1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include "atom.h"
28 #include "ppatomctrl.h"
29 #include "atombios.h"
30 #include "cgs_common.h"
31 #include "ppevvmath.h"
32 
33 #define MEM_ID_MASK           0xff000000
34 #define MEM_ID_SHIFT          24
35 #define CLOCK_RANGE_MASK      0x00ffffff
36 #define CLOCK_RANGE_SHIFT     0
37 #define LOW_NIBBLE_MASK       0xf
38 #define DATA_EQU_PREV         0
39 #define DATA_FROM_TABLE       4
40 
41 union voltage_object_info {
42 	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43 	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44 	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45 };
46 
atomctrl_retrieve_ac_timing(uint8_t index,ATOM_INIT_REG_BLOCK * reg_block,pp_atomctrl_mc_reg_table * table)47 static int atomctrl_retrieve_ac_timing(
48 		uint8_t index,
49 		ATOM_INIT_REG_BLOCK *reg_block,
50 		pp_atomctrl_mc_reg_table *table)
51 {
52 	uint32_t i, j;
53 	uint8_t tmem_id;
54 	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55 		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56 
57 	uint8_t num_ranges = 0;
58 
59 	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60 			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61 		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62 
63 		if (index == tmem_id) {
64 			table->mc_reg_table_entry[num_ranges].mclk_max =
65 				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66 						CLOCK_RANGE_SHIFT);
67 
68 			for (i = 0, j = 1; i < table->last; i++) {
69 				if ((table->mc_reg_address[i].uc_pre_reg_data &
70 							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
72 						(uint32_t)*((uint32_t *)reg_data + j);
73 					j++;
74 				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
75 							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76 					if (i)
77 						table->mc_reg_table_entry[num_ranges].mc_data[i] =
78 							table->mc_reg_table_entry[num_ranges].mc_data[i-1];
79 				}
80 			}
81 			num_ranges++;
82 		}
83 
84 		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
85 			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
86 	}
87 
88 	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
89 			"Invalid VramInfo table.", return -1);
90 	table->num_entries = num_ranges;
91 
92 	return 0;
93 }
94 
95 /**
96  * atomctrl_set_mc_reg_address_table - Get memory clock AC timing registers index from VBIOS table
97  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
98  * @reg_block: the address ATOM_INIT_REG_BLOCK
99  * @table: the address of MCRegTable
100  * Return:   0
101  */
atomctrl_set_mc_reg_address_table(ATOM_INIT_REG_BLOCK * reg_block,pp_atomctrl_mc_reg_table * table)102 static int atomctrl_set_mc_reg_address_table(
103 		ATOM_INIT_REG_BLOCK *reg_block,
104 		pp_atomctrl_mc_reg_table *table)
105 {
106 	uint8_t i = 0;
107 	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
108 			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
109 	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
110 
111 	num_entries--;        /* subtract 1 data end mark entry */
112 
113 	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
114 			"Invalid VramInfo table.", return -1);
115 
116 	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
117 	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
118 			(i < num_entries)) {
119 		table->mc_reg_address[i].s1 =
120 			(uint16_t)(le16_to_cpu(format->usRegIndex));
121 		table->mc_reg_address[i].uc_pre_reg_data =
122 			format->ucPreRegDataLength;
123 
124 		i++;
125 		format = (ATOM_INIT_REG_INDEX_FORMAT *)
126 			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
127 	}
128 
129 	table->last = i;
130 	return 0;
131 }
132 
atomctrl_initialize_mc_reg_table(struct pp_hwmgr * hwmgr,uint8_t module_index,pp_atomctrl_mc_reg_table * table)133 int atomctrl_initialize_mc_reg_table(
134 		struct pp_hwmgr *hwmgr,
135 		uint8_t module_index,
136 		pp_atomctrl_mc_reg_table *table)
137 {
138 	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
139 	ATOM_INIT_REG_BLOCK *reg_block;
140 	int result = 0;
141 	u8 frev, crev;
142 	u16 size;
143 
144 	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
145 		smu_atom_get_data_table(hwmgr->adev,
146 				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
147 
148 	if (module_index >= vram_info->ucNumOfVRAMModule) {
149 		pr_err("Invalid VramInfo table.");
150 		result = -1;
151 	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
152 		pr_err("Invalid VramInfo table.");
153 		result = -1;
154 	}
155 
156 	if (0 == result) {
157 		reg_block = (ATOM_INIT_REG_BLOCK *)
158 			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
159 		result = atomctrl_set_mc_reg_address_table(reg_block, table);
160 	}
161 
162 	if (0 == result) {
163 		result = atomctrl_retrieve_ac_timing(module_index,
164 					reg_block, table);
165 	}
166 
167 	return result;
168 }
169 
atomctrl_initialize_mc_reg_table_v2_2(struct pp_hwmgr * hwmgr,uint8_t module_index,pp_atomctrl_mc_reg_table * table)170 int atomctrl_initialize_mc_reg_table_v2_2(
171 		struct pp_hwmgr *hwmgr,
172 		uint8_t module_index,
173 		pp_atomctrl_mc_reg_table *table)
174 {
175 	ATOM_VRAM_INFO_HEADER_V2_2 *vram_info;
176 	ATOM_INIT_REG_BLOCK *reg_block;
177 	int result = 0;
178 	u8 frev, crev;
179 	u16 size;
180 
181 	vram_info = (ATOM_VRAM_INFO_HEADER_V2_2 *)
182 		smu_atom_get_data_table(hwmgr->adev,
183 				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
184 
185 	if (module_index >= vram_info->ucNumOfVRAMModule) {
186 		pr_err("Invalid VramInfo table.");
187 		result = -1;
188 	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
189 		pr_err("Invalid VramInfo table.");
190 		result = -1;
191 	}
192 
193 	if (0 == result) {
194 		reg_block = (ATOM_INIT_REG_BLOCK *)
195 			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
196 		result = atomctrl_set_mc_reg_address_table(reg_block, table);
197 	}
198 
199 	if (0 == result) {
200 		result = atomctrl_retrieve_ac_timing(module_index,
201 					reg_block, table);
202 	}
203 
204 	return result;
205 }
206 
207 /*
208  * Set DRAM timings based on engine clock and memory clock.
209  */
atomctrl_set_engine_dram_timings_rv770(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock)210 int atomctrl_set_engine_dram_timings_rv770(
211 		struct pp_hwmgr *hwmgr,
212 		uint32_t engine_clock,
213 		uint32_t memory_clock)
214 {
215 	struct amdgpu_device *adev = hwmgr->adev;
216 
217 	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
218 
219 	/* They are both in 10KHz Units. */
220 	engine_clock_parameters.ulTargetEngineClock =
221 		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
222 			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
223 
224 	/* in 10 khz units.*/
225 	engine_clock_parameters.sReserved.ulClock =
226 		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
227 
228 	return amdgpu_atom_execute_table(adev->mode_info.atom_context,
229 			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
230 			(uint32_t *)&engine_clock_parameters, sizeof(engine_clock_parameters));
231 }
232 
233 /*
234  * Private Function to get the PowerPlay Table Address.
235  * WARNING: The tabled returned by this function is in
236  * dynamically allocated memory.
237  * The caller has to release if by calling kfree.
238  */
get_voltage_info_table(void * device)239 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
240 {
241 	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
242 	u8 frev, crev;
243 	u16 size;
244 	union voltage_object_info *voltage_info;
245 
246 	voltage_info = (union voltage_object_info *)
247 		smu_atom_get_data_table(device, index,
248 			&size, &frev, &crev);
249 
250 	if (voltage_info != NULL)
251 		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
252 	else
253 		return NULL;
254 }
255 
atomctrl_lookup_voltage_type_v3(const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,uint8_t voltage_type,uint8_t voltage_mode)256 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
257 		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
258 		uint8_t voltage_type, uint8_t voltage_mode)
259 {
260 	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
261 	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
262 	uint8_t *start = (uint8_t *)voltage_object_info_table;
263 
264 	while (offset < size) {
265 		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
266 			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
267 
268 		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
269 			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
270 			return voltage_object;
271 
272 		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
273 	}
274 
275 	return NULL;
276 }
277 
278 /**
279  * atomctrl_get_memory_pll_dividers_si
280  *
281  * @hwmgr:           input parameter: pointer to HwMgr
282  * @clock_value:     input parameter: memory clock
283  * @mpll_param:      output parameter: memory clock parameters
284  * @strobe_mode:     input parameter: 1 for strobe mode,  0 for performance mode
285  */
atomctrl_get_memory_pll_dividers_si(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_memory_clock_param * mpll_param,bool strobe_mode)286 int atomctrl_get_memory_pll_dividers_si(
287 		struct pp_hwmgr *hwmgr,
288 		uint32_t clock_value,
289 		pp_atomctrl_memory_clock_param *mpll_param,
290 		bool strobe_mode)
291 {
292 	struct amdgpu_device *adev = hwmgr->adev;
293 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
294 	int result;
295 
296 	mpll_parameters.ulClock = cpu_to_le32(clock_value);
297 	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
298 
299 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
300 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
301 		(uint32_t *)&mpll_parameters, sizeof(mpll_parameters));
302 
303 	if (0 == result) {
304 		mpll_param->mpll_fb_divider.clk_frac =
305 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
306 		mpll_param->mpll_fb_divider.cl_kf =
307 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
308 		mpll_param->mpll_post_divider =
309 			(uint32_t)mpll_parameters.ucPostDiv;
310 		mpll_param->vco_mode =
311 			(uint32_t)(mpll_parameters.ucPllCntlFlag &
312 					MPLL_CNTL_FLAG_VCO_MODE_MASK);
313 		mpll_param->yclk_sel =
314 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
315 						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
316 		mpll_param->qdr =
317 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
318 						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
319 		mpll_param->half_rate =
320 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
321 						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
322 		mpll_param->dll_speed =
323 			(uint32_t)(mpll_parameters.ucDllSpeed);
324 		mpll_param->bw_ctrl =
325 			(uint32_t)(mpll_parameters.ucBWCntl);
326 	}
327 
328 	return result;
329 }
330 
331 /**
332  * atomctrl_get_memory_pll_dividers_vi
333  *
334  * @hwmgr:                 input parameter: pointer to HwMgr
335  * @clock_value:           input parameter: memory clock
336  * @mpll_param:            output parameter: memory clock parameters
337  */
atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_memory_clock_param * mpll_param)338 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
339 		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
340 {
341 	struct amdgpu_device *adev = hwmgr->adev;
342 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
343 	int result;
344 
345 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
346 
347 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
348 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
349 			(uint32_t *)&mpll_parameters, sizeof(mpll_parameters));
350 
351 	if (!result)
352 		mpll_param->mpll_post_divider =
353 				(uint32_t)mpll_parameters.ulClock.ucPostDiv;
354 
355 	return result;
356 }
357 
atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_memory_clock_param_ai * mpll_param)358 int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
359 					uint32_t clock_value,
360 					pp_atomctrl_memory_clock_param_ai *mpll_param)
361 {
362 	struct amdgpu_device *adev = hwmgr->adev;
363 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
364 	int result;
365 
366 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
367 
368 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
369 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
370 			(uint32_t *)&mpll_parameters, sizeof(mpll_parameters));
371 
372 	/* VEGAM's mpll takes sometime to finish computing */
373 	udelay(10);
374 
375 	if (!result) {
376 		mpll_param->ulMclk_fcw_int =
377 			le16_to_cpu(mpll_parameters.usMclk_fcw_int);
378 		mpll_param->ulMclk_fcw_frac =
379 			le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
380 		mpll_param->ulClock =
381 			le32_to_cpu(mpll_parameters.ulClock.ulClock);
382 		mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
383 	}
384 
385 	return result;
386 }
387 
atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_kong * dividers)388 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
389 					  uint32_t clock_value,
390 					  pp_atomctrl_clock_dividers_kong *dividers)
391 {
392 	struct amdgpu_device *adev = hwmgr->adev;
393 	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
394 	int result;
395 
396 	pll_parameters.ulClock = cpu_to_le32(clock_value);
397 
398 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
399 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
400 		(uint32_t *)&pll_parameters, sizeof(pll_parameters));
401 
402 	if (0 == result) {
403 		dividers->pll_post_divider = pll_parameters.ucPostDiv;
404 		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
405 	}
406 
407 	return result;
408 }
409 
atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_vi * dividers)410 int atomctrl_get_engine_pll_dividers_vi(
411 		struct pp_hwmgr *hwmgr,
412 		uint32_t clock_value,
413 		pp_atomctrl_clock_dividers_vi *dividers)
414 {
415 	struct amdgpu_device *adev = hwmgr->adev;
416 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
417 	int result;
418 
419 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
420 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
421 
422 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
423 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
424 		(uint32_t *)&pll_patameters, sizeof(pll_patameters));
425 
426 	if (0 == result) {
427 		dividers->pll_post_divider =
428 			pll_patameters.ulClock.ucPostDiv;
429 		dividers->real_clock =
430 			le32_to_cpu(pll_patameters.ulClock.ulClock);
431 
432 		dividers->ul_fb_div.ul_fb_div_frac =
433 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
434 		dividers->ul_fb_div.ul_fb_div =
435 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
436 
437 		dividers->uc_pll_ref_div =
438 			pll_patameters.ucPllRefDiv;
439 		dividers->uc_pll_post_div =
440 			pll_patameters.ucPllPostDiv;
441 		dividers->uc_pll_cntl_flag =
442 			pll_patameters.ucPllCntlFlag;
443 	}
444 
445 	return result;
446 }
447 
atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_ai * dividers)448 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
449 		uint32_t clock_value,
450 		pp_atomctrl_clock_dividers_ai *dividers)
451 {
452 	struct amdgpu_device *adev = hwmgr->adev;
453 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
454 	int result;
455 
456 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
457 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
458 
459 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
460 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
461 		(uint32_t *)&pll_patameters, sizeof(pll_patameters));
462 
463 	if (0 == result) {
464 		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
465 		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
466 		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
467 		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
468 		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
469 		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
470 		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
471 		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
472 		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
473 		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
474 		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
475 	}
476 	return result;
477 }
478 
atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_vi * dividers)479 int atomctrl_get_dfs_pll_dividers_vi(
480 		struct pp_hwmgr *hwmgr,
481 		uint32_t clock_value,
482 		pp_atomctrl_clock_dividers_vi *dividers)
483 {
484 	struct amdgpu_device *adev = hwmgr->adev;
485 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
486 	int result;
487 
488 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
489 	pll_patameters.ulClock.ucPostDiv =
490 		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
491 
492 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
493 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
494 		(uint32_t *)&pll_patameters, sizeof(pll_patameters));
495 
496 	if (0 == result) {
497 		dividers->pll_post_divider =
498 			pll_patameters.ulClock.ucPostDiv;
499 		dividers->real_clock =
500 			le32_to_cpu(pll_patameters.ulClock.ulClock);
501 
502 		dividers->ul_fb_div.ul_fb_div_frac =
503 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
504 		dividers->ul_fb_div.ul_fb_div =
505 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
506 
507 		dividers->uc_pll_ref_div =
508 			pll_patameters.ucPllRefDiv;
509 		dividers->uc_pll_post_div =
510 			pll_patameters.ucPllPostDiv;
511 		dividers->uc_pll_cntl_flag =
512 			pll_patameters.ucPllCntlFlag;
513 	}
514 
515 	return result;
516 }
517 
518 /*
519  * Get the reference clock in 10KHz
520  */
atomctrl_get_reference_clock(struct pp_hwmgr * hwmgr)521 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
522 {
523 	ATOM_FIRMWARE_INFO *fw_info;
524 	u8 frev, crev;
525 	u16 size;
526 	uint32_t clock;
527 
528 	fw_info = (ATOM_FIRMWARE_INFO *)
529 		smu_atom_get_data_table(hwmgr->adev,
530 			GetIndexIntoMasterTable(DATA, FirmwareInfo),
531 			&size, &frev, &crev);
532 
533 	if (fw_info == NULL)
534 		clock = 2700;
535 	else
536 		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
537 
538 	return clock;
539 }
540 
541 /*
542  * Returns true if the given voltage type is controlled by GPIO pins.
543  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
544  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
545  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
546  */
atomctrl_is_voltage_controlled_by_gpio_v3(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint8_t voltage_mode)547 bool atomctrl_is_voltage_controlled_by_gpio_v3(
548 		struct pp_hwmgr *hwmgr,
549 		uint8_t voltage_type,
550 		uint8_t voltage_mode)
551 {
552 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
553 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
554 	bool ret;
555 
556 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
557 			"Could not find Voltage Table in BIOS.", return false;);
558 
559 	ret = (NULL != atomctrl_lookup_voltage_type_v3
560 			(voltage_info, voltage_type, voltage_mode)) ? true : false;
561 
562 	return ret;
563 }
564 
atomctrl_get_voltage_table_v3(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint8_t voltage_mode,pp_atomctrl_voltage_table * voltage_table)565 int atomctrl_get_voltage_table_v3(
566 		struct pp_hwmgr *hwmgr,
567 		uint8_t voltage_type,
568 		uint8_t voltage_mode,
569 		pp_atomctrl_voltage_table *voltage_table)
570 {
571 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
572 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
573 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
574 	unsigned int i;
575 
576 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
577 			"Could not find Voltage Table in BIOS.", return -1;);
578 
579 	voltage_object = atomctrl_lookup_voltage_type_v3
580 		(voltage_info, voltage_type, voltage_mode);
581 
582 	if (voltage_object == NULL)
583 		return -1;
584 
585 	PP_ASSERT_WITH_CODE(
586 			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
587 			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
588 			"Too many voltage entries!",
589 			return -1;
590 			);
591 
592 	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
593 		voltage_table->entries[i].value =
594 			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
595 		voltage_table->entries[i].smio_low =
596 			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
597 	}
598 
599 	voltage_table->mask_low    =
600 		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
601 	voltage_table->count      =
602 		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
603 	voltage_table->phase_delay =
604 		voltage_object->asGpioVoltageObj.ucPhaseDelay;
605 
606 	return 0;
607 }
608 
atomctrl_lookup_gpio_pin(ATOM_GPIO_PIN_LUT * gpio_lookup_table,const uint32_t pinId,pp_atomctrl_gpio_pin_assignment * gpio_pin_assignment)609 static bool atomctrl_lookup_gpio_pin(
610 		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
611 		const uint32_t pinId,
612 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
613 {
614 	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
615 	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
616 	uint8_t *start = (uint8_t *)gpio_lookup_table;
617 
618 	while (offset < size) {
619 		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
620 			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
621 
622 		if (pinId == pin_assignment->ucGPIO_ID) {
623 			gpio_pin_assignment->uc_gpio_pin_bit_shift =
624 				pin_assignment->ucGpioPinBitShift;
625 			gpio_pin_assignment->us_gpio_pin_aindex =
626 				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
627 			return true;
628 		}
629 
630 		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
631 	}
632 
633 	return false;
634 }
635 
636 /*
637  * Private Function to get the PowerPlay Table Address.
638  * WARNING: The tabled returned by this function is in
639  * dynamically allocated memory.
640  * The caller has to release if by calling kfree.
641  */
get_gpio_lookup_table(void * device)642 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
643 {
644 	u8 frev, crev;
645 	u16 size;
646 	void *table_address;
647 
648 	table_address = (ATOM_GPIO_PIN_LUT *)
649 		smu_atom_get_data_table(device,
650 				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
651 				&size, &frev, &crev);
652 
653 	PP_ASSERT_WITH_CODE((NULL != table_address),
654 			"Error retrieving BIOS Table Address!", return NULL;);
655 
656 	return (ATOM_GPIO_PIN_LUT *)table_address;
657 }
658 
659 /*
660  * Returns 1 if the given pin id find in lookup table.
661  */
atomctrl_get_pp_assign_pin(struct pp_hwmgr * hwmgr,const uint32_t pinId,pp_atomctrl_gpio_pin_assignment * gpio_pin_assignment)662 bool atomctrl_get_pp_assign_pin(
663 		struct pp_hwmgr *hwmgr,
664 		const uint32_t pinId,
665 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
666 {
667 	bool bRet = false;
668 	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
669 		get_gpio_lookup_table(hwmgr->adev);
670 
671 	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
672 			"Could not find GPIO lookup Table in BIOS.", return false);
673 
674 	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
675 		gpio_pin_assignment);
676 
677 	return bRet;
678 }
679 
atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint32_t sclk,uint16_t virtual_voltage_Id,uint16_t * voltage,uint16_t dpm_level,bool debug)680 int atomctrl_calculate_voltage_evv_on_sclk(
681 		struct pp_hwmgr *hwmgr,
682 		uint8_t voltage_type,
683 		uint32_t sclk,
684 		uint16_t virtual_voltage_Id,
685 		uint16_t *voltage,
686 		uint16_t dpm_level,
687 		bool debug)
688 {
689 	ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
690 	struct amdgpu_device *adev = hwmgr->adev;
691 	EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
692 	EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
693 	EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
694 	EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
695 	EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
696 	EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
697 	EFUSE_INPUT_PARAMETER sInput_FuseValues;
698 	READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
699 
700 	uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
701 	fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
702 	fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
703 	fInt fLkg_FT, repeat;
704 	fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
705 	fInt fRLL_LoadLine, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
706 	fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
707 	fInt fSclk_margin, fSclk, fEVV_V;
708 	fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
709 	uint32_t ul_FT_Lkg_V0NORM;
710 	fInt fLn_MaxDivMin, fMin, fAverage, fRange;
711 	fInt fRoots[2];
712 	fInt fStepSize = GetScaledFraction(625, 100000);
713 
714 	int result;
715 
716 	getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
717 			smu_atom_get_data_table(hwmgr->adev,
718 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
719 					NULL, NULL, NULL);
720 
721 	if (!getASICProfilingInfo)
722 		return -1;
723 
724 	if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
725 	    (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
726 	     getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
727 		return -1;
728 
729 	/*-----------------------------------------------------------
730 	 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
731 	 *-----------------------------------------------------------
732 	 */
733 	fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
734 
735 	switch (dpm_level) {
736 	case 1:
737 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
738 		break;
739 	case 2:
740 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
741 		break;
742 	case 3:
743 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
744 		break;
745 	case 4:
746 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
747 		break;
748 	case 5:
749 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
750 		break;
751 	case 6:
752 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
753 		break;
754 	case 7:
755 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
756 		break;
757 	default:
758 		pr_err("DPM Level not supported\n");
759 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
760 	}
761 
762 	/*-------------------------
763 	 * DECODING FUSE VALUES
764 	 * ------------------------
765 	 */
766 	/*Decode RO_Fused*/
767 	sRO_fuse = getASICProfilingInfo->sRoFuse;
768 
769 	sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
770 	sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
771 	sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
772 
773 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
774 
775 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
776 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
777 			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
778 
779 	if (result)
780 		return result;
781 
782 	/* Finally, the actual fuse value */
783 	ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
784 	fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
785 	fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
786 	fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
787 
788 	sCACm_fuse = getASICProfilingInfo->sCACm;
789 
790 	sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
791 	sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
792 	sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
793 
794 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
795 
796 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
797 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
798 			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
799 
800 	if (result)
801 		return result;
802 
803 	ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
804 	fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
805 	fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
806 
807 	fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
808 
809 	sCACb_fuse = getASICProfilingInfo->sCACb;
810 
811 	sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
812 	sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
813 	sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
814 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
815 
816 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
817 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
818 			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
819 
820 	if (result)
821 		return result;
822 
823 	ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
824 	fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
825 	fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
826 
827 	fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
828 
829 	sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
830 
831 	sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
832 	sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
833 	sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
834 
835 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
836 
837 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
838 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
839 			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
840 
841 	if (result)
842 		return result;
843 
844 	ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
845 	fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
846 	fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
847 
848 	fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
849 			fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
850 
851 	sKv_m_fuse = getASICProfilingInfo->sKv_m;
852 
853 	sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
854 	sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
855 	sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
856 
857 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
858 
859 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
860 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
861 			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
862 	if (result)
863 		return result;
864 
865 	ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
866 	fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
867 	fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
868 	fRange = fMultiply(fRange, ConvertToFraction(-1));
869 
870 	fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
871 			fAverage, fRange, sKv_m_fuse.ucEfuseLength);
872 
873 	sKv_b_fuse = getASICProfilingInfo->sKv_b;
874 
875 	sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
876 	sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
877 	sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
878 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
879 
880 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
881 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
882 			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
883 
884 	if (result)
885 		return result;
886 
887 	ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
888 	fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
889 	fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
890 
891 	fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
892 			fAverage, fRange, sKv_b_fuse.ucEfuseLength);
893 
894 	/* Decoding the Leakage - No special struct container */
895 	/*
896 	 * usLkgEuseIndex=56
897 	 * ucLkgEfuseBitLSB=6
898 	 * ucLkgEfuseLength=10
899 	 * ulLkgEncodeLn_MaxDivMin=69077
900 	 * ulLkgEncodeMax=1000000
901 	 * ulLkgEncodeMin=1000
902 	 * ulEfuseLogisticAlpha=13
903 	 */
904 
905 	sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
906 	sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
907 	sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
908 
909 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
910 
911 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
912 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
913 			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
914 
915 	if (result)
916 		return result;
917 
918 	ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
919 	fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
920 	fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
921 
922 	fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
923 			fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
924 	fLkg_FT = fFT_Lkg_V0NORM;
925 
926 	/*-------------------------------------------
927 	 * PART 2 - Grabbing all required values
928 	 *-------------------------------------------
929 	 */
930 	fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
931 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
932 	fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
933 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
934 	fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
935 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
936 	fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
937 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
938 	fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
939 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
940 	fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
941 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
942 	fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
943 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
944 	fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
945 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
946 
947 	fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
948 	fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
949 	fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
950 
951 	fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
952 
953 	fMargin_FMAX_mean = GetScaledFraction(
954 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
955 	fMargin_Plat_mean = GetScaledFraction(
956 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
957 	fMargin_FMAX_sigma = GetScaledFraction(
958 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
959 	fMargin_Plat_sigma = GetScaledFraction(
960 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
961 
962 	fMargin_DC_sigma = GetScaledFraction(
963 		le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
964 	fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
965 
966 	fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
967 	fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
968 	fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
969 	fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
970 	fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
971 
972 	fSclk = GetScaledFraction(sclk, 100);
973 
974 	fV_max = fDivide(GetScaledFraction(
975 				 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
976 	fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
977 	fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
978 	fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
979 	fV_FT = fDivide(GetScaledFraction(
980 				le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
981 	fV_min = fDivide(GetScaledFraction(
982 				 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
983 
984 	/*-----------------------
985 	 * PART 3
986 	 *-----------------------
987 	 */
988 
989 	fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
990 	fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
991 	fC_Term = fAdd(fMargin_RO_c,
992 			fAdd(fMultiply(fSM_A0, fLkg_FT),
993 			fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
994 			fAdd(fMultiply(fSM_A3, fSclk),
995 			fSubtract(fSM_A7, fRO_fused)))));
996 
997 	fVDDC_base = fSubtract(fRO_fused,
998 			fSubtract(fMargin_RO_c,
999 					fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
1000 	fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
1001 
1002 	repeat = fSubtract(fVDDC_base,
1003 			fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
1004 
1005 	fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
1006 			fGetSquare(repeat)),
1007 			fAdd(fMultiply(fMargin_RO_b, repeat),
1008 			fMargin_RO_c));
1009 
1010 	fDC_SCLK = fSubtract(fRO_fused,
1011 			fSubtract(fRO_DC_margin,
1012 			fSubtract(fSM_A3,
1013 			fMultiply(fSM_A2, repeat))));
1014 	fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
1015 
1016 	fSigma_DC = fSubtract(fSclk, fDC_SCLK);
1017 
1018 	fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
1019 	fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
1020 	fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
1021 	fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
1022 
1023 	fSquared_Sigma_DC = fGetSquare(fSigma_DC);
1024 	fSquared_Sigma_CR = fGetSquare(fSigma_CR);
1025 	fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
1026 
1027 	fSclk_margin = fAdd(fMicro_FMAX,
1028 			fAdd(fMicro_CR,
1029 			fAdd(fMargin_fixed,
1030 			fSqrt(fAdd(fSquared_Sigma_FMAX,
1031 			fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
1032 	/*
1033 	 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
1034 	 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
1035 	 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
1036 	 */
1037 
1038 	fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
1039 	fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
1040 	fC_Term = fAdd(fRO_DC_margin,
1041 			fAdd(fMultiply(fSM_A0, fLkg_FT),
1042 			fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
1043 			fAdd(fSclk, fSclk_margin)),
1044 			fAdd(fMultiply(fSM_A3,
1045 			fAdd(fSclk, fSclk_margin)),
1046 			fSubtract(fSM_A7, fRO_fused)))));
1047 
1048 	SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
1049 
1050 	if (GreaterThan(fRoots[0], fRoots[1]))
1051 		fEVV_V = fRoots[1];
1052 	else
1053 		fEVV_V = fRoots[0];
1054 
1055 	if (GreaterThan(fV_min, fEVV_V))
1056 		fEVV_V = fV_min;
1057 	else if (GreaterThan(fEVV_V, fV_max))
1058 		fEVV_V = fSubtract(fV_max, fStepSize);
1059 
1060 	fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
1061 
1062 	/*-----------------
1063 	 * PART 4
1064 	 *-----------------
1065 	 */
1066 
1067 	fV_x = fV_min;
1068 
1069 	while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1070 		fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1071 				fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1072 				fGetSquare(fV_x)), fDerateTDP);
1073 
1074 		fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1075 				fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1076 				fT_prod), fKv_b_fused), fV_x)), fV_x)));
1077 		fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1078 				fKt_Beta_fused, fT_prod)));
1079 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1080 				fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1081 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1082 				fKt_Beta_fused, fT_FT)));
1083 
1084 		fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1085 
1086 		fTDP_Current = fDivide(fTDP_Power, fV_x);
1087 
1088 		fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1089 				ConvertToFraction(10)));
1090 
1091 		fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1092 
1093 		if (GreaterThan(fV_max, fV_NL) &&
1094 			(GreaterThan(fV_NL, fEVV_V) ||
1095 			Equal(fV_NL, fEVV_V))) {
1096 			fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1097 
1098 			*voltage = (uint16_t)fV_NL.partial.real;
1099 			break;
1100 		} else
1101 			fV_x = fAdd(fV_x, fStepSize);
1102 	}
1103 
1104 	return result;
1105 }
1106 
1107 /**
1108  * atomctrl_get_voltage_evv_on_sclk: gets voltage via call to ATOM COMMAND table.
1109  * @hwmgr:              input: pointer to hwManager
1110  * @voltage_type:       input: type of EVV voltage VDDC or VDDGFX
1111  * @sclk:               input: in 10Khz unit. DPM state SCLK frequency
1112  *		         which is define in PPTable SCLK/VDDC dependence
1113  *			 table associated with this virtual_voltage_Id
1114  * @virtual_voltage_Id: input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1115  * @voltage: 	        output: real voltage level in unit of mv
1116  */
atomctrl_get_voltage_evv_on_sclk(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint32_t sclk,uint16_t virtual_voltage_Id,uint16_t * voltage)1117 int atomctrl_get_voltage_evv_on_sclk(
1118 		struct pp_hwmgr *hwmgr,
1119 		uint8_t voltage_type,
1120 		uint32_t sclk, uint16_t virtual_voltage_Id,
1121 		uint16_t *voltage)
1122 {
1123 	struct amdgpu_device *adev = hwmgr->adev;
1124 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1125 	int result;
1126 
1127 	get_voltage_info_param_space.ucVoltageType   =
1128 		voltage_type;
1129 	get_voltage_info_param_space.ucVoltageMode   =
1130 		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1131 	get_voltage_info_param_space.usVoltageLevel  =
1132 		cpu_to_le16(virtual_voltage_Id);
1133 	get_voltage_info_param_space.ulSCLKFreq      =
1134 		cpu_to_le32(sclk);
1135 
1136 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1137 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1138 			(uint32_t *)&get_voltage_info_param_space, sizeof(get_voltage_info_param_space));
1139 
1140 	*voltage = result ? 0 :
1141 			le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1142 				(&get_voltage_info_param_space))->usVoltageLevel);
1143 
1144 	return result;
1145 }
1146 
1147 /**
1148  * atomctrl_get_voltage_evv: gets voltage via call to ATOM COMMAND table.
1149  * @hwmgr:              input: pointer to hwManager
1150  * @virtual_voltage_id: input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1151  * @voltage: 	       output: real voltage level in unit of mv
1152  */
atomctrl_get_voltage_evv(struct pp_hwmgr * hwmgr,uint16_t virtual_voltage_id,uint16_t * voltage)1153 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1154 			     uint16_t virtual_voltage_id,
1155 			     uint16_t *voltage)
1156 {
1157 	struct amdgpu_device *adev = hwmgr->adev;
1158 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1159 	int result;
1160 	int entry_id;
1161 
1162 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1163 	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1164 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1165 			/* found */
1166 			break;
1167 		}
1168 	}
1169 
1170 	if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1171 	        pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1172 	        return -EINVAL;
1173 	}
1174 
1175 	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1176 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1177 	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1178 	get_voltage_info_param_space.ulSCLKFreq =
1179 		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1180 
1181 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1182 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1183 			(uint32_t *)&get_voltage_info_param_space, sizeof(get_voltage_info_param_space));
1184 
1185 	if (0 != result)
1186 		return result;
1187 
1188 	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1189 				(&get_voltage_info_param_space))->usVoltageLevel);
1190 
1191 	return result;
1192 }
1193 
1194 /*
1195  * Get the mpll reference clock in 10KHz
1196  */
atomctrl_get_mpll_reference_clock(struct pp_hwmgr * hwmgr)1197 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1198 {
1199 	ATOM_COMMON_TABLE_HEADER *fw_info;
1200 	uint32_t clock;
1201 	u8 frev, crev;
1202 	u16 size;
1203 
1204 	fw_info = (ATOM_COMMON_TABLE_HEADER *)
1205 		smu_atom_get_data_table(hwmgr->adev,
1206 				GetIndexIntoMasterTable(DATA, FirmwareInfo),
1207 				&size, &frev, &crev);
1208 
1209 	if (fw_info == NULL)
1210 		clock = 2700;
1211 	else {
1212 		if ((fw_info->ucTableFormatRevision == 2) &&
1213 			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1214 			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1215 				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1216 			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1217 		} else {
1218 			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1219 				(ATOM_FIRMWARE_INFO *)fw_info;
1220 			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1221 		}
1222 	}
1223 
1224 	return clock;
1225 }
1226 
1227 /*
1228  * Get the asic internal spread spectrum table
1229  */
asic_internal_ss_get_ss_table(void * device)1230 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1231 {
1232 	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1233 	u8 frev, crev;
1234 	u16 size;
1235 
1236 	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1237 		smu_atom_get_data_table(device,
1238 			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1239 			&size, &frev, &crev);
1240 
1241 	return table;
1242 }
1243 
atomctrl_is_asic_internal_ss_supported(struct pp_hwmgr * hwmgr)1244 bool atomctrl_is_asic_internal_ss_supported(struct pp_hwmgr *hwmgr)
1245 {
1246 	ATOM_ASIC_INTERNAL_SS_INFO *table =
1247 		asic_internal_ss_get_ss_table(hwmgr->adev);
1248 
1249 	if (table)
1250 		return true;
1251 	else
1252 		return false;
1253 }
1254 
1255 /*
1256  * Get the asic internal spread spectrum assignment
1257  */
asic_internal_ss_get_ss_asignment(struct pp_hwmgr * hwmgr,const uint8_t clockSource,const uint32_t clockSpeed,pp_atomctrl_internal_ss_info * ssEntry)1258 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1259 		const uint8_t clockSource,
1260 		const uint32_t clockSpeed,
1261 		pp_atomctrl_internal_ss_info *ssEntry)
1262 {
1263 	ATOM_ASIC_INTERNAL_SS_INFO *table;
1264 	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1265 	int entry_found = 0;
1266 
1267 	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1268 
1269 	table = asic_internal_ss_get_ss_table(hwmgr->adev);
1270 
1271 	if (NULL == table)
1272 		return -1;
1273 
1274 	ssInfo = &table->asSpreadSpectrum[0];
1275 
1276 	while (((uint8_t *)ssInfo - (uint8_t *)table) <
1277 		le16_to_cpu(table->sHeader.usStructureSize)) {
1278 		if ((clockSource == ssInfo->ucClockIndication) &&
1279 			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1280 			entry_found = 1;
1281 			break;
1282 		}
1283 
1284 		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1285 				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1286 	}
1287 
1288 	if (entry_found) {
1289 		ssEntry->speed_spectrum_percentage =
1290 			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1291 		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1292 
1293 		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1294 			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1295 			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1296 			ssEntry->speed_spectrum_rate /= 100;
1297 		}
1298 
1299 		switch (ssInfo->ucSpreadSpectrumMode) {
1300 		case 0:
1301 			ssEntry->speed_spectrum_mode =
1302 				pp_atomctrl_spread_spectrum_mode_down;
1303 			break;
1304 		case 1:
1305 			ssEntry->speed_spectrum_mode =
1306 				pp_atomctrl_spread_spectrum_mode_center;
1307 			break;
1308 		default:
1309 			ssEntry->speed_spectrum_mode =
1310 				pp_atomctrl_spread_spectrum_mode_down;
1311 			break;
1312 		}
1313 	}
1314 
1315 	return entry_found ? 0 : 1;
1316 }
1317 
1318 /*
1319  * Get the memory clock spread spectrum info
1320  */
atomctrl_get_memory_clock_spread_spectrum(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,pp_atomctrl_internal_ss_info * ssInfo)1321 int atomctrl_get_memory_clock_spread_spectrum(
1322 		struct pp_hwmgr *hwmgr,
1323 		const uint32_t memory_clock,
1324 		pp_atomctrl_internal_ss_info *ssInfo)
1325 {
1326 	return asic_internal_ss_get_ss_asignment(hwmgr,
1327 			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1328 }
1329 
1330 /*
1331  * Get the engine clock spread spectrum info
1332  */
atomctrl_get_engine_clock_spread_spectrum(struct pp_hwmgr * hwmgr,const uint32_t engine_clock,pp_atomctrl_internal_ss_info * ssInfo)1333 int atomctrl_get_engine_clock_spread_spectrum(
1334 		struct pp_hwmgr *hwmgr,
1335 		const uint32_t engine_clock,
1336 		pp_atomctrl_internal_ss_info *ssInfo)
1337 {
1338 	return asic_internal_ss_get_ss_asignment(hwmgr,
1339 			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1340 }
1341 
atomctrl_read_efuse(struct pp_hwmgr * hwmgr,uint16_t start_index,uint16_t end_index,uint32_t * efuse)1342 int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
1343 		uint16_t end_index, uint32_t *efuse)
1344 {
1345 	struct amdgpu_device *adev = hwmgr->adev;
1346 	uint32_t mask;
1347 	int result;
1348 	READ_EFUSE_VALUE_PARAMETER efuse_param;
1349 
1350 	if ((end_index - start_index)  == 31)
1351 		mask = 0xFFFFFFFF;
1352 	else
1353 		mask = (1 << ((end_index - start_index) + 1)) - 1;
1354 
1355 	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1356 	efuse_param.sEfuse.ucBitShift = (uint8_t)
1357 			(start_index - ((start_index / 32) * 32));
1358 	efuse_param.sEfuse.ucBitLength  = (uint8_t)
1359 			((end_index - start_index) + 1);
1360 
1361 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1362 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1363 			(uint32_t *)&efuse_param, sizeof(efuse_param));
1364 	*efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1365 
1366 	return result;
1367 }
1368 
atomctrl_set_ac_timing_ai(struct pp_hwmgr * hwmgr,uint32_t memory_clock,uint8_t level)1369 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1370 			      uint8_t level)
1371 {
1372 	struct amdgpu_device *adev = hwmgr->adev;
1373 	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1374 	int result;
1375 
1376 	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1377 		memory_clock & SET_CLOCK_FREQ_MASK;
1378 	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1379 		ADJUST_MC_SETTING_PARAM;
1380 	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1381 
1382 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1383 		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1384 		(uint32_t *)&memory_clock_parameters, sizeof(memory_clock_parameters));
1385 
1386 	return result;
1387 }
1388 
atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint32_t sclk,uint16_t virtual_voltage_Id,uint32_t * voltage)1389 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1390 				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1391 {
1392 	struct amdgpu_device *adev = hwmgr->adev;
1393 	int result;
1394 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1395 
1396 	get_voltage_info_param_space.ucVoltageType = voltage_type;
1397 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1398 	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1399 	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1400 
1401 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1402 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1403 			(uint32_t *)&get_voltage_info_param_space, sizeof(get_voltage_info_param_space));
1404 
1405 	*voltage = result ? 0 :
1406 		le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1407 
1408 	return result;
1409 }
1410 
atomctrl_get_smc_sclk_range_table(struct pp_hwmgr * hwmgr,struct pp_atom_ctrl_sclk_range_table * table)1411 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1412 {
1413 
1414 	int i;
1415 	u8 frev, crev;
1416 	u16 size;
1417 
1418 	ATOM_SMU_INFO_V2_1 *psmu_info =
1419 		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1420 			GetIndexIntoMasterTable(DATA, SMU_Info),
1421 			&size, &frev, &crev);
1422 
1423 
1424 	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1425 		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1426 		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1427 		table->entry[i].usFcw_pcc =
1428 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1429 		table->entry[i].usFcw_trans_upper =
1430 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1431 		table->entry[i].usRcw_trans_lower =
1432 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1433 	}
1434 
1435 	return 0;
1436 }
1437 
atomctrl_get_vddc_shared_railinfo(struct pp_hwmgr * hwmgr,uint8_t * shared_rail)1438 int atomctrl_get_vddc_shared_railinfo(struct pp_hwmgr *hwmgr, uint8_t *shared_rail)
1439 {
1440 	ATOM_SMU_INFO_V2_1 *psmu_info =
1441 		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1442 			GetIndexIntoMasterTable(DATA, SMU_Info),
1443 			NULL, NULL, NULL);
1444 	if (!psmu_info)
1445 		return -1;
1446 
1447 	*shared_rail = psmu_info->ucSharePowerSource;
1448 
1449 	return 0;
1450 }
1451 
atomctrl_get_avfs_information(struct pp_hwmgr * hwmgr,struct pp_atom_ctrl__avfs_parameters * param)1452 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1453 				  struct pp_atom_ctrl__avfs_parameters *param)
1454 {
1455 	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1456 
1457 	if (param == NULL)
1458 		return -EINVAL;
1459 
1460 	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1461 			smu_atom_get_data_table(hwmgr->adev,
1462 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1463 					NULL, NULL, NULL);
1464 	if (!profile)
1465 		return -1;
1466 
1467 	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1468 	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1469 	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1470 	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1471 	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1472 	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1473 	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1474 	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1475 	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1476 	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1477 	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1478 	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1479 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1480 	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1481 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1482 	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1483 	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1484 	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1485 	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1486 	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1487 	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1488 	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1489 	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1490 	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1491 	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1492 
1493 	return 0;
1494 }
1495 
atomctrl_get_svi2_info(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint8_t * svd_gpio_id,uint8_t * svc_gpio_id,uint16_t * load_line)1496 int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1497 				uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1498 				uint16_t *load_line)
1499 {
1500 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1501 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
1502 
1503 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1504 
1505 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
1506 			"Could not find Voltage Table in BIOS.", return -EINVAL);
1507 
1508 	voltage_object = atomctrl_lookup_voltage_type_v3
1509 		(voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1510 
1511 	*svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1512 	*svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1513 	*load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1514 
1515 	return 0;
1516 }
1517 
atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr * hwmgr,uint16_t * virtual_voltage_id)1518 int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1519 {
1520 	struct amdgpu_device *adev = hwmgr->adev;
1521 	SET_VOLTAGE_PS_ALLOCATION allocation;
1522 	SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1523 			(SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1524 	int result;
1525 
1526 	voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1527 
1528 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1529 			GetIndexIntoMasterTable(COMMAND, SetVoltage),
1530 			(uint32_t *)voltage_parameters, sizeof(*voltage_parameters));
1531 
1532 	*virtual_voltage_id = voltage_parameters->usVoltageLevel;
1533 
1534 	return result;
1535 }
1536 
atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr * hwmgr,uint16_t * vddc,uint16_t * vddci,uint16_t virtual_voltage_id,uint16_t efuse_voltage_id)1537 int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1538 					uint16_t *vddc, uint16_t *vddci,
1539 					uint16_t virtual_voltage_id,
1540 					uint16_t efuse_voltage_id)
1541 {
1542 	int i, j;
1543 	int ix;
1544 	u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1545 	ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1546 
1547 	*vddc = 0;
1548 	*vddci = 0;
1549 
1550 	ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1551 
1552 	profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1553 			smu_atom_get_data_table(hwmgr->adev,
1554 					ix,
1555 					NULL, NULL, NULL);
1556 	if (!profile)
1557 		return -EINVAL;
1558 
1559 	if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1560 		(profile->asHeader.ucTableContentRevision >= 1) &&
1561 		(profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1562 		leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1563 		vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1564 		vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1565 		if (profile->ucElbVDDC_Num > 0) {
1566 			for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1567 				if (vddc_id_buf[i] == virtual_voltage_id) {
1568 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1569 						if (efuse_voltage_id <= leakage_bin[j]) {
1570 							*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1571 							break;
1572 						}
1573 					}
1574 					break;
1575 				}
1576 			}
1577 		}
1578 
1579 		vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1580 		vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1581 		if (profile->ucElbVDDCI_Num > 0) {
1582 			for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1583 				if (vddci_id_buf[i] == virtual_voltage_id) {
1584 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1585 						if (efuse_voltage_id <= leakage_bin[j]) {
1586 							*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1587 							break;
1588 						}
1589 					}
1590 					break;
1591 				}
1592 			}
1593 		}
1594 	}
1595 
1596 	return 0;
1597 }
1598 
atomctrl_get_voltage_range(struct pp_hwmgr * hwmgr,uint32_t * max_vddc,uint32_t * min_vddc)1599 void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
1600 							uint32_t *min_vddc)
1601 {
1602 	void *profile;
1603 
1604 	profile = smu_atom_get_data_table(hwmgr->adev,
1605 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1606 					NULL, NULL, NULL);
1607 
1608 	if (profile) {
1609 		switch (hwmgr->chip_id) {
1610 		case CHIP_TONGA:
1611 		case CHIP_FIJI:
1612 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
1613 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
1614 			return;
1615 		case CHIP_POLARIS11:
1616 		case CHIP_POLARIS10:
1617 		case CHIP_POLARIS12:
1618 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
1619 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
1620 			return;
1621 		default:
1622 			break;
1623 		}
1624 	}
1625 	*max_vddc = 0;
1626 	*min_vddc = 0;
1627 }
1628 
atomctrl_get_edc_hilo_leakage_offset_table(struct pp_hwmgr * hwmgr,AtomCtrl_HiLoLeakageOffsetTable * table)1629 int atomctrl_get_edc_hilo_leakage_offset_table(struct pp_hwmgr *hwmgr,
1630 					       AtomCtrl_HiLoLeakageOffsetTable *table)
1631 {
1632 	ATOM_GFX_INFO_V2_3 *gfxinfo = smu_atom_get_data_table(hwmgr->adev,
1633 					GetIndexIntoMasterTable(DATA, GFX_Info),
1634 					NULL, NULL, NULL);
1635 	if (!gfxinfo)
1636 		return -ENOENT;
1637 
1638 	table->usHiLoLeakageThreshold = gfxinfo->usHiLoLeakageThreshold;
1639 	table->usEdcDidtLoDpm7TableOffset = gfxinfo->usEdcDidtLoDpm7TableOffset;
1640 	table->usEdcDidtHiDpm7TableOffset = gfxinfo->usEdcDidtHiDpm7TableOffset;
1641 
1642 	return 0;
1643 }
1644 
get_edc_leakage_table(struct pp_hwmgr * hwmgr,uint16_t offset)1645 static AtomCtrl_EDCLeakgeTable *get_edc_leakage_table(struct pp_hwmgr *hwmgr,
1646 						      uint16_t offset)
1647 {
1648 	void *table_address;
1649 	char *temp;
1650 
1651 	table_address = smu_atom_get_data_table(hwmgr->adev,
1652 			GetIndexIntoMasterTable(DATA, GFX_Info),
1653 			NULL, NULL, NULL);
1654 	if (!table_address)
1655 		return NULL;
1656 
1657 	temp = (char *)table_address;
1658 	table_address += offset;
1659 
1660 	return (AtomCtrl_EDCLeakgeTable *)temp;
1661 }
1662 
atomctrl_get_edc_leakage_table(struct pp_hwmgr * hwmgr,AtomCtrl_EDCLeakgeTable * table,uint16_t offset)1663 int atomctrl_get_edc_leakage_table(struct pp_hwmgr *hwmgr,
1664 				   AtomCtrl_EDCLeakgeTable *table,
1665 				   uint16_t offset)
1666 {
1667 	uint32_t length, i;
1668 	AtomCtrl_EDCLeakgeTable *leakage_table =
1669 		get_edc_leakage_table(hwmgr, offset);
1670 
1671 	if (!leakage_table)
1672 		return -ENOENT;
1673 
1674 	length = sizeof(leakage_table->DIDT_REG) /
1675 		 sizeof(leakage_table->DIDT_REG[0]);
1676 	for (i = 0; i < length; i++)
1677 		table->DIDT_REG[i] = leakage_table->DIDT_REG[i];
1678 
1679 	return 0;
1680 }
1681