1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/file.h>
5 #include <linux/freezer.h>
6 #include <linux/highmem.h>
7 #include <linux/kthread.h>
8 #include <linux/miscdevice.h>
9 #include <linux/node.h>
10 #include <linux/pagemap.h>
11 #include <linux/ratelimit.h>
12 #include <linux/sched/mm.h>
13 #include <linux/sched/signal.h>
14 #include <linux/slab.h>
15 #include <linux/sysfs.h>
16 #include <linux/vmalloc.h>
17 #include <asm/sgx.h>
18 #include "driver.h"
19 #include "encl.h"
20 #include "encls.h"
21 
22 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
23 static int sgx_nr_epc_sections;
24 static struct task_struct *ksgxd_tsk;
25 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
26 static DEFINE_XARRAY(sgx_epc_address_space);
27 
28 /*
29  * These variables are part of the state of the reclaimer, and must be accessed
30  * with sgx_reclaimer_lock acquired.
31  */
32 static LIST_HEAD(sgx_active_page_list);
33 static DEFINE_SPINLOCK(sgx_reclaimer_lock);
34 
35 static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);
36 
37 /* Nodes with one or more EPC sections. */
38 static nodemask_t sgx_numa_mask;
39 
40 /*
41  * Array with one list_head for each possible NUMA node.  Each
42  * list contains all the sgx_epc_section's which are on that
43  * node.
44  */
45 static struct sgx_numa_node *sgx_numa_nodes;
46 
47 static LIST_HEAD(sgx_dirty_page_list);
48 
49 /*
50  * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
51  * from the input list, and made available for the page allocator. SECS pages
52  * prepending their children in the input list are left intact.
53  *
54  * Return 0 when sanitization was successful or kthread was stopped, and the
55  * number of unsanitized pages otherwise.
56  */
__sgx_sanitize_pages(struct list_head * dirty_page_list)57 static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list)
58 {
59 	unsigned long left_dirty = 0;
60 	struct sgx_epc_page *page;
61 	LIST_HEAD(dirty);
62 	int ret;
63 
64 	/* dirty_page_list is thread-local, no need for a lock: */
65 	while (!list_empty(dirty_page_list)) {
66 		if (kthread_should_stop())
67 			return 0;
68 
69 		page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
70 
71 		/*
72 		 * Checking page->poison without holding the node->lock
73 		 * is racy, but losing the race (i.e. poison is set just
74 		 * after the check) just means __eremove() will be uselessly
75 		 * called for a page that sgx_free_epc_page() will put onto
76 		 * the node->sgx_poison_page_list later.
77 		 */
78 		if (page->poison) {
79 			struct sgx_epc_section *section = &sgx_epc_sections[page->section];
80 			struct sgx_numa_node *node = section->node;
81 
82 			spin_lock(&node->lock);
83 			list_move(&page->list, &node->sgx_poison_page_list);
84 			spin_unlock(&node->lock);
85 
86 			continue;
87 		}
88 
89 		ret = __eremove(sgx_get_epc_virt_addr(page));
90 		if (!ret) {
91 			/*
92 			 * page is now sanitized.  Make it available via the SGX
93 			 * page allocator:
94 			 */
95 			list_del(&page->list);
96 			sgx_free_epc_page(page);
97 		} else {
98 			/* The page is not yet clean - move to the dirty list. */
99 			list_move_tail(&page->list, &dirty);
100 			left_dirty++;
101 		}
102 
103 		cond_resched();
104 	}
105 
106 	list_splice(&dirty, dirty_page_list);
107 	return left_dirty;
108 }
109 
sgx_reclaimer_age(struct sgx_epc_page * epc_page)110 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
111 {
112 	struct sgx_encl_page *page = epc_page->owner;
113 	struct sgx_encl *encl = page->encl;
114 	struct sgx_encl_mm *encl_mm;
115 	bool ret = true;
116 	int idx;
117 
118 	idx = srcu_read_lock(&encl->srcu);
119 
120 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
121 		if (!mmget_not_zero(encl_mm->mm))
122 			continue;
123 
124 		mmap_read_lock(encl_mm->mm);
125 		ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
126 		mmap_read_unlock(encl_mm->mm);
127 
128 		mmput_async(encl_mm->mm);
129 
130 		if (!ret)
131 			break;
132 	}
133 
134 	srcu_read_unlock(&encl->srcu, idx);
135 
136 	if (!ret)
137 		return false;
138 
139 	return true;
140 }
141 
sgx_reclaimer_block(struct sgx_epc_page * epc_page)142 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
143 {
144 	struct sgx_encl_page *page = epc_page->owner;
145 	unsigned long addr = page->desc & PAGE_MASK;
146 	struct sgx_encl *encl = page->encl;
147 	int ret;
148 
149 	sgx_zap_enclave_ptes(encl, addr);
150 
151 	mutex_lock(&encl->lock);
152 
153 	ret = __eblock(sgx_get_epc_virt_addr(epc_page));
154 	if (encls_failed(ret))
155 		ENCLS_WARN(ret, "EBLOCK");
156 
157 	mutex_unlock(&encl->lock);
158 }
159 
__sgx_encl_ewb(struct sgx_epc_page * epc_page,void * va_slot,struct sgx_backing * backing)160 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
161 			  struct sgx_backing *backing)
162 {
163 	struct sgx_pageinfo pginfo;
164 	int ret;
165 
166 	pginfo.addr = 0;
167 	pginfo.secs = 0;
168 
169 	pginfo.contents = (unsigned long)kmap_local_page(backing->contents);
170 	pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) +
171 			  backing->pcmd_offset;
172 
173 	ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
174 	set_page_dirty(backing->pcmd);
175 	set_page_dirty(backing->contents);
176 
177 	kunmap_local((void *)(unsigned long)(pginfo.metadata -
178 					      backing->pcmd_offset));
179 	kunmap_local((void *)(unsigned long)pginfo.contents);
180 
181 	return ret;
182 }
183 
sgx_ipi_cb(void * info)184 void sgx_ipi_cb(void *info)
185 {
186 }
187 
188 /*
189  * Swap page to the regular memory transformed to the blocked state by using
190  * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
191  *
192  * The first trial just tries to write the page assuming that some other thread
193  * has reset the count for threads inside the enclave by using ETRACK, and
194  * previous thread count has been zeroed out. The second trial calls ETRACK
195  * before EWB. If that fails we kick all the HW threads out, and then do EWB,
196  * which should be guaranteed the succeed.
197  */
sgx_encl_ewb(struct sgx_epc_page * epc_page,struct sgx_backing * backing)198 static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
199 			 struct sgx_backing *backing)
200 {
201 	struct sgx_encl_page *encl_page = epc_page->owner;
202 	struct sgx_encl *encl = encl_page->encl;
203 	struct sgx_va_page *va_page;
204 	unsigned int va_offset;
205 	void *va_slot;
206 	int ret;
207 
208 	encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
209 
210 	va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
211 				   list);
212 	va_offset = sgx_alloc_va_slot(va_page);
213 	va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
214 	if (sgx_va_page_full(va_page))
215 		list_move_tail(&va_page->list, &encl->va_pages);
216 
217 	ret = __sgx_encl_ewb(epc_page, va_slot, backing);
218 	if (ret == SGX_NOT_TRACKED) {
219 		ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
220 		if (ret) {
221 			if (encls_failed(ret))
222 				ENCLS_WARN(ret, "ETRACK");
223 		}
224 
225 		ret = __sgx_encl_ewb(epc_page, va_slot, backing);
226 		if (ret == SGX_NOT_TRACKED) {
227 			/*
228 			 * Slow path, send IPIs to kick cpus out of the
229 			 * enclave.  Note, it's imperative that the cpu
230 			 * mask is generated *after* ETRACK, else we'll
231 			 * miss cpus that entered the enclave between
232 			 * generating the mask and incrementing epoch.
233 			 */
234 			on_each_cpu_mask(sgx_encl_cpumask(encl),
235 					 sgx_ipi_cb, NULL, 1);
236 			ret = __sgx_encl_ewb(epc_page, va_slot, backing);
237 		}
238 	}
239 
240 	if (ret) {
241 		if (encls_failed(ret))
242 			ENCLS_WARN(ret, "EWB");
243 
244 		sgx_free_va_slot(va_page, va_offset);
245 	} else {
246 		encl_page->desc |= va_offset;
247 		encl_page->va_page = va_page;
248 	}
249 }
250 
sgx_reclaimer_write(struct sgx_epc_page * epc_page,struct sgx_backing * backing)251 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
252 				struct sgx_backing *backing)
253 {
254 	struct sgx_encl_page *encl_page = epc_page->owner;
255 	struct sgx_encl *encl = encl_page->encl;
256 	struct sgx_backing secs_backing;
257 	int ret;
258 
259 	mutex_lock(&encl->lock);
260 
261 	sgx_encl_ewb(epc_page, backing);
262 	encl_page->epc_page = NULL;
263 	encl->secs_child_cnt--;
264 	sgx_encl_put_backing(backing);
265 
266 	if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
267 		ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size),
268 					   &secs_backing);
269 		if (ret)
270 			goto out;
271 
272 		sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
273 
274 		sgx_encl_free_epc_page(encl->secs.epc_page);
275 		encl->secs.epc_page = NULL;
276 
277 		sgx_encl_put_backing(&secs_backing);
278 	}
279 
280 out:
281 	mutex_unlock(&encl->lock);
282 }
283 
284 /*
285  * Take a fixed number of pages from the head of the active page pool and
286  * reclaim them to the enclave's private shmem files. Skip the pages, which have
287  * been accessed since the last scan. Move those pages to the tail of active
288  * page pool so that the pages get scanned in LRU like fashion.
289  *
290  * Batch process a chunk of pages (at the moment 16) in order to degrade amount
291  * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
292  * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
293  * + EWB) but not sufficiently. Reclaiming one page at a time would also be
294  * problematic as it would increase the lock contention too much, which would
295  * halt forward progress.
296  */
sgx_reclaim_pages(void)297 static void sgx_reclaim_pages(void)
298 {
299 	struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
300 	struct sgx_backing backing[SGX_NR_TO_SCAN];
301 	struct sgx_encl_page *encl_page;
302 	struct sgx_epc_page *epc_page;
303 	pgoff_t page_index;
304 	int cnt = 0;
305 	int ret;
306 	int i;
307 
308 	spin_lock(&sgx_reclaimer_lock);
309 	for (i = 0; i < SGX_NR_TO_SCAN; i++) {
310 		if (list_empty(&sgx_active_page_list))
311 			break;
312 
313 		epc_page = list_first_entry(&sgx_active_page_list,
314 					    struct sgx_epc_page, list);
315 		list_del_init(&epc_page->list);
316 		encl_page = epc_page->owner;
317 
318 		if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
319 			chunk[cnt++] = epc_page;
320 		else
321 			/* The owner is freeing the page. No need to add the
322 			 * page back to the list of reclaimable pages.
323 			 */
324 			epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
325 	}
326 	spin_unlock(&sgx_reclaimer_lock);
327 
328 	for (i = 0; i < cnt; i++) {
329 		epc_page = chunk[i];
330 		encl_page = epc_page->owner;
331 
332 		if (!sgx_reclaimer_age(epc_page))
333 			goto skip;
334 
335 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
336 
337 		mutex_lock(&encl_page->encl->lock);
338 		ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]);
339 		if (ret) {
340 			mutex_unlock(&encl_page->encl->lock);
341 			goto skip;
342 		}
343 
344 		encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
345 		mutex_unlock(&encl_page->encl->lock);
346 		continue;
347 
348 skip:
349 		spin_lock(&sgx_reclaimer_lock);
350 		list_add_tail(&epc_page->list, &sgx_active_page_list);
351 		spin_unlock(&sgx_reclaimer_lock);
352 
353 		kref_put(&encl_page->encl->refcount, sgx_encl_release);
354 
355 		chunk[i] = NULL;
356 	}
357 
358 	for (i = 0; i < cnt; i++) {
359 		epc_page = chunk[i];
360 		if (epc_page)
361 			sgx_reclaimer_block(epc_page);
362 	}
363 
364 	for (i = 0; i < cnt; i++) {
365 		epc_page = chunk[i];
366 		if (!epc_page)
367 			continue;
368 
369 		encl_page = epc_page->owner;
370 		sgx_reclaimer_write(epc_page, &backing[i]);
371 
372 		kref_put(&encl_page->encl->refcount, sgx_encl_release);
373 		epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
374 
375 		sgx_free_epc_page(epc_page);
376 	}
377 }
378 
sgx_should_reclaim(unsigned long watermark)379 static bool sgx_should_reclaim(unsigned long watermark)
380 {
381 	return atomic_long_read(&sgx_nr_free_pages) < watermark &&
382 	       !list_empty(&sgx_active_page_list);
383 }
384 
385 /*
386  * sgx_reclaim_direct() should be called (without enclave's mutex held)
387  * in locations where SGX memory resources might be low and might be
388  * needed in order to make forward progress.
389  */
sgx_reclaim_direct(void)390 void sgx_reclaim_direct(void)
391 {
392 	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
393 		sgx_reclaim_pages();
394 }
395 
ksgxd(void * p)396 static int ksgxd(void *p)
397 {
398 	set_freezable();
399 
400 	/*
401 	 * Sanitize pages in order to recover from kexec(). The 2nd pass is
402 	 * required for SECS pages, whose child pages blocked EREMOVE.
403 	 */
404 	__sgx_sanitize_pages(&sgx_dirty_page_list);
405 	WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list));
406 
407 	while (!kthread_should_stop()) {
408 		if (try_to_freeze())
409 			continue;
410 
411 		wait_event_freezable(ksgxd_waitq,
412 				     kthread_should_stop() ||
413 				     sgx_should_reclaim(SGX_NR_HIGH_PAGES));
414 
415 		if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
416 			sgx_reclaim_pages();
417 
418 		cond_resched();
419 	}
420 
421 	return 0;
422 }
423 
sgx_page_reclaimer_init(void)424 static bool __init sgx_page_reclaimer_init(void)
425 {
426 	struct task_struct *tsk;
427 
428 	tsk = kthread_run(ksgxd, NULL, "ksgxd");
429 	if (IS_ERR(tsk))
430 		return false;
431 
432 	ksgxd_tsk = tsk;
433 
434 	return true;
435 }
436 
current_is_ksgxd(void)437 bool current_is_ksgxd(void)
438 {
439 	return current == ksgxd_tsk;
440 }
441 
__sgx_alloc_epc_page_from_node(int nid)442 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
443 {
444 	struct sgx_numa_node *node = &sgx_numa_nodes[nid];
445 	struct sgx_epc_page *page = NULL;
446 
447 	spin_lock(&node->lock);
448 
449 	if (list_empty(&node->free_page_list)) {
450 		spin_unlock(&node->lock);
451 		return NULL;
452 	}
453 
454 	page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
455 	list_del_init(&page->list);
456 	page->flags = 0;
457 
458 	spin_unlock(&node->lock);
459 	atomic_long_dec(&sgx_nr_free_pages);
460 
461 	return page;
462 }
463 
464 /**
465  * __sgx_alloc_epc_page() - Allocate an EPC page
466  *
467  * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
468  * from the NUMA node, where the caller is executing.
469  *
470  * Return:
471  * - an EPC page:	A borrowed EPC pages were available.
472  * - NULL:		Out of EPC pages.
473  */
__sgx_alloc_epc_page(void)474 struct sgx_epc_page *__sgx_alloc_epc_page(void)
475 {
476 	struct sgx_epc_page *page;
477 	int nid_of_current = numa_node_id();
478 	int nid_start, nid;
479 
480 	/*
481 	 * Try local node first. If it doesn't have an EPC section,
482 	 * fall back to the non-local NUMA nodes.
483 	 */
484 	if (node_isset(nid_of_current, sgx_numa_mask))
485 		nid_start = nid_of_current;
486 	else
487 		nid_start = next_node_in(nid_of_current, sgx_numa_mask);
488 
489 	nid = nid_start;
490 	do {
491 		page = __sgx_alloc_epc_page_from_node(nid);
492 		if (page)
493 			return page;
494 
495 		nid = next_node_in(nid, sgx_numa_mask);
496 	} while (nid != nid_start);
497 
498 	return ERR_PTR(-ENOMEM);
499 }
500 
501 /**
502  * sgx_mark_page_reclaimable() - Mark a page as reclaimable
503  * @page:	EPC page
504  *
505  * Mark a page as reclaimable and add it to the active page list. Pages
506  * are automatically removed from the active list when freed.
507  */
sgx_mark_page_reclaimable(struct sgx_epc_page * page)508 void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
509 {
510 	spin_lock(&sgx_reclaimer_lock);
511 	page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
512 	list_add_tail(&page->list, &sgx_active_page_list);
513 	spin_unlock(&sgx_reclaimer_lock);
514 }
515 
516 /**
517  * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
518  * @page:	EPC page
519  *
520  * Clear the reclaimable flag and remove the page from the active page list.
521  *
522  * Return:
523  *   0 on success,
524  *   -EBUSY if the page is in the process of being reclaimed
525  */
sgx_unmark_page_reclaimable(struct sgx_epc_page * page)526 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
527 {
528 	spin_lock(&sgx_reclaimer_lock);
529 	if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
530 		/* The page is being reclaimed. */
531 		if (list_empty(&page->list)) {
532 			spin_unlock(&sgx_reclaimer_lock);
533 			return -EBUSY;
534 		}
535 
536 		list_del(&page->list);
537 		page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
538 	}
539 	spin_unlock(&sgx_reclaimer_lock);
540 
541 	return 0;
542 }
543 
544 /**
545  * sgx_alloc_epc_page() - Allocate an EPC page
546  * @owner:	the owner of the EPC page
547  * @reclaim:	reclaim pages if necessary
548  *
549  * Iterate through EPC sections and borrow a free EPC page to the caller. When a
550  * page is no longer needed it must be released with sgx_free_epc_page(). If
551  * @reclaim is set to true, directly reclaim pages when we are out of pages. No
552  * mm's can be locked when @reclaim is set to true.
553  *
554  * Finally, wake up ksgxd when the number of pages goes below the watermark
555  * before returning back to the caller.
556  *
557  * Return:
558  *   an EPC page,
559  *   -errno on error
560  */
sgx_alloc_epc_page(void * owner,bool reclaim)561 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
562 {
563 	struct sgx_epc_page *page;
564 
565 	for ( ; ; ) {
566 		page = __sgx_alloc_epc_page();
567 		if (!IS_ERR(page)) {
568 			page->owner = owner;
569 			break;
570 		}
571 
572 		if (list_empty(&sgx_active_page_list))
573 			return ERR_PTR(-ENOMEM);
574 
575 		if (!reclaim) {
576 			page = ERR_PTR(-EBUSY);
577 			break;
578 		}
579 
580 		if (signal_pending(current)) {
581 			page = ERR_PTR(-ERESTARTSYS);
582 			break;
583 		}
584 
585 		sgx_reclaim_pages();
586 		cond_resched();
587 	}
588 
589 	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
590 		wake_up(&ksgxd_waitq);
591 
592 	return page;
593 }
594 
595 /**
596  * sgx_free_epc_page() - Free an EPC page
597  * @page:	an EPC page
598  *
599  * Put the EPC page back to the list of free pages. It's the caller's
600  * responsibility to make sure that the page is in uninitialized state. In other
601  * words, do EREMOVE, EWB or whatever operation is necessary before calling
602  * this function.
603  */
sgx_free_epc_page(struct sgx_epc_page * page)604 void sgx_free_epc_page(struct sgx_epc_page *page)
605 {
606 	struct sgx_epc_section *section = &sgx_epc_sections[page->section];
607 	struct sgx_numa_node *node = section->node;
608 
609 	spin_lock(&node->lock);
610 
611 	page->owner = NULL;
612 	if (page->poison)
613 		list_add(&page->list, &node->sgx_poison_page_list);
614 	else
615 		list_add_tail(&page->list, &node->free_page_list);
616 	page->flags = SGX_EPC_PAGE_IS_FREE;
617 
618 	spin_unlock(&node->lock);
619 	atomic_long_inc(&sgx_nr_free_pages);
620 }
621 
sgx_setup_epc_section(u64 phys_addr,u64 size,unsigned long index,struct sgx_epc_section * section)622 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
623 					 unsigned long index,
624 					 struct sgx_epc_section *section)
625 {
626 	unsigned long nr_pages = size >> PAGE_SHIFT;
627 	unsigned long i;
628 
629 	section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
630 	if (!section->virt_addr)
631 		return false;
632 
633 	section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
634 	if (!section->pages) {
635 		memunmap(section->virt_addr);
636 		return false;
637 	}
638 
639 	section->phys_addr = phys_addr;
640 	xa_store_range(&sgx_epc_address_space, section->phys_addr,
641 		       phys_addr + size - 1, section, GFP_KERNEL);
642 
643 	for (i = 0; i < nr_pages; i++) {
644 		section->pages[i].section = index;
645 		section->pages[i].flags = 0;
646 		section->pages[i].owner = NULL;
647 		section->pages[i].poison = 0;
648 		list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
649 	}
650 
651 	return true;
652 }
653 
arch_is_platform_page(u64 paddr)654 bool arch_is_platform_page(u64 paddr)
655 {
656 	return !!xa_load(&sgx_epc_address_space, paddr);
657 }
658 EXPORT_SYMBOL_GPL(arch_is_platform_page);
659 
sgx_paddr_to_page(u64 paddr)660 static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
661 {
662 	struct sgx_epc_section *section;
663 
664 	section = xa_load(&sgx_epc_address_space, paddr);
665 	if (!section)
666 		return NULL;
667 
668 	return &section->pages[PFN_DOWN(paddr - section->phys_addr)];
669 }
670 
671 /*
672  * Called in process context to handle a hardware reported
673  * error in an SGX EPC page.
674  * If the MF_ACTION_REQUIRED bit is set in flags, then the
675  * context is the task that consumed the poison data. Otherwise
676  * this is called from a kernel thread unrelated to the page.
677  */
arch_memory_failure(unsigned long pfn,int flags)678 int arch_memory_failure(unsigned long pfn, int flags)
679 {
680 	struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
681 	struct sgx_epc_section *section;
682 	struct sgx_numa_node *node;
683 
684 	/*
685 	 * mm/memory-failure.c calls this routine for all errors
686 	 * where there isn't a "struct page" for the address. But that
687 	 * includes other address ranges besides SGX.
688 	 */
689 	if (!page)
690 		return -ENXIO;
691 
692 	/*
693 	 * If poison was consumed synchronously. Send a SIGBUS to
694 	 * the task. Hardware has already exited the SGX enclave and
695 	 * will not allow re-entry to an enclave that has a memory
696 	 * error. The signal may help the task understand why the
697 	 * enclave is broken.
698 	 */
699 	if (flags & MF_ACTION_REQUIRED)
700 		force_sig(SIGBUS);
701 
702 	section = &sgx_epc_sections[page->section];
703 	node = section->node;
704 
705 	spin_lock(&node->lock);
706 
707 	/* Already poisoned? Nothing more to do */
708 	if (page->poison)
709 		goto out;
710 
711 	page->poison = 1;
712 
713 	/*
714 	 * If the page is on a free list, move it to the per-node
715 	 * poison page list.
716 	 */
717 	if (page->flags & SGX_EPC_PAGE_IS_FREE) {
718 		list_move(&page->list, &node->sgx_poison_page_list);
719 		goto out;
720 	}
721 
722 	/*
723 	 * TBD: Add additional plumbing to enable pre-emptive
724 	 * action for asynchronous poison notification. Until
725 	 * then just hope that the poison:
726 	 * a) is not accessed - sgx_free_epc_page() will deal with it
727 	 *    when the user gives it back
728 	 * b) results in a recoverable machine check rather than
729 	 *    a fatal one
730 	 */
731 out:
732 	spin_unlock(&node->lock);
733 	return 0;
734 }
735 
736 /*
737  * A section metric is concatenated in a way that @low bits 12-31 define the
738  * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
739  * metric.
740  */
sgx_calc_section_metric(u64 low,u64 high)741 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
742 {
743 	return (low & GENMASK_ULL(31, 12)) +
744 	       ((high & GENMASK_ULL(19, 0)) << 32);
745 }
746 
747 #ifdef CONFIG_NUMA
sgx_total_bytes_show(struct device * dev,struct device_attribute * attr,char * buf)748 static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
749 {
750 	return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
751 }
752 static DEVICE_ATTR_RO(sgx_total_bytes);
753 
arch_node_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)754 static umode_t arch_node_attr_is_visible(struct kobject *kobj,
755 		struct attribute *attr, int idx)
756 {
757 	/* Make all x86/ attributes invisible when SGX is not initialized: */
758 	if (nodes_empty(sgx_numa_mask))
759 		return 0;
760 
761 	return attr->mode;
762 }
763 
764 static struct attribute *arch_node_dev_attrs[] = {
765 	&dev_attr_sgx_total_bytes.attr,
766 	NULL,
767 };
768 
769 const struct attribute_group arch_node_dev_group = {
770 	.name = "x86",
771 	.attrs = arch_node_dev_attrs,
772 	.is_visible = arch_node_attr_is_visible,
773 };
774 
arch_update_sysfs_visibility(int nid)775 static void __init arch_update_sysfs_visibility(int nid)
776 {
777 	struct node *node = node_devices[nid];
778 	int ret;
779 
780 	ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);
781 
782 	if (ret)
783 		pr_err("sysfs update failed (%d), files may be invisible", ret);
784 }
785 #else /* !CONFIG_NUMA */
arch_update_sysfs_visibility(int nid)786 static void __init arch_update_sysfs_visibility(int nid) {}
787 #endif
788 
sgx_page_cache_init(void)789 static bool __init sgx_page_cache_init(void)
790 {
791 	u32 eax, ebx, ecx, edx, type;
792 	u64 pa, size;
793 	int nid;
794 	int i;
795 
796 	sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
797 	if (!sgx_numa_nodes)
798 		return false;
799 
800 	for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
801 		cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
802 
803 		type = eax & SGX_CPUID_EPC_MASK;
804 		if (type == SGX_CPUID_EPC_INVALID)
805 			break;
806 
807 		if (type != SGX_CPUID_EPC_SECTION) {
808 			pr_err_once("Unknown EPC section type: %u\n", type);
809 			break;
810 		}
811 
812 		pa   = sgx_calc_section_metric(eax, ebx);
813 		size = sgx_calc_section_metric(ecx, edx);
814 
815 		pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
816 
817 		if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
818 			pr_err("No free memory for an EPC section\n");
819 			break;
820 		}
821 
822 		nid = numa_map_to_online_node(phys_to_target_node(pa));
823 		if (nid == NUMA_NO_NODE) {
824 			/* The physical address is already printed above. */
825 			pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
826 			nid = 0;
827 		}
828 
829 		if (!node_isset(nid, sgx_numa_mask)) {
830 			spin_lock_init(&sgx_numa_nodes[nid].lock);
831 			INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
832 			INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
833 			node_set(nid, sgx_numa_mask);
834 			sgx_numa_nodes[nid].size = 0;
835 
836 			/* Make SGX-specific node sysfs files visible: */
837 			arch_update_sysfs_visibility(nid);
838 		}
839 
840 		sgx_epc_sections[i].node =  &sgx_numa_nodes[nid];
841 		sgx_numa_nodes[nid].size += size;
842 
843 		sgx_nr_epc_sections++;
844 	}
845 
846 	if (!sgx_nr_epc_sections) {
847 		pr_err("There are zero EPC sections.\n");
848 		return false;
849 	}
850 
851 	for_each_online_node(nid) {
852 		if (!node_isset(nid, sgx_numa_mask) &&
853 		    node_state(nid, N_MEMORY) && node_state(nid, N_CPU))
854 			pr_info("node%d has both CPUs and memory but doesn't have an EPC section\n",
855 				nid);
856 	}
857 
858 	return true;
859 }
860 
861 /*
862  * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
863  * Bare-metal driver requires to update them to hash of enclave's signer
864  * before EINIT. KVM needs to update them to guest's virtual MSR values
865  * before doing EINIT from guest.
866  */
sgx_update_lepubkeyhash(u64 * lepubkeyhash)867 void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
868 {
869 	int i;
870 
871 	WARN_ON_ONCE(preemptible());
872 
873 	for (i = 0; i < 4; i++)
874 		wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
875 }
876 
877 const struct file_operations sgx_provision_fops = {
878 	.owner			= THIS_MODULE,
879 };
880 
881 static struct miscdevice sgx_dev_provision = {
882 	.minor = MISC_DYNAMIC_MINOR,
883 	.name = "sgx_provision",
884 	.nodename = "sgx_provision",
885 	.fops = &sgx_provision_fops,
886 };
887 
888 /**
889  * sgx_set_attribute() - Update allowed attributes given file descriptor
890  * @allowed_attributes:		Pointer to allowed enclave attributes
891  * @attribute_fd:		File descriptor for specific attribute
892  *
893  * Append enclave attribute indicated by file descriptor to allowed
894  * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
895  * /dev/sgx_provision is supported.
896  *
897  * Return:
898  * -0:		SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
899  * -EINVAL:	Invalid, or not supported file descriptor
900  */
sgx_set_attribute(unsigned long * allowed_attributes,unsigned int attribute_fd)901 int sgx_set_attribute(unsigned long *allowed_attributes,
902 		      unsigned int attribute_fd)
903 {
904 	struct fd f = fdget(attribute_fd);
905 
906 	if (!fd_file(f))
907 		return -EINVAL;
908 
909 	if (fd_file(f)->f_op != &sgx_provision_fops) {
910 		fdput(f);
911 		return -EINVAL;
912 	}
913 
914 	*allowed_attributes |= SGX_ATTR_PROVISIONKEY;
915 
916 	fdput(f);
917 	return 0;
918 }
919 EXPORT_SYMBOL_GPL(sgx_set_attribute);
920 
sgx_init(void)921 static int __init sgx_init(void)
922 {
923 	int ret;
924 	int i;
925 
926 	if (!cpu_feature_enabled(X86_FEATURE_SGX))
927 		return -ENODEV;
928 
929 	if (!sgx_page_cache_init())
930 		return -ENOMEM;
931 
932 	if (!sgx_page_reclaimer_init()) {
933 		ret = -ENOMEM;
934 		goto err_page_cache;
935 	}
936 
937 	ret = misc_register(&sgx_dev_provision);
938 	if (ret)
939 		goto err_kthread;
940 
941 	/*
942 	 * Always try to initialize the native *and* KVM drivers.
943 	 * The KVM driver is less picky than the native one and
944 	 * can function if the native one is not supported on the
945 	 * current system or fails to initialize.
946 	 *
947 	 * Error out only if both fail to initialize.
948 	 */
949 	ret = sgx_drv_init();
950 
951 	if (sgx_vepc_init() && ret)
952 		goto err_provision;
953 
954 	return 0;
955 
956 err_provision:
957 	misc_deregister(&sgx_dev_provision);
958 
959 err_kthread:
960 	kthread_stop(ksgxd_tsk);
961 
962 err_page_cache:
963 	for (i = 0; i < sgx_nr_epc_sections; i++) {
964 		vfree(sgx_epc_sections[i].pages);
965 		memunmap(sgx_epc_sections[i].virt_addr);
966 	}
967 
968 	return ret;
969 }
970 
971 device_initcall(sgx_init);
972