EINVAL;
1339 	}
1340 
1341 	if (err)
1342 		return err;
1343 
1344 	unleader_auxtrace(session);
1345 
1346 	return 0;
1347 }
1348 
perf_event__process_auxtrace(struct perf_session * session,union perf_event * event)1349 s64 perf_event__process_auxtrace(struct perf_session *session,
1350 				 union perf_event *event)
1351 {
1352 	s64 err;
1353 
1354 	if (dump_trace)
1355 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1356 			event->auxtrace.size, event->auxtrace.offset,
1357 			event->auxtrace.reference, event->auxtrace.idx,
1358 			event->auxtrace.tid, event->auxtrace.cpu);
1359 
1360 	if (auxtrace__dont_decode(session))
1361 		return event->auxtrace.size;
1362 
1363 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1364 		return -EINVAL;
1365 
1366 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1367 	if (err < 0)
1368 		return err;
1369 
1370 	return event->auxtrace.size;
1371 }
1372 
1373 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1374 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1375 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1376 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1377 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1378 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1379 
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts,bool no_sample)1380 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1381 				    bool no_sample)
1382 {
1383 	synth_opts->branches = true;
1384 	synth_opts->transactions = true;
1385 	synth_opts->ptwrites = true;
1386 	synth_opts->pwr_events = true;
1387 	synth_opts->other_events = true;
1388 	synth_opts->intr_events = true;
1389 	synth_opts->errors = true;
1390 	synth_opts->flc = true;
1391 	synth_opts->llc = true;
1392 	synth_opts->tlb = true;
1393 	synth_opts->mem = true;
1394 	synth_opts->remote_access = true;
1395 
1396 	if (no_sample) {
1397 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1398 		synth_opts->period = 1;
1399 		synth_opts->calls = true;
1400 	} else {
1401 		synth_opts->instructions = true;
1402 		synth_opts->cycles = true;
1403 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1404 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1405 	}
1406 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1407 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1408 	synth_opts->initial_skip = 0;
1409 }
1410 
get_flag(const char ** ptr,unsigned int * flags)1411 static int get_flag(const char **ptr, unsigned int *flags)
1412 {
1413 	while (1) {
1414 		char c = **ptr;
1415 
1416 		if (c >= 'a' && c <= 'z') {
1417 			*flags |= 1 << (c - 'a');
1418 			++*ptr;
1419 			return 0;
1420 		} else if (c == ' ') {
1421 			++*ptr;
1422 			continue;
1423 		} else {
1424 			return -1;
1425 		}
1426 	}
1427 }
1428 
get_flags(const char ** ptr,unsigned int * plus_flags,unsigned int * minus_flags)1429 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1430 {
1431 	while (1) {
1432 		switch (**ptr) {
1433 		case '+':
1434 			++*ptr;
1435 			if (get_flag(ptr, plus_flags))
1436 				return -1;
1437 			break;
1438 		case '-':
1439 			++*ptr;
1440 			if (get_flag(ptr, minus_flags))
1441 				return -1;
1442 			break;
1443 		case ' ':
1444 			++*ptr;
1445 			break;
1446 		default:
1447 			return 0;
1448 		}
1449 	}
1450 }
1451 
1452 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1453 
itrace_log_on_error_size(void)1454 static unsigned int itrace_log_on_error_size(void)
1455 {
1456 	unsigned int sz = 0;
1457 
1458 	perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1459 	return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1460 }
1461 
1462 /*
1463  * Please check tools/perf/Documentation/perf-script.txt for information
1464  * about the options parsed here, which is introduced after this cset,
1465  * when support in 'perf script' for these options is introduced.
1466  */
itrace_do_parse_synth_opts(struct itrace_synth_opts * synth_opts,const char * str,int unset)1467 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1468 			       const char *str, int unset)
1469 {
1470 	const char *p;
1471 	char *endptr;
1472 	bool period_type_set = false;
1473 	bool period_set = false;
1474 	bool iy = false;
1475 
1476 	synth_opts->set = true;
1477 
1478 	if (unset) {
1479 		synth_opts->dont_decode = true;
1480 		return 0;
1481 	}
1482 
1483 	if (!str) {
1484 		itrace_synth_opts__set_default(synth_opts,
1485 					       synth_opts->default_no_sample);
1486 		return 0;
1487 	}
1488 
1489 	for (p = str; *p;) {
1490 		switch (*p++) {
1491 		case 'i':
1492 		case 'y':
1493 			iy = true;
1494 			if (p[-1] == 'y')
1495 				synth_opts->cycles = true;
1496 			else
1497 				synth_opts->instructions = true;
1498 			while (*p == ' ' || *p == ',')
1499 				p += 1;
1500 			if (isdigit(*p)) {
1501 				synth_opts->period = strtoull(p, &endptr, 10);
1502 				period_set = true;
1503 				p = endptr;
1504 				while (*p == ' ' || *p == ',')
1505 					p += 1;
1506 				switch (*p++) {
1507 				case 'i':
1508 					synth_opts->period_type =
1509 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1510 					period_type_set = true;
1511 					break;
1512 				case 't':
1513 					synth_opts->period_type =
1514 						PERF_ITRACE_PERIOD_TICKS;
1515 					period_type_set = true;
1516 					break;
1517 				case 'm':
1518 					synth_opts->period *= 1000;
1519 					/* Fall through */
1520 				case 'u':
1521 					synth_opts->period *= 1000;
1522 					/* Fall through */
1523 				case 'n':
1524 					if (*p++ != 's')
1525 						goto out_err;
1526 					synth_opts->period_type =
1527 						PERF_ITRACE_PERIOD_NANOSECS;
1528 					period_type_set = true;
1529 					break;
1530 				case '\0':
1531 					goto out;
1532 				default:
1533 					goto out_err;
1534 				}
1535 			}
1536 			break;
1537 		case 'b':
1538 			synth_opts->branches = true;
1539 			break;
1540 		case 'x':
1541 			synth_opts->transactions = true;
1542 			break;
1543 		case 'w':
1544 			synth_opts->ptwrites = true;
1545 			break;
1546 		case 'p':
1547 			synth_opts->pwr_events = true;
1548 			break;
1549 		case 'o':
1550 			synth_opts->other_events = true;
1551 			break;
1552 		case 'I':
1553 			synth_opts->intr_events = true;
1554 			break;
1555 		case 'e':
1556 			synth_opts->errors = true;
1557 			if (get_flags(&p, &synth_opts->error_plus_flags,
1558 				      &synth_opts->error_minus_flags))
1559 				goto out_err;
1560 			break;
1561 		case 'd':
1562 			synth_opts->log = true;
1563 			if (get_flags(&p, &synth_opts->log_plus_flags,
1564 				      &synth_opts->log_minus_flags))
1565 				goto out_err;
1566 			if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1567 				synth_opts->log_on_error_size = itrace_log_on_error_size();
1568 			break;
1569 		case 'c':
1570 			synth_opts->branches = true;
1571 			synth_opts->calls = true;
1572 			break;
1573 		case 'r':
1574 			synth_opts->branches = true;
1575 			synth_opts->returns = true;
1576 			break;
1577 		case 'G':
1578 		case 'g':
1579 			if (p[-1] == 'G')
1580 				synth_opts->add_callchain = true;
1581 			else
1582 				synth_opts->callchain = true;
1583 			synth_opts->callchain_sz =
1584 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1585 			while (*p == ' ' || *p == ',')
1586 				p += 1;
1587 			if (isdigit(*p)) {
1588 				unsigned int val;
1589 
1590 				val = strtoul(p, &endptr, 10);
1591 				p = endptr;
1592 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1593 					goto out_err;
1594 				synth_opts->callchain_sz = val;
1595 			}
1596 			break;
1597 		case 'L':
1598 		case 'l':
1599 			if (p[-1] == 'L')
1600 				synth_opts->add_last_branch = true;
1601 			else
1602 				synth_opts->last_branch = true;
1603 			synth_opts->last_branch_sz =
1604 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1605 			while (*p == ' ' || *p == ',')
1606 				p += 1;
1607 			if (isdigit(*p)) {
1608 				unsigned int val;
1609 
1610 				val = strtoul(p, &endptr, 10);
1611 				p = endptr;
1612 				if (!val ||
1613 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1614 					goto out_err;
1615 				synth_opts->last_branch_sz = val;
1616 			}
1617 			break;
1618 		case 's':
1619 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1620 			if (p == endptr)
1621 				goto out_err;
1622 			p = endptr;
1623 			break;
1624 		case 'f':
1625 			synth_opts->flc = true;
1626 			break;
1627 		case 'm':
1628 			synth_opts->llc = true;
1629 			break;
1630 		case 't':
1631 			synth_opts->tlb = true;
1632 			break;
1633 		case 'a':
1634 			synth_opts->remote_access = true;
1635 			break;
1636 		case 'M':
1637 			synth_opts->mem = true;
1638 			break;
1639 		case 'q':
1640 			synth_opts->quick += 1;
1641 			break;
1642 		case 'A':
1643 			synth_opts->approx_ipc = true;
1644 			break;
1645 		case 'Z':
1646 			synth_opts->timeless_decoding = true;
1647 			break;
1648 		case 'T':
1649 			synth_opts->use_timestamp = true;
1650 			break;
1651 		case ' ':
1652 		case ',':
1653 			break;
1654 		default:
1655 			goto out_err;
1656 		}
1657 	}
1658 out:
1659 	if (iy) {
1660 		if (!period_type_set)
1661 			synth_opts->period_type =
1662 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1663 		if (!period_set)
1664 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1665 	}
1666 
1667 	return 0;
1668 
1669 out_err:
1670 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1671 	return -EINVAL;
1672 }
1673 
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)1674 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1675 {
1676 	return itrace_do_parse_synth_opts(opt->value, str, unset);
1677 }
1678 
1679 static const char * const auxtrace_error_type_name[] = {
1680 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1681 };
1682 
auxtrace_error_name(int type)1683 static const char *auxtrace_error_name(int type)
1684 {
1685 	const char *error_type_name = NULL;
1686 
1687 	if (type < PERF_AUXTRACE_ERROR_MAX)
1688 		error_type_name = auxtrace_error_type_name[type];
1689 	if (!error_type_name)
1690 		error_type_name = "unknown AUX";
1691 	return error_type_name;
1692 }
1693 
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1694 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1695 {
1696 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1697 	unsigned long long nsecs = e->time;
1698 	const char *msg = e->msg;
1699 	int ret;
1700 
1701 	ret = fprintf(fp, " %s error type %u",
1702 		      auxtrace_error_name(e->type), e->type);
1703 
1704 	if (e->fmt && nsecs) {
1705 		unsigned long secs = nsecs / NSEC_PER_SEC;
1706 
1707 		nsecs -= secs * NSEC_PER_SEC;
1708 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1709 	} else {
1710 		ret += fprintf(fp, " time 0");
1711 	}
1712 
1713 	if (!e->fmt)
1714 		msg = (const char *)&e->time;
1715 
1716 	if (e->fmt >= 2 && e->machine_pid)
1717 		ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1718 
1719 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1720 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1721 	return ret;
1722 }
1723 
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1724 void perf_session__auxtrace_error_inc(struct perf_session *session,
1725 				      union perf_event *event)
1726 {
1727 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1728 
1729 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1730 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1731 }
1732 
events_stats__auxtrace_error_warn(const struct events_stats * stats)1733 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1734 {
1735 	int i;
1736 
1737 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1738 		if (!stats->nr_auxtrace_errors[i])
1739 			continue;
1740 		ui__warning("%u %s errors\n",
1741 			    stats->nr_auxtrace_errors[i],
1742 			    auxtrace_error_name(i));
1743 	}
1744 }
1745 
perf_event__process_auxtrace_error(struct perf_session * session,union perf_event * event)1746 int perf_event__process_auxtrace_error(struct perf_session *session,
1747 				       union perf_event *event)
1748 {
1749 	if (auxtrace__dont_decode(session))
1750 		return 0;
1751 
1752 	perf_event__fprintf_auxtrace_error(event, stdout);
1753 	return 0;
1754 }
1755 
1756 /*
1757  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1758  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1759  * the issues caused by the below sequence on multiple CPUs: when perf tool
1760  * accesses either the load operation or the store operation for 64-bit value,
1761  * on some architectures the operation is divided into two instructions, one
1762  * is for accessing the low 32-bit value and another is for the high 32-bit;
1763  * thus these two user operations can give the kernel chances to access the
1764  * 64-bit value, and thus leads to the unexpected load values.
1765  *
1766  *   kernel (64-bit)                        user (32-bit)
1767  *
1768  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1769  *       STORE $aux_data      |       ,--->
1770  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1771  *       STORE ->aux_head   --|-------`     smp_rmb()
1772  *   }                        |             LOAD $data
1773  *                            |             smp_mb()
1774  *                            |             STORE ->aux_tail_lo
1775  *                            `----------->
1776  *                                          STORE ->aux_tail_hi
1777  *
1778  * For this reason, it's impossible for the perf tool to work correctly when
1779  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1780  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1781  * the pointers can be increased monotonically, whatever the buffer size it is,
1782  * at the end the head and tail can be bigger than 4GB and carry out to the
1783  * high 32-bit.
1784  *
1785  * To mitigate the issues and improve the user experience, we can allow the
1786  * perf tool working in certain conditions and bail out with error if detect
1787  * any overflow cannot be handled.
1788  *
1789  * For reading the AUX head, it reads out the values for three times, and
1790  * compares the high 4 bytes of the values between the first time and the last
1791  * time, if there has no change for high 4 bytes injected by the kernel during
1792  * the user reading sequence, it's safe for use the second value.
1793  *
1794  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1795  * 32 bits, it means there have two store operations in user space and it cannot
1796  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1797  * the caller an overflow error has happened.
1798  */
compat_auxtrace_mmap__read_head(struct auxtrace_mmap * mm)1799 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1800 {
1801 	struct perf_event_mmap_page *pc = mm->userpg;
1802 	u64 first, second, last;
1803 	u64 mask = (u64)(UINT32_MAX) << 32;
1804 
1805 	do {
1806 		first = READ_ONCE(pc->aux_head);
1807 		/* Ensure all reads are done after we read the head */
1808 		smp_rmb();
1809 		second = READ_ONCE(pc->aux_head);
1810 		/* Ensure all reads are done after we read the head */
1811 		smp_rmb();
1812 		last = READ_ONCE(pc->aux_head);
1813 	} while ((first & mask) != (last & mask));
1814 
1815 	return second;
1816 }
1817 
compat_auxtrace_mmap__write_tail(struct auxtrace_mmap * mm,u64 tail)1818 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1819 {
1820 	struct perf_event_mmap_page *pc = mm->userpg;
1821 	u64 mask = (u64)(UINT32_MAX) << 32;
1822 
1823 	if (tail & mask)
1824 		return -1;
1825 
1826 	/* Ensure all reads are done before we write the tail out */
1827 	smp_mb();
1828 	WRITE_ONCE(pc->aux_tail, tail);
1829 	return 0;
1830 }
1831 
__auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,const struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1832 static int __auxtrace_mmap__read(struct mmap *map,
1833 				 struct auxtrace_record *itr,
1834 				 const struct perf_tool *tool, process_auxtrace_t fn,
1835 				 bool snapshot, size_t snapshot_size)
1836 {
1837 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1838 	u64 head, old = mm->prev, offset, ref;
1839 	unsigned char *data = mm->base;
1840 	size_t size, head_off, old_off, len1, len2, padding;
1841 	union perf_event ev;
1842 	void *data1, *data2;
1843 	int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1844 
1845 	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1846 
1847 	if (snapshot &&
1848 	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1849 		return -1;
1850 
1851 	if (old == head)
1852 		return 0;
1853 
1854 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1855 		  mm->idx, old, head, head - old);
1856 
1857 	if (mm->mask) {
1858 		head_off = head & mm->mask;
1859 		old_off = old & mm->mask;
1860 	} else {
1861 		head_off = head % mm->len;
1862 		old_off = old % mm->len;
1863 	}
1864 
1865 	if (head_off > old_off)
1866 		size = head_off - old_off;
1867 	else
1868 		size = mm->len - (old_off - head_off);
1869 
1870 	if (snapshot && size > snapshot_size)
1871 		size = snapshot_size;
1872 
1873 	ref = auxtrace_record__reference(itr);
1874 
1875 	if (head > old || size <= head || mm->mask) {
1876 		offset = head - size;
1877 	} else {
1878 		/*
1879 		 * When the buffer size is not a power of 2, 'head' wraps at the
1880 		 * highest multiple of the buffer size, so we have to subtract
1881 		 * the remainder here.
1882 		 */
1883 		u64 rem = (0ULL - mm->len) % mm->len;
1884 
1885 		offset = head - size - rem;
1886 	}
1887 
1888 	if (size > head_off) {
1889 		len1 = size - head_off;
1890 		data1 = &data[mm->len - len1];
1891 		len2 = head_off;
1892 		data2 = &data[0];
1893 	} else {
1894 		len1 = size;
1895 		data1 = &data[head_off - len1];
1896 		len2 = 0;
1897 		data2 = NULL;
1898 	}
1899 
1900 	if (itr->alignment) {
1901 		unsigned int unwanted = len1 % itr->alignment;
1902 
1903 		len1 -= unwanted;
1904 		size -= unwanted;
1905 	}
1906 
1907 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1908 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1909 	if (padding)
1910 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1911 
1912 	memset(&ev, 0, sizeof(ev));
1913 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1914 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1915 	ev.auxtrace.size = size + padding;
1916 	ev.auxtrace.offset = offset;
1917 	ev.auxtrace.reference = ref;
1918 	ev.auxtrace.idx = mm->idx;
1919 	ev.auxtrace.tid = mm->tid;
1920 	ev.auxtrace.cpu = mm->cpu;
1921 
1922 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1923 		return -1;
1924 
1925 	mm->prev = head;
1926 
1927 	if (!snapshot) {
1928 		int err;
1929 
1930 		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1931 		if (err < 0)
1932 			return err;
1933 
1934 		if (itr->read_finish) {
1935 			err = itr->read_finish(itr, mm->idx);
1936 			if (err < 0)
1937 				return err;
1938 		}
1939 	}
1940 
1941 	return 1;
1942 }
1943 
auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,const struct perf_tool * tool,process_auxtrace_t fn)1944 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1945 			const struct perf_tool *tool, process_auxtrace_t fn)
1946 {
1947 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1948 }
1949 
auxtrace_mmap__read_snapshot(struct mmap * map,struct auxtrace_record * itr,const struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)1950 int auxtrace_mmap__read_snapshot(struct mmap *map,
1951 				 struct auxtrace_record *itr,
1952 				 const struct perf_tool *tool, process_auxtrace_t fn,
1953 				 size_t snapshot_size)
1954 {
1955 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1956 }
1957 
1958 /**
1959  * struct auxtrace_cache - hash table to implement a cache
1960  * @hashtable: the hashtable
1961  * @sz: hashtable size (number of hlists)
1962  * @entry_size: size of an entry
1963  * @limit: limit the number of entries to this maximum, when reached the cache
1964  *         is dropped and caching begins again with an empty cache
1965  * @cnt: current number of entries
1966  * @bits: hashtable size (@sz = 2^@bits)
1967  */
1968 struct auxtrace_cache {
1969 	struct hlist_head *hashtable;
1970 	size_t sz;
1971 	size_t entry_size;
1972 	size_t limit;
1973 	size_t cnt;
1974 	unsigned int bits;
1975 };
1976 
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)1977 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1978 					   unsigned int limit_percent)
1979 {
1980 	struct auxtrace_cache *c;
1981 	struct hlist_head *ht;
1982 	size_t sz, i;
1983 
1984 	c = zalloc(sizeof(struct auxtrace_cache));
1985 	if (!c)
1986 		return NULL;
1987 
1988 	sz = 1UL << bits;
1989 
1990 	ht = calloc(sz, sizeof(struct hlist_head));
1991 	if (!ht)
1992 		goto out_free;
1993 
1994 	for (i = 0; i < sz; i++)
1995 		INIT_HLIST_HEAD(&ht[i]);
1996 
1997 	c->hashtable = ht;
1998 	c->sz = sz;
1999 	c->entry_size = entry_size;
2000 	c->limit = (c->sz * limit_percent) / 100;
2001 	c->bits = bits;
2002 
2003 	return c;
2004 
2005 out_free:
2006 	free(c);
2007 	return NULL;
2008 }
2009 
auxtrace_cache__drop(struct auxtrace_cache * c)2010 static void auxtrace_cache__drop(struct auxtrace_cache *c)
2011 {
2012 	struct auxtrace_cache_entry *entry;
2013 	struct hlist_node *tmp;
2014 	size_t i;
2015 
2016 	if (!c)
2017 		return;
2018 
2019 	for (i = 0; i < c->sz; i++) {
2020 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2021 			hlist_del(&entry->hash);
2022 			auxtrace_cache__free_entry(c, entry);
2023 		}
2024 	}
2025 
2026 	c->cnt = 0;
2027 }
2028 
auxtrace_cache__free(struct auxtrace_cache * c)2029 void auxtrace_cache__free(struct auxtrace_cache *c)
2030 {
2031 	if (!c)
2032 		return;
2033 
2034 	auxtrace_cache__drop(c);
2035 	zfree(&c->hashtable);
2036 	free(c);
2037 }
2038 
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)2039 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2040 {
2041 	return malloc(c->entry_size);
2042 }
2043 
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)2044 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2045 				void *entry)
2046 {
2047 	free(entry);
2048 }
2049 
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)2050 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2051 			struct auxtrace_cache_entry *entry)
2052 {
2053 	if (c->limit && ++c->cnt > c->limit)
2054 		auxtrace_cache__drop(c);
2055 
2056 	entry->key = key;
2057 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2058 
2059 	return 0;
2060 }
2061 
auxtrace_cache__rm(struct auxtrace_cache * c,u32 key)2062 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2063 						       u32 key)
2064 {
2065 	struct auxtrace_cache_entry *entry;
2066 	struct hlist_head *hlist;
2067 	struct hlist_node *n;
2068 
2069 	if (!c)
2070 		return NULL;
2071 
2072 	hlist = &c->hashtable[hash_32(key, c->bits)];
2073 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
2074 		if (entry->key == key) {
2075 			hlist_del(&entry->hash);
2076 			return entry;
2077 		}
2078 	}
2079 
2080 	return NULL;
2081 }
2082 
auxtrace_cache__remove(struct auxtrace_cache * c,u32 key)2083 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2084 {
2085 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2086 
2087 	auxtrace_cache__free_entry(c, entry);
2088 }
2089 
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)2090 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2091 {
2092 	struct auxtrace_cache_entry *entry;
2093 	struct hlist_head *hlist;
2094 
2095 	if (!c)
2096 		return NULL;
2097 
2098 	hlist = &c->hashtable[hash_32(key, c->bits)];
2099 	hlist_for_each_entry(entry, hlist, hash) {
2100 		if (entry->key == key)
2101 			return entry;
2102 	}
2103 
2104 	return NULL;
2105 }
2106 
addr_filter__free_str(struct addr_filter * filt)2107 static void addr_filter__free_str(struct addr_filter *filt)
2108 {
2109 	zfree(&filt->str);
2110 	filt->action   = NULL;
2111 	filt->sym_from = NULL;
2112 	filt->sym_to   = NULL;
2113 	filt->filename = NULL;
2114 }
2115 
addr_filter__new(void)2116 static struct addr_filter *addr_filter__new(void)
2117 {
2118 	struct addr_filter *filt = zalloc(sizeof(*filt));
2119 
2120 	if (filt)
2121 		INIT_LIST_HEAD(&filt->list);
2122 
2123 	return filt;
2124 }
2125 
addr_filter__free(struct addr_filter * filt)2126 static void addr_filter__free(struct addr_filter *filt)
2127 {
2128 	if (filt)
2129 		addr_filter__free_str(filt);
2130 	free(filt);
2131 }
2132 
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)2133 static void addr_filters__add(struct addr_filters *filts,
2134 			      struct addr_filter *filt)
2135 {
2136 	list_add_tail(&filt->list, &filts->head);
2137 	filts->cnt += 1;
2138 }
2139 
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)2140 static void addr_filters__del(struct addr_filters *filts,
2141 			      struct addr_filter *filt)
2142 {
2143 	list_del_init(&filt->list);
2144 	filts->cnt -= 1;
2145 }
2146 
addr_filters__init(struct addr_filters * filts)2147 void addr_filters__init(struct addr_filters *filts)
2148 {
2149 	INIT_LIST_HEAD(&filts->head);
2150 	filts->cnt = 0;
2151 }
2152 
addr_filters__exit(struct addr_filters * filts)2153 void addr_filters__exit(struct addr_filters *filts)
2154 {
2155 	struct addr_filter *filt, *n;
2156 
2157 	list_for_each_entry_safe(filt, n, &filts->head, list) {
2158 		addr_filters__del(filts, filt);
2159 		addr_filter__free(filt);
2160 	}
2161 }
2162 
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)2163 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2164 			    const char *str_delim)
2165 {
2166 	*inp += strspn(*inp, " ");
2167 
2168 	if (isdigit(**inp)) {
2169 		char *endptr;
2170 
2171 		if (!num)
2172 			return -EINVAL;
2173 		errno = 0;
2174 		*num = strtoull(*inp, &endptr, 0);
2175 		if (errno)
2176 			return -errno;
2177 		if (endptr == *inp)
2178 			return -EINVAL;
2179 		*inp = endptr;
2180 	} else {
2181 		size_t n;
2182 
2183 		if (!str)
2184 			return -EINVAL;
2185 		*inp += strspn(*inp, " ");
2186 		*str = *inp;
2187 		n = strcspn(*inp, str_delim);
2188 		if (!n)
2189 			return -EINVAL;
2190 		*inp += n;
2191 		if (**inp) {
2192 			**inp = '\0';
2193 			*inp += 1;
2194 		}
2195 	}
2196 	return 0;
2197 }
2198 
parse_action(struct addr_filter * filt)2199 static int parse_action(struct addr_filter *filt)
2200 {
2201 	if (!strcmp(filt->action, "filter")) {
2202 		filt->start = true;
2203 		filt->range = true;
2204 	} else if (!strcmp(filt->action, "start")) {
2205 		filt->start = true;
2206 	} else if (!strcmp(filt->action, "stop")) {
2207 		filt->start = false;
2208 	} else if (!strcmp(filt->action, "tracestop")) {
2209 		filt->start = false;
2210 		filt->range = true;
2211 		filt->action += 5; /* Change 'tracestop' to 'stop' */
2212 	} else {
2213 		return -EINVAL;
2214 	}
2215 	return 0;
2216 }
2217 
parse_sym_idx(char ** inp,int * idx)2218 static int parse_sym_idx(char **inp, int *idx)
2219 {
2220 	*idx = -1;
2221 
2222 	*inp += strspn(*inp, " ");
2223 
2224 	if (**inp != '#')
2225 		return 0;
2226 
2227 	*inp += 1;
2228 
2229 	if (**inp == 'g' || **inp == 'G') {
2230 		*inp += 1;
2231 		*idx = 0;
2232 	} else {
2233 		unsigned long num;
2234 		char *endptr;
2235 
2236 		errno = 0;
2237 		num = strtoul(*inp, &endptr, 0);
2238 		if (errno)
2239 			return -errno;
2240 		if (endptr == *inp || num > INT_MAX)
2241 			return -EINVAL;
2242 		*inp = endptr;
2243 		*idx = num;
2244 	}
2245 
2246 	return 0;
2247 }
2248 
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)2249 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2250 {
2251 	int err = parse_num_or_str(inp, num, str, " ");
2252 
2253 	if (!err && *str)
2254 		err = parse_sym_idx(inp, idx);
2255 
2256 	return err;
2257 }
2258 
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)2259 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2260 {
2261 	char *fstr;
2262 	int err;
2263 
2264 	filt->str = fstr = strdup(*filter_inp);
2265 	if (!fstr)
2266 		return -ENOMEM;
2267 
2268 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2269 	if (err)
2270 		goto out_err;
2271 
2272 	err = parse_action(filt);
2273 	if (err)
2274 		goto out_err;
2275 
2276 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2277 			      &filt->sym_from_idx);
2278 	if (err)
2279 		goto out_err;
2280 
2281 	fstr += strspn(fstr, " ");
2282 
2283 	if (*fstr == '/') {
2284 		fstr += 1;
2285 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2286 				      &filt->sym_to_idx);
2287 		if (err)
2288 			goto out_err;
2289 		filt->range = true;
2290 	}
2291 
2292 	fstr += strspn(fstr, " ");
2293 
2294 	if (*fstr == '@') {
2295 		fstr += 1;
2296 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2297 		if (err)
2298 			goto out_err;
2299 	}
2300 
2301 	fstr += strspn(fstr, " ,");
2302 
2303 	*filter_inp += fstr - filt->str;
2304 
2305 	return 0;
2306 
2307 out_err:
2308 	addr_filter__free_str(filt);
2309 
2310 	return err;
2311 }
2312 
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)2313 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2314 				    const char *filter)
2315 {
2316 	struct addr_filter *filt;
2317 	const char *fstr = filter;
2318 	int err;
2319 
2320 	while (*fstr) {
2321 		filt = addr_filter__new();
2322 		err = parse_one_filter(filt, &fstr);
2323 		if (err) {
2324 			addr_filter__free(filt);
2325 			addr_filters__exit(filts);
2326 			return err;
2327 		}
2328 		addr_filters__add(filts, filt);
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 struct sym_args {
2335 	const char	*name;
2336 	u64		start;
2337 	u64		size;
2338 	int		idx;
2339 	int		cnt;
2340 	bool		started;
2341 	bool		global;
2342 	bool		selected;
2343 	bool		duplicate;
2344 	bool		near;
2345 };
2346 
kern_sym_name_match(const char * kname,const char * name)2347 static bool kern_sym_name_match(const char *kname, const char *name)
2348 {
2349 	size_t n = strlen(name);
2350 
2351 	return !strcmp(kname, name) ||
2352 	       (!strncmp(kname, name, n) && kname[n] == '\t');
2353 }
2354 
kern_sym_match(struct sym_args * args,const char * name,char type)2355 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2356 {
2357 	/* A function with the same name, and global or the n'th found or any */
2358 	return kallsyms__is_function(type) &&
2359 	       kern_sym_name_match(name, args->name) &&
2360 	       ((args->global && isupper(type)) ||
2361 		(args->selected && ++(args->cnt) == args->idx) ||
2362 		(!args->global && !args->selected));
2363 }
2364 
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)2365 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2366 {
2367 	struct sym_args *args = arg;
2368 
2369 	if (args->started) {
2370 		if (!args->size)
2371 			args->size = start - args->start;
2372 		if (args->selected) {
2373 			if (args->size)
2374 				return 1;
2375 		} else if (kern_sym_match(args, name, type)) {
2376 			args->duplicate = true;
2377 			return 1;
2378 		}
2379 	} else if (kern_sym_match(args, name, type)) {
2380 		args->started = true;
2381 		args->start = start;
2382 	}
2383 
2384 	return 0;
2385 }
2386 
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)2387 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2388 {
2389 	struct sym_args *args = arg;
2390 
2391 	if (kern_sym_match(args, name, type)) {
2392 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2393 		       ++args->cnt, start, type, name);
2394 		args->near = true;
2395 	} else if (args->near) {
2396 		args->near = false;
2397 		pr_err("\t\twhich is near\t\t%s\n", name);
2398 	}
2399 
2400 	return 0;
2401 }
2402 
sym_not_found_error(const char * sym_name,int idx)2403 static int sym_not_found_error(const char *sym_name, int idx)
2404 {
2405 	if (idx > 0) {
2406 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2407 		       idx, sym_name);
2408 	} else if (!idx) {
2409 		pr_err("Global symbol '%s' not found.\n", sym_name);
2410 	} else {
2411 		pr_err("Symbol '%s' not found.\n", sym_name);
2412 	}
2413 	pr_err("Note that symbols must be functions.\n");
2414 
2415 	return -EINVAL;
2416 }
2417 
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)2418 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2419 {
2420 	struct sym_args args = {
2421 		.name = sym_name,
2422 		.idx = idx,
2423 		.global = !idx,
2424 		.selected = idx > 0,
2425 	};
2426 	int err;
2427 
2428 	*start = 0;
2429 	*size = 0;
2430 
2431 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2432 	if (err < 0) {
2433 		pr_err("Failed to parse /proc/kallsyms\n");
2434 		return err;
2435 	}
2436 
2437 	if (args.duplicate) {
2438 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2439 		args.cnt = 0;
2440 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2441 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2442 		       sym_name);
2443 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2444 		return -EINVAL;
2445 	}
2446 
2447 	if (!args.started) {
2448 		pr_err("Kernel symbol lookup: ");
2449 		return sym_not_found_error(sym_name, idx);
2450 	}
2451 
2452 	*start = args.start;
2453 	*size = args.size;
2454 
2455 	return 0;
2456 }
2457 
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)2458 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2459 			       char type, u64 start)
2460 {
2461 	struct sym_args *args = arg;
2462 	u64 size;
2463 
2464 	if (!kallsyms__is_function(type))
2465 		return 0;
2466 
2467 	if (!args->started) {
2468 		args->started = true;
2469 		args->start = start;
2470 	}
2471 	/* Don't know exactly where the kernel ends, so we add a page */
2472 	size = round_up(start, page_size) + page_size - args->start;
2473 	if (size > args->size)
2474 		args->size = size;
2475 
2476 	return 0;
2477 }
2478 
addr_filter__entire_kernel(struct addr_filter * filt)2479 static int addr_filter__entire_kernel(struct addr_filter *filt)
2480 {
2481 	struct sym_args args = { .started = false };
2482 	int err;
2483 
2484 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2485 	if (err < 0 || !args.started) {
2486 		pr_err("Failed to parse /proc/kallsyms\n");
2487 		return err;
2488 	}
2489 
2490 	filt->addr = args.start;
2491 	filt->size = args.size;
2492 
2493 	return 0;
2494 }
2495 
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)2496 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2497 {
2498 	if (start + size >= filt->addr)
2499 		return 0;
2500 
2501 	if (filt->sym_from) {
2502 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2503 		       filt->sym_to, start, filt->sym_from, filt->addr);
2504 	} else {
2505 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2506 		       filt->sym_to, start, filt->addr);
2507 	}
2508 
2509 	return -EINVAL;
2510 }
2511 
addr_filter__resolve_kernel_syms(struct addr_filter * filt)2512 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2513 {
2514 	bool no_size = false;
2515 	u64 start, size;
2516 	int err;
2517 
2518 	if (symbol_conf.kptr_restrict) {
2519 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2520 		return -EINVAL;
2521 	}
2522 
2523 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2524 		return addr_filter__entire_kernel(filt);
2525 
2526 	if (filt->sym_from) {
2527 		err = find_kern_sym(filt->sym_from, &start, &size,
2528 				    filt->sym_from_idx);
2529 		if (err)
2530 			return err;
2531 		filt->addr = start;
2532 		if (filt->range && !filt->size && !filt->sym_to) {
2533 			filt->size = size;
2534 			no_size = !size;
2535 		}
2536 	}
2537 
2538 	if (filt->sym_to) {
2539 		err = find_kern_sym(filt->sym_to, &start, &size,
2540 				    filt->sym_to_idx);
2541 		if (err)
2542 			return err;
2543 
2544 		err = check_end_after_start(filt, start, size);
2545 		if (err)
2546 			return err;
2547 		filt->size = start + size - filt->addr;
2548 		no_size = !size;
2549 	}
2550 
2551 	/* The very last symbol in kallsyms does not imply a particular size */
2552 	if (no_size) {
2553 		pr_err("Cannot determine size of symbol '%s'\n",
2554 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2555 		return -EINVAL;
2556 	}
2557 
2558 	return 0;
2559 }
2560 
load_dso(const char * name)2561 static struct dso *load_dso(const char *name)
2562 {
2563 	struct map *map;
2564 	struct dso *dso;
2565 
2566 	map = dso__new_map(name);
2567 	if (!map)
2568 		return NULL;
2569 
2570 	if (map__load(map) < 0)
2571 		pr_err("File '%s' not found or has no symbols.\n", name);
2572 
2573 	dso = dso__get(map__dso(map));
2574 
2575 	map__put(map);
2576 
2577 	return dso;
2578 }
2579 
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)2580 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2581 			  int idx)
2582 {
2583 	/* Same name, and global or the n'th found or any */
2584 	return !arch__compare_symbol_names(name, sym->name) &&
2585 	       ((!idx && sym->binding == STB_GLOBAL) ||
2586 		(idx > 0 && ++*cnt == idx) ||
2587 		idx < 0);
2588 }
2589 
print_duplicate_syms(struct dso * dso,const char * sym_name)2590 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2591 {
2592 	struct symbol *sym;
2593 	bool near = false;
2594 	int cnt = 0;
2595 
2596 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2597 
2598 	sym = dso__first_symbol(dso);
2599 	while (sym) {
2600 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2601 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2602 			       ++cnt, sym->start,
2603 			       sym->binding == STB_GLOBAL ? 'g' :
2604 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2605 			       sym->name);
2606 			near = true;
2607 		} else if (near) {
2608 			near = false;
2609 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2610 		}
2611 		sym = dso__next_symbol(sym);
2612 	}
2613 
2614 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2615 	       sym_name);
2616 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2617 }
2618 
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)2619 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2620 			u64 *size, int idx)
2621 {
2622 	struct symbol *sym;
2623 	int cnt = 0;
2624 
2625 	*start = 0;
2626 	*size = 0;
2627 
2628 	sym = dso__first_symbol(dso);
2629 	while (sym) {
2630 		if (*start) {
2631 			if (!*size)
2632 				*size = sym->start - *start;
2633 			if (idx > 0) {
2634 				if (*size)
2635 					return 0;
2636 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2637 				print_duplicate_syms(dso, sym_name);
2638 				return -EINVAL;
2639 			}
2640 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2641 			*start = sym->start;
2642 			*size = sym->end - sym->start;
2643 		}
2644 		sym = dso__next_symbol(sym);
2645 	}
2646 
2647 	if (!*start)
2648 		return sym_not_found_error(sym_name, idx);
2649 
2650 	return 0;
2651 }
2652 
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)2653 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2654 {
2655 	if (dso__data_file_size(dso, NULL)) {
2656 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2657 		       filt->filename);
2658 		return -EINVAL;
2659 	}
2660 
2661 	filt->addr = 0;
2662 	filt->size = dso__data(dso)->file_size;
2663 
2664 	return 0;
2665 }
2666 
addr_filter__resolve_syms(struct addr_filter * filt)2667 static int addr_filter__resolve_syms(struct addr_filter *filt)
2668 {
2669 	u64 start, size;
2670 	struct dso *dso;
2671 	int err = 0;
2672 
2673 	if (!filt->sym_from && !filt->sym_to)
2674 		return 0;
2675 
2676 	if (!filt->filename)
2677 		return addr_filter__resolve_kernel_syms(filt);
2678 
2679 	dso = load_dso(filt->filename);
2680 	if (!dso) {
2681 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2682 		return -EINVAL;
2683 	}
2684 
2685 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2686 		err = addr_filter__entire_dso(filt, dso);
2687 		goto put_dso;
2688 	}
2689 
2690 	if (filt->sym_from) {
2691 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2692 				   filt->sym_from_idx);
2693 		if (err)
2694 			goto put_dso;
2695 		filt->addr = start;
2696 		if (filt->range && !filt->size && !filt->sym_to)
2697 			filt->size = size;
2698 	}
2699 
2700 	if (filt->sym_to) {
2701 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2702 				   filt->sym_to_idx);
2703 		if (err)
2704 			goto put_dso;
2705 
2706 		err = check_end_after_start(filt, start, size);
2707 		if (err)
2708 			return err;
2709 
2710 		filt->size = start + size - filt->addr;
2711 	}
2712 
2713 put_dso:
2714 	dso__put(dso);
2715 
2716 	return err;
2717 }
2718 
addr_filter__to_str(struct addr_filter * filt)2719 static char *addr_filter__to_str(struct addr_filter *filt)
2720 {
2721 	char filename_buf[PATH_MAX];
2722 	const char *at = "";
2723 	const char *fn = "";
2724 	char *filter;
2725 	int err;
2726 
2727 	if (filt->filename) {
2728 		at = "@";
2729 		fn = realpath(filt->filename, filename_buf);
2730 		if (!fn)
2731 			return NULL;
2732 	}
2733 
2734 	if (filt->range) {
2735 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2736 			       filt->action, filt->addr, filt->size, at, fn);
2737 	} else {
2738 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2739 			       filt->action, filt->addr, at, fn);
2740 	}
2741 
2742 	return err < 0 ? NULL : filter;
2743 }
2744 
parse_addr_filter(struct evsel * evsel,const char * filter,int max_nr)2745 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2746 			     int max_nr)
2747 {
2748 	struct addr_filters filts;
2749 	struct addr_filter *filt;
2750 	int err;
2751 
2752 	addr_filters__init(&filts);
2753 
2754 	err = addr_filters__parse_bare_filter(&filts, filter);
2755 	if (err)
2756 		goto out_exit;
2757 
2758 	if (filts.cnt > max_nr) {
2759 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2760 		       filts.cnt, max_nr);
2761 		err = -EINVAL;
2762 		goto out_exit;
2763 	}
2764 
2765 	list_for_each_entry(filt, &filts.head, list) {
2766 		char *new_filter;
2767 
2768 		err = addr_filter__resolve_syms(filt);
2769 		if (err)
2770 			goto out_exit;
2771 
2772 		new_filter = addr_filter__to_str(filt);
2773 		if (!new_filter) {
2774 			err = -ENOMEM;
2775 			goto out_exit;
2776 		}
2777 
2778 		if (evsel__append_addr_filter(evsel, new_filter)) {
2779 			err = -ENOMEM;
2780 			goto out_exit;
2781 		}
2782 	}
2783 
2784 out_exit:
2785 	addr_filters__exit(&filts);
2786 
2787 	if (err) {
2788 		pr_err("Failed to parse address filter: '%s'\n", filter);
2789 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2790 		pr_err("Where multiple filters are separated by space or comma.\n");
2791 	}
2792 
2793 	return err;
2794 }
2795 
evsel__nr_addr_filter(struct evsel * evsel)2796 static int evsel__nr_addr_filter(struct evsel *evsel)
2797 {
2798 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2799 	int nr_addr_filters = 0;
2800 
2801 	if (!pmu)
2802 		return 0;
2803 
2804 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2805 
2806 	return nr_addr_filters;
2807 }
2808 
auxtrace_parse_filters(struct evlist * evlist)2809 int auxtrace_parse_filters(struct evlist *evlist)
2810 {
2811 	struct evsel *evsel;
2812 	char *filter;
2813 	int err, max_nr;
2814 
2815 	evlist__for_each_entry(evlist, evsel) {
2816 		filter = evsel->filter;
2817 		max_nr = evsel__nr_addr_filter(evsel);
2818 		if (!filter || !max_nr)
2819 			continue;
2820 		evsel->filter = NULL;
2821 		err = parse_addr_filter(evsel, filter, max_nr);
2822 		free(filter);
2823 		if (err)
2824 			return err;
2825 		pr_debug("Address filter: %s\n", evsel->filter);
2826 	}
2827 
2828 	return 0;
2829 }
2830 
auxtrace__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,const struct perf_tool * tool)2831 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2832 			    struct perf_sample *sample, const struct perf_tool *tool)
2833 {
2834 	if (!session->auxtrace)
2835 		return 0;
2836 
2837 	return session->auxtrace->process_event(session, event, sample, tool);
2838 }
2839 
auxtrace__dump_auxtrace_sample(struct perf_session * session,struct perf_sample * sample)2840 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2841 				    struct perf_sample *sample)
2842 {
2843 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2844 	    auxtrace__dont_decode(session))
2845 		return;
2846 
2847 	session->auxtrace->dump_auxtrace_sample(session, sample);
2848 }
2849 
auxtrace__flush_events(struct perf_session * session,const struct perf_tool * tool)2850 int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool)
2851 {
2852 	if (!session->auxtrace)
2853 		return 0;
2854 
2855 	return session->auxtrace->flush_events(session, tool);
2856 }
2857 
auxtrace__free_events(struct perf_session * session)2858 void auxtrace__free_events(struct perf_session *session)
2859 {
2860 	if (!session->auxtrace)
2861 		return;
2862 
2863 	return session->auxtrace->free_events(session);
2864 }
2865 
auxtrace__free(struct perf_session * session)2866 void auxtrace__free(struct perf_session *session)
2867 {
2868 	if (!session->auxtrace)
2869 		return;
2870 
2871 	return session->auxtrace->free(session);
2872 }
2873 
auxtrace__evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)2874 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2875 				 struct evsel *evsel)
2876 {
2877 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2878 		return false;
2879 
2880 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2881 }
2882