1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /* audit.c -- Auditing support
3   * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4   * System-call specific features have moved to auditsc.c
5   *
6   * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7   * All Rights Reserved.
8   *
9   * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10   *
11   * Goals: 1) Integrate fully with Security Modules.
12   *	  2) Minimal run-time overhead:
13   *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14   *	     b) Small when syscall auditing is enabled and no audit record
15   *		is generated (defer as much work as possible to record
16   *		generation time):
17   *		i) context is allocated,
18   *		ii) names from getname are stored without a copy, and
19   *		iii) inode information stored from path_lookup.
20   *	  3) Ability to disable syscall auditing at boot time (audit=0).
21   *	  4) Usable by other parts of the kernel (if audit_log* is called,
22   *	     then a syscall record will be generated automatically for the
23   *	     current syscall).
24   *	  5) Netlink interface to user-space.
25   *	  6) Support low-overhead kernel-based filtering to minimize the
26   *	     information that must be passed to user-space.
27   *
28   * Audit userspace, documentation, tests, and bug/issue trackers:
29   * 	https://github.com/linux-audit
30   */
31  
32  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33  
34  #include <linux/file.h>
35  #include <linux/init.h>
36  #include <linux/types.h>
37  #include <linux/atomic.h>
38  #include <linux/mm.h>
39  #include <linux/export.h>
40  #include <linux/slab.h>
41  #include <linux/err.h>
42  #include <linux/kthread.h>
43  #include <linux/kernel.h>
44  #include <linux/syscalls.h>
45  #include <linux/spinlock.h>
46  #include <linux/rcupdate.h>
47  #include <linux/mutex.h>
48  #include <linux/gfp.h>
49  #include <linux/pid.h>
50  
51  #include <linux/audit.h>
52  
53  #include <net/sock.h>
54  #include <net/netlink.h>
55  #include <linux/skbuff.h>
56  #include <linux/security.h>
57  #include <linux/freezer.h>
58  #include <linux/pid_namespace.h>
59  #include <net/netns/generic.h>
60  
61  #include "audit.h"
62  
63  /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
64   * (Initialization happens after skb_init is called.) */
65  #define AUDIT_DISABLED		-1
66  #define AUDIT_UNINITIALIZED	0
67  #define AUDIT_INITIALIZED	1
68  static int	audit_initialized = AUDIT_UNINITIALIZED;
69  
70  u32		audit_enabled = AUDIT_OFF;
71  bool		audit_ever_enabled = !!AUDIT_OFF;
72  
73  EXPORT_SYMBOL_GPL(audit_enabled);
74  
75  /* Default state when kernel boots without any parameters. */
76  static u32	audit_default = AUDIT_OFF;
77  
78  /* If auditing cannot proceed, audit_failure selects what happens. */
79  static u32	audit_failure = AUDIT_FAIL_PRINTK;
80  
81  /* private audit network namespace index */
82  static unsigned int audit_net_id;
83  
84  /**
85   * struct audit_net - audit private network namespace data
86   * @sk: communication socket
87   */
88  struct audit_net {
89  	struct sock *sk;
90  };
91  
92  /**
93   * struct auditd_connection - kernel/auditd connection state
94   * @pid: auditd PID
95   * @portid: netlink portid
96   * @net: the associated network namespace
97   * @rcu: RCU head
98   *
99   * Description:
100   * This struct is RCU protected; you must either hold the RCU lock for reading
101   * or the associated spinlock for writing.
102   */
103  struct auditd_connection {
104  	struct pid *pid;
105  	u32 portid;
106  	struct net *net;
107  	struct rcu_head rcu;
108  };
109  static struct auditd_connection __rcu *auditd_conn;
110  static DEFINE_SPINLOCK(auditd_conn_lock);
111  
112  /* If audit_rate_limit is non-zero, limit the rate of sending audit records
113   * to that number per second.  This prevents DoS attacks, but results in
114   * audit records being dropped. */
115  static u32	audit_rate_limit;
116  
117  /* Number of outstanding audit_buffers allowed.
118   * When set to zero, this means unlimited. */
119  static u32	audit_backlog_limit = 64;
120  #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
121  static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
122  
123  /* The identity of the user shutting down the audit system. */
124  static kuid_t		audit_sig_uid = INVALID_UID;
125  static pid_t		audit_sig_pid = -1;
126  static u32		audit_sig_sid;
127  
128  /* Records can be lost in several ways:
129     0) [suppressed in audit_alloc]
130     1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
131     2) out of memory in audit_log_move [alloc_skb]
132     3) suppressed due to audit_rate_limit
133     4) suppressed due to audit_backlog_limit
134  */
135  static atomic_t	audit_lost = ATOMIC_INIT(0);
136  
137  /* Monotonically increasing sum of time the kernel has spent
138   * waiting while the backlog limit is exceeded.
139   */
140  static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
141  
142  /* Hash for inode-based rules */
143  struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
144  
145  static struct kmem_cache *audit_buffer_cache;
146  
147  /* queue msgs to send via kauditd_task */
148  static struct sk_buff_head audit_queue;
149  /* queue msgs due to temporary unicast send problems */
150  static struct sk_buff_head audit_retry_queue;
151  /* queue msgs waiting for new auditd connection */
152  static struct sk_buff_head audit_hold_queue;
153  
154  /* queue servicing thread */
155  static struct task_struct *kauditd_task;
156  static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
157  
158  /* waitqueue for callers who are blocked on the audit backlog */
159  static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
160  
161  static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
162  				   .mask = -1,
163  				   .features = 0,
164  				   .lock = 0,};
165  
166  static char *audit_feature_names[2] = {
167  	"only_unset_loginuid",
168  	"loginuid_immutable",
169  };
170  
171  /**
172   * struct audit_ctl_mutex - serialize requests from userspace
173   * @lock: the mutex used for locking
174   * @owner: the task which owns the lock
175   *
176   * Description:
177   * This is the lock struct used to ensure we only process userspace requests
178   * in an orderly fashion.  We can't simply use a mutex/lock here because we
179   * need to track lock ownership so we don't end up blocking the lock owner in
180   * audit_log_start() or similar.
181   */
182  static struct audit_ctl_mutex {
183  	struct mutex lock;
184  	void *owner;
185  } audit_cmd_mutex;
186  
187  /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188   * audit records.  Since printk uses a 1024 byte buffer, this buffer
189   * should be at least that large. */
190  #define AUDIT_BUFSIZ 1024
191  
192  /* The audit_buffer is used when formatting an audit record.  The caller
193   * locks briefly to get the record off the freelist or to allocate the
194   * buffer, and locks briefly to send the buffer to the netlink layer or
195   * to place it on a transmit queue.  Multiple audit_buffers can be in
196   * use simultaneously. */
197  struct audit_buffer {
198  	struct sk_buff       *skb;	/* formatted skb ready to send */
199  	struct audit_context *ctx;	/* NULL or associated context */
200  	gfp_t		     gfp_mask;
201  };
202  
203  struct audit_reply {
204  	__u32 portid;
205  	struct net *net;
206  	struct sk_buff *skb;
207  };
208  
209  /**
210   * auditd_test_task - Check to see if a given task is an audit daemon
211   * @task: the task to check
212   *
213   * Description:
214   * Return 1 if the task is a registered audit daemon, 0 otherwise.
215   */
auditd_test_task(struct task_struct * task)216  int auditd_test_task(struct task_struct *task)
217  {
218  	int rc;
219  	struct auditd_connection *ac;
220  
221  	rcu_read_lock();
222  	ac = rcu_dereference(auditd_conn);
223  	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224  	rcu_read_unlock();
225  
226  	return rc;
227  }
228  
229  /**
230   * audit_ctl_lock - Take the audit control lock
231   */
audit_ctl_lock(void)232  void audit_ctl_lock(void)
233  {
234  	mutex_lock(&audit_cmd_mutex.lock);
235  	audit_cmd_mutex.owner = current;
236  }
237  
238  /**
239   * audit_ctl_unlock - Drop the audit control lock
240   */
audit_ctl_unlock(void)241  void audit_ctl_unlock(void)
242  {
243  	audit_cmd_mutex.owner = NULL;
244  	mutex_unlock(&audit_cmd_mutex.lock);
245  }
246  
247  /**
248   * audit_ctl_owner_current - Test to see if the current task owns the lock
249   *
250   * Description:
251   * Return true if the current task owns the audit control lock, false if it
252   * doesn't own the lock.
253   */
audit_ctl_owner_current(void)254  static bool audit_ctl_owner_current(void)
255  {
256  	return (current == audit_cmd_mutex.owner);
257  }
258  
259  /**
260   * auditd_pid_vnr - Return the auditd PID relative to the namespace
261   *
262   * Description:
263   * Returns the PID in relation to the namespace, 0 on failure.
264   */
auditd_pid_vnr(void)265  static pid_t auditd_pid_vnr(void)
266  {
267  	pid_t pid;
268  	const struct auditd_connection *ac;
269  
270  	rcu_read_lock();
271  	ac = rcu_dereference(auditd_conn);
272  	if (!ac || !ac->pid)
273  		pid = 0;
274  	else
275  		pid = pid_vnr(ac->pid);
276  	rcu_read_unlock();
277  
278  	return pid;
279  }
280  
281  /**
282   * audit_get_sk - Return the audit socket for the given network namespace
283   * @net: the destination network namespace
284   *
285   * Description:
286   * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
287   * that a reference is held for the network namespace while the sock is in use.
288   */
audit_get_sk(const struct net * net)289  static struct sock *audit_get_sk(const struct net *net)
290  {
291  	struct audit_net *aunet;
292  
293  	if (!net)
294  		return NULL;
295  
296  	aunet = net_generic(net, audit_net_id);
297  	return aunet->sk;
298  }
299  
audit_panic(const char * message)300  void audit_panic(const char *message)
301  {
302  	switch (audit_failure) {
303  	case AUDIT_FAIL_SILENT:
304  		break;
305  	case AUDIT_FAIL_PRINTK:
306  		if (printk_ratelimit())
307  			pr_err("%s\n", message);
308  		break;
309  	case AUDIT_FAIL_PANIC:
310  		panic("audit: %s\n", message);
311  		break;
312  	}
313  }
314  
audit_rate_check(void)315  static inline int audit_rate_check(void)
316  {
317  	static unsigned long	last_check = 0;
318  	static int		messages   = 0;
319  	static DEFINE_SPINLOCK(lock);
320  	unsigned long		flags;
321  	unsigned long		now;
322  	int			retval	   = 0;
323  
324  	if (!audit_rate_limit)
325  		return 1;
326  
327  	spin_lock_irqsave(&lock, flags);
328  	if (++messages < audit_rate_limit) {
329  		retval = 1;
330  	} else {
331  		now = jiffies;
332  		if (time_after(now, last_check + HZ)) {
333  			last_check = now;
334  			messages   = 0;
335  			retval     = 1;
336  		}
337  	}
338  	spin_unlock_irqrestore(&lock, flags);
339  
340  	return retval;
341  }
342  
343  /**
344   * audit_log_lost - conditionally log lost audit message event
345   * @message: the message stating reason for lost audit message
346   *
347   * Emit at least 1 message per second, even if audit_rate_check is
348   * throttling.
349   * Always increment the lost messages counter.
350  */
audit_log_lost(const char * message)351  void audit_log_lost(const char *message)
352  {
353  	static unsigned long	last_msg = 0;
354  	static DEFINE_SPINLOCK(lock);
355  	unsigned long		flags;
356  	unsigned long		now;
357  	int			print;
358  
359  	atomic_inc(&audit_lost);
360  
361  	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
362  
363  	if (!print) {
364  		spin_lock_irqsave(&lock, flags);
365  		now = jiffies;
366  		if (time_after(now, last_msg + HZ)) {
367  			print = 1;
368  			last_msg = now;
369  		}
370  		spin_unlock_irqrestore(&lock, flags);
371  	}
372  
373  	if (print) {
374  		if (printk_ratelimit())
375  			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
376  				atomic_read(&audit_lost),
377  				audit_rate_limit,
378  				audit_backlog_limit);
379  		audit_panic(message);
380  	}
381  }
382  
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)383  static int audit_log_config_change(char *function_name, u32 new, u32 old,
384  				   int allow_changes)
385  {
386  	struct audit_buffer *ab;
387  	int rc = 0;
388  
389  	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
390  	if (unlikely(!ab))
391  		return rc;
392  	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
393  	audit_log_session_info(ab);
394  	rc = audit_log_task_context(ab);
395  	if (rc)
396  		allow_changes = 0; /* Something weird, deny request */
397  	audit_log_format(ab, " res=%d", allow_changes);
398  	audit_log_end(ab);
399  	return rc;
400  }
401  
audit_do_config_change(char * function_name,u32 * to_change,u32 new)402  static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
403  {
404  	int allow_changes, rc = 0;
405  	u32 old = *to_change;
406  
407  	/* check if we are locked */
408  	if (audit_enabled == AUDIT_LOCKED)
409  		allow_changes = 0;
410  	else
411  		allow_changes = 1;
412  
413  	if (audit_enabled != AUDIT_OFF) {
414  		rc = audit_log_config_change(function_name, new, old, allow_changes);
415  		if (rc)
416  			allow_changes = 0;
417  	}
418  
419  	/* If we are allowed, make the change */
420  	if (allow_changes == 1)
421  		*to_change = new;
422  	/* Not allowed, update reason */
423  	else if (rc == 0)
424  		rc = -EPERM;
425  	return rc;
426  }
427  
audit_set_rate_limit(u32 limit)428  static int audit_set_rate_limit(u32 limit)
429  {
430  	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
431  }
432  
audit_set_backlog_limit(u32 limit)433  static int audit_set_backlog_limit(u32 limit)
434  {
435  	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
436  }
437  
audit_set_backlog_wait_time(u32 timeout)438  static int audit_set_backlog_wait_time(u32 timeout)
439  {
440  	return audit_do_config_change("audit_backlog_wait_time",
441  				      &audit_backlog_wait_time, timeout);
442  }
443  
audit_set_enabled(u32 state)444  static int audit_set_enabled(u32 state)
445  {
446  	int rc;
447  	if (state > AUDIT_LOCKED)
448  		return -EINVAL;
449  
450  	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
451  	if (!rc)
452  		audit_ever_enabled |= !!state;
453  
454  	return rc;
455  }
456  
audit_set_failure(u32 state)457  static int audit_set_failure(u32 state)
458  {
459  	if (state != AUDIT_FAIL_SILENT
460  	    && state != AUDIT_FAIL_PRINTK
461  	    && state != AUDIT_FAIL_PANIC)
462  		return -EINVAL;
463  
464  	return audit_do_config_change("audit_failure", &audit_failure, state);
465  }
466  
467  /**
468   * auditd_conn_free - RCU helper to release an auditd connection struct
469   * @rcu: RCU head
470   *
471   * Description:
472   * Drop any references inside the auditd connection tracking struct and free
473   * the memory.
474   */
auditd_conn_free(struct rcu_head * rcu)475  static void auditd_conn_free(struct rcu_head *rcu)
476  {
477  	struct auditd_connection *ac;
478  
479  	ac = container_of(rcu, struct auditd_connection, rcu);
480  	put_pid(ac->pid);
481  	put_net(ac->net);
482  	kfree(ac);
483  }
484  
485  /**
486   * auditd_set - Set/Reset the auditd connection state
487   * @pid: auditd PID
488   * @portid: auditd netlink portid
489   * @net: auditd network namespace pointer
490   * @skb: the netlink command from the audit daemon
491   * @ack: netlink ack flag, cleared if ack'd here
492   *
493   * Description:
494   * This function will obtain and drop network namespace references as
495   * necessary.  Returns zero on success, negative values on failure.
496   */
auditd_set(struct pid * pid,u32 portid,struct net * net,struct sk_buff * skb,bool * ack)497  static int auditd_set(struct pid *pid, u32 portid, struct net *net,
498  		      struct sk_buff *skb, bool *ack)
499  {
500  	unsigned long flags;
501  	struct auditd_connection *ac_old, *ac_new;
502  	struct nlmsghdr *nlh;
503  
504  	if (!pid || !net)
505  		return -EINVAL;
506  
507  	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
508  	if (!ac_new)
509  		return -ENOMEM;
510  	ac_new->pid = get_pid(pid);
511  	ac_new->portid = portid;
512  	ac_new->net = get_net(net);
513  
514  	/* send the ack now to avoid a race with the queue backlog */
515  	if (*ack) {
516  		nlh = nlmsg_hdr(skb);
517  		netlink_ack(skb, nlh, 0, NULL);
518  		*ack = false;
519  	}
520  
521  	spin_lock_irqsave(&auditd_conn_lock, flags);
522  	ac_old = rcu_dereference_protected(auditd_conn,
523  					   lockdep_is_held(&auditd_conn_lock));
524  	rcu_assign_pointer(auditd_conn, ac_new);
525  	spin_unlock_irqrestore(&auditd_conn_lock, flags);
526  
527  	if (ac_old)
528  		call_rcu(&ac_old->rcu, auditd_conn_free);
529  
530  	return 0;
531  }
532  
533  /**
534   * kauditd_printk_skb - Print the audit record to the ring buffer
535   * @skb: audit record
536   *
537   * Whatever the reason, this packet may not make it to the auditd connection
538   * so write it via printk so the information isn't completely lost.
539   */
kauditd_printk_skb(struct sk_buff * skb)540  static void kauditd_printk_skb(struct sk_buff *skb)
541  {
542  	struct nlmsghdr *nlh = nlmsg_hdr(skb);
543  	char *data = nlmsg_data(nlh);
544  
545  	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
546  		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
547  }
548  
549  /**
550   * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
551   * @skb: audit record
552   * @error: error code (unused)
553   *
554   * Description:
555   * This should only be used by the kauditd_thread when it fails to flush the
556   * hold queue.
557   */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)558  static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
559  {
560  	/* put the record back in the queue */
561  	skb_queue_tail(&audit_hold_queue, skb);
562  }
563  
564  /**
565   * kauditd_hold_skb - Queue an audit record, waiting for auditd
566   * @skb: audit record
567   * @error: error code
568   *
569   * Description:
570   * Queue the audit record, waiting for an instance of auditd.  When this
571   * function is called we haven't given up yet on sending the record, but things
572   * are not looking good.  The first thing we want to do is try to write the
573   * record via printk and then see if we want to try and hold on to the record
574   * and queue it, if we have room.  If we want to hold on to the record, but we
575   * don't have room, record a record lost message.
576   */
kauditd_hold_skb(struct sk_buff * skb,int error)577  static void kauditd_hold_skb(struct sk_buff *skb, int error)
578  {
579  	/* at this point it is uncertain if we will ever send this to auditd so
580  	 * try to send the message via printk before we go any further */
581  	kauditd_printk_skb(skb);
582  
583  	/* can we just silently drop the message? */
584  	if (!audit_default)
585  		goto drop;
586  
587  	/* the hold queue is only for when the daemon goes away completely,
588  	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
589  	 * record on the retry queue unless it's full, in which case drop it
590  	 */
591  	if (error == -EAGAIN) {
592  		if (!audit_backlog_limit ||
593  		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
594  			skb_queue_tail(&audit_retry_queue, skb);
595  			return;
596  		}
597  		audit_log_lost("kauditd retry queue overflow");
598  		goto drop;
599  	}
600  
601  	/* if we have room in the hold queue, queue the message */
602  	if (!audit_backlog_limit ||
603  	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
604  		skb_queue_tail(&audit_hold_queue, skb);
605  		return;
606  	}
607  
608  	/* we have no other options - drop the message */
609  	audit_log_lost("kauditd hold queue overflow");
610  drop:
611  	kfree_skb(skb);
612  }
613  
614  /**
615   * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
616   * @skb: audit record
617   * @error: error code (unused)
618   *
619   * Description:
620   * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
621   * but for some reason we are having problems sending it audit records so
622   * queue the given record and attempt to resend.
623   */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)624  static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
625  {
626  	if (!audit_backlog_limit ||
627  	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
628  		skb_queue_tail(&audit_retry_queue, skb);
629  		return;
630  	}
631  
632  	/* we have to drop the record, send it via printk as a last effort */
633  	kauditd_printk_skb(skb);
634  	audit_log_lost("kauditd retry queue overflow");
635  	kfree_skb(skb);
636  }
637  
638  /**
639   * auditd_reset - Disconnect the auditd connection
640   * @ac: auditd connection state
641   *
642   * Description:
643   * Break the auditd/kauditd connection and move all the queued records into the
644   * hold queue in case auditd reconnects.  It is important to note that the @ac
645   * pointer should never be dereferenced inside this function as it may be NULL
646   * or invalid, you can only compare the memory address!  If @ac is NULL then
647   * the connection will always be reset.
648   */
auditd_reset(const struct auditd_connection * ac)649  static void auditd_reset(const struct auditd_connection *ac)
650  {
651  	unsigned long flags;
652  	struct sk_buff *skb;
653  	struct auditd_connection *ac_old;
654  
655  	/* if it isn't already broken, break the connection */
656  	spin_lock_irqsave(&auditd_conn_lock, flags);
657  	ac_old = rcu_dereference_protected(auditd_conn,
658  					   lockdep_is_held(&auditd_conn_lock));
659  	if (ac && ac != ac_old) {
660  		/* someone already registered a new auditd connection */
661  		spin_unlock_irqrestore(&auditd_conn_lock, flags);
662  		return;
663  	}
664  	rcu_assign_pointer(auditd_conn, NULL);
665  	spin_unlock_irqrestore(&auditd_conn_lock, flags);
666  
667  	if (ac_old)
668  		call_rcu(&ac_old->rcu, auditd_conn_free);
669  
670  	/* flush the retry queue to the hold queue, but don't touch the main
671  	 * queue since we need to process that normally for multicast */
672  	while ((skb = skb_dequeue(&audit_retry_queue)))
673  		kauditd_hold_skb(skb, -ECONNREFUSED);
674  }
675  
676  /**
677   * auditd_send_unicast_skb - Send a record via unicast to auditd
678   * @skb: audit record
679   *
680   * Description:
681   * Send a skb to the audit daemon, returns positive/zero values on success and
682   * negative values on failure; in all cases the skb will be consumed by this
683   * function.  If the send results in -ECONNREFUSED the connection with auditd
684   * will be reset.  This function may sleep so callers should not hold any locks
685   * where this would cause a problem.
686   */
auditd_send_unicast_skb(struct sk_buff * skb)687  static int auditd_send_unicast_skb(struct sk_buff *skb)
688  {
689  	int rc;
690  	u32 portid;
691  	struct net *net;
692  	struct sock *sk;
693  	struct auditd_connection *ac;
694  
695  	/* NOTE: we can't call netlink_unicast while in the RCU section so
696  	 *       take a reference to the network namespace and grab local
697  	 *       copies of the namespace, the sock, and the portid; the
698  	 *       namespace and sock aren't going to go away while we hold a
699  	 *       reference and if the portid does become invalid after the RCU
700  	 *       section netlink_unicast() should safely return an error */
701  
702  	rcu_read_lock();
703  	ac = rcu_dereference(auditd_conn);
704  	if (!ac) {
705  		rcu_read_unlock();
706  		kfree_skb(skb);
707  		rc = -ECONNREFUSED;
708  		goto err;
709  	}
710  	net = get_net(ac->net);
711  	sk = audit_get_sk(net);
712  	portid = ac->portid;
713  	rcu_read_unlock();
714  
715  	rc = netlink_unicast(sk, skb, portid, 0);
716  	put_net(net);
717  	if (rc < 0)
718  		goto err;
719  
720  	return rc;
721  
722  err:
723  	if (ac && rc == -ECONNREFUSED)
724  		auditd_reset(ac);
725  	return rc;
726  }
727  
728  /**
729   * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
730   * @sk: the sending sock
731   * @portid: the netlink destination
732   * @queue: the skb queue to process
733   * @retry_limit: limit on number of netlink unicast failures
734   * @skb_hook: per-skb hook for additional processing
735   * @err_hook: hook called if the skb fails the netlink unicast send
736   *
737   * Description:
738   * Run through the given queue and attempt to send the audit records to auditd,
739   * returns zero on success, negative values on failure.  It is up to the caller
740   * to ensure that the @sk is valid for the duration of this function.
741   *
742   */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))743  static int kauditd_send_queue(struct sock *sk, u32 portid,
744  			      struct sk_buff_head *queue,
745  			      unsigned int retry_limit,
746  			      void (*skb_hook)(struct sk_buff *skb),
747  			      void (*err_hook)(struct sk_buff *skb, int error))
748  {
749  	int rc = 0;
750  	struct sk_buff *skb = NULL;
751  	struct sk_buff *skb_tail;
752  	unsigned int failed = 0;
753  
754  	/* NOTE: kauditd_thread takes care of all our locking, we just use
755  	 *       the netlink info passed to us (e.g. sk and portid) */
756  
757  	skb_tail = skb_peek_tail(queue);
758  	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
759  		/* call the skb_hook for each skb we touch */
760  		if (skb_hook)
761  			(*skb_hook)(skb);
762  
763  		/* can we send to anyone via unicast? */
764  		if (!sk) {
765  			if (err_hook)
766  				(*err_hook)(skb, -ECONNREFUSED);
767  			continue;
768  		}
769  
770  retry:
771  		/* grab an extra skb reference in case of error */
772  		skb_get(skb);
773  		rc = netlink_unicast(sk, skb, portid, 0);
774  		if (rc < 0) {
775  			/* send failed - try a few times unless fatal error */
776  			if (++failed >= retry_limit ||
777  			    rc == -ECONNREFUSED || rc == -EPERM) {
778  				sk = NULL;
779  				if (err_hook)
780  					(*err_hook)(skb, rc);
781  				if (rc == -EAGAIN)
782  					rc = 0;
783  				/* continue to drain the queue */
784  				continue;
785  			} else
786  				goto retry;
787  		} else {
788  			/* skb sent - drop the extra reference and continue */
789  			consume_skb(skb);
790  			failed = 0;
791  		}
792  	}
793  
794  	return (rc >= 0 ? 0 : rc);
795  }
796  
797  /*
798   * kauditd_send_multicast_skb - Send a record to any multicast listeners
799   * @skb: audit record
800   *
801   * Description:
802   * Write a multicast message to anyone listening in the initial network
803   * namespace.  This function doesn't consume an skb as might be expected since
804   * it has to copy it anyways.
805   */
kauditd_send_multicast_skb(struct sk_buff * skb)806  static void kauditd_send_multicast_skb(struct sk_buff *skb)
807  {
808  	struct sk_buff *copy;
809  	struct sock *sock = audit_get_sk(&init_net);
810  	struct nlmsghdr *nlh;
811  
812  	/* NOTE: we are not taking an additional reference for init_net since
813  	 *       we don't have to worry about it going away */
814  
815  	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
816  		return;
817  
818  	/*
819  	 * The seemingly wasteful skb_copy() rather than bumping the refcount
820  	 * using skb_get() is necessary because non-standard mods are made to
821  	 * the skb by the original kaudit unicast socket send routine.  The
822  	 * existing auditd daemon assumes this breakage.  Fixing this would
823  	 * require co-ordinating a change in the established protocol between
824  	 * the kaudit kernel subsystem and the auditd userspace code.  There is
825  	 * no reason for new multicast clients to continue with this
826  	 * non-compliance.
827  	 */
828  	copy = skb_copy(skb, GFP_KERNEL);
829  	if (!copy)
830  		return;
831  	nlh = nlmsg_hdr(copy);
832  	nlh->nlmsg_len = skb->len;
833  
834  	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
835  }
836  
837  /**
838   * kauditd_thread - Worker thread to send audit records to userspace
839   * @dummy: unused
840   */
kauditd_thread(void * dummy)841  static int kauditd_thread(void *dummy)
842  {
843  	int rc;
844  	u32 portid = 0;
845  	struct net *net = NULL;
846  	struct sock *sk = NULL;
847  	struct auditd_connection *ac;
848  
849  #define UNICAST_RETRIES 5
850  
851  	set_freezable();
852  	while (!kthread_should_stop()) {
853  		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
854  		rcu_read_lock();
855  		ac = rcu_dereference(auditd_conn);
856  		if (!ac) {
857  			rcu_read_unlock();
858  			goto main_queue;
859  		}
860  		net = get_net(ac->net);
861  		sk = audit_get_sk(net);
862  		portid = ac->portid;
863  		rcu_read_unlock();
864  
865  		/* attempt to flush the hold queue */
866  		rc = kauditd_send_queue(sk, portid,
867  					&audit_hold_queue, UNICAST_RETRIES,
868  					NULL, kauditd_rehold_skb);
869  		if (rc < 0) {
870  			sk = NULL;
871  			auditd_reset(ac);
872  			goto main_queue;
873  		}
874  
875  		/* attempt to flush the retry queue */
876  		rc = kauditd_send_queue(sk, portid,
877  					&audit_retry_queue, UNICAST_RETRIES,
878  					NULL, kauditd_hold_skb);
879  		if (rc < 0) {
880  			sk = NULL;
881  			auditd_reset(ac);
882  			goto main_queue;
883  		}
884  
885  main_queue:
886  		/* process the main queue - do the multicast send and attempt
887  		 * unicast, dump failed record sends to the retry queue; if
888  		 * sk == NULL due to previous failures we will just do the
889  		 * multicast send and move the record to the hold queue */
890  		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
891  					kauditd_send_multicast_skb,
892  					(sk ?
893  					 kauditd_retry_skb : kauditd_hold_skb));
894  		if (ac && rc < 0)
895  			auditd_reset(ac);
896  		sk = NULL;
897  
898  		/* drop our netns reference, no auditd sends past this line */
899  		if (net) {
900  			put_net(net);
901  			net = NULL;
902  		}
903  
904  		/* we have processed all the queues so wake everyone */
905  		wake_up(&audit_backlog_wait);
906  
907  		/* NOTE: we want to wake up if there is anything on the queue,
908  		 *       regardless of if an auditd is connected, as we need to
909  		 *       do the multicast send and rotate records from the
910  		 *       main queue to the retry/hold queues */
911  		wait_event_freezable(kauditd_wait,
912  				     (skb_queue_len(&audit_queue) ? 1 : 0));
913  	}
914  
915  	return 0;
916  }
917  
audit_send_list_thread(void * _dest)918  int audit_send_list_thread(void *_dest)
919  {
920  	struct audit_netlink_list *dest = _dest;
921  	struct sk_buff *skb;
922  	struct sock *sk = audit_get_sk(dest->net);
923  
924  	/* wait for parent to finish and send an ACK */
925  	audit_ctl_lock();
926  	audit_ctl_unlock();
927  
928  	while ((skb = __skb_dequeue(&dest->q)) != NULL)
929  		netlink_unicast(sk, skb, dest->portid, 0);
930  
931  	put_net(dest->net);
932  	kfree(dest);
933  
934  	return 0;
935  }
936  
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)937  struct sk_buff *audit_make_reply(int seq, int type, int done,
938  				 int multi, const void *payload, int size)
939  {
940  	struct sk_buff	*skb;
941  	struct nlmsghdr	*nlh;
942  	void		*data;
943  	int		flags = multi ? NLM_F_MULTI : 0;
944  	int		t     = done  ? NLMSG_DONE  : type;
945  
946  	skb = nlmsg_new(size, GFP_KERNEL);
947  	if (!skb)
948  		return NULL;
949  
950  	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
951  	if (!nlh)
952  		goto out_kfree_skb;
953  	data = nlmsg_data(nlh);
954  	memcpy(data, payload, size);
955  	return skb;
956  
957  out_kfree_skb:
958  	kfree_skb(skb);
959  	return NULL;
960  }
961  
audit_free_reply(struct audit_reply * reply)962  static void audit_free_reply(struct audit_reply *reply)
963  {
964  	if (!reply)
965  		return;
966  
967  	kfree_skb(reply->skb);
968  	if (reply->net)
969  		put_net(reply->net);
970  	kfree(reply);
971  }
972  
audit_send_reply_thread(void * arg)973  static int audit_send_reply_thread(void *arg)
974  {
975  	struct audit_reply *reply = (struct audit_reply *)arg;
976  
977  	audit_ctl_lock();
978  	audit_ctl_unlock();
979  
980  	/* Ignore failure. It'll only happen if the sender goes away,
981  	   because our timeout is set to infinite. */
982  	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
983  	reply->skb = NULL;
984  	audit_free_reply(reply);
985  	return 0;
986  }
987  
988  /**
989   * audit_send_reply - send an audit reply message via netlink
990   * @request_skb: skb of request we are replying to (used to target the reply)
991   * @seq: sequence number
992   * @type: audit message type
993   * @done: done (last) flag
994   * @multi: multi-part message flag
995   * @payload: payload data
996   * @size: payload size
997   *
998   * Allocates a skb, builds the netlink message, and sends it to the port id.
999   */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)1000  static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1001  			     int multi, const void *payload, int size)
1002  {
1003  	struct task_struct *tsk;
1004  	struct audit_reply *reply;
1005  
1006  	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1007  	if (!reply)
1008  		return;
1009  
1010  	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1011  	if (!reply->skb)
1012  		goto err;
1013  	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1014  	reply->portid = NETLINK_CB(request_skb).portid;
1015  
1016  	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1017  	if (IS_ERR(tsk))
1018  		goto err;
1019  
1020  	return;
1021  
1022  err:
1023  	audit_free_reply(reply);
1024  }
1025  
1026  /*
1027   * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1028   * control messages.
1029   */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1030  static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1031  {
1032  	int err = 0;
1033  
1034  	/* Only support initial user namespace for now. */
1035  	/*
1036  	 * We return ECONNREFUSED because it tricks userspace into thinking
1037  	 * that audit was not configured into the kernel.  Lots of users
1038  	 * configure their PAM stack (because that's what the distro does)
1039  	 * to reject login if unable to send messages to audit.  If we return
1040  	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1041  	 * configured in and will let login proceed.  If we return EPERM
1042  	 * userspace will reject all logins.  This should be removed when we
1043  	 * support non init namespaces!!
1044  	 */
1045  	if (current_user_ns() != &init_user_ns)
1046  		return -ECONNREFUSED;
1047  
1048  	switch (msg_type) {
1049  	case AUDIT_LIST:
1050  	case AUDIT_ADD:
1051  	case AUDIT_DEL:
1052  		return -EOPNOTSUPP;
1053  	case AUDIT_GET:
1054  	case AUDIT_SET:
1055  	case AUDIT_GET_FEATURE:
1056  	case AUDIT_SET_FEATURE:
1057  	case AUDIT_LIST_RULES:
1058  	case AUDIT_ADD_RULE:
1059  	case AUDIT_DEL_RULE:
1060  	case AUDIT_SIGNAL_INFO:
1061  	case AUDIT_TTY_GET:
1062  	case AUDIT_TTY_SET:
1063  	case AUDIT_TRIM:
1064  	case AUDIT_MAKE_EQUIV:
1065  		/* Only support auditd and auditctl in initial pid namespace
1066  		 * for now. */
1067  		if (task_active_pid_ns(current) != &init_pid_ns)
1068  			return -EPERM;
1069  
1070  		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1071  			err = -EPERM;
1072  		break;
1073  	case AUDIT_USER:
1074  	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1075  	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1076  		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1077  			err = -EPERM;
1078  		break;
1079  	default:  /* bad msg */
1080  		err = -EINVAL;
1081  	}
1082  
1083  	return err;
1084  }
1085  
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1086  static void audit_log_common_recv_msg(struct audit_context *context,
1087  					struct audit_buffer **ab, u16 msg_type)
1088  {
1089  	uid_t uid = from_kuid(&init_user_ns, current_uid());
1090  	pid_t pid = task_tgid_nr(current);
1091  
1092  	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1093  		*ab = NULL;
1094  		return;
1095  	}
1096  
1097  	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1098  	if (unlikely(!*ab))
1099  		return;
1100  	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1101  	audit_log_session_info(*ab);
1102  	audit_log_task_context(*ab);
1103  }
1104  
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1105  static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1106  					   u16 msg_type)
1107  {
1108  	audit_log_common_recv_msg(NULL, ab, msg_type);
1109  }
1110  
is_audit_feature_set(int i)1111  static int is_audit_feature_set(int i)
1112  {
1113  	return af.features & AUDIT_FEATURE_TO_MASK(i);
1114  }
1115  
1116  
audit_get_feature(struct sk_buff * skb)1117  static int audit_get_feature(struct sk_buff *skb)
1118  {
1119  	u32 seq;
1120  
1121  	seq = nlmsg_hdr(skb)->nlmsg_seq;
1122  
1123  	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1124  
1125  	return 0;
1126  }
1127  
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1128  static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1129  				     u32 old_lock, u32 new_lock, int res)
1130  {
1131  	struct audit_buffer *ab;
1132  
1133  	if (audit_enabled == AUDIT_OFF)
1134  		return;
1135  
1136  	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1137  	if (!ab)
1138  		return;
1139  	audit_log_task_info(ab);
1140  	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1141  			 audit_feature_names[which], !!old_feature, !!new_feature,
1142  			 !!old_lock, !!new_lock, res);
1143  	audit_log_end(ab);
1144  }
1145  
audit_set_feature(struct audit_features * uaf)1146  static int audit_set_feature(struct audit_features *uaf)
1147  {
1148  	int i;
1149  
1150  	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1151  
1152  	/* if there is ever a version 2 we should handle that here */
1153  
1154  	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1155  		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1156  		u32 old_feature, new_feature, old_lock, new_lock;
1157  
1158  		/* if we are not changing this feature, move along */
1159  		if (!(feature & uaf->mask))
1160  			continue;
1161  
1162  		old_feature = af.features & feature;
1163  		new_feature = uaf->features & feature;
1164  		new_lock = (uaf->lock | af.lock) & feature;
1165  		old_lock = af.lock & feature;
1166  
1167  		/* are we changing a locked feature? */
1168  		if (old_lock && (new_feature != old_feature)) {
1169  			audit_log_feature_change(i, old_feature, new_feature,
1170  						 old_lock, new_lock, 0);
1171  			return -EPERM;
1172  		}
1173  	}
1174  	/* nothing invalid, do the changes */
1175  	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1176  		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1177  		u32 old_feature, new_feature, old_lock, new_lock;
1178  
1179  		/* if we are not changing this feature, move along */
1180  		if (!(feature & uaf->mask))
1181  			continue;
1182  
1183  		old_feature = af.features & feature;
1184  		new_feature = uaf->features & feature;
1185  		old_lock = af.lock & feature;
1186  		new_lock = (uaf->lock | af.lock) & feature;
1187  
1188  		if (new_feature != old_feature)
1189  			audit_log_feature_change(i, old_feature, new_feature,
1190  						 old_lock, new_lock, 1);
1191  
1192  		if (new_feature)
1193  			af.features |= feature;
1194  		else
1195  			af.features &= ~feature;
1196  		af.lock |= new_lock;
1197  	}
1198  
1199  	return 0;
1200  }
1201  
audit_replace(struct pid * pid)1202  static int audit_replace(struct pid *pid)
1203  {
1204  	pid_t pvnr;
1205  	struct sk_buff *skb;
1206  
1207  	pvnr = pid_vnr(pid);
1208  	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1209  	if (!skb)
1210  		return -ENOMEM;
1211  	return auditd_send_unicast_skb(skb);
1212  }
1213  
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh,bool * ack)1214  static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1215  			     bool *ack)
1216  {
1217  	u32			seq;
1218  	void			*data;
1219  	int			data_len;
1220  	int			err;
1221  	struct audit_buffer	*ab;
1222  	u16			msg_type = nlh->nlmsg_type;
1223  	struct audit_sig_info   *sig_data;
1224  	char			*ctx = NULL;
1225  	u32			len;
1226  
1227  	err = audit_netlink_ok(skb, msg_type);
1228  	if (err)
1229  		return err;
1230  
1231  	seq  = nlh->nlmsg_seq;
1232  	data = nlmsg_data(nlh);
1233  	data_len = nlmsg_len(nlh);
1234  
1235  	switch (msg_type) {
1236  	case AUDIT_GET: {
1237  		struct audit_status	s;
1238  		memset(&s, 0, sizeof(s));
1239  		s.enabled		   = audit_enabled;
1240  		s.failure		   = audit_failure;
1241  		/* NOTE: use pid_vnr() so the PID is relative to the current
1242  		 *       namespace */
1243  		s.pid			   = auditd_pid_vnr();
1244  		s.rate_limit		   = audit_rate_limit;
1245  		s.backlog_limit		   = audit_backlog_limit;
1246  		s.lost			   = atomic_read(&audit_lost);
1247  		s.backlog		   = skb_queue_len(&audit_queue);
1248  		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1249  		s.backlog_wait_time	   = audit_backlog_wait_time;
1250  		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1251  		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1252  		break;
1253  	}
1254  	case AUDIT_SET: {
1255  		struct audit_status	s;
1256  		memset(&s, 0, sizeof(s));
1257  		/* guard against past and future API changes */
1258  		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1259  		if (s.mask & AUDIT_STATUS_ENABLED) {
1260  			err = audit_set_enabled(s.enabled);
1261  			if (err < 0)
1262  				return err;
1263  		}
1264  		if (s.mask & AUDIT_STATUS_FAILURE) {
1265  			err = audit_set_failure(s.failure);
1266  			if (err < 0)
1267  				return err;
1268  		}
1269  		if (s.mask & AUDIT_STATUS_PID) {
1270  			/* NOTE: we are using the vnr PID functions below
1271  			 *       because the s.pid value is relative to the
1272  			 *       namespace of the caller; at present this
1273  			 *       doesn't matter much since you can really only
1274  			 *       run auditd from the initial pid namespace, but
1275  			 *       something to keep in mind if this changes */
1276  			pid_t new_pid = s.pid;
1277  			pid_t auditd_pid;
1278  			struct pid *req_pid = task_tgid(current);
1279  
1280  			/* Sanity check - PID values must match. Setting
1281  			 * pid to 0 is how auditd ends auditing. */
1282  			if (new_pid && (new_pid != pid_vnr(req_pid)))
1283  				return -EINVAL;
1284  
1285  			/* test the auditd connection */
1286  			audit_replace(req_pid);
1287  
1288  			auditd_pid = auditd_pid_vnr();
1289  			if (auditd_pid) {
1290  				/* replacing a healthy auditd is not allowed */
1291  				if (new_pid) {
1292  					audit_log_config_change("audit_pid",
1293  							new_pid, auditd_pid, 0);
1294  					return -EEXIST;
1295  				}
1296  				/* only current auditd can unregister itself */
1297  				if (pid_vnr(req_pid) != auditd_pid) {
1298  					audit_log_config_change("audit_pid",
1299  							new_pid, auditd_pid, 0);
1300  					return -EACCES;
1301  				}
1302  			}
1303  
1304  			if (new_pid) {
1305  				/* register a new auditd connection */
1306  				err = auditd_set(req_pid,
1307  						 NETLINK_CB(skb).portid,
1308  						 sock_net(NETLINK_CB(skb).sk),
1309  						 skb, ack);
1310  				if (audit_enabled != AUDIT_OFF)
1311  					audit_log_config_change("audit_pid",
1312  								new_pid,
1313  								auditd_pid,
1314  								err ? 0 : 1);
1315  				if (err)
1316  					return err;
1317  
1318  				/* try to process any backlog */
1319  				wake_up_interruptible(&kauditd_wait);
1320  			} else {
1321  				if (audit_enabled != AUDIT_OFF)
1322  					audit_log_config_change("audit_pid",
1323  								new_pid,
1324  								auditd_pid, 1);
1325  
1326  				/* unregister the auditd connection */
1327  				auditd_reset(NULL);
1328  			}
1329  		}
1330  		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1331  			err = audit_set_rate_limit(s.rate_limit);
1332  			if (err < 0)
1333  				return err;
1334  		}
1335  		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1336  			err = audit_set_backlog_limit(s.backlog_limit);
1337  			if (err < 0)
1338  				return err;
1339  		}
1340  		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1341  			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1342  				return -EINVAL;
1343  			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1344  				return -EINVAL;
1345  			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1346  			if (err < 0)
1347  				return err;
1348  		}
1349  		if (s.mask == AUDIT_STATUS_LOST) {
1350  			u32 lost = atomic_xchg(&audit_lost, 0);
1351  
1352  			audit_log_config_change("lost", 0, lost, 1);
1353  			return lost;
1354  		}
1355  		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1356  			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1357  
1358  			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1359  			return actual;
1360  		}
1361  		break;
1362  	}
1363  	case AUDIT_GET_FEATURE:
1364  		err = audit_get_feature(skb);
1365  		if (err)
1366  			return err;
1367  		break;
1368  	case AUDIT_SET_FEATURE:
1369  		if (data_len < sizeof(struct audit_features))
1370  			return -EINVAL;
1371  		err = audit_set_feature(data);
1372  		if (err)
1373  			return err;
1374  		break;
1375  	case AUDIT_USER:
1376  	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1377  	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1378  		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1379  			return 0;
1380  		/* exit early if there isn't at least one character to print */
1381  		if (data_len < 2)
1382  			return -EINVAL;
1383  
1384  		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1385  		if (err == 1) { /* match or error */
1386  			char *str = data;
1387  
1388  			err = 0;
1389  			if (msg_type == AUDIT_USER_TTY) {
1390  				err = tty_audit_push();
1391  				if (err)
1392  					break;
1393  			}
1394  			audit_log_user_recv_msg(&ab, msg_type);
1395  			if (msg_type != AUDIT_USER_TTY) {
1396  				/* ensure NULL termination */
1397  				str[data_len - 1] = '\0';
1398  				audit_log_format(ab, " msg='%.*s'",
1399  						 AUDIT_MESSAGE_TEXT_MAX,
1400  						 str);
1401  			} else {
1402  				audit_log_format(ab, " data=");
1403  				if (str[data_len - 1] == '\0')
1404  					data_len--;
1405  				audit_log_n_untrustedstring(ab, str, data_len);
1406  			}
1407  			audit_log_end(ab);
1408  		}
1409  		break;
1410  	case AUDIT_ADD_RULE:
1411  	case AUDIT_DEL_RULE:
1412  		if (data_len < sizeof(struct audit_rule_data))
1413  			return -EINVAL;
1414  		if (audit_enabled == AUDIT_LOCKED) {
1415  			audit_log_common_recv_msg(audit_context(), &ab,
1416  						  AUDIT_CONFIG_CHANGE);
1417  			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1418  					 msg_type == AUDIT_ADD_RULE ?
1419  						"add_rule" : "remove_rule",
1420  					 audit_enabled);
1421  			audit_log_end(ab);
1422  			return -EPERM;
1423  		}
1424  		err = audit_rule_change(msg_type, seq, data, data_len);
1425  		break;
1426  	case AUDIT_LIST_RULES:
1427  		err = audit_list_rules_send(skb, seq);
1428  		break;
1429  	case AUDIT_TRIM:
1430  		audit_trim_trees();
1431  		audit_log_common_recv_msg(audit_context(), &ab,
1432  					  AUDIT_CONFIG_CHANGE);
1433  		audit_log_format(ab, " op=trim res=1");
1434  		audit_log_end(ab);
1435  		break;
1436  	case AUDIT_MAKE_EQUIV: {
1437  		void *bufp = data;
1438  		u32 sizes[2];
1439  		size_t msglen = data_len;
1440  		char *old, *new;
1441  
1442  		err = -EINVAL;
1443  		if (msglen < 2 * sizeof(u32))
1444  			break;
1445  		memcpy(sizes, bufp, 2 * sizeof(u32));
1446  		bufp += 2 * sizeof(u32);
1447  		msglen -= 2 * sizeof(u32);
1448  		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1449  		if (IS_ERR(old)) {
1450  			err = PTR_ERR(old);
1451  			break;
1452  		}
1453  		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1454  		if (IS_ERR(new)) {
1455  			err = PTR_ERR(new);
1456  			kfree(old);
1457  			break;
1458  		}
1459  		/* OK, here comes... */
1460  		err = audit_tag_tree(old, new);
1461  
1462  		audit_log_common_recv_msg(audit_context(), &ab,
1463  					  AUDIT_CONFIG_CHANGE);
1464  		audit_log_format(ab, " op=make_equiv old=");
1465  		audit_log_untrustedstring(ab, old);
1466  		audit_log_format(ab, " new=");
1467  		audit_log_untrustedstring(ab, new);
1468  		audit_log_format(ab, " res=%d", !err);
1469  		audit_log_end(ab);
1470  		kfree(old);
1471  		kfree(new);
1472  		break;
1473  	}
1474  	case AUDIT_SIGNAL_INFO:
1475  		len = 0;
1476  		if (audit_sig_sid) {
1477  			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1478  			if (err)
1479  				return err;
1480  		}
1481  		sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1482  		if (!sig_data) {
1483  			if (audit_sig_sid)
1484  				security_release_secctx(ctx, len);
1485  			return -ENOMEM;
1486  		}
1487  		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1488  		sig_data->pid = audit_sig_pid;
1489  		if (audit_sig_sid) {
1490  			memcpy(sig_data->ctx, ctx, len);
1491  			security_release_secctx(ctx, len);
1492  		}
1493  		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1494  				 sig_data, struct_size(sig_data, ctx, len));
1495  		kfree(sig_data);
1496  		break;
1497  	case AUDIT_TTY_GET: {
1498  		struct audit_tty_status s;
1499  		unsigned int t;
1500  
1501  		t = READ_ONCE(current->signal->audit_tty);
1502  		s.enabled = t & AUDIT_TTY_ENABLE;
1503  		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1504  
1505  		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1506  		break;
1507  	}
1508  	case AUDIT_TTY_SET: {
1509  		struct audit_tty_status s, old;
1510  		struct audit_buffer	*ab;
1511  		unsigned int t;
1512  
1513  		memset(&s, 0, sizeof(s));
1514  		/* guard against past and future API changes */
1515  		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1516  		/* check if new data is valid */
1517  		if ((s.enabled != 0 && s.enabled != 1) ||
1518  		    (s.log_passwd != 0 && s.log_passwd != 1))
1519  			err = -EINVAL;
1520  
1521  		if (err)
1522  			t = READ_ONCE(current->signal->audit_tty);
1523  		else {
1524  			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1525  			t = xchg(&current->signal->audit_tty, t);
1526  		}
1527  		old.enabled = t & AUDIT_TTY_ENABLE;
1528  		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1529  
1530  		audit_log_common_recv_msg(audit_context(), &ab,
1531  					  AUDIT_CONFIG_CHANGE);
1532  		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1533  				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1534  				 old.enabled, s.enabled, old.log_passwd,
1535  				 s.log_passwd, !err);
1536  		audit_log_end(ab);
1537  		break;
1538  	}
1539  	default:
1540  		err = -EINVAL;
1541  		break;
1542  	}
1543  
1544  	return err < 0 ? err : 0;
1545  }
1546  
1547  /**
1548   * audit_receive - receive messages from a netlink control socket
1549   * @skb: the message buffer
1550   *
1551   * Parse the provided skb and deal with any messages that may be present,
1552   * malformed skbs are discarded.
1553   */
audit_receive(struct sk_buff * skb)1554  static void audit_receive(struct sk_buff *skb)
1555  {
1556  	struct nlmsghdr *nlh;
1557  	bool ack;
1558  	/*
1559  	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1560  	 * if the nlmsg_len was not aligned
1561  	 */
1562  	int len;
1563  	int err;
1564  
1565  	nlh = nlmsg_hdr(skb);
1566  	len = skb->len;
1567  
1568  	audit_ctl_lock();
1569  	while (nlmsg_ok(nlh, len)) {
1570  		ack = nlh->nlmsg_flags & NLM_F_ACK;
1571  		err = audit_receive_msg(skb, nlh, &ack);
1572  
1573  		/* send an ack if the user asked for one and audit_receive_msg
1574  		 * didn't already do it, or if there was an error. */
1575  		if (ack || err)
1576  			netlink_ack(skb, nlh, err, NULL);
1577  
1578  		nlh = nlmsg_next(nlh, &len);
1579  	}
1580  	audit_ctl_unlock();
1581  
1582  	/* can't block with the ctrl lock, so penalize the sender now */
1583  	if (audit_backlog_limit &&
1584  	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1585  		DECLARE_WAITQUEUE(wait, current);
1586  
1587  		/* wake kauditd to try and flush the queue */
1588  		wake_up_interruptible(&kauditd_wait);
1589  
1590  		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1591  		set_current_state(TASK_UNINTERRUPTIBLE);
1592  		schedule_timeout(audit_backlog_wait_time);
1593  		remove_wait_queue(&audit_backlog_wait, &wait);
1594  	}
1595  }
1596  
1597  /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1598  static void audit_log_multicast(int group, const char *op, int err)
1599  {
1600  	const struct cred *cred;
1601  	struct tty_struct *tty;
1602  	char comm[sizeof(current->comm)];
1603  	struct audit_buffer *ab;
1604  
1605  	if (!audit_enabled)
1606  		return;
1607  
1608  	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1609  	if (!ab)
1610  		return;
1611  
1612  	cred = current_cred();
1613  	tty = audit_get_tty();
1614  	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1615  			 task_tgid_nr(current),
1616  			 from_kuid(&init_user_ns, cred->uid),
1617  			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1618  			 tty ? tty_name(tty) : "(none)",
1619  			 audit_get_sessionid(current));
1620  	audit_put_tty(tty);
1621  	audit_log_task_context(ab); /* subj= */
1622  	audit_log_format(ab, " comm=");
1623  	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1624  	audit_log_d_path_exe(ab, current->mm); /* exe= */
1625  	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1626  	audit_log_end(ab);
1627  }
1628  
1629  /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1630  static int audit_multicast_bind(struct net *net, int group)
1631  {
1632  	int err = 0;
1633  
1634  	if (!capable(CAP_AUDIT_READ))
1635  		err = -EPERM;
1636  	audit_log_multicast(group, "connect", err);
1637  	return err;
1638  }
1639  
audit_multicast_unbind(struct net * net,int group)1640  static void audit_multicast_unbind(struct net *net, int group)
1641  {
1642  	audit_log_multicast(group, "disconnect", 0);
1643  }
1644  
audit_net_init(struct net * net)1645  static int __net_init audit_net_init(struct net *net)
1646  {
1647  	struct netlink_kernel_cfg cfg = {
1648  		.input	= audit_receive,
1649  		.bind	= audit_multicast_bind,
1650  		.unbind	= audit_multicast_unbind,
1651  		.flags	= NL_CFG_F_NONROOT_RECV,
1652  		.groups	= AUDIT_NLGRP_MAX,
1653  	};
1654  
1655  	struct audit_net *aunet = net_generic(net, audit_net_id);
1656  
1657  	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1658  	if (aunet->sk == NULL) {
1659  		audit_panic("cannot initialize netlink socket in namespace");
1660  		return -ENOMEM;
1661  	}
1662  	/* limit the timeout in case auditd is blocked/stopped */
1663  	aunet->sk->sk_sndtimeo = HZ / 10;
1664  
1665  	return 0;
1666  }
1667  
audit_net_exit(struct net * net)1668  static void __net_exit audit_net_exit(struct net *net)
1669  {
1670  	struct audit_net *aunet = net_generic(net, audit_net_id);
1671  
1672  	/* NOTE: you would think that we would want to check the auditd
1673  	 * connection and potentially reset it here if it lives in this
1674  	 * namespace, but since the auditd connection tracking struct holds a
1675  	 * reference to this namespace (see auditd_set()) we are only ever
1676  	 * going to get here after that connection has been released */
1677  
1678  	netlink_kernel_release(aunet->sk);
1679  }
1680  
1681  static struct pernet_operations audit_net_ops __net_initdata = {
1682  	.init = audit_net_init,
1683  	.exit = audit_net_exit,
1684  	.id = &audit_net_id,
1685  	.size = sizeof(struct audit_net),
1686  };
1687  
1688  /* Initialize audit support at boot time. */
audit_init(void)1689  static int __init audit_init(void)
1690  {
1691  	int i;
1692  
1693  	if (audit_initialized == AUDIT_DISABLED)
1694  		return 0;
1695  
1696  	audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC);
1697  
1698  	skb_queue_head_init(&audit_queue);
1699  	skb_queue_head_init(&audit_retry_queue);
1700  	skb_queue_head_init(&audit_hold_queue);
1701  
1702  	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1703  		INIT_LIST_HEAD(&audit_inode_hash[i]);
1704  
1705  	mutex_init(&audit_cmd_mutex.lock);
1706  	audit_cmd_mutex.owner = NULL;
1707  
1708  	pr_info("initializing netlink subsys (%s)\n",
1709  		str_enabled_disabled(audit_default));
1710  	register_pernet_subsys(&audit_net_ops);
1711  
1712  	audit_initialized = AUDIT_INITIALIZED;
1713  
1714  	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1715  	if (IS_ERR(kauditd_task)) {
1716  		int err = PTR_ERR(kauditd_task);
1717  		panic("audit: failed to start the kauditd thread (%d)\n", err);
1718  	}
1719  
1720  	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1721  		"state=initialized audit_enabled=%u res=1",
1722  		 audit_enabled);
1723  
1724  	return 0;
1725  }
1726  postcore_initcall(audit_init);
1727  
1728  /*
1729   * Process kernel command-line parameter at boot time.
1730   * audit={0|off} or audit={1|on}.
1731   */
audit_enable(char * str)1732  static int __init audit_enable(char *str)
1733  {
1734  	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1735  		audit_default = AUDIT_OFF;
1736  	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1737  		audit_default = AUDIT_ON;
1738  	else {
1739  		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1740  		audit_default = AUDIT_ON;
1741  	}
1742  
1743  	if (audit_default == AUDIT_OFF)
1744  		audit_initialized = AUDIT_DISABLED;
1745  	if (audit_set_enabled(audit_default))
1746  		pr_err("audit: error setting audit state (%d)\n",
1747  		       audit_default);
1748  
1749  	pr_info("%s\n", audit_default ?
1750  		"enabled (after initialization)" : "disabled (until reboot)");
1751  
1752  	return 1;
1753  }
1754  __setup("audit=", audit_enable);
1755  
1756  /* Process kernel command-line parameter at boot time.
1757   * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1758  static int __init audit_backlog_limit_set(char *str)
1759  {
1760  	u32 audit_backlog_limit_arg;
1761  
1762  	pr_info("audit_backlog_limit: ");
1763  	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1764  		pr_cont("using default of %u, unable to parse %s\n",
1765  			audit_backlog_limit, str);
1766  		return 1;
1767  	}
1768  
1769  	audit_backlog_limit = audit_backlog_limit_arg;
1770  	pr_cont("%d\n", audit_backlog_limit);
1771  
1772  	return 1;
1773  }
1774  __setup("audit_backlog_limit=", audit_backlog_limit_set);
1775  
audit_buffer_free(struct audit_buffer * ab)1776  static void audit_buffer_free(struct audit_buffer *ab)
1777  {
1778  	if (!ab)
1779  		return;
1780  
1781  	kfree_skb(ab->skb);
1782  	kmem_cache_free(audit_buffer_cache, ab);
1783  }
1784  
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1785  static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1786  					       gfp_t gfp_mask, int type)
1787  {
1788  	struct audit_buffer *ab;
1789  
1790  	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1791  	if (!ab)
1792  		return NULL;
1793  
1794  	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1795  	if (!ab->skb)
1796  		goto err;
1797  	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1798  		goto err;
1799  
1800  	ab->ctx = ctx;
1801  	ab->gfp_mask = gfp_mask;
1802  
1803  	return ab;
1804  
1805  err:
1806  	audit_buffer_free(ab);
1807  	return NULL;
1808  }
1809  
1810  /**
1811   * audit_serial - compute a serial number for the audit record
1812   *
1813   * Compute a serial number for the audit record.  Audit records are
1814   * written to user-space as soon as they are generated, so a complete
1815   * audit record may be written in several pieces.  The timestamp of the
1816   * record and this serial number are used by the user-space tools to
1817   * determine which pieces belong to the same audit record.  The
1818   * (timestamp,serial) tuple is unique for each syscall and is live from
1819   * syscall entry to syscall exit.
1820   *
1821   * NOTE: Another possibility is to store the formatted records off the
1822   * audit context (for those records that have a context), and emit them
1823   * all at syscall exit.  However, this could delay the reporting of
1824   * significant errors until syscall exit (or never, if the system
1825   * halts).
1826   */
audit_serial(void)1827  unsigned int audit_serial(void)
1828  {
1829  	static atomic_t serial = ATOMIC_INIT(0);
1830  
1831  	return atomic_inc_return(&serial);
1832  }
1833  
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1834  static inline void audit_get_stamp(struct audit_context *ctx,
1835  				   struct timespec64 *t, unsigned int *serial)
1836  {
1837  	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1838  		ktime_get_coarse_real_ts64(t);
1839  		*serial = audit_serial();
1840  	}
1841  }
1842  
1843  /**
1844   * audit_log_start - obtain an audit buffer
1845   * @ctx: audit_context (may be NULL)
1846   * @gfp_mask: type of allocation
1847   * @type: audit message type
1848   *
1849   * Returns audit_buffer pointer on success or NULL on error.
1850   *
1851   * Obtain an audit buffer.  This routine does locking to obtain the
1852   * audit buffer, but then no locking is required for calls to
1853   * audit_log_*format.  If the task (ctx) is a task that is currently in a
1854   * syscall, then the syscall is marked as auditable and an audit record
1855   * will be written at syscall exit.  If there is no associated task, then
1856   * task context (ctx) should be NULL.
1857   */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1858  struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1859  				     int type)
1860  {
1861  	struct audit_buffer *ab;
1862  	struct timespec64 t;
1863  	unsigned int serial;
1864  
1865  	if (audit_initialized != AUDIT_INITIALIZED)
1866  		return NULL;
1867  
1868  	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1869  		return NULL;
1870  
1871  	/* NOTE: don't ever fail/sleep on these two conditions:
1872  	 * 1. auditd generated record - since we need auditd to drain the
1873  	 *    queue; also, when we are checking for auditd, compare PIDs using
1874  	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1875  	 *    using a PID anchored in the caller's namespace
1876  	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1877  	 *    while holding the mutex, although we do penalize the sender
1878  	 *    later in audit_receive() when it is safe to block
1879  	 */
1880  	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1881  		long stime = audit_backlog_wait_time;
1882  
1883  		while (audit_backlog_limit &&
1884  		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1885  			/* wake kauditd to try and flush the queue */
1886  			wake_up_interruptible(&kauditd_wait);
1887  
1888  			/* sleep if we are allowed and we haven't exhausted our
1889  			 * backlog wait limit */
1890  			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1891  				long rtime = stime;
1892  
1893  				DECLARE_WAITQUEUE(wait, current);
1894  
1895  				add_wait_queue_exclusive(&audit_backlog_wait,
1896  							 &wait);
1897  				set_current_state(TASK_UNINTERRUPTIBLE);
1898  				stime = schedule_timeout(rtime);
1899  				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1900  				remove_wait_queue(&audit_backlog_wait, &wait);
1901  			} else {
1902  				if (audit_rate_check() && printk_ratelimit())
1903  					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1904  						skb_queue_len(&audit_queue),
1905  						audit_backlog_limit);
1906  				audit_log_lost("backlog limit exceeded");
1907  				return NULL;
1908  			}
1909  		}
1910  	}
1911  
1912  	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1913  	if (!ab) {
1914  		audit_log_lost("out of memory in audit_log_start");
1915  		return NULL;
1916  	}
1917  
1918  	audit_get_stamp(ab->ctx, &t, &serial);
1919  	/* cancel dummy context to enable supporting records */
1920  	if (ctx)
1921  		ctx->dummy = 0;
1922  	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1923  			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1924  
1925  	return ab;
1926  }
1927  
1928  /**
1929   * audit_expand - expand skb in the audit buffer
1930   * @ab: audit_buffer
1931   * @extra: space to add at tail of the skb
1932   *
1933   * Returns 0 (no space) on failed expansion, or available space if
1934   * successful.
1935   */
audit_expand(struct audit_buffer * ab,int extra)1936  static inline int audit_expand(struct audit_buffer *ab, int extra)
1937  {
1938  	struct sk_buff *skb = ab->skb;
1939  	int oldtail = skb_tailroom(skb);
1940  	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1941  	int newtail = skb_tailroom(skb);
1942  
1943  	if (ret < 0) {
1944  		audit_log_lost("out of memory in audit_expand");
1945  		return 0;
1946  	}
1947  
1948  	skb->truesize += newtail - oldtail;
1949  	return newtail;
1950  }
1951  
1952  /*
1953   * Format an audit message into the audit buffer.  If there isn't enough
1954   * room in the audit buffer, more room will be allocated and vsnprint
1955   * will be called a second time.  Currently, we assume that a printk
1956   * can't format message larger than 1024 bytes, so we don't either.
1957   */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1958  static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1959  			      va_list args)
1960  {
1961  	int len, avail;
1962  	struct sk_buff *skb;
1963  	va_list args2;
1964  
1965  	if (!ab)
1966  		return;
1967  
1968  	BUG_ON(!ab->skb);
1969  	skb = ab->skb;
1970  	avail = skb_tailroom(skb);
1971  	if (avail == 0) {
1972  		avail = audit_expand(ab, AUDIT_BUFSIZ);
1973  		if (!avail)
1974  			goto out;
1975  	}
1976  	va_copy(args2, args);
1977  	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1978  	if (len >= avail) {
1979  		/* The printk buffer is 1024 bytes long, so if we get
1980  		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1981  		 * log everything that printk could have logged. */
1982  		avail = audit_expand(ab,
1983  			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1984  		if (!avail)
1985  			goto out_va_end;
1986  		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1987  	}
1988  	if (len > 0)
1989  		skb_put(skb, len);
1990  out_va_end:
1991  	va_end(args2);
1992  out:
1993  	return;
1994  }
1995  
1996  /**
1997   * audit_log_format - format a message into the audit buffer.
1998   * @ab: audit_buffer
1999   * @fmt: format string
2000   * @...: optional parameters matching @fmt string
2001   *
2002   * All the work is done in audit_log_vformat.
2003   */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)2004  void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2005  {
2006  	va_list args;
2007  
2008  	if (!ab)
2009  		return;
2010  	va_start(args, fmt);
2011  	audit_log_vformat(ab, fmt, args);
2012  	va_end(args);
2013  }
2014  
2015  /**
2016   * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2017   * @ab: the audit_buffer
2018   * @buf: buffer to convert to hex
2019   * @len: length of @buf to be converted
2020   *
2021   * No return value; failure to expand is silently ignored.
2022   *
2023   * This function will take the passed buf and convert it into a string of
2024   * ascii hex digits. The new string is placed onto the skb.
2025   */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)2026  void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2027  		size_t len)
2028  {
2029  	int i, avail, new_len;
2030  	unsigned char *ptr;
2031  	struct sk_buff *skb;
2032  
2033  	if (!ab)
2034  		return;
2035  
2036  	BUG_ON(!ab->skb);
2037  	skb = ab->skb;
2038  	avail = skb_tailroom(skb);
2039  	new_len = len<<1;
2040  	if (new_len >= avail) {
2041  		/* Round the buffer request up to the next multiple */
2042  		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2043  		avail = audit_expand(ab, new_len);
2044  		if (!avail)
2045  			return;
2046  	}
2047  
2048  	ptr = skb_tail_pointer(skb);
2049  	for (i = 0; i < len; i++)
2050  		ptr = hex_byte_pack_upper(ptr, buf[i]);
2051  	*ptr = 0;
2052  	skb_put(skb, len << 1); /* new string is twice the old string */
2053  }
2054  
2055  /*
2056   * Format a string of no more than slen characters into the audit buffer,
2057   * enclosed in quote marks.
2058   */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2059  void audit_log_n_string(struct audit_buffer *ab, const char *string,
2060  			size_t slen)
2061  {
2062  	int avail, new_len;
2063  	unsigned char *ptr;
2064  	struct sk_buff *skb;
2065  
2066  	if (!ab)
2067  		return;
2068  
2069  	BUG_ON(!ab->skb);
2070  	skb = ab->skb;
2071  	avail = skb_tailroom(skb);
2072  	new_len = slen + 3;	/* enclosing quotes + null terminator */
2073  	if (new_len > avail) {
2074  		avail = audit_expand(ab, new_len);
2075  		if (!avail)
2076  			return;
2077  	}
2078  	ptr = skb_tail_pointer(skb);
2079  	*ptr++ = '"';
2080  	memcpy(ptr, string, slen);
2081  	ptr += slen;
2082  	*ptr++ = '"';
2083  	*ptr = 0;
2084  	skb_put(skb, slen + 2);	/* don't include null terminator */
2085  }
2086  
2087  /**
2088   * audit_string_contains_control - does a string need to be logged in hex
2089   * @string: string to be checked
2090   * @len: max length of the string to check
2091   */
audit_string_contains_control(const char * string,size_t len)2092  bool audit_string_contains_control(const char *string, size_t len)
2093  {
2094  	const unsigned char *p;
2095  	for (p = string; p < (const unsigned char *)string + len; p++) {
2096  		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2097  			return true;
2098  	}
2099  	return false;
2100  }
2101  
2102  /**
2103   * audit_log_n_untrustedstring - log a string that may contain random characters
2104   * @ab: audit_buffer
2105   * @len: length of string (not including trailing null)
2106   * @string: string to be logged
2107   *
2108   * This code will escape a string that is passed to it if the string
2109   * contains a control character, unprintable character, double quote mark,
2110   * or a space. Unescaped strings will start and end with a double quote mark.
2111   * Strings that are escaped are printed in hex (2 digits per char).
2112   *
2113   * The caller specifies the number of characters in the string to log, which may
2114   * or may not be the entire string.
2115   */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2116  void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2117  				 size_t len)
2118  {
2119  	if (audit_string_contains_control(string, len))
2120  		audit_log_n_hex(ab, string, len);
2121  	else
2122  		audit_log_n_string(ab, string, len);
2123  }
2124  
2125  /**
2126   * audit_log_untrustedstring - log a string that may contain random characters
2127   * @ab: audit_buffer
2128   * @string: string to be logged
2129   *
2130   * Same as audit_log_n_untrustedstring(), except that strlen is used to
2131   * determine string length.
2132   */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2133  void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2134  {
2135  	audit_log_n_untrustedstring(ab, string, strlen(string));
2136  }
2137  
2138  /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2139  void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2140  		      const struct path *path)
2141  {
2142  	char *p, *pathname;
2143  
2144  	if (prefix)
2145  		audit_log_format(ab, "%s", prefix);
2146  
2147  	/* We will allow 11 spaces for ' (deleted)' to be appended */
2148  	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2149  	if (!pathname) {
2150  		audit_log_format(ab, "\"<no_memory>\"");
2151  		return;
2152  	}
2153  	p = d_path(path, pathname, PATH_MAX+11);
2154  	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2155  		/* FIXME: can we save some information here? */
2156  		audit_log_format(ab, "\"<too_long>\"");
2157  	} else
2158  		audit_log_untrustedstring(ab, p);
2159  	kfree(pathname);
2160  }
2161  
audit_log_session_info(struct audit_buffer * ab)2162  void audit_log_session_info(struct audit_buffer *ab)
2163  {
2164  	unsigned int sessionid = audit_get_sessionid(current);
2165  	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2166  
2167  	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2168  }
2169  
audit_log_key(struct audit_buffer * ab,char * key)2170  void audit_log_key(struct audit_buffer *ab, char *key)
2171  {
2172  	audit_log_format(ab, " key=");
2173  	if (key)
2174  		audit_log_untrustedstring(ab, key);
2175  	else
2176  		audit_log_format(ab, "(null)");
2177  }
2178  
audit_log_task_context(struct audit_buffer * ab)2179  int audit_log_task_context(struct audit_buffer *ab)
2180  {
2181  	char *ctx = NULL;
2182  	unsigned len;
2183  	int error;
2184  	u32 sid;
2185  
2186  	security_current_getsecid_subj(&sid);
2187  	if (!sid)
2188  		return 0;
2189  
2190  	error = security_secid_to_secctx(sid, &ctx, &len);
2191  	if (error) {
2192  		if (error != -EINVAL)
2193  			goto error_path;
2194  		return 0;
2195  	}
2196  
2197  	audit_log_format(ab, " subj=%s", ctx);
2198  	security_release_secctx(ctx, len);
2199  	return 0;
2200  
2201  error_path:
2202  	audit_panic("error in audit_log_task_context");
2203  	return error;
2204  }
2205  EXPORT_SYMBOL(audit_log_task_context);
2206  
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2207  void audit_log_d_path_exe(struct audit_buffer *ab,
2208  			  struct mm_struct *mm)
2209  {
2210  	struct file *exe_file;
2211  
2212  	if (!mm)
2213  		goto out_null;
2214  
2215  	exe_file = get_mm_exe_file(mm);
2216  	if (!exe_file)
2217  		goto out_null;
2218  
2219  	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2220  	fput(exe_file);
2221  	return;
2222  out_null:
2223  	audit_log_format(ab, " exe=(null)");
2224  }
2225  
audit_get_tty(void)2226  struct tty_struct *audit_get_tty(void)
2227  {
2228  	struct tty_struct *tty = NULL;
2229  	unsigned long flags;
2230  
2231  	spin_lock_irqsave(&current->sighand->siglock, flags);
2232  	if (current->signal)
2233  		tty = tty_kref_get(current->signal->tty);
2234  	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2235  	return tty;
2236  }
2237  
audit_put_tty(struct tty_struct * tty)2238  void audit_put_tty(struct tty_struct *tty)
2239  {
2240  	tty_kref_put(tty);
2241  }
2242  
audit_log_task_info(struct audit_buffer * ab)2243  void audit_log_task_info(struct audit_buffer *ab)
2244  {
2245  	const struct cred *cred;
2246  	char comm[sizeof(current->comm)];
2247  	struct tty_struct *tty;
2248  
2249  	if (!ab)
2250  		return;
2251  
2252  	cred = current_cred();
2253  	tty = audit_get_tty();
2254  	audit_log_format(ab,
2255  			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2256  			 " euid=%u suid=%u fsuid=%u"
2257  			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2258  			 task_ppid_nr(current),
2259  			 task_tgid_nr(current),
2260  			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2261  			 from_kuid(&init_user_ns, cred->uid),
2262  			 from_kgid(&init_user_ns, cred->gid),
2263  			 from_kuid(&init_user_ns, cred->euid),
2264  			 from_kuid(&init_user_ns, cred->suid),
2265  			 from_kuid(&init_user_ns, cred->fsuid),
2266  			 from_kgid(&init_user_ns, cred->egid),
2267  			 from_kgid(&init_user_ns, cred->sgid),
2268  			 from_kgid(&init_user_ns, cred->fsgid),
2269  			 tty ? tty_name(tty) : "(none)",
2270  			 audit_get_sessionid(current));
2271  	audit_put_tty(tty);
2272  	audit_log_format(ab, " comm=");
2273  	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2274  	audit_log_d_path_exe(ab, current->mm);
2275  	audit_log_task_context(ab);
2276  }
2277  EXPORT_SYMBOL(audit_log_task_info);
2278  
2279  /**
2280   * audit_log_path_denied - report a path restriction denial
2281   * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2282   * @operation: specific operation name
2283   */
audit_log_path_denied(int type,const char * operation)2284  void audit_log_path_denied(int type, const char *operation)
2285  {
2286  	struct audit_buffer *ab;
2287  
2288  	if (!audit_enabled || audit_dummy_context())
2289  		return;
2290  
2291  	/* Generate log with subject, operation, outcome. */
2292  	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2293  	if (!ab)
2294  		return;
2295  	audit_log_format(ab, "op=%s", operation);
2296  	audit_log_task_info(ab);
2297  	audit_log_format(ab, " res=0");
2298  	audit_log_end(ab);
2299  }
2300  
2301  /* global counter which is incremented every time something logs in */
2302  static atomic_t session_id = ATOMIC_INIT(0);
2303  
audit_set_loginuid_perm(kuid_t loginuid)2304  static int audit_set_loginuid_perm(kuid_t loginuid)
2305  {
2306  	/* if we are unset, we don't need privs */
2307  	if (!audit_loginuid_set(current))
2308  		return 0;
2309  	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2310  	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2311  		return -EPERM;
2312  	/* it is set, you need permission */
2313  	if (!capable(CAP_AUDIT_CONTROL))
2314  		return -EPERM;
2315  	/* reject if this is not an unset and we don't allow that */
2316  	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2317  				 && uid_valid(loginuid))
2318  		return -EPERM;
2319  	return 0;
2320  }
2321  
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2322  static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2323  				   unsigned int oldsessionid,
2324  				   unsigned int sessionid, int rc)
2325  {
2326  	struct audit_buffer *ab;
2327  	uid_t uid, oldloginuid, loginuid;
2328  	struct tty_struct *tty;
2329  
2330  	if (!audit_enabled)
2331  		return;
2332  
2333  	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2334  	if (!ab)
2335  		return;
2336  
2337  	uid = from_kuid(&init_user_ns, task_uid(current));
2338  	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2339  	loginuid = from_kuid(&init_user_ns, kloginuid);
2340  	tty = audit_get_tty();
2341  
2342  	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2343  	audit_log_task_context(ab);
2344  	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2345  			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2346  			 oldsessionid, sessionid, !rc);
2347  	audit_put_tty(tty);
2348  	audit_log_end(ab);
2349  }
2350  
2351  /**
2352   * audit_set_loginuid - set current task's loginuid
2353   * @loginuid: loginuid value
2354   *
2355   * Returns 0.
2356   *
2357   * Called (set) from fs/proc/base.c::proc_loginuid_write().
2358   */
audit_set_loginuid(kuid_t loginuid)2359  int audit_set_loginuid(kuid_t loginuid)
2360  {
2361  	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2362  	kuid_t oldloginuid;
2363  	int rc;
2364  
2365  	oldloginuid = audit_get_loginuid(current);
2366  	oldsessionid = audit_get_sessionid(current);
2367  
2368  	rc = audit_set_loginuid_perm(loginuid);
2369  	if (rc)
2370  		goto out;
2371  
2372  	/* are we setting or clearing? */
2373  	if (uid_valid(loginuid)) {
2374  		sessionid = (unsigned int)atomic_inc_return(&session_id);
2375  		if (unlikely(sessionid == AUDIT_SID_UNSET))
2376  			sessionid = (unsigned int)atomic_inc_return(&session_id);
2377  	}
2378  
2379  	current->sessionid = sessionid;
2380  	current->loginuid = loginuid;
2381  out:
2382  	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2383  	return rc;
2384  }
2385  
2386  /**
2387   * audit_signal_info - record signal info for shutting down audit subsystem
2388   * @sig: signal value
2389   * @t: task being signaled
2390   *
2391   * If the audit subsystem is being terminated, record the task (pid)
2392   * and uid that is doing that.
2393   */
audit_signal_info(int sig,struct task_struct * t)2394  int audit_signal_info(int sig, struct task_struct *t)
2395  {
2396  	kuid_t uid = current_uid(), auid;
2397  
2398  	if (auditd_test_task(t) &&
2399  	    (sig == SIGTERM || sig == SIGHUP ||
2400  	     sig == SIGUSR1 || sig == SIGUSR2)) {
2401  		audit_sig_pid = task_tgid_nr(current);
2402  		auid = audit_get_loginuid(current);
2403  		if (uid_valid(auid))
2404  			audit_sig_uid = auid;
2405  		else
2406  			audit_sig_uid = uid;
2407  		security_current_getsecid_subj(&audit_sig_sid);
2408  	}
2409  
2410  	return audit_signal_info_syscall(t);
2411  }
2412  
2413  /**
2414   * audit_log_end - end one audit record
2415   * @ab: the audit_buffer
2416   *
2417   * We can not do a netlink send inside an irq context because it blocks (last
2418   * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2419   * queue and a kthread is scheduled to remove them from the queue outside the
2420   * irq context.  May be called in any context.
2421   */
audit_log_end(struct audit_buffer * ab)2422  void audit_log_end(struct audit_buffer *ab)
2423  {
2424  	struct sk_buff *skb;
2425  	struct nlmsghdr *nlh;
2426  
2427  	if (!ab)
2428  		return;
2429  
2430  	if (audit_rate_check()) {
2431  		skb = ab->skb;
2432  		ab->skb = NULL;
2433  
2434  		/* setup the netlink header, see the comments in
2435  		 * kauditd_send_multicast_skb() for length quirks */
2436  		nlh = nlmsg_hdr(skb);
2437  		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2438  
2439  		/* queue the netlink packet and poke the kauditd thread */
2440  		skb_queue_tail(&audit_queue, skb);
2441  		wake_up_interruptible(&kauditd_wait);
2442  	} else
2443  		audit_log_lost("rate limit exceeded");
2444  
2445  	audit_buffer_free(ab);
2446  }
2447  
2448  /**
2449   * audit_log - Log an audit record
2450   * @ctx: audit context
2451   * @gfp_mask: type of allocation
2452   * @type: audit message type
2453   * @fmt: format string to use
2454   * @...: variable parameters matching the format string
2455   *
2456   * This is a convenience function that calls audit_log_start,
2457   * audit_log_vformat, and audit_log_end.  It may be called
2458   * in any context.
2459   */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2460  void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2461  	       const char *fmt, ...)
2462  {
2463  	struct audit_buffer *ab;
2464  	va_list args;
2465  
2466  	ab = audit_log_start(ctx, gfp_mask, type);
2467  	if (ab) {
2468  		va_start(args, fmt);
2469  		audit_log_vformat(ab, fmt, args);
2470  		va_end(args);
2471  		audit_log_end(ab);
2472  	}
2473  }
2474  
2475  EXPORT_SYMBOL(audit_log_start);
2476  EXPORT_SYMBOL(audit_log_end);
2477  EXPORT_SYMBOL(audit_log_format);
2478  EXPORT_SYMBOL(audit_log);
2479