1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *  libata-core.c - helper library for ATA
4   *
5   *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6   *  Copyright 2003-2004 Jeff Garzik
7   *
8   *  libata documentation is available via 'make {ps|pdf}docs',
9   *  as Documentation/driver-api/libata.rst
10   *
11   *  Hardware documentation available from http://www.t13.org/ and
12   *  http://www.sata-io.org/
13   *
14   *  Standards documents from:
15   *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16   *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17   *	http://www.sata-io.org (SATA)
18   *	http://www.compactflash.org (CF)
19   *	http://www.qic.org (QIC157 - Tape and DSC)
20   *	http://www.ce-ata.org (CE-ATA: not supported)
21   *
22   * libata is essentially a library of internal helper functions for
23   * low-level ATA host controller drivers.  As such, the API/ABI is
24   * likely to change as new drivers are added and updated.
25   * Do not depend on ABI/API stability.
26   */
27  
28  #include <linux/kernel.h>
29  #include <linux/module.h>
30  #include <linux/pci.h>
31  #include <linux/init.h>
32  #include <linux/list.h>
33  #include <linux/mm.h>
34  #include <linux/spinlock.h>
35  #include <linux/blkdev.h>
36  #include <linux/delay.h>
37  #include <linux/timer.h>
38  #include <linux/time.h>
39  #include <linux/interrupt.h>
40  #include <linux/completion.h>
41  #include <linux/suspend.h>
42  #include <linux/workqueue.h>
43  #include <linux/scatterlist.h>
44  #include <linux/io.h>
45  #include <linux/log2.h>
46  #include <linux/slab.h>
47  #include <linux/glob.h>
48  #include <scsi/scsi.h>
49  #include <scsi/scsi_cmnd.h>
50  #include <scsi/scsi_host.h>
51  #include <linux/libata.h>
52  #include <asm/byteorder.h>
53  #include <linux/unaligned.h>
54  #include <linux/cdrom.h>
55  #include <linux/ratelimit.h>
56  #include <linux/leds.h>
57  #include <linux/pm_runtime.h>
58  #include <linux/platform_device.h>
59  #include <asm/setup.h>
60  
61  #define CREATE_TRACE_POINTS
62  #include <trace/events/libata.h>
63  
64  #include "libata.h"
65  #include "libata-transport.h"
66  
67  const struct ata_port_operations ata_base_port_ops = {
68  	.prereset		= ata_std_prereset,
69  	.postreset		= ata_std_postreset,
70  	.error_handler		= ata_std_error_handler,
71  	.sched_eh		= ata_std_sched_eh,
72  	.end_eh			= ata_std_end_eh,
73  };
74  
75  static unsigned int ata_dev_init_params(struct ata_device *dev,
76  					u16 heads, u16 sectors);
77  static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78  static void ata_dev_xfermask(struct ata_device *dev);
79  static unsigned int ata_dev_quirks(const struct ata_device *dev);
80  
81  static DEFINE_IDA(ata_ida);
82  
83  #ifdef CONFIG_ATA_FORCE
84  struct ata_force_param {
85  	const char	*name;
86  	u8		cbl;
87  	u8		spd_limit;
88  	unsigned int	xfer_mask;
89  	unsigned int	quirk_on;
90  	unsigned int	quirk_off;
91  	u16		lflags_on;
92  	u16		lflags_off;
93  };
94  
95  struct ata_force_ent {
96  	int			port;
97  	int			device;
98  	struct ata_force_param	param;
99  };
100  
101  static struct ata_force_ent *ata_force_tbl;
102  static int ata_force_tbl_size;
103  
104  static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
105  /* param_buf is thrown away after initialization, disallow read */
106  module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
107  MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
108  #endif
109  
110  static int atapi_enabled = 1;
111  module_param(atapi_enabled, int, 0444);
112  MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
113  
114  static int atapi_dmadir = 0;
115  module_param(atapi_dmadir, int, 0444);
116  MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
117  
118  int atapi_passthru16 = 1;
119  module_param(atapi_passthru16, int, 0444);
120  MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
121  
122  int libata_fua = 0;
123  module_param_named(fua, libata_fua, int, 0444);
124  MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
125  
126  static int ata_ignore_hpa;
127  module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
128  MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
129  
130  static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
131  module_param_named(dma, libata_dma_mask, int, 0444);
132  MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
133  
134  static int ata_probe_timeout;
135  module_param(ata_probe_timeout, int, 0444);
136  MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
137  
138  int libata_noacpi = 0;
139  module_param_named(noacpi, libata_noacpi, int, 0444);
140  MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
141  
142  int libata_allow_tpm = 0;
143  module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
144  MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
145  
146  static int atapi_an;
147  module_param(atapi_an, int, 0444);
148  MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
149  
150  MODULE_AUTHOR("Jeff Garzik");
151  MODULE_DESCRIPTION("Library module for ATA devices");
152  MODULE_LICENSE("GPL");
153  MODULE_VERSION(DRV_VERSION);
154  
ata_dev_print_info(const struct ata_device * dev)155  static inline bool ata_dev_print_info(const struct ata_device *dev)
156  {
157  	struct ata_eh_context *ehc = &dev->link->eh_context;
158  
159  	return ehc->i.flags & ATA_EHI_PRINTINFO;
160  }
161  
162  /**
163   *	ata_link_next - link iteration helper
164   *	@link: the previous link, NULL to start
165   *	@ap: ATA port containing links to iterate
166   *	@mode: iteration mode, one of ATA_LITER_*
167   *
168   *	LOCKING:
169   *	Host lock or EH context.
170   *
171   *	RETURNS:
172   *	Pointer to the next link.
173   */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)174  struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
175  			       enum ata_link_iter_mode mode)
176  {
177  	BUG_ON(mode != ATA_LITER_EDGE &&
178  	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
179  
180  	/* NULL link indicates start of iteration */
181  	if (!link)
182  		switch (mode) {
183  		case ATA_LITER_EDGE:
184  		case ATA_LITER_PMP_FIRST:
185  			if (sata_pmp_attached(ap))
186  				return ap->pmp_link;
187  			fallthrough;
188  		case ATA_LITER_HOST_FIRST:
189  			return &ap->link;
190  		}
191  
192  	/* we just iterated over the host link, what's next? */
193  	if (link == &ap->link)
194  		switch (mode) {
195  		case ATA_LITER_HOST_FIRST:
196  			if (sata_pmp_attached(ap))
197  				return ap->pmp_link;
198  			fallthrough;
199  		case ATA_LITER_PMP_FIRST:
200  			if (unlikely(ap->slave_link))
201  				return ap->slave_link;
202  			fallthrough;
203  		case ATA_LITER_EDGE:
204  			return NULL;
205  		}
206  
207  	/* slave_link excludes PMP */
208  	if (unlikely(link == ap->slave_link))
209  		return NULL;
210  
211  	/* we were over a PMP link */
212  	if (++link < ap->pmp_link + ap->nr_pmp_links)
213  		return link;
214  
215  	if (mode == ATA_LITER_PMP_FIRST)
216  		return &ap->link;
217  
218  	return NULL;
219  }
220  EXPORT_SYMBOL_GPL(ata_link_next);
221  
222  /**
223   *	ata_dev_next - device iteration helper
224   *	@dev: the previous device, NULL to start
225   *	@link: ATA link containing devices to iterate
226   *	@mode: iteration mode, one of ATA_DITER_*
227   *
228   *	LOCKING:
229   *	Host lock or EH context.
230   *
231   *	RETURNS:
232   *	Pointer to the next device.
233   */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)234  struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
235  				enum ata_dev_iter_mode mode)
236  {
237  	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
238  	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
239  
240  	/* NULL dev indicates start of iteration */
241  	if (!dev)
242  		switch (mode) {
243  		case ATA_DITER_ENABLED:
244  		case ATA_DITER_ALL:
245  			dev = link->device;
246  			goto check;
247  		case ATA_DITER_ENABLED_REVERSE:
248  		case ATA_DITER_ALL_REVERSE:
249  			dev = link->device + ata_link_max_devices(link) - 1;
250  			goto check;
251  		}
252  
253   next:
254  	/* move to the next one */
255  	switch (mode) {
256  	case ATA_DITER_ENABLED:
257  	case ATA_DITER_ALL:
258  		if (++dev < link->device + ata_link_max_devices(link))
259  			goto check;
260  		return NULL;
261  	case ATA_DITER_ENABLED_REVERSE:
262  	case ATA_DITER_ALL_REVERSE:
263  		if (--dev >= link->device)
264  			goto check;
265  		return NULL;
266  	}
267  
268   check:
269  	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
270  	    !ata_dev_enabled(dev))
271  		goto next;
272  	return dev;
273  }
274  EXPORT_SYMBOL_GPL(ata_dev_next);
275  
276  /**
277   *	ata_dev_phys_link - find physical link for a device
278   *	@dev: ATA device to look up physical link for
279   *
280   *	Look up physical link which @dev is attached to.  Note that
281   *	this is different from @dev->link only when @dev is on slave
282   *	link.  For all other cases, it's the same as @dev->link.
283   *
284   *	LOCKING:
285   *	Don't care.
286   *
287   *	RETURNS:
288   *	Pointer to the found physical link.
289   */
ata_dev_phys_link(struct ata_device * dev)290  struct ata_link *ata_dev_phys_link(struct ata_device *dev)
291  {
292  	struct ata_port *ap = dev->link->ap;
293  
294  	if (!ap->slave_link)
295  		return dev->link;
296  	if (!dev->devno)
297  		return &ap->link;
298  	return ap->slave_link;
299  }
300  
301  #ifdef CONFIG_ATA_FORCE
302  /**
303   *	ata_force_cbl - force cable type according to libata.force
304   *	@ap: ATA port of interest
305   *
306   *	Force cable type according to libata.force and whine about it.
307   *	The last entry which has matching port number is used, so it
308   *	can be specified as part of device force parameters.  For
309   *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
310   *	same effect.
311   *
312   *	LOCKING:
313   *	EH context.
314   */
ata_force_cbl(struct ata_port * ap)315  void ata_force_cbl(struct ata_port *ap)
316  {
317  	int i;
318  
319  	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
320  		const struct ata_force_ent *fe = &ata_force_tbl[i];
321  
322  		if (fe->port != -1 && fe->port != ap->print_id)
323  			continue;
324  
325  		if (fe->param.cbl == ATA_CBL_NONE)
326  			continue;
327  
328  		ap->cbl = fe->param.cbl;
329  		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
330  		return;
331  	}
332  }
333  
334  /**
335   *	ata_force_link_limits - force link limits according to libata.force
336   *	@link: ATA link of interest
337   *
338   *	Force link flags and SATA spd limit according to libata.force
339   *	and whine about it.  When only the port part is specified
340   *	(e.g. 1:), the limit applies to all links connected to both
341   *	the host link and all fan-out ports connected via PMP.  If the
342   *	device part is specified as 0 (e.g. 1.00:), it specifies the
343   *	first fan-out link not the host link.  Device number 15 always
344   *	points to the host link whether PMP is attached or not.  If the
345   *	controller has slave link, device number 16 points to it.
346   *
347   *	LOCKING:
348   *	EH context.
349   */
ata_force_link_limits(struct ata_link * link)350  static void ata_force_link_limits(struct ata_link *link)
351  {
352  	bool did_spd = false;
353  	int linkno = link->pmp;
354  	int i;
355  
356  	if (ata_is_host_link(link))
357  		linkno += 15;
358  
359  	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
360  		const struct ata_force_ent *fe = &ata_force_tbl[i];
361  
362  		if (fe->port != -1 && fe->port != link->ap->print_id)
363  			continue;
364  
365  		if (fe->device != -1 && fe->device != linkno)
366  			continue;
367  
368  		/* only honor the first spd limit */
369  		if (!did_spd && fe->param.spd_limit) {
370  			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
371  			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
372  					fe->param.name);
373  			did_spd = true;
374  		}
375  
376  		/* let lflags stack */
377  		if (fe->param.lflags_on) {
378  			link->flags |= fe->param.lflags_on;
379  			ata_link_notice(link,
380  					"FORCE: link flag 0x%x forced -> 0x%x\n",
381  					fe->param.lflags_on, link->flags);
382  		}
383  		if (fe->param.lflags_off) {
384  			link->flags &= ~fe->param.lflags_off;
385  			ata_link_notice(link,
386  				"FORCE: link flag 0x%x cleared -> 0x%x\n",
387  				fe->param.lflags_off, link->flags);
388  		}
389  	}
390  }
391  
392  /**
393   *	ata_force_xfermask - force xfermask according to libata.force
394   *	@dev: ATA device of interest
395   *
396   *	Force xfer_mask according to libata.force and whine about it.
397   *	For consistency with link selection, device number 15 selects
398   *	the first device connected to the host link.
399   *
400   *	LOCKING:
401   *	EH context.
402   */
ata_force_xfermask(struct ata_device * dev)403  static void ata_force_xfermask(struct ata_device *dev)
404  {
405  	int devno = dev->link->pmp + dev->devno;
406  	int alt_devno = devno;
407  	int i;
408  
409  	/* allow n.15/16 for devices attached to host port */
410  	if (ata_is_host_link(dev->link))
411  		alt_devno += 15;
412  
413  	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
414  		const struct ata_force_ent *fe = &ata_force_tbl[i];
415  		unsigned int pio_mask, mwdma_mask, udma_mask;
416  
417  		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
418  			continue;
419  
420  		if (fe->device != -1 && fe->device != devno &&
421  		    fe->device != alt_devno)
422  			continue;
423  
424  		if (!fe->param.xfer_mask)
425  			continue;
426  
427  		ata_unpack_xfermask(fe->param.xfer_mask,
428  				    &pio_mask, &mwdma_mask, &udma_mask);
429  		if (udma_mask)
430  			dev->udma_mask = udma_mask;
431  		else if (mwdma_mask) {
432  			dev->udma_mask = 0;
433  			dev->mwdma_mask = mwdma_mask;
434  		} else {
435  			dev->udma_mask = 0;
436  			dev->mwdma_mask = 0;
437  			dev->pio_mask = pio_mask;
438  		}
439  
440  		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
441  			       fe->param.name);
442  		return;
443  	}
444  }
445  
446  /**
447   *	ata_force_quirks - force quirks according to libata.force
448   *	@dev: ATA device of interest
449   *
450   *	Force quirks according to libata.force and whine about it.
451   *	For consistency with link selection, device number 15 selects
452   *	the first device connected to the host link.
453   *
454   *	LOCKING:
455   *	EH context.
456   */
ata_force_quirks(struct ata_device * dev)457  static void ata_force_quirks(struct ata_device *dev)
458  {
459  	int devno = dev->link->pmp + dev->devno;
460  	int alt_devno = devno;
461  	int i;
462  
463  	/* allow n.15/16 for devices attached to host port */
464  	if (ata_is_host_link(dev->link))
465  		alt_devno += 15;
466  
467  	for (i = 0; i < ata_force_tbl_size; i++) {
468  		const struct ata_force_ent *fe = &ata_force_tbl[i];
469  
470  		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
471  			continue;
472  
473  		if (fe->device != -1 && fe->device != devno &&
474  		    fe->device != alt_devno)
475  			continue;
476  
477  		if (!(~dev->quirks & fe->param.quirk_on) &&
478  		    !(dev->quirks & fe->param.quirk_off))
479  			continue;
480  
481  		dev->quirks |= fe->param.quirk_on;
482  		dev->quirks &= ~fe->param.quirk_off;
483  
484  		ata_dev_notice(dev, "FORCE: modified (%s)\n",
485  			       fe->param.name);
486  	}
487  }
488  #else
ata_force_link_limits(struct ata_link * link)489  static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)490  static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_quirks(struct ata_device * dev)491  static inline void ata_force_quirks(struct ata_device *dev) { }
492  #endif
493  
494  /**
495   *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496   *	@opcode: SCSI opcode
497   *
498   *	Determine ATAPI command type from @opcode.
499   *
500   *	LOCKING:
501   *	None.
502   *
503   *	RETURNS:
504   *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505   */
atapi_cmd_type(u8 opcode)506  int atapi_cmd_type(u8 opcode)
507  {
508  	switch (opcode) {
509  	case GPCMD_READ_10:
510  	case GPCMD_READ_12:
511  		return ATAPI_READ;
512  
513  	case GPCMD_WRITE_10:
514  	case GPCMD_WRITE_12:
515  	case GPCMD_WRITE_AND_VERIFY_10:
516  		return ATAPI_WRITE;
517  
518  	case GPCMD_READ_CD:
519  	case GPCMD_READ_CD_MSF:
520  		return ATAPI_READ_CD;
521  
522  	case ATA_16:
523  	case ATA_12:
524  		if (atapi_passthru16)
525  			return ATAPI_PASS_THRU;
526  		fallthrough;
527  	default:
528  		return ATAPI_MISC;
529  	}
530  }
531  EXPORT_SYMBOL_GPL(atapi_cmd_type);
532  
533  static const u8 ata_rw_cmds[] = {
534  	/* pio multi */
535  	ATA_CMD_READ_MULTI,
536  	ATA_CMD_WRITE_MULTI,
537  	ATA_CMD_READ_MULTI_EXT,
538  	ATA_CMD_WRITE_MULTI_EXT,
539  	0,
540  	0,
541  	0,
542  	0,
543  	/* pio */
544  	ATA_CMD_PIO_READ,
545  	ATA_CMD_PIO_WRITE,
546  	ATA_CMD_PIO_READ_EXT,
547  	ATA_CMD_PIO_WRITE_EXT,
548  	0,
549  	0,
550  	0,
551  	0,
552  	/* dma */
553  	ATA_CMD_READ,
554  	ATA_CMD_WRITE,
555  	ATA_CMD_READ_EXT,
556  	ATA_CMD_WRITE_EXT,
557  	0,
558  	0,
559  	0,
560  	ATA_CMD_WRITE_FUA_EXT
561  };
562  
563  /**
564   *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
565   *	@dev: target device for the taskfile
566   *	@tf: taskfile to examine and configure
567   *
568   *	Examine the device configuration and tf->flags to determine
569   *	the proper read/write command and protocol to use for @tf.
570   *
571   *	LOCKING:
572   *	caller.
573   */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)574  static bool ata_set_rwcmd_protocol(struct ata_device *dev,
575  				   struct ata_taskfile *tf)
576  {
577  	u8 cmd;
578  
579  	int index, fua, lba48, write;
580  
581  	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
582  	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
583  	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
584  
585  	if (dev->flags & ATA_DFLAG_PIO) {
586  		tf->protocol = ATA_PROT_PIO;
587  		index = dev->multi_count ? 0 : 8;
588  	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
589  		/* Unable to use DMA due to host limitation */
590  		tf->protocol = ATA_PROT_PIO;
591  		index = dev->multi_count ? 0 : 8;
592  	} else {
593  		tf->protocol = ATA_PROT_DMA;
594  		index = 16;
595  	}
596  
597  	cmd = ata_rw_cmds[index + fua + lba48 + write];
598  	if (!cmd)
599  		return false;
600  
601  	tf->command = cmd;
602  
603  	return true;
604  }
605  
606  /**
607   *	ata_tf_read_block - Read block address from ATA taskfile
608   *	@tf: ATA taskfile of interest
609   *	@dev: ATA device @tf belongs to
610   *
611   *	LOCKING:
612   *	None.
613   *
614   *	Read block address from @tf.  This function can handle all
615   *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
616   *	flags select the address format to use.
617   *
618   *	RETURNS:
619   *	Block address read from @tf.
620   */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)621  u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
622  {
623  	u64 block = 0;
624  
625  	if (tf->flags & ATA_TFLAG_LBA) {
626  		if (tf->flags & ATA_TFLAG_LBA48) {
627  			block |= (u64)tf->hob_lbah << 40;
628  			block |= (u64)tf->hob_lbam << 32;
629  			block |= (u64)tf->hob_lbal << 24;
630  		} else
631  			block |= (tf->device & 0xf) << 24;
632  
633  		block |= tf->lbah << 16;
634  		block |= tf->lbam << 8;
635  		block |= tf->lbal;
636  	} else {
637  		u32 cyl, head, sect;
638  
639  		cyl = tf->lbam | (tf->lbah << 8);
640  		head = tf->device & 0xf;
641  		sect = tf->lbal;
642  
643  		if (!sect) {
644  			ata_dev_warn(dev,
645  				     "device reported invalid CHS sector 0\n");
646  			return U64_MAX;
647  		}
648  
649  		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
650  	}
651  
652  	return block;
653  }
654  
655  /*
656   * Set a taskfile command duration limit index.
657   */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)658  static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
659  {
660  	struct ata_taskfile *tf = &qc->tf;
661  
662  	if (tf->protocol == ATA_PROT_NCQ)
663  		tf->auxiliary |= cdl;
664  	else
665  		tf->feature |= cdl;
666  
667  	/*
668  	 * Mark this command as having a CDL and request the result
669  	 * task file so that we can inspect the sense data available
670  	 * bit on completion.
671  	 */
672  	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
673  }
674  
675  /**
676   *	ata_build_rw_tf - Build ATA taskfile for given read/write request
677   *	@qc: Metadata associated with the taskfile to build
678   *	@block: Block address
679   *	@n_block: Number of blocks
680   *	@tf_flags: RW/FUA etc...
681   *	@cdl: Command duration limit index
682   *	@class: IO priority class
683   *
684   *	LOCKING:
685   *	None.
686   *
687   *	Build ATA taskfile for the command @qc for read/write request described
688   *	by @block, @n_block, @tf_flags and @class.
689   *
690   *	RETURNS:
691   *
692   *	0 on success, -ERANGE if the request is too large for @dev,
693   *	-EINVAL if the request is invalid.
694   */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)695  int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
696  		    unsigned int tf_flags, int cdl, int class)
697  {
698  	struct ata_taskfile *tf = &qc->tf;
699  	struct ata_device *dev = qc->dev;
700  
701  	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
702  	tf->flags |= tf_flags;
703  
704  	if (ata_ncq_enabled(dev)) {
705  		/* yay, NCQ */
706  		if (!lba_48_ok(block, n_block))
707  			return -ERANGE;
708  
709  		tf->protocol = ATA_PROT_NCQ;
710  		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
711  
712  		if (tf->flags & ATA_TFLAG_WRITE)
713  			tf->command = ATA_CMD_FPDMA_WRITE;
714  		else
715  			tf->command = ATA_CMD_FPDMA_READ;
716  
717  		tf->nsect = qc->hw_tag << 3;
718  		tf->hob_feature = (n_block >> 8) & 0xff;
719  		tf->feature = n_block & 0xff;
720  
721  		tf->hob_lbah = (block >> 40) & 0xff;
722  		tf->hob_lbam = (block >> 32) & 0xff;
723  		tf->hob_lbal = (block >> 24) & 0xff;
724  		tf->lbah = (block >> 16) & 0xff;
725  		tf->lbam = (block >> 8) & 0xff;
726  		tf->lbal = block & 0xff;
727  
728  		tf->device = ATA_LBA;
729  		if (tf->flags & ATA_TFLAG_FUA)
730  			tf->device |= 1 << 7;
731  
732  		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
733  		    class == IOPRIO_CLASS_RT)
734  			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
735  
736  		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
737  			ata_set_tf_cdl(qc, cdl);
738  
739  	} else if (dev->flags & ATA_DFLAG_LBA) {
740  		tf->flags |= ATA_TFLAG_LBA;
741  
742  		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
743  			ata_set_tf_cdl(qc, cdl);
744  
745  		/* Both FUA writes and a CDL index require 48-bit commands */
746  		if (!(tf->flags & ATA_TFLAG_FUA) &&
747  		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
748  		    lba_28_ok(block, n_block)) {
749  			/* use LBA28 */
750  			tf->device |= (block >> 24) & 0xf;
751  		} else if (lba_48_ok(block, n_block)) {
752  			if (!(dev->flags & ATA_DFLAG_LBA48))
753  				return -ERANGE;
754  
755  			/* use LBA48 */
756  			tf->flags |= ATA_TFLAG_LBA48;
757  
758  			tf->hob_nsect = (n_block >> 8) & 0xff;
759  
760  			tf->hob_lbah = (block >> 40) & 0xff;
761  			tf->hob_lbam = (block >> 32) & 0xff;
762  			tf->hob_lbal = (block >> 24) & 0xff;
763  		} else {
764  			/* request too large even for LBA48 */
765  			return -ERANGE;
766  		}
767  
768  		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
769  			return -EINVAL;
770  
771  		tf->nsect = n_block & 0xff;
772  
773  		tf->lbah = (block >> 16) & 0xff;
774  		tf->lbam = (block >> 8) & 0xff;
775  		tf->lbal = block & 0xff;
776  
777  		tf->device |= ATA_LBA;
778  	} else {
779  		/* CHS */
780  		u32 sect, head, cyl, track;
781  
782  		/* The request -may- be too large for CHS addressing. */
783  		if (!lba_28_ok(block, n_block))
784  			return -ERANGE;
785  
786  		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
787  			return -EINVAL;
788  
789  		/* Convert LBA to CHS */
790  		track = (u32)block / dev->sectors;
791  		cyl   = track / dev->heads;
792  		head  = track % dev->heads;
793  		sect  = (u32)block % dev->sectors + 1;
794  
795  		/* Check whether the converted CHS can fit.
796  		   Cylinder: 0-65535
797  		   Head: 0-15
798  		   Sector: 1-255*/
799  		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
800  			return -ERANGE;
801  
802  		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
803  		tf->lbal = sect;
804  		tf->lbam = cyl;
805  		tf->lbah = cyl >> 8;
806  		tf->device |= head;
807  	}
808  
809  	return 0;
810  }
811  
812  /**
813   *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
814   *	@pio_mask: pio_mask
815   *	@mwdma_mask: mwdma_mask
816   *	@udma_mask: udma_mask
817   *
818   *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
819   *	unsigned int xfer_mask.
820   *
821   *	LOCKING:
822   *	None.
823   *
824   *	RETURNS:
825   *	Packed xfer_mask.
826   */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)827  unsigned int ata_pack_xfermask(unsigned int pio_mask,
828  			       unsigned int mwdma_mask,
829  			       unsigned int udma_mask)
830  {
831  	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
832  		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
833  		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
834  }
835  EXPORT_SYMBOL_GPL(ata_pack_xfermask);
836  
837  /**
838   *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
839   *	@xfer_mask: xfer_mask to unpack
840   *	@pio_mask: resulting pio_mask
841   *	@mwdma_mask: resulting mwdma_mask
842   *	@udma_mask: resulting udma_mask
843   *
844   *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
845   *	Any NULL destination masks will be ignored.
846   */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)847  void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
848  			 unsigned int *mwdma_mask, unsigned int *udma_mask)
849  {
850  	if (pio_mask)
851  		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
852  	if (mwdma_mask)
853  		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
854  	if (udma_mask)
855  		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
856  }
857  
858  static const struct ata_xfer_ent {
859  	int shift, bits;
860  	u8 base;
861  } ata_xfer_tbl[] = {
862  	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
863  	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
864  	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
865  	{ -1, },
866  };
867  
868  /**
869   *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
870   *	@xfer_mask: xfer_mask of interest
871   *
872   *	Return matching XFER_* value for @xfer_mask.  Only the highest
873   *	bit of @xfer_mask is considered.
874   *
875   *	LOCKING:
876   *	None.
877   *
878   *	RETURNS:
879   *	Matching XFER_* value, 0xff if no match found.
880   */
ata_xfer_mask2mode(unsigned int xfer_mask)881  u8 ata_xfer_mask2mode(unsigned int xfer_mask)
882  {
883  	int highbit = fls(xfer_mask) - 1;
884  	const struct ata_xfer_ent *ent;
885  
886  	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
887  		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
888  			return ent->base + highbit - ent->shift;
889  	return 0xff;
890  }
891  EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
892  
893  /**
894   *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
895   *	@xfer_mode: XFER_* of interest
896   *
897   *	Return matching xfer_mask for @xfer_mode.
898   *
899   *	LOCKING:
900   *	None.
901   *
902   *	RETURNS:
903   *	Matching xfer_mask, 0 if no match found.
904   */
ata_xfer_mode2mask(u8 xfer_mode)905  unsigned int ata_xfer_mode2mask(u8 xfer_mode)
906  {
907  	const struct ata_xfer_ent *ent;
908  
909  	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
910  		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
911  			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
912  				& ~((1 << ent->shift) - 1);
913  	return 0;
914  }
915  EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
916  
917  /**
918   *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
919   *	@xfer_mode: XFER_* of interest
920   *
921   *	Return matching xfer_shift for @xfer_mode.
922   *
923   *	LOCKING:
924   *	None.
925   *
926   *	RETURNS:
927   *	Matching xfer_shift, -1 if no match found.
928   */
ata_xfer_mode2shift(u8 xfer_mode)929  int ata_xfer_mode2shift(u8 xfer_mode)
930  {
931  	const struct ata_xfer_ent *ent;
932  
933  	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
934  		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
935  			return ent->shift;
936  	return -1;
937  }
938  EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
939  
940  /**
941   *	ata_mode_string - convert xfer_mask to string
942   *	@xfer_mask: mask of bits supported; only highest bit counts.
943   *
944   *	Determine string which represents the highest speed
945   *	(highest bit in @modemask).
946   *
947   *	LOCKING:
948   *	None.
949   *
950   *	RETURNS:
951   *	Constant C string representing highest speed listed in
952   *	@mode_mask, or the constant C string "<n/a>".
953   */
ata_mode_string(unsigned int xfer_mask)954  const char *ata_mode_string(unsigned int xfer_mask)
955  {
956  	static const char * const xfer_mode_str[] = {
957  		"PIO0",
958  		"PIO1",
959  		"PIO2",
960  		"PIO3",
961  		"PIO4",
962  		"PIO5",
963  		"PIO6",
964  		"MWDMA0",
965  		"MWDMA1",
966  		"MWDMA2",
967  		"MWDMA3",
968  		"MWDMA4",
969  		"UDMA/16",
970  		"UDMA/25",
971  		"UDMA/33",
972  		"UDMA/44",
973  		"UDMA/66",
974  		"UDMA/100",
975  		"UDMA/133",
976  		"UDMA7",
977  	};
978  	int highbit;
979  
980  	highbit = fls(xfer_mask) - 1;
981  	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
982  		return xfer_mode_str[highbit];
983  	return "<n/a>";
984  }
985  EXPORT_SYMBOL_GPL(ata_mode_string);
986  
sata_spd_string(unsigned int spd)987  const char *sata_spd_string(unsigned int spd)
988  {
989  	static const char * const spd_str[] = {
990  		"1.5 Gbps",
991  		"3.0 Gbps",
992  		"6.0 Gbps",
993  	};
994  
995  	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
996  		return "<unknown>";
997  	return spd_str[spd - 1];
998  }
999  
1000  /**
1001   *	ata_dev_classify - determine device type based on ATA-spec signature
1002   *	@tf: ATA taskfile register set for device to be identified
1003   *
1004   *	Determine from taskfile register contents whether a device is
1005   *	ATA or ATAPI, as per "Signature and persistence" section
1006   *	of ATA/PI spec (volume 1, sect 5.14).
1007   *
1008   *	LOCKING:
1009   *	None.
1010   *
1011   *	RETURNS:
1012   *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1013   *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1014   */
ata_dev_classify(const struct ata_taskfile * tf)1015  unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1016  {
1017  	/* Apple's open source Darwin code hints that some devices only
1018  	 * put a proper signature into the LBA mid/high registers,
1019  	 * So, we only check those.  It's sufficient for uniqueness.
1020  	 *
1021  	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1022  	 * signatures for ATA and ATAPI devices attached on SerialATA,
1023  	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1024  	 * spec has never mentioned about using different signatures
1025  	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1026  	 * Multiplier specification began to use 0x69/0x96 to identify
1027  	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1028  	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1029  	 * 0x69/0x96 shortly and described them as reserved for
1030  	 * SerialATA.
1031  	 *
1032  	 * We follow the current spec and consider that 0x69/0x96
1033  	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1034  	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1035  	 * SEMB signature.  This is worked around in
1036  	 * ata_dev_read_id().
1037  	 */
1038  	if (tf->lbam == 0 && tf->lbah == 0)
1039  		return ATA_DEV_ATA;
1040  
1041  	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1042  		return ATA_DEV_ATAPI;
1043  
1044  	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1045  		return ATA_DEV_PMP;
1046  
1047  	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1048  		return ATA_DEV_SEMB;
1049  
1050  	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1051  		return ATA_DEV_ZAC;
1052  
1053  	return ATA_DEV_UNKNOWN;
1054  }
1055  EXPORT_SYMBOL_GPL(ata_dev_classify);
1056  
1057  /**
1058   *	ata_id_string - Convert IDENTIFY DEVICE page into string
1059   *	@id: IDENTIFY DEVICE results we will examine
1060   *	@s: string into which data is output
1061   *	@ofs: offset into identify device page
1062   *	@len: length of string to return. must be an even number.
1063   *
1064   *	The strings in the IDENTIFY DEVICE page are broken up into
1065   *	16-bit chunks.  Run through the string, and output each
1066   *	8-bit chunk linearly, regardless of platform.
1067   *
1068   *	LOCKING:
1069   *	caller.
1070   */
1071  
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1072  void ata_id_string(const u16 *id, unsigned char *s,
1073  		   unsigned int ofs, unsigned int len)
1074  {
1075  	unsigned int c;
1076  
1077  	BUG_ON(len & 1);
1078  
1079  	while (len > 0) {
1080  		c = id[ofs] >> 8;
1081  		*s = c;
1082  		s++;
1083  
1084  		c = id[ofs] & 0xff;
1085  		*s = c;
1086  		s++;
1087  
1088  		ofs++;
1089  		len -= 2;
1090  	}
1091  }
1092  EXPORT_SYMBOL_GPL(ata_id_string);
1093  
1094  /**
1095   *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1096   *	@id: IDENTIFY DEVICE results we will examine
1097   *	@s: string into which data is output
1098   *	@ofs: offset into identify device page
1099   *	@len: length of string to return. must be an odd number.
1100   *
1101   *	This function is identical to ata_id_string except that it
1102   *	trims trailing spaces and terminates the resulting string with
1103   *	null.  @len must be actual maximum length (even number) + 1.
1104   *
1105   *	LOCKING:
1106   *	caller.
1107   */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1108  void ata_id_c_string(const u16 *id, unsigned char *s,
1109  		     unsigned int ofs, unsigned int len)
1110  {
1111  	unsigned char *p;
1112  
1113  	ata_id_string(id, s, ofs, len - 1);
1114  
1115  	p = s + strnlen(s, len - 1);
1116  	while (p > s && p[-1] == ' ')
1117  		p--;
1118  	*p = '\0';
1119  }
1120  EXPORT_SYMBOL_GPL(ata_id_c_string);
1121  
ata_id_n_sectors(const u16 * id)1122  static u64 ata_id_n_sectors(const u16 *id)
1123  {
1124  	if (ata_id_has_lba(id)) {
1125  		if (ata_id_has_lba48(id))
1126  			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1127  
1128  		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1129  	}
1130  
1131  	if (ata_id_current_chs_valid(id))
1132  		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1133  		       (u32)id[ATA_ID_CUR_SECTORS];
1134  
1135  	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1136  	       (u32)id[ATA_ID_SECTORS];
1137  }
1138  
ata_tf_to_lba48(const struct ata_taskfile * tf)1139  u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1140  {
1141  	u64 sectors = 0;
1142  
1143  	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1144  	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1145  	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1146  	sectors |= (tf->lbah & 0xff) << 16;
1147  	sectors |= (tf->lbam & 0xff) << 8;
1148  	sectors |= (tf->lbal & 0xff);
1149  
1150  	return sectors;
1151  }
1152  
ata_tf_to_lba(const struct ata_taskfile * tf)1153  u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1154  {
1155  	u64 sectors = 0;
1156  
1157  	sectors |= (tf->device & 0x0f) << 24;
1158  	sectors |= (tf->lbah & 0xff) << 16;
1159  	sectors |= (tf->lbam & 0xff) << 8;
1160  	sectors |= (tf->lbal & 0xff);
1161  
1162  	return sectors;
1163  }
1164  
1165  /**
1166   *	ata_read_native_max_address - Read native max address
1167   *	@dev: target device
1168   *	@max_sectors: out parameter for the result native max address
1169   *
1170   *	Perform an LBA48 or LBA28 native size query upon the device in
1171   *	question.
1172   *
1173   *	RETURNS:
1174   *	0 on success, -EACCES if command is aborted by the drive.
1175   *	-EIO on other errors.
1176   */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1177  static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1178  {
1179  	unsigned int err_mask;
1180  	struct ata_taskfile tf;
1181  	int lba48 = ata_id_has_lba48(dev->id);
1182  
1183  	ata_tf_init(dev, &tf);
1184  
1185  	/* always clear all address registers */
1186  	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1187  
1188  	if (lba48) {
1189  		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1190  		tf.flags |= ATA_TFLAG_LBA48;
1191  	} else
1192  		tf.command = ATA_CMD_READ_NATIVE_MAX;
1193  
1194  	tf.protocol = ATA_PROT_NODATA;
1195  	tf.device |= ATA_LBA;
1196  
1197  	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1198  	if (err_mask) {
1199  		ata_dev_warn(dev,
1200  			     "failed to read native max address (err_mask=0x%x)\n",
1201  			     err_mask);
1202  		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1203  			return -EACCES;
1204  		return -EIO;
1205  	}
1206  
1207  	if (lba48)
1208  		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1209  	else
1210  		*max_sectors = ata_tf_to_lba(&tf) + 1;
1211  	if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1212  		(*max_sectors)--;
1213  	return 0;
1214  }
1215  
1216  /**
1217   *	ata_set_max_sectors - Set max sectors
1218   *	@dev: target device
1219   *	@new_sectors: new max sectors value to set for the device
1220   *
1221   *	Set max sectors of @dev to @new_sectors.
1222   *
1223   *	RETURNS:
1224   *	0 on success, -EACCES if command is aborted or denied (due to
1225   *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1226   *	errors.
1227   */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1228  static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1229  {
1230  	unsigned int err_mask;
1231  	struct ata_taskfile tf;
1232  	int lba48 = ata_id_has_lba48(dev->id);
1233  
1234  	new_sectors--;
1235  
1236  	ata_tf_init(dev, &tf);
1237  
1238  	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1239  
1240  	if (lba48) {
1241  		tf.command = ATA_CMD_SET_MAX_EXT;
1242  		tf.flags |= ATA_TFLAG_LBA48;
1243  
1244  		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1245  		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1246  		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1247  	} else {
1248  		tf.command = ATA_CMD_SET_MAX;
1249  
1250  		tf.device |= (new_sectors >> 24) & 0xf;
1251  	}
1252  
1253  	tf.protocol = ATA_PROT_NODATA;
1254  	tf.device |= ATA_LBA;
1255  
1256  	tf.lbal = (new_sectors >> 0) & 0xff;
1257  	tf.lbam = (new_sectors >> 8) & 0xff;
1258  	tf.lbah = (new_sectors >> 16) & 0xff;
1259  
1260  	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1261  	if (err_mask) {
1262  		ata_dev_warn(dev,
1263  			     "failed to set max address (err_mask=0x%x)\n",
1264  			     err_mask);
1265  		if (err_mask == AC_ERR_DEV &&
1266  		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1267  			return -EACCES;
1268  		return -EIO;
1269  	}
1270  
1271  	return 0;
1272  }
1273  
1274  /**
1275   *	ata_hpa_resize		-	Resize a device with an HPA set
1276   *	@dev: Device to resize
1277   *
1278   *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1279   *	it if required to the full size of the media. The caller must check
1280   *	the drive has the HPA feature set enabled.
1281   *
1282   *	RETURNS:
1283   *	0 on success, -errno on failure.
1284   */
ata_hpa_resize(struct ata_device * dev)1285  static int ata_hpa_resize(struct ata_device *dev)
1286  {
1287  	bool print_info = ata_dev_print_info(dev);
1288  	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1289  	u64 sectors = ata_id_n_sectors(dev->id);
1290  	u64 native_sectors;
1291  	int rc;
1292  
1293  	/* do we need to do it? */
1294  	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1295  	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1296  	    (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1297  		return 0;
1298  
1299  	/* read native max address */
1300  	rc = ata_read_native_max_address(dev, &native_sectors);
1301  	if (rc) {
1302  		/* If device aborted the command or HPA isn't going to
1303  		 * be unlocked, skip HPA resizing.
1304  		 */
1305  		if (rc == -EACCES || !unlock_hpa) {
1306  			ata_dev_warn(dev,
1307  				     "HPA support seems broken, skipping HPA handling\n");
1308  			dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1309  
1310  			/* we can continue if device aborted the command */
1311  			if (rc == -EACCES)
1312  				rc = 0;
1313  		}
1314  
1315  		return rc;
1316  	}
1317  	dev->n_native_sectors = native_sectors;
1318  
1319  	/* nothing to do? */
1320  	if (native_sectors <= sectors || !unlock_hpa) {
1321  		if (!print_info || native_sectors == sectors)
1322  			return 0;
1323  
1324  		if (native_sectors > sectors)
1325  			ata_dev_info(dev,
1326  				"HPA detected: current %llu, native %llu\n",
1327  				(unsigned long long)sectors,
1328  				(unsigned long long)native_sectors);
1329  		else if (native_sectors < sectors)
1330  			ata_dev_warn(dev,
1331  				"native sectors (%llu) is smaller than sectors (%llu)\n",
1332  				(unsigned long long)native_sectors,
1333  				(unsigned long long)sectors);
1334  		return 0;
1335  	}
1336  
1337  	/* let's unlock HPA */
1338  	rc = ata_set_max_sectors(dev, native_sectors);
1339  	if (rc == -EACCES) {
1340  		/* if device aborted the command, skip HPA resizing */
1341  		ata_dev_warn(dev,
1342  			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1343  			     (unsigned long long)sectors,
1344  			     (unsigned long long)native_sectors);
1345  		dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1346  		return 0;
1347  	} else if (rc)
1348  		return rc;
1349  
1350  	/* re-read IDENTIFY data */
1351  	rc = ata_dev_reread_id(dev, 0);
1352  	if (rc) {
1353  		ata_dev_err(dev,
1354  			    "failed to re-read IDENTIFY data after HPA resizing\n");
1355  		return rc;
1356  	}
1357  
1358  	if (print_info) {
1359  		u64 new_sectors = ata_id_n_sectors(dev->id);
1360  		ata_dev_info(dev,
1361  			"HPA unlocked: %llu -> %llu, native %llu\n",
1362  			(unsigned long long)sectors,
1363  			(unsigned long long)new_sectors,
1364  			(unsigned long long)native_sectors);
1365  	}
1366  
1367  	return 0;
1368  }
1369  
1370  /**
1371   *	ata_dump_id - IDENTIFY DEVICE info debugging output
1372   *	@dev: device from which the information is fetched
1373   *	@id: IDENTIFY DEVICE page to dump
1374   *
1375   *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1376   *	page.
1377   *
1378   *	LOCKING:
1379   *	caller.
1380   */
1381  
ata_dump_id(struct ata_device * dev,const u16 * id)1382  static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1383  {
1384  	ata_dev_dbg(dev,
1385  		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1386  		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1387  		"88==0x%04x  93==0x%04x\n",
1388  		id[49], id[53], id[63], id[64], id[75], id[80],
1389  		id[81], id[82], id[83], id[84], id[88], id[93]);
1390  }
1391  
1392  /**
1393   *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1394   *	@id: IDENTIFY data to compute xfer mask from
1395   *
1396   *	Compute the xfermask for this device. This is not as trivial
1397   *	as it seems if we must consider early devices correctly.
1398   *
1399   *	FIXME: pre IDE drive timing (do we care ?).
1400   *
1401   *	LOCKING:
1402   *	None.
1403   *
1404   *	RETURNS:
1405   *	Computed xfermask
1406   */
ata_id_xfermask(const u16 * id)1407  unsigned int ata_id_xfermask(const u16 *id)
1408  {
1409  	unsigned int pio_mask, mwdma_mask, udma_mask;
1410  
1411  	/* Usual case. Word 53 indicates word 64 is valid */
1412  	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1413  		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1414  		pio_mask <<= 3;
1415  		pio_mask |= 0x7;
1416  	} else {
1417  		/* If word 64 isn't valid then Word 51 high byte holds
1418  		 * the PIO timing number for the maximum. Turn it into
1419  		 * a mask.
1420  		 */
1421  		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1422  		if (mode < 5)	/* Valid PIO range */
1423  			pio_mask = (2 << mode) - 1;
1424  		else
1425  			pio_mask = 1;
1426  
1427  		/* But wait.. there's more. Design your standards by
1428  		 * committee and you too can get a free iordy field to
1429  		 * process. However it is the speeds not the modes that
1430  		 * are supported... Note drivers using the timing API
1431  		 * will get this right anyway
1432  		 */
1433  	}
1434  
1435  	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1436  
1437  	if (ata_id_is_cfa(id)) {
1438  		/*
1439  		 *	Process compact flash extended modes
1440  		 */
1441  		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1442  		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1443  
1444  		if (pio)
1445  			pio_mask |= (1 << 5);
1446  		if (pio > 1)
1447  			pio_mask |= (1 << 6);
1448  		if (dma)
1449  			mwdma_mask |= (1 << 3);
1450  		if (dma > 1)
1451  			mwdma_mask |= (1 << 4);
1452  	}
1453  
1454  	udma_mask = 0;
1455  	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1456  		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1457  
1458  	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1459  }
1460  EXPORT_SYMBOL_GPL(ata_id_xfermask);
1461  
ata_qc_complete_internal(struct ata_queued_cmd * qc)1462  static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1463  {
1464  	struct completion *waiting = qc->private_data;
1465  
1466  	complete(waiting);
1467  }
1468  
1469  /**
1470   *	ata_exec_internal - execute libata internal command
1471   *	@dev: Device to which the command is sent
1472   *	@tf: Taskfile registers for the command and the result
1473   *	@cdb: CDB for packet command
1474   *	@dma_dir: Data transfer direction of the command
1475   *	@buf: Data buffer of the command
1476   *	@buflen: Length of data buffer
1477   *	@timeout: Timeout in msecs (0 for default)
1478   *
1479   *	Executes libata internal command with timeout. @tf contains
1480   *	the command on entry and the result on return. Timeout and error
1481   *	conditions are reported via the return value. No recovery action
1482   *	is taken after a command times out. It is the caller's duty to
1483   *	clean up after timeout.
1484   *
1485   *	LOCKING:
1486   *	None.  Should be called with kernel context, might sleep.
1487   *
1488   *	RETURNS:
1489   *	Zero on success, AC_ERR_* mask on failure
1490   */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1491  unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1492  			       const u8 *cdb, enum dma_data_direction dma_dir,
1493  			       void *buf, unsigned int buflen,
1494  			       unsigned int timeout)
1495  {
1496  	struct ata_link *link = dev->link;
1497  	struct ata_port *ap = link->ap;
1498  	u8 command = tf->command;
1499  	struct ata_queued_cmd *qc;
1500  	struct scatterlist sgl;
1501  	unsigned int preempted_tag;
1502  	u32 preempted_sactive;
1503  	u64 preempted_qc_active;
1504  	int preempted_nr_active_links;
1505  	bool auto_timeout = false;
1506  	DECLARE_COMPLETION_ONSTACK(wait);
1507  	unsigned long flags;
1508  	unsigned int err_mask;
1509  	int rc;
1510  
1511  	if (WARN_ON(dma_dir != DMA_NONE && !buf))
1512  		return AC_ERR_INVALID;
1513  
1514  	spin_lock_irqsave(ap->lock, flags);
1515  
1516  	/* No internal command while frozen */
1517  	if (ata_port_is_frozen(ap)) {
1518  		spin_unlock_irqrestore(ap->lock, flags);
1519  		return AC_ERR_SYSTEM;
1520  	}
1521  
1522  	/* Initialize internal qc */
1523  	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1524  
1525  	qc->tag = ATA_TAG_INTERNAL;
1526  	qc->hw_tag = 0;
1527  	qc->scsicmd = NULL;
1528  	qc->ap = ap;
1529  	qc->dev = dev;
1530  	ata_qc_reinit(qc);
1531  
1532  	preempted_tag = link->active_tag;
1533  	preempted_sactive = link->sactive;
1534  	preempted_qc_active = ap->qc_active;
1535  	preempted_nr_active_links = ap->nr_active_links;
1536  	link->active_tag = ATA_TAG_POISON;
1537  	link->sactive = 0;
1538  	ap->qc_active = 0;
1539  	ap->nr_active_links = 0;
1540  
1541  	/* Prepare and issue qc */
1542  	qc->tf = *tf;
1543  	if (cdb)
1544  		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1545  
1546  	/* Some SATA bridges need us to indicate data xfer direction */
1547  	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1548  	    dma_dir == DMA_FROM_DEVICE)
1549  		qc->tf.feature |= ATAPI_DMADIR;
1550  
1551  	qc->flags |= ATA_QCFLAG_RESULT_TF;
1552  	qc->dma_dir = dma_dir;
1553  	if (dma_dir != DMA_NONE) {
1554  		sg_init_one(&sgl, buf, buflen);
1555  		ata_sg_init(qc, &sgl, 1);
1556  		qc->nbytes = buflen;
1557  	}
1558  
1559  	qc->private_data = &wait;
1560  	qc->complete_fn = ata_qc_complete_internal;
1561  
1562  	ata_qc_issue(qc);
1563  
1564  	spin_unlock_irqrestore(ap->lock, flags);
1565  
1566  	if (!timeout) {
1567  		if (ata_probe_timeout) {
1568  			timeout = ata_probe_timeout * 1000;
1569  		} else {
1570  			timeout = ata_internal_cmd_timeout(dev, command);
1571  			auto_timeout = true;
1572  		}
1573  	}
1574  
1575  	ata_eh_release(ap);
1576  
1577  	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1578  
1579  	ata_eh_acquire(ap);
1580  
1581  	ata_sff_flush_pio_task(ap);
1582  
1583  	if (!rc) {
1584  		/*
1585  		 * We are racing with irq here. If we lose, the following test
1586  		 * prevents us from completing the qc twice. If we win, the port
1587  		 * is frozen and will be cleaned up by ->post_internal_cmd().
1588  		 */
1589  		spin_lock_irqsave(ap->lock, flags);
1590  		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1591  			qc->err_mask |= AC_ERR_TIMEOUT;
1592  			ata_port_freeze(ap);
1593  			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1594  				     timeout, command);
1595  		}
1596  		spin_unlock_irqrestore(ap->lock, flags);
1597  	}
1598  
1599  	if (ap->ops->post_internal_cmd)
1600  		ap->ops->post_internal_cmd(qc);
1601  
1602  	/* Perform minimal error analysis */
1603  	if (qc->flags & ATA_QCFLAG_EH) {
1604  		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1605  			qc->err_mask |= AC_ERR_DEV;
1606  
1607  		if (!qc->err_mask)
1608  			qc->err_mask |= AC_ERR_OTHER;
1609  
1610  		if (qc->err_mask & ~AC_ERR_OTHER)
1611  			qc->err_mask &= ~AC_ERR_OTHER;
1612  	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1613  		qc->result_tf.status |= ATA_SENSE;
1614  	}
1615  
1616  	/* Finish up */
1617  	spin_lock_irqsave(ap->lock, flags);
1618  
1619  	*tf = qc->result_tf;
1620  	err_mask = qc->err_mask;
1621  
1622  	ata_qc_free(qc);
1623  	link->active_tag = preempted_tag;
1624  	link->sactive = preempted_sactive;
1625  	ap->qc_active = preempted_qc_active;
1626  	ap->nr_active_links = preempted_nr_active_links;
1627  
1628  	spin_unlock_irqrestore(ap->lock, flags);
1629  
1630  	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1631  		ata_internal_cmd_timed_out(dev, command);
1632  
1633  	return err_mask;
1634  }
1635  
1636  /**
1637   *	ata_pio_need_iordy	-	check if iordy needed
1638   *	@adev: ATA device
1639   *
1640   *	Check if the current speed of the device requires IORDY. Used
1641   *	by various controllers for chip configuration.
1642   */
ata_pio_need_iordy(const struct ata_device * adev)1643  unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1644  {
1645  	/* Don't set IORDY if we're preparing for reset.  IORDY may
1646  	 * lead to controller lock up on certain controllers if the
1647  	 * port is not occupied.  See bko#11703 for details.
1648  	 */
1649  	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1650  		return 0;
1651  	/* Controller doesn't support IORDY.  Probably a pointless
1652  	 * check as the caller should know this.
1653  	 */
1654  	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1655  		return 0;
1656  	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1657  	if (ata_id_is_cfa(adev->id)
1658  	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1659  		return 0;
1660  	/* PIO3 and higher it is mandatory */
1661  	if (adev->pio_mode > XFER_PIO_2)
1662  		return 1;
1663  	/* We turn it on when possible */
1664  	if (ata_id_has_iordy(adev->id))
1665  		return 1;
1666  	return 0;
1667  }
1668  EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1669  
1670  /**
1671   *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1672   *	@adev: ATA device
1673   *
1674   *	Compute the highest mode possible if we are not using iordy. Return
1675   *	-1 if no iordy mode is available.
1676   */
ata_pio_mask_no_iordy(const struct ata_device * adev)1677  static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1678  {
1679  	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1680  	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1681  		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1682  		/* Is the speed faster than the drive allows non IORDY ? */
1683  		if (pio) {
1684  			/* This is cycle times not frequency - watch the logic! */
1685  			if (pio > 240)	/* PIO2 is 240nS per cycle */
1686  				return 3 << ATA_SHIFT_PIO;
1687  			return 7 << ATA_SHIFT_PIO;
1688  		}
1689  	}
1690  	return 3 << ATA_SHIFT_PIO;
1691  }
1692  
1693  /**
1694   *	ata_do_dev_read_id		-	default ID read method
1695   *	@dev: device
1696   *	@tf: proposed taskfile
1697   *	@id: data buffer
1698   *
1699   *	Issue the identify taskfile and hand back the buffer containing
1700   *	identify data. For some RAID controllers and for pre ATA devices
1701   *	this function is wrapped or replaced by the driver
1702   */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1703  unsigned int ata_do_dev_read_id(struct ata_device *dev,
1704  				struct ata_taskfile *tf, __le16 *id)
1705  {
1706  	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1707  				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1708  }
1709  EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1710  
1711  /**
1712   *	ata_dev_read_id - Read ID data from the specified device
1713   *	@dev: target device
1714   *	@p_class: pointer to class of the target device (may be changed)
1715   *	@flags: ATA_READID_* flags
1716   *	@id: buffer to read IDENTIFY data into
1717   *
1718   *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1719   *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1720   *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1721   *	for pre-ATA4 drives.
1722   *
1723   *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1724   *	now we abort if we hit that case.
1725   *
1726   *	LOCKING:
1727   *	Kernel thread context (may sleep)
1728   *
1729   *	RETURNS:
1730   *	0 on success, -errno otherwise.
1731   */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1732  int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1733  		    unsigned int flags, u16 *id)
1734  {
1735  	struct ata_port *ap = dev->link->ap;
1736  	unsigned int class = *p_class;
1737  	struct ata_taskfile tf;
1738  	unsigned int err_mask = 0;
1739  	const char *reason;
1740  	bool is_semb = class == ATA_DEV_SEMB;
1741  	int may_fallback = 1, tried_spinup = 0;
1742  	int rc;
1743  
1744  retry:
1745  	ata_tf_init(dev, &tf);
1746  
1747  	switch (class) {
1748  	case ATA_DEV_SEMB:
1749  		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1750  		fallthrough;
1751  	case ATA_DEV_ATA:
1752  	case ATA_DEV_ZAC:
1753  		tf.command = ATA_CMD_ID_ATA;
1754  		break;
1755  	case ATA_DEV_ATAPI:
1756  		tf.command = ATA_CMD_ID_ATAPI;
1757  		break;
1758  	default:
1759  		rc = -ENODEV;
1760  		reason = "unsupported class";
1761  		goto err_out;
1762  	}
1763  
1764  	tf.protocol = ATA_PROT_PIO;
1765  
1766  	/* Some devices choke if TF registers contain garbage.  Make
1767  	 * sure those are properly initialized.
1768  	 */
1769  	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1770  
1771  	/* Device presence detection is unreliable on some
1772  	 * controllers.  Always poll IDENTIFY if available.
1773  	 */
1774  	tf.flags |= ATA_TFLAG_POLLING;
1775  
1776  	if (ap->ops->read_id)
1777  		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1778  	else
1779  		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1780  
1781  	if (err_mask) {
1782  		if (err_mask & AC_ERR_NODEV_HINT) {
1783  			ata_dev_dbg(dev, "NODEV after polling detection\n");
1784  			return -ENOENT;
1785  		}
1786  
1787  		if (is_semb) {
1788  			ata_dev_info(dev,
1789  		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1790  			/* SEMB is not supported yet */
1791  			*p_class = ATA_DEV_SEMB_UNSUP;
1792  			return 0;
1793  		}
1794  
1795  		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1796  			/* Device or controller might have reported
1797  			 * the wrong device class.  Give a shot at the
1798  			 * other IDENTIFY if the current one is
1799  			 * aborted by the device.
1800  			 */
1801  			if (may_fallback) {
1802  				may_fallback = 0;
1803  
1804  				if (class == ATA_DEV_ATA)
1805  					class = ATA_DEV_ATAPI;
1806  				else
1807  					class = ATA_DEV_ATA;
1808  				goto retry;
1809  			}
1810  
1811  			/* Control reaches here iff the device aborted
1812  			 * both flavors of IDENTIFYs which happens
1813  			 * sometimes with phantom devices.
1814  			 */
1815  			ata_dev_dbg(dev,
1816  				    "both IDENTIFYs aborted, assuming NODEV\n");
1817  			return -ENOENT;
1818  		}
1819  
1820  		rc = -EIO;
1821  		reason = "I/O error";
1822  		goto err_out;
1823  	}
1824  
1825  	if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1826  		ata_dev_info(dev, "dumping IDENTIFY data, "
1827  			    "class=%d may_fallback=%d tried_spinup=%d\n",
1828  			    class, may_fallback, tried_spinup);
1829  		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1830  			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1831  	}
1832  
1833  	/* Falling back doesn't make sense if ID data was read
1834  	 * successfully at least once.
1835  	 */
1836  	may_fallback = 0;
1837  
1838  	swap_buf_le16(id, ATA_ID_WORDS);
1839  
1840  	/* sanity check */
1841  	rc = -EINVAL;
1842  	reason = "device reports invalid type";
1843  
1844  	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1845  		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1846  			goto err_out;
1847  		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1848  							ata_id_is_ata(id)) {
1849  			ata_dev_dbg(dev,
1850  				"host indicates ignore ATA devices, ignored\n");
1851  			return -ENOENT;
1852  		}
1853  	} else {
1854  		if (ata_id_is_ata(id))
1855  			goto err_out;
1856  	}
1857  
1858  	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1859  		tried_spinup = 1;
1860  		/*
1861  		 * Drive powered-up in standby mode, and requires a specific
1862  		 * SET_FEATURES spin-up subcommand before it will accept
1863  		 * anything other than the original IDENTIFY command.
1864  		 */
1865  		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1866  		if (err_mask && id[2] != 0x738c) {
1867  			rc = -EIO;
1868  			reason = "SPINUP failed";
1869  			goto err_out;
1870  		}
1871  		/*
1872  		 * If the drive initially returned incomplete IDENTIFY info,
1873  		 * we now must reissue the IDENTIFY command.
1874  		 */
1875  		if (id[2] == 0x37c8)
1876  			goto retry;
1877  	}
1878  
1879  	if ((flags & ATA_READID_POSTRESET) &&
1880  	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1881  		/*
1882  		 * The exact sequence expected by certain pre-ATA4 drives is:
1883  		 * SRST RESET
1884  		 * IDENTIFY (optional in early ATA)
1885  		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1886  		 * anything else..
1887  		 * Some drives were very specific about that exact sequence.
1888  		 *
1889  		 * Note that ATA4 says lba is mandatory so the second check
1890  		 * should never trigger.
1891  		 */
1892  		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1893  			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1894  			if (err_mask) {
1895  				rc = -EIO;
1896  				reason = "INIT_DEV_PARAMS failed";
1897  				goto err_out;
1898  			}
1899  
1900  			/* current CHS translation info (id[53-58]) might be
1901  			 * changed. reread the identify device info.
1902  			 */
1903  			flags &= ~ATA_READID_POSTRESET;
1904  			goto retry;
1905  		}
1906  	}
1907  
1908  	*p_class = class;
1909  
1910  	return 0;
1911  
1912   err_out:
1913  	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1914  		     reason, err_mask);
1915  	return rc;
1916  }
1917  
ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1918  bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1919  			   bool set_active)
1920  {
1921  	/* Only applies to ATA and ZAC devices */
1922  	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1923  		return false;
1924  
1925  	ata_tf_init(dev, tf);
1926  	tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1927  	tf->protocol = ATA_PROT_NODATA;
1928  
1929  	if (set_active) {
1930  		/* VERIFY for 1 sector at lba=0 */
1931  		tf->command = ATA_CMD_VERIFY;
1932  		tf->nsect = 1;
1933  		if (dev->flags & ATA_DFLAG_LBA) {
1934  			tf->flags |= ATA_TFLAG_LBA;
1935  			tf->device |= ATA_LBA;
1936  		} else {
1937  			/* CHS */
1938  			tf->lbal = 0x1; /* sect */
1939  		}
1940  	} else {
1941  		tf->command = ATA_CMD_STANDBYNOW1;
1942  	}
1943  
1944  	return true;
1945  }
1946  
ata_dev_power_is_active(struct ata_device * dev)1947  static bool ata_dev_power_is_active(struct ata_device *dev)
1948  {
1949  	struct ata_taskfile tf;
1950  	unsigned int err_mask;
1951  
1952  	ata_tf_init(dev, &tf);
1953  	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1954  	tf.protocol = ATA_PROT_NODATA;
1955  	tf.command = ATA_CMD_CHK_POWER;
1956  
1957  	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1958  	if (err_mask) {
1959  		ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1960  			    err_mask);
1961  		/*
1962  		 * Assume we are in standby mode so that we always force a
1963  		 * spinup in ata_dev_power_set_active().
1964  		 */
1965  		return false;
1966  	}
1967  
1968  	ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
1969  
1970  	/* Active or idle */
1971  	return tf.nsect == 0xff;
1972  }
1973  
1974  /**
1975   *	ata_dev_power_set_standby - Set a device power mode to standby
1976   *	@dev: target device
1977   *
1978   *	Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1979   *	For an HDD device, this spins down the disks.
1980   *
1981   *	LOCKING:
1982   *	Kernel thread context (may sleep).
1983   */
ata_dev_power_set_standby(struct ata_device * dev)1984  void ata_dev_power_set_standby(struct ata_device *dev)
1985  {
1986  	unsigned long ap_flags = dev->link->ap->flags;
1987  	struct ata_taskfile tf;
1988  	unsigned int err_mask;
1989  
1990  	/* If the device is already sleeping or in standby, do nothing. */
1991  	if ((dev->flags & ATA_DFLAG_SLEEPING) ||
1992  	    !ata_dev_power_is_active(dev))
1993  		return;
1994  
1995  	/*
1996  	 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
1997  	 * causing some drives to spin up and down again. For these, do nothing
1998  	 * if we are being called on shutdown.
1999  	 */
2000  	if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2001  	    system_state == SYSTEM_POWER_OFF)
2002  		return;
2003  
2004  	if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2005  	    system_entering_hibernation())
2006  		return;
2007  
2008  	/* Issue STANDBY IMMEDIATE command only if supported by the device */
2009  	if (!ata_dev_power_init_tf(dev, &tf, false))
2010  		return;
2011  
2012  	ata_dev_notice(dev, "Entering standby power mode\n");
2013  
2014  	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2015  	if (err_mask)
2016  		ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2017  			    err_mask);
2018  }
2019  
2020  /**
2021   *	ata_dev_power_set_active -  Set a device power mode to active
2022   *	@dev: target device
2023   *
2024   *	Issue a VERIFY command to enter to ensure that the device is in the
2025   *	active power mode. For a spun-down HDD (standby or idle power mode),
2026   *	the VERIFY command will complete after the disk spins up.
2027   *
2028   *	LOCKING:
2029   *	Kernel thread context (may sleep).
2030   */
ata_dev_power_set_active(struct ata_device * dev)2031  void ata_dev_power_set_active(struct ata_device *dev)
2032  {
2033  	struct ata_taskfile tf;
2034  	unsigned int err_mask;
2035  
2036  	/*
2037  	 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2038  	 * if supported by the device.
2039  	 */
2040  	if (!ata_dev_power_init_tf(dev, &tf, true))
2041  		return;
2042  
2043  	/*
2044  	 * Check the device power state & condition and force a spinup with
2045  	 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2046  	 */
2047  	if (ata_dev_power_is_active(dev))
2048  		return;
2049  
2050  	ata_dev_notice(dev, "Entering active power mode\n");
2051  
2052  	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2053  	if (err_mask)
2054  		ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2055  			    err_mask);
2056  }
2057  
2058  /**
2059   *	ata_read_log_page - read a specific log page
2060   *	@dev: target device
2061   *	@log: log to read
2062   *	@page: page to read
2063   *	@buf: buffer to store read page
2064   *	@sectors: number of sectors to read
2065   *
2066   *	Read log page using READ_LOG_EXT command.
2067   *
2068   *	LOCKING:
2069   *	Kernel thread context (may sleep).
2070   *
2071   *	RETURNS:
2072   *	0 on success, AC_ERR_* mask otherwise.
2073   */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2074  unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2075  			       u8 page, void *buf, unsigned int sectors)
2076  {
2077  	unsigned long ap_flags = dev->link->ap->flags;
2078  	struct ata_taskfile tf;
2079  	unsigned int err_mask;
2080  	bool dma = false;
2081  
2082  	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2083  
2084  	/*
2085  	 * Return error without actually issuing the command on controllers
2086  	 * which e.g. lockup on a read log page.
2087  	 */
2088  	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2089  		return AC_ERR_DEV;
2090  
2091  retry:
2092  	ata_tf_init(dev, &tf);
2093  	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2094  	    !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2095  		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2096  		tf.protocol = ATA_PROT_DMA;
2097  		dma = true;
2098  	} else {
2099  		tf.command = ATA_CMD_READ_LOG_EXT;
2100  		tf.protocol = ATA_PROT_PIO;
2101  		dma = false;
2102  	}
2103  	tf.lbal = log;
2104  	tf.lbam = page;
2105  	tf.nsect = sectors;
2106  	tf.hob_nsect = sectors >> 8;
2107  	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2108  
2109  	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2110  				     buf, sectors * ATA_SECT_SIZE, 0);
2111  
2112  	if (err_mask) {
2113  		if (dma) {
2114  			dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2115  			if (!ata_port_is_frozen(dev->link->ap))
2116  				goto retry;
2117  		}
2118  		ata_dev_err(dev,
2119  			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2120  			    (unsigned int)log, (unsigned int)page, err_mask);
2121  	}
2122  
2123  	return err_mask;
2124  }
2125  
ata_log_supported(struct ata_device * dev,u8 log)2126  static int ata_log_supported(struct ata_device *dev, u8 log)
2127  {
2128  	if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2129  		return 0;
2130  
2131  	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->sector_buf, 1))
2132  		return 0;
2133  	return get_unaligned_le16(&dev->sector_buf[log * 2]);
2134  }
2135  
ata_identify_page_supported(struct ata_device * dev,u8 page)2136  static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2137  {
2138  	unsigned int err, i;
2139  
2140  	if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2141  		return false;
2142  
2143  	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2144  		/*
2145  		 * IDENTIFY DEVICE data log is defined as mandatory starting
2146  		 * with ACS-3 (ATA version 10). Warn about the missing log
2147  		 * for drives which implement this ATA level or above.
2148  		 */
2149  		if (ata_id_major_version(dev->id) >= 10)
2150  			ata_dev_warn(dev,
2151  				"ATA Identify Device Log not supported\n");
2152  		dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2153  		return false;
2154  	}
2155  
2156  	/*
2157  	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2158  	 * supported.
2159  	 */
2160  	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2161  				dev->sector_buf, 1);
2162  	if (err)
2163  		return false;
2164  
2165  	for (i = 0; i < dev->sector_buf[8]; i++) {
2166  		if (dev->sector_buf[9 + i] == page)
2167  			return true;
2168  	}
2169  
2170  	return false;
2171  }
2172  
ata_do_link_spd_quirk(struct ata_device * dev)2173  static int ata_do_link_spd_quirk(struct ata_device *dev)
2174  {
2175  	struct ata_link *plink = ata_dev_phys_link(dev);
2176  	u32 target, target_limit;
2177  
2178  	if (!sata_scr_valid(plink))
2179  		return 0;
2180  
2181  	if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2182  		target = 1;
2183  	else
2184  		return 0;
2185  
2186  	target_limit = (1 << target) - 1;
2187  
2188  	/* if already on stricter limit, no need to push further */
2189  	if (plink->sata_spd_limit <= target_limit)
2190  		return 0;
2191  
2192  	plink->sata_spd_limit = target_limit;
2193  
2194  	/* Request another EH round by returning -EAGAIN if link is
2195  	 * going faster than the target speed.  Forward progress is
2196  	 * guaranteed by setting sata_spd_limit to target_limit above.
2197  	 */
2198  	if (plink->sata_spd > target) {
2199  		ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2200  			     sata_spd_string(target));
2201  		return -EAGAIN;
2202  	}
2203  	return 0;
2204  }
2205  
ata_dev_knobble(struct ata_device * dev)2206  static inline bool ata_dev_knobble(struct ata_device *dev)
2207  {
2208  	struct ata_port *ap = dev->link->ap;
2209  
2210  	if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2211  		return false;
2212  
2213  	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2214  }
2215  
ata_dev_config_ncq_send_recv(struct ata_device * dev)2216  static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2217  {
2218  	unsigned int err_mask;
2219  
2220  	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2221  		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2222  		return;
2223  	}
2224  	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2225  				     0, dev->sector_buf, 1);
2226  	if (!err_mask) {
2227  		u8 *cmds = dev->ncq_send_recv_cmds;
2228  
2229  		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2230  		memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2231  
2232  		if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2233  			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2234  			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2235  				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2236  		}
2237  	}
2238  }
2239  
ata_dev_config_ncq_non_data(struct ata_device * dev)2240  static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2241  {
2242  	unsigned int err_mask;
2243  
2244  	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2245  		ata_dev_warn(dev,
2246  			     "NCQ Send/Recv Log not supported\n");
2247  		return;
2248  	}
2249  	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2250  				     0, dev->sector_buf, 1);
2251  	if (!err_mask)
2252  		memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2253  		       ATA_LOG_NCQ_NON_DATA_SIZE);
2254  }
2255  
ata_dev_config_ncq_prio(struct ata_device * dev)2256  static void ata_dev_config_ncq_prio(struct ata_device *dev)
2257  {
2258  	unsigned int err_mask;
2259  
2260  	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2261  		return;
2262  
2263  	err_mask = ata_read_log_page(dev,
2264  				     ATA_LOG_IDENTIFY_DEVICE,
2265  				     ATA_LOG_SATA_SETTINGS,
2266  				     dev->sector_buf, 1);
2267  	if (err_mask)
2268  		goto not_supported;
2269  
2270  	if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2271  		goto not_supported;
2272  
2273  	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274  
2275  	return;
2276  
2277  not_supported:
2278  	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2279  	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2280  }
2281  
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2282  static bool ata_dev_check_adapter(struct ata_device *dev,
2283  				  unsigned short vendor_id)
2284  {
2285  	struct pci_dev *pcidev = NULL;
2286  	struct device *parent_dev = NULL;
2287  
2288  	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2289  	     parent_dev = parent_dev->parent) {
2290  		if (dev_is_pci(parent_dev)) {
2291  			pcidev = to_pci_dev(parent_dev);
2292  			if (pcidev->vendor == vendor_id)
2293  				return true;
2294  			break;
2295  		}
2296  	}
2297  
2298  	return false;
2299  }
2300  
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2301  static int ata_dev_config_ncq(struct ata_device *dev,
2302  			       char *desc, size_t desc_sz)
2303  {
2304  	struct ata_port *ap = dev->link->ap;
2305  	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2306  	unsigned int err_mask;
2307  	char *aa_desc = "";
2308  
2309  	if (!ata_id_has_ncq(dev->id)) {
2310  		desc[0] = '\0';
2311  		return 0;
2312  	}
2313  	if (!IS_ENABLED(CONFIG_SATA_HOST))
2314  		return 0;
2315  	if (dev->quirks & ATA_QUIRK_NONCQ) {
2316  		snprintf(desc, desc_sz, "NCQ (not used)");
2317  		return 0;
2318  	}
2319  
2320  	if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2321  	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2322  		snprintf(desc, desc_sz, "NCQ (not used)");
2323  		return 0;
2324  	}
2325  
2326  	if (ap->flags & ATA_FLAG_NCQ) {
2327  		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2328  		dev->flags |= ATA_DFLAG_NCQ;
2329  	}
2330  
2331  	if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2332  		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2333  		ata_id_has_fpdma_aa(dev->id)) {
2334  		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2335  			SATA_FPDMA_AA);
2336  		if (err_mask) {
2337  			ata_dev_err(dev,
2338  				    "failed to enable AA (error_mask=0x%x)\n",
2339  				    err_mask);
2340  			if (err_mask != AC_ERR_DEV) {
2341  				dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2342  				return -EIO;
2343  			}
2344  		} else
2345  			aa_desc = ", AA";
2346  	}
2347  
2348  	if (hdepth >= ddepth)
2349  		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2350  	else
2351  		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2352  			ddepth, aa_desc);
2353  
2354  	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2355  		if (ata_id_has_ncq_send_and_recv(dev->id))
2356  			ata_dev_config_ncq_send_recv(dev);
2357  		if (ata_id_has_ncq_non_data(dev->id))
2358  			ata_dev_config_ncq_non_data(dev);
2359  		if (ata_id_has_ncq_prio(dev->id))
2360  			ata_dev_config_ncq_prio(dev);
2361  	}
2362  
2363  	return 0;
2364  }
2365  
ata_dev_config_sense_reporting(struct ata_device * dev)2366  static void ata_dev_config_sense_reporting(struct ata_device *dev)
2367  {
2368  	unsigned int err_mask;
2369  
2370  	if (!ata_id_has_sense_reporting(dev->id))
2371  		return;
2372  
2373  	if (ata_id_sense_reporting_enabled(dev->id))
2374  		return;
2375  
2376  	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2377  	if (err_mask) {
2378  		ata_dev_dbg(dev,
2379  			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2380  			    err_mask);
2381  	}
2382  }
2383  
ata_dev_config_zac(struct ata_device * dev)2384  static void ata_dev_config_zac(struct ata_device *dev)
2385  {
2386  	unsigned int err_mask;
2387  	u8 *identify_buf = dev->sector_buf;
2388  
2389  	dev->zac_zones_optimal_open = U32_MAX;
2390  	dev->zac_zones_optimal_nonseq = U32_MAX;
2391  	dev->zac_zones_max_open = U32_MAX;
2392  
2393  	/*
2394  	 * Always set the 'ZAC' flag for Host-managed devices.
2395  	 */
2396  	if (dev->class == ATA_DEV_ZAC)
2397  		dev->flags |= ATA_DFLAG_ZAC;
2398  	else if (ata_id_zoned_cap(dev->id) == 0x01)
2399  		/*
2400  		 * Check for host-aware devices.
2401  		 */
2402  		dev->flags |= ATA_DFLAG_ZAC;
2403  
2404  	if (!(dev->flags & ATA_DFLAG_ZAC))
2405  		return;
2406  
2407  	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2408  		ata_dev_warn(dev,
2409  			     "ATA Zoned Information Log not supported\n");
2410  		return;
2411  	}
2412  
2413  	/*
2414  	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2415  	 */
2416  	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2417  				     ATA_LOG_ZONED_INFORMATION,
2418  				     identify_buf, 1);
2419  	if (!err_mask) {
2420  		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2421  
2422  		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2423  		if ((zoned_cap >> 63))
2424  			dev->zac_zoned_cap = (zoned_cap & 1);
2425  		opt_open = get_unaligned_le64(&identify_buf[24]);
2426  		if ((opt_open >> 63))
2427  			dev->zac_zones_optimal_open = (u32)opt_open;
2428  		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2429  		if ((opt_nonseq >> 63))
2430  			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2431  		max_open = get_unaligned_le64(&identify_buf[40]);
2432  		if ((max_open >> 63))
2433  			dev->zac_zones_max_open = (u32)max_open;
2434  	}
2435  }
2436  
ata_dev_config_trusted(struct ata_device * dev)2437  static void ata_dev_config_trusted(struct ata_device *dev)
2438  {
2439  	u64 trusted_cap;
2440  	unsigned int err;
2441  
2442  	if (!ata_id_has_trusted(dev->id))
2443  		return;
2444  
2445  	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2446  		ata_dev_warn(dev,
2447  			     "Security Log not supported\n");
2448  		return;
2449  	}
2450  
2451  	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2452  				dev->sector_buf, 1);
2453  	if (err)
2454  		return;
2455  
2456  	trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2457  	if (!(trusted_cap & (1ULL << 63))) {
2458  		ata_dev_dbg(dev,
2459  			    "Trusted Computing capability qword not valid!\n");
2460  		return;
2461  	}
2462  
2463  	if (trusted_cap & (1 << 0))
2464  		dev->flags |= ATA_DFLAG_TRUSTED;
2465  }
2466  
ata_dev_cleanup_cdl_resources(struct ata_device * dev)2467  void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2468  {
2469  	kfree(dev->cdl);
2470  	dev->cdl = NULL;
2471  }
2472  
ata_dev_init_cdl_resources(struct ata_device * dev)2473  static int ata_dev_init_cdl_resources(struct ata_device *dev)
2474  {
2475  	struct ata_cdl *cdl = dev->cdl;
2476  	unsigned int err_mask;
2477  
2478  	if (!cdl) {
2479  		cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2480  		if (!cdl)
2481  			return -ENOMEM;
2482  		dev->cdl = cdl;
2483  	}
2484  
2485  	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2486  				     ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2487  	if (err_mask) {
2488  		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2489  		ata_dev_cleanup_cdl_resources(dev);
2490  		return -EIO;
2491  	}
2492  
2493  	return 0;
2494  }
2495  
ata_dev_config_cdl(struct ata_device * dev)2496  static void ata_dev_config_cdl(struct ata_device *dev)
2497  {
2498  	unsigned int err_mask;
2499  	bool cdl_enabled;
2500  	u64 val;
2501  	int ret;
2502  
2503  	if (ata_id_major_version(dev->id) < 11)
2504  		goto not_supported;
2505  
2506  	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2507  	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2508  	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2509  		goto not_supported;
2510  
2511  	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2512  				     ATA_LOG_SUPPORTED_CAPABILITIES,
2513  				     dev->sector_buf, 1);
2514  	if (err_mask)
2515  		goto not_supported;
2516  
2517  	/* Check Command Duration Limit Supported bits */
2518  	val = get_unaligned_le64(&dev->sector_buf[168]);
2519  	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2520  		goto not_supported;
2521  
2522  	/* Warn the user if command duration guideline is not supported */
2523  	if (!(val & BIT_ULL(1)))
2524  		ata_dev_warn(dev,
2525  			"Command duration guideline is not supported\n");
2526  
2527  	/*
2528  	 * We must have support for the sense data for successful NCQ commands
2529  	 * log indicated by the successful NCQ command sense data supported bit.
2530  	 */
2531  	val = get_unaligned_le64(&dev->sector_buf[8]);
2532  	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2533  		ata_dev_warn(dev,
2534  			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2535  		goto not_supported;
2536  	}
2537  
2538  	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2539  	if (!ata_id_has_ncq_autosense(dev->id)) {
2540  		ata_dev_warn(dev,
2541  			"CDL supported but NCQ autosense is not supported\n");
2542  		goto not_supported;
2543  	}
2544  
2545  	/*
2546  	 * If CDL is marked as enabled, make sure the feature is enabled too.
2547  	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2548  	 */
2549  	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2550  				     ATA_LOG_CURRENT_SETTINGS,
2551  				     dev->sector_buf, 1);
2552  	if (err_mask)
2553  		goto not_supported;
2554  
2555  	val = get_unaligned_le64(&dev->sector_buf[8]);
2556  	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2557  	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2558  		if (!cdl_enabled) {
2559  			/* Enable CDL on the device */
2560  			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2561  			if (err_mask) {
2562  				ata_dev_err(dev,
2563  					    "Enable CDL feature failed\n");
2564  				goto not_supported;
2565  			}
2566  		}
2567  	} else {
2568  		if (cdl_enabled) {
2569  			/* Disable CDL on the device */
2570  			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2571  			if (err_mask) {
2572  				ata_dev_err(dev,
2573  					    "Disable CDL feature failed\n");
2574  				goto not_supported;
2575  			}
2576  		}
2577  	}
2578  
2579  	/*
2580  	 * While CDL itself has to be enabled using sysfs, CDL requires that
2581  	 * sense data for successful NCQ commands is enabled to work properly.
2582  	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2583  	 * if supported.
2584  	 */
2585  	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2586  		err_mask = ata_dev_set_feature(dev,
2587  					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2588  		if (err_mask) {
2589  			ata_dev_warn(dev,
2590  				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2591  				     err_mask);
2592  			goto not_supported;
2593  		}
2594  	}
2595  
2596  	/* CDL is supported: allocate and initialize needed resources. */
2597  	ret = ata_dev_init_cdl_resources(dev);
2598  	if (ret) {
2599  		ata_dev_warn(dev, "Initialize CDL resources failed\n");
2600  		goto not_supported;
2601  	}
2602  
2603  	dev->flags |= ATA_DFLAG_CDL;
2604  
2605  	return;
2606  
2607  not_supported:
2608  	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2609  	ata_dev_cleanup_cdl_resources(dev);
2610  }
2611  
ata_dev_config_lba(struct ata_device * dev)2612  static int ata_dev_config_lba(struct ata_device *dev)
2613  {
2614  	const u16 *id = dev->id;
2615  	const char *lba_desc;
2616  	char ncq_desc[32];
2617  	int ret;
2618  
2619  	dev->flags |= ATA_DFLAG_LBA;
2620  
2621  	if (ata_id_has_lba48(id)) {
2622  		lba_desc = "LBA48";
2623  		dev->flags |= ATA_DFLAG_LBA48;
2624  		if (dev->n_sectors >= (1UL << 28) &&
2625  		    ata_id_has_flush_ext(id))
2626  			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2627  	} else {
2628  		lba_desc = "LBA";
2629  	}
2630  
2631  	/* config NCQ */
2632  	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2633  
2634  	/* print device info to dmesg */
2635  	if (ata_dev_print_info(dev))
2636  		ata_dev_info(dev,
2637  			     "%llu sectors, multi %u: %s %s\n",
2638  			     (unsigned long long)dev->n_sectors,
2639  			     dev->multi_count, lba_desc, ncq_desc);
2640  
2641  	return ret;
2642  }
2643  
ata_dev_config_chs(struct ata_device * dev)2644  static void ata_dev_config_chs(struct ata_device *dev)
2645  {
2646  	const u16 *id = dev->id;
2647  
2648  	if (ata_id_current_chs_valid(id)) {
2649  		/* Current CHS translation is valid. */
2650  		dev->cylinders = id[54];
2651  		dev->heads     = id[55];
2652  		dev->sectors   = id[56];
2653  	} else {
2654  		/* Default translation */
2655  		dev->cylinders	= id[1];
2656  		dev->heads	= id[3];
2657  		dev->sectors	= id[6];
2658  	}
2659  
2660  	/* print device info to dmesg */
2661  	if (ata_dev_print_info(dev))
2662  		ata_dev_info(dev,
2663  			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2664  			     (unsigned long long)dev->n_sectors,
2665  			     dev->multi_count, dev->cylinders,
2666  			     dev->heads, dev->sectors);
2667  }
2668  
ata_dev_config_fua(struct ata_device * dev)2669  static void ata_dev_config_fua(struct ata_device *dev)
2670  {
2671  	/* Ignore FUA support if its use is disabled globally */
2672  	if (!libata_fua)
2673  		goto nofua;
2674  
2675  	/* Ignore devices without support for WRITE DMA FUA EXT */
2676  	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2677  		goto nofua;
2678  
2679  	/* Ignore known bad devices and devices that lack NCQ support */
2680  	if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2681  		goto nofua;
2682  
2683  	dev->flags |= ATA_DFLAG_FUA;
2684  
2685  	return;
2686  
2687  nofua:
2688  	dev->flags &= ~ATA_DFLAG_FUA;
2689  }
2690  
ata_dev_config_devslp(struct ata_device * dev)2691  static void ata_dev_config_devslp(struct ata_device *dev)
2692  {
2693  	u8 *sata_setting = dev->sector_buf;
2694  	unsigned int err_mask;
2695  	int i, j;
2696  
2697  	/*
2698  	 * Check device sleep capability. Get DevSlp timing variables
2699  	 * from SATA Settings page of Identify Device Data Log.
2700  	 */
2701  	if (!ata_id_has_devslp(dev->id) ||
2702  	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2703  		return;
2704  
2705  	err_mask = ata_read_log_page(dev,
2706  				     ATA_LOG_IDENTIFY_DEVICE,
2707  				     ATA_LOG_SATA_SETTINGS,
2708  				     sata_setting, 1);
2709  	if (err_mask)
2710  		return;
2711  
2712  	dev->flags |= ATA_DFLAG_DEVSLP;
2713  	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2714  		j = ATA_LOG_DEVSLP_OFFSET + i;
2715  		dev->devslp_timing[i] = sata_setting[j];
2716  	}
2717  }
2718  
ata_dev_config_cpr(struct ata_device * dev)2719  static void ata_dev_config_cpr(struct ata_device *dev)
2720  {
2721  	unsigned int err_mask;
2722  	size_t buf_len;
2723  	int i, nr_cpr = 0;
2724  	struct ata_cpr_log *cpr_log = NULL;
2725  	u8 *desc, *buf = NULL;
2726  
2727  	if (ata_id_major_version(dev->id) < 11)
2728  		goto out;
2729  
2730  	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2731  	if (buf_len == 0)
2732  		goto out;
2733  
2734  	/*
2735  	 * Read the concurrent positioning ranges log (0x47). We can have at
2736  	 * most 255 32B range descriptors plus a 64B header. This log varies in
2737  	 * size, so use the size reported in the GPL directory. Reading beyond
2738  	 * the supported length will result in an error.
2739  	 */
2740  	buf_len <<= 9;
2741  	buf = kzalloc(buf_len, GFP_KERNEL);
2742  	if (!buf)
2743  		goto out;
2744  
2745  	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2746  				     0, buf, buf_len >> 9);
2747  	if (err_mask)
2748  		goto out;
2749  
2750  	nr_cpr = buf[0];
2751  	if (!nr_cpr)
2752  		goto out;
2753  
2754  	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2755  	if (!cpr_log)
2756  		goto out;
2757  
2758  	cpr_log->nr_cpr = nr_cpr;
2759  	desc = &buf[64];
2760  	for (i = 0; i < nr_cpr; i++, desc += 32) {
2761  		cpr_log->cpr[i].num = desc[0];
2762  		cpr_log->cpr[i].num_storage_elements = desc[1];
2763  		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2764  		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2765  	}
2766  
2767  out:
2768  	swap(dev->cpr_log, cpr_log);
2769  	kfree(cpr_log);
2770  	kfree(buf);
2771  }
2772  
ata_dev_print_features(struct ata_device * dev)2773  static void ata_dev_print_features(struct ata_device *dev)
2774  {
2775  	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2776  		return;
2777  
2778  	ata_dev_info(dev,
2779  		     "Features:%s%s%s%s%s%s%s%s\n",
2780  		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2781  		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2782  		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2783  		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2784  		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2785  		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2786  		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2787  		     dev->cpr_log ? " CPR" : "");
2788  }
2789  
2790  /**
2791   *	ata_dev_configure - Configure the specified ATA/ATAPI device
2792   *	@dev: Target device to configure
2793   *
2794   *	Configure @dev according to @dev->id.  Generic and low-level
2795   *	driver specific fixups are also applied.
2796   *
2797   *	LOCKING:
2798   *	Kernel thread context (may sleep)
2799   *
2800   *	RETURNS:
2801   *	0 on success, -errno otherwise
2802   */
ata_dev_configure(struct ata_device * dev)2803  int ata_dev_configure(struct ata_device *dev)
2804  {
2805  	struct ata_port *ap = dev->link->ap;
2806  	bool print_info = ata_dev_print_info(dev);
2807  	const u16 *id = dev->id;
2808  	unsigned int xfer_mask;
2809  	unsigned int err_mask;
2810  	char revbuf[7];		/* XYZ-99\0 */
2811  	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2812  	char modelbuf[ATA_ID_PROD_LEN+1];
2813  	int rc;
2814  
2815  	if (!ata_dev_enabled(dev)) {
2816  		ata_dev_dbg(dev, "no device\n");
2817  		return 0;
2818  	}
2819  
2820  	/* Set quirks */
2821  	dev->quirks |= ata_dev_quirks(dev);
2822  	ata_force_quirks(dev);
2823  
2824  	if (dev->quirks & ATA_QUIRK_DISABLE) {
2825  		ata_dev_info(dev, "unsupported device, disabling\n");
2826  		ata_dev_disable(dev);
2827  		return 0;
2828  	}
2829  
2830  	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2831  	    dev->class == ATA_DEV_ATAPI) {
2832  		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2833  			     atapi_enabled ? "not supported with this driver"
2834  			     : "disabled");
2835  		ata_dev_disable(dev);
2836  		return 0;
2837  	}
2838  
2839  	rc = ata_do_link_spd_quirk(dev);
2840  	if (rc)
2841  		return rc;
2842  
2843  	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2844  	if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2845  	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2846  		dev->quirks |= ATA_QUIRK_NOLPM;
2847  
2848  	if (ap->flags & ATA_FLAG_NO_LPM)
2849  		dev->quirks |= ATA_QUIRK_NOLPM;
2850  
2851  	if (dev->quirks & ATA_QUIRK_NOLPM) {
2852  		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2853  		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2854  	}
2855  
2856  	/* let ACPI work its magic */
2857  	rc = ata_acpi_on_devcfg(dev);
2858  	if (rc)
2859  		return rc;
2860  
2861  	/* massage HPA, do it early as it might change IDENTIFY data */
2862  	rc = ata_hpa_resize(dev);
2863  	if (rc)
2864  		return rc;
2865  
2866  	/* print device capabilities */
2867  	ata_dev_dbg(dev,
2868  		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2869  		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2870  		    __func__,
2871  		    id[49], id[82], id[83], id[84],
2872  		    id[85], id[86], id[87], id[88]);
2873  
2874  	/* initialize to-be-configured parameters */
2875  	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2876  	dev->max_sectors = 0;
2877  	dev->cdb_len = 0;
2878  	dev->n_sectors = 0;
2879  	dev->cylinders = 0;
2880  	dev->heads = 0;
2881  	dev->sectors = 0;
2882  	dev->multi_count = 0;
2883  
2884  	/*
2885  	 * common ATA, ATAPI feature tests
2886  	 */
2887  
2888  	/* find max transfer mode; for printk only */
2889  	xfer_mask = ata_id_xfermask(id);
2890  
2891  	ata_dump_id(dev, id);
2892  
2893  	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2894  	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2895  			sizeof(fwrevbuf));
2896  
2897  	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2898  			sizeof(modelbuf));
2899  
2900  	/* ATA-specific feature tests */
2901  	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2902  		if (ata_id_is_cfa(id)) {
2903  			/* CPRM may make this media unusable */
2904  			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2905  				ata_dev_warn(dev,
2906  	"supports DRM functions and may not be fully accessible\n");
2907  			snprintf(revbuf, 7, "CFA");
2908  		} else {
2909  			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2910  			/* Warn the user if the device has TPM extensions */
2911  			if (ata_id_has_tpm(id))
2912  				ata_dev_warn(dev,
2913  	"supports DRM functions and may not be fully accessible\n");
2914  		}
2915  
2916  		dev->n_sectors = ata_id_n_sectors(id);
2917  
2918  		/* get current R/W Multiple count setting */
2919  		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2920  			unsigned int max = dev->id[47] & 0xff;
2921  			unsigned int cnt = dev->id[59] & 0xff;
2922  			/* only recognize/allow powers of two here */
2923  			if (is_power_of_2(max) && is_power_of_2(cnt))
2924  				if (cnt <= max)
2925  					dev->multi_count = cnt;
2926  		}
2927  
2928  		/* print device info to dmesg */
2929  		if (print_info)
2930  			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2931  				     revbuf, modelbuf, fwrevbuf,
2932  				     ata_mode_string(xfer_mask));
2933  
2934  		if (ata_id_has_lba(id)) {
2935  			rc = ata_dev_config_lba(dev);
2936  			if (rc)
2937  				return rc;
2938  		} else {
2939  			ata_dev_config_chs(dev);
2940  		}
2941  
2942  		ata_dev_config_fua(dev);
2943  		ata_dev_config_devslp(dev);
2944  		ata_dev_config_sense_reporting(dev);
2945  		ata_dev_config_zac(dev);
2946  		ata_dev_config_trusted(dev);
2947  		ata_dev_config_cpr(dev);
2948  		ata_dev_config_cdl(dev);
2949  		dev->cdb_len = 32;
2950  
2951  		if (print_info)
2952  			ata_dev_print_features(dev);
2953  	}
2954  
2955  	/* ATAPI-specific feature tests */
2956  	else if (dev->class == ATA_DEV_ATAPI) {
2957  		const char *cdb_intr_string = "";
2958  		const char *atapi_an_string = "";
2959  		const char *dma_dir_string = "";
2960  		u32 sntf;
2961  
2962  		rc = atapi_cdb_len(id);
2963  		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2964  			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2965  			rc = -EINVAL;
2966  			goto err_out_nosup;
2967  		}
2968  		dev->cdb_len = (unsigned int) rc;
2969  
2970  		/* Enable ATAPI AN if both the host and device have
2971  		 * the support.  If PMP is attached, SNTF is required
2972  		 * to enable ATAPI AN to discern between PHY status
2973  		 * changed notifications and ATAPI ANs.
2974  		 */
2975  		if (atapi_an &&
2976  		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2977  		    (!sata_pmp_attached(ap) ||
2978  		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2979  			/* issue SET feature command to turn this on */
2980  			err_mask = ata_dev_set_feature(dev,
2981  					SETFEATURES_SATA_ENABLE, SATA_AN);
2982  			if (err_mask)
2983  				ata_dev_err(dev,
2984  					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2985  					    err_mask);
2986  			else {
2987  				dev->flags |= ATA_DFLAG_AN;
2988  				atapi_an_string = ", ATAPI AN";
2989  			}
2990  		}
2991  
2992  		if (ata_id_cdb_intr(dev->id)) {
2993  			dev->flags |= ATA_DFLAG_CDB_INTR;
2994  			cdb_intr_string = ", CDB intr";
2995  		}
2996  
2997  		if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
2998  		    atapi_id_dmadir(dev->id)) {
2999  			dev->flags |= ATA_DFLAG_DMADIR;
3000  			dma_dir_string = ", DMADIR";
3001  		}
3002  
3003  		if (ata_id_has_da(dev->id)) {
3004  			dev->flags |= ATA_DFLAG_DA;
3005  			zpodd_init(dev);
3006  		}
3007  
3008  		/* print device info to dmesg */
3009  		if (print_info)
3010  			ata_dev_info(dev,
3011  				     "ATAPI: %s, %s, max %s%s%s%s\n",
3012  				     modelbuf, fwrevbuf,
3013  				     ata_mode_string(xfer_mask),
3014  				     cdb_intr_string, atapi_an_string,
3015  				     dma_dir_string);
3016  	}
3017  
3018  	/* determine max_sectors */
3019  	dev->max_sectors = ATA_MAX_SECTORS;
3020  	if (dev->flags & ATA_DFLAG_LBA48)
3021  		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3022  
3023  	/* Limit PATA drive on SATA cable bridge transfers to udma5,
3024  	   200 sectors */
3025  	if (ata_dev_knobble(dev)) {
3026  		if (print_info)
3027  			ata_dev_info(dev, "applying bridge limits\n");
3028  		dev->udma_mask &= ATA_UDMA5;
3029  		dev->max_sectors = ATA_MAX_SECTORS;
3030  	}
3031  
3032  	if ((dev->class == ATA_DEV_ATAPI) &&
3033  	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
3034  		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3035  		dev->quirks |= ATA_QUIRK_STUCK_ERR;
3036  	}
3037  
3038  	if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3039  		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3040  					 dev->max_sectors);
3041  
3042  	if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3043  		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3044  					 dev->max_sectors);
3045  
3046  	if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3047  		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3048  
3049  	if (ap->ops->dev_config)
3050  		ap->ops->dev_config(dev);
3051  
3052  	if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3053  		/* Let the user know. We don't want to disallow opens for
3054  		   rescue purposes, or in case the vendor is just a blithering
3055  		   idiot. Do this after the dev_config call as some controllers
3056  		   with buggy firmware may want to avoid reporting false device
3057  		   bugs */
3058  
3059  		if (print_info) {
3060  			ata_dev_warn(dev,
3061  "Drive reports diagnostics failure. This may indicate a drive\n");
3062  			ata_dev_warn(dev,
3063  "fault or invalid emulation. Contact drive vendor for information.\n");
3064  		}
3065  	}
3066  
3067  	if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3068  		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3069  		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
3070  	}
3071  
3072  	return 0;
3073  
3074  err_out_nosup:
3075  	return rc;
3076  }
3077  
3078  /**
3079   *	ata_cable_40wire	-	return 40 wire cable type
3080   *	@ap: port
3081   *
3082   *	Helper method for drivers which want to hardwire 40 wire cable
3083   *	detection.
3084   */
3085  
ata_cable_40wire(struct ata_port * ap)3086  int ata_cable_40wire(struct ata_port *ap)
3087  {
3088  	return ATA_CBL_PATA40;
3089  }
3090  EXPORT_SYMBOL_GPL(ata_cable_40wire);
3091  
3092  /**
3093   *	ata_cable_80wire	-	return 80 wire cable type
3094   *	@ap: port
3095   *
3096   *	Helper method for drivers which want to hardwire 80 wire cable
3097   *	detection.
3098   */
3099  
ata_cable_80wire(struct ata_port * ap)3100  int ata_cable_80wire(struct ata_port *ap)
3101  {
3102  	return ATA_CBL_PATA80;
3103  }
3104  EXPORT_SYMBOL_GPL(ata_cable_80wire);
3105  
3106  /**
3107   *	ata_cable_unknown	-	return unknown PATA cable.
3108   *	@ap: port
3109   *
3110   *	Helper method for drivers which have no PATA cable detection.
3111   */
3112  
ata_cable_unknown(struct ata_port * ap)3113  int ata_cable_unknown(struct ata_port *ap)
3114  {
3115  	return ATA_CBL_PATA_UNK;
3116  }
3117  EXPORT_SYMBOL_GPL(ata_cable_unknown);
3118  
3119  /**
3120   *	ata_cable_ignore	-	return ignored PATA cable.
3121   *	@ap: port
3122   *
3123   *	Helper method for drivers which don't use cable type to limit
3124   *	transfer mode.
3125   */
ata_cable_ignore(struct ata_port * ap)3126  int ata_cable_ignore(struct ata_port *ap)
3127  {
3128  	return ATA_CBL_PATA_IGN;
3129  }
3130  EXPORT_SYMBOL_GPL(ata_cable_ignore);
3131  
3132  /**
3133   *	ata_cable_sata	-	return SATA cable type
3134   *	@ap: port
3135   *
3136   *	Helper method for drivers which have SATA cables
3137   */
3138  
ata_cable_sata(struct ata_port * ap)3139  int ata_cable_sata(struct ata_port *ap)
3140  {
3141  	return ATA_CBL_SATA;
3142  }
3143  EXPORT_SYMBOL_GPL(ata_cable_sata);
3144  
3145  /**
3146   *	sata_print_link_status - Print SATA link status
3147   *	@link: SATA link to printk link status about
3148   *
3149   *	This function prints link speed and status of a SATA link.
3150   *
3151   *	LOCKING:
3152   *	None.
3153   */
sata_print_link_status(struct ata_link * link)3154  static void sata_print_link_status(struct ata_link *link)
3155  {
3156  	u32 sstatus, scontrol, tmp;
3157  
3158  	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3159  		return;
3160  	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3161  		return;
3162  
3163  	if (ata_phys_link_online(link)) {
3164  		tmp = (sstatus >> 4) & 0xf;
3165  		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3166  			      sata_spd_string(tmp), sstatus, scontrol);
3167  	} else {
3168  		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3169  			      sstatus, scontrol);
3170  	}
3171  }
3172  
3173  /**
3174   *	ata_dev_pair		-	return other device on cable
3175   *	@adev: device
3176   *
3177   *	Obtain the other device on the same cable, or if none is
3178   *	present NULL is returned
3179   */
3180  
ata_dev_pair(struct ata_device * adev)3181  struct ata_device *ata_dev_pair(struct ata_device *adev)
3182  {
3183  	struct ata_link *link = adev->link;
3184  	struct ata_device *pair = &link->device[1 - adev->devno];
3185  	if (!ata_dev_enabled(pair))
3186  		return NULL;
3187  	return pair;
3188  }
3189  EXPORT_SYMBOL_GPL(ata_dev_pair);
3190  
3191  #ifdef CONFIG_ATA_ACPI
3192  /**
3193   *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3194   *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3195   *	@cycle: cycle duration in ns
3196   *
3197   *	Return matching xfer mode for @cycle.  The returned mode is of
3198   *	the transfer type specified by @xfer_shift.  If @cycle is too
3199   *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3200   *	than the fastest known mode, the fasted mode is returned.
3201   *
3202   *	LOCKING:
3203   *	None.
3204   *
3205   *	RETURNS:
3206   *	Matching xfer_mode, 0xff if no match found.
3207   */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3208  u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3209  {
3210  	u8 base_mode = 0xff, last_mode = 0xff;
3211  	const struct ata_xfer_ent *ent;
3212  	const struct ata_timing *t;
3213  
3214  	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3215  		if (ent->shift == xfer_shift)
3216  			base_mode = ent->base;
3217  
3218  	for (t = ata_timing_find_mode(base_mode);
3219  	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3220  		unsigned short this_cycle;
3221  
3222  		switch (xfer_shift) {
3223  		case ATA_SHIFT_PIO:
3224  		case ATA_SHIFT_MWDMA:
3225  			this_cycle = t->cycle;
3226  			break;
3227  		case ATA_SHIFT_UDMA:
3228  			this_cycle = t->udma;
3229  			break;
3230  		default:
3231  			return 0xff;
3232  		}
3233  
3234  		if (cycle > this_cycle)
3235  			break;
3236  
3237  		last_mode = t->mode;
3238  	}
3239  
3240  	return last_mode;
3241  }
3242  #endif
3243  
3244  /**
3245   *	ata_down_xfermask_limit - adjust dev xfer masks downward
3246   *	@dev: Device to adjust xfer masks
3247   *	@sel: ATA_DNXFER_* selector
3248   *
3249   *	Adjust xfer masks of @dev downward.  Note that this function
3250   *	does not apply the change.  Invoking ata_set_mode() afterwards
3251   *	will apply the limit.
3252   *
3253   *	LOCKING:
3254   *	Inherited from caller.
3255   *
3256   *	RETURNS:
3257   *	0 on success, negative errno on failure
3258   */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3259  int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3260  {
3261  	char buf[32];
3262  	unsigned int orig_mask, xfer_mask;
3263  	unsigned int pio_mask, mwdma_mask, udma_mask;
3264  	int quiet, highbit;
3265  
3266  	quiet = !!(sel & ATA_DNXFER_QUIET);
3267  	sel &= ~ATA_DNXFER_QUIET;
3268  
3269  	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3270  						  dev->mwdma_mask,
3271  						  dev->udma_mask);
3272  	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3273  
3274  	switch (sel) {
3275  	case ATA_DNXFER_PIO:
3276  		highbit = fls(pio_mask) - 1;
3277  		pio_mask &= ~(1 << highbit);
3278  		break;
3279  
3280  	case ATA_DNXFER_DMA:
3281  		if (udma_mask) {
3282  			highbit = fls(udma_mask) - 1;
3283  			udma_mask &= ~(1 << highbit);
3284  			if (!udma_mask)
3285  				return -ENOENT;
3286  		} else if (mwdma_mask) {
3287  			highbit = fls(mwdma_mask) - 1;
3288  			mwdma_mask &= ~(1 << highbit);
3289  			if (!mwdma_mask)
3290  				return -ENOENT;
3291  		}
3292  		break;
3293  
3294  	case ATA_DNXFER_40C:
3295  		udma_mask &= ATA_UDMA_MASK_40C;
3296  		break;
3297  
3298  	case ATA_DNXFER_FORCE_PIO0:
3299  		pio_mask &= 1;
3300  		fallthrough;
3301  	case ATA_DNXFER_FORCE_PIO:
3302  		mwdma_mask = 0;
3303  		udma_mask = 0;
3304  		break;
3305  
3306  	default:
3307  		BUG();
3308  	}
3309  
3310  	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3311  
3312  	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3313  		return -ENOENT;
3314  
3315  	if (!quiet) {
3316  		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3317  			snprintf(buf, sizeof(buf), "%s:%s",
3318  				 ata_mode_string(xfer_mask),
3319  				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3320  		else
3321  			snprintf(buf, sizeof(buf), "%s",
3322  				 ata_mode_string(xfer_mask));
3323  
3324  		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3325  	}
3326  
3327  	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3328  			    &dev->udma_mask);
3329  
3330  	return 0;
3331  }
3332  
ata_dev_set_mode(struct ata_device * dev)3333  static int ata_dev_set_mode(struct ata_device *dev)
3334  {
3335  	struct ata_port *ap = dev->link->ap;
3336  	struct ata_eh_context *ehc = &dev->link->eh_context;
3337  	const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3338  	const char *dev_err_whine = "";
3339  	int ign_dev_err = 0;
3340  	unsigned int err_mask = 0;
3341  	int rc;
3342  
3343  	dev->flags &= ~ATA_DFLAG_PIO;
3344  	if (dev->xfer_shift == ATA_SHIFT_PIO)
3345  		dev->flags |= ATA_DFLAG_PIO;
3346  
3347  	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3348  		dev_err_whine = " (SET_XFERMODE skipped)";
3349  	else {
3350  		if (nosetxfer)
3351  			ata_dev_warn(dev,
3352  				     "NOSETXFER but PATA detected - can't "
3353  				     "skip SETXFER, might malfunction\n");
3354  		err_mask = ata_dev_set_xfermode(dev);
3355  	}
3356  
3357  	if (err_mask & ~AC_ERR_DEV)
3358  		goto fail;
3359  
3360  	/* revalidate */
3361  	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3362  	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3363  	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3364  	if (rc)
3365  		return rc;
3366  
3367  	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3368  		/* Old CFA may refuse this command, which is just fine */
3369  		if (ata_id_is_cfa(dev->id))
3370  			ign_dev_err = 1;
3371  		/* Catch several broken garbage emulations plus some pre
3372  		   ATA devices */
3373  		if (ata_id_major_version(dev->id) == 0 &&
3374  					dev->pio_mode <= XFER_PIO_2)
3375  			ign_dev_err = 1;
3376  		/* Some very old devices and some bad newer ones fail
3377  		   any kind of SET_XFERMODE request but support PIO0-2
3378  		   timings and no IORDY */
3379  		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3380  			ign_dev_err = 1;
3381  	}
3382  	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3383  	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3384  	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3385  	    dev->dma_mode == XFER_MW_DMA_0 &&
3386  	    (dev->id[63] >> 8) & 1)
3387  		ign_dev_err = 1;
3388  
3389  	/* if the device is actually configured correctly, ignore dev err */
3390  	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3391  		ign_dev_err = 1;
3392  
3393  	if (err_mask & AC_ERR_DEV) {
3394  		if (!ign_dev_err)
3395  			goto fail;
3396  		else
3397  			dev_err_whine = " (device error ignored)";
3398  	}
3399  
3400  	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3401  		    dev->xfer_shift, (int)dev->xfer_mode);
3402  
3403  	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3404  	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3405  		ata_dev_info(dev, "configured for %s%s\n",
3406  			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3407  			     dev_err_whine);
3408  
3409  	return 0;
3410  
3411   fail:
3412  	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3413  	return -EIO;
3414  }
3415  
3416  /**
3417   *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3418   *	@link: link on which timings will be programmed
3419   *	@r_failed_dev: out parameter for failed device
3420   *
3421   *	Standard implementation of the function used to tune and set
3422   *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3423   *	ata_dev_set_mode() fails, pointer to the failing device is
3424   *	returned in @r_failed_dev.
3425   *
3426   *	LOCKING:
3427   *	PCI/etc. bus probe sem.
3428   *
3429   *	RETURNS:
3430   *	0 on success, negative errno otherwise
3431   */
3432  
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3433  int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3434  {
3435  	struct ata_port *ap = link->ap;
3436  	struct ata_device *dev;
3437  	int rc = 0, used_dma = 0, found = 0;
3438  
3439  	/* step 1: calculate xfer_mask */
3440  	ata_for_each_dev(dev, link, ENABLED) {
3441  		unsigned int pio_mask, dma_mask;
3442  		unsigned int mode_mask;
3443  
3444  		mode_mask = ATA_DMA_MASK_ATA;
3445  		if (dev->class == ATA_DEV_ATAPI)
3446  			mode_mask = ATA_DMA_MASK_ATAPI;
3447  		else if (ata_id_is_cfa(dev->id))
3448  			mode_mask = ATA_DMA_MASK_CFA;
3449  
3450  		ata_dev_xfermask(dev);
3451  		ata_force_xfermask(dev);
3452  
3453  		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3454  
3455  		if (libata_dma_mask & mode_mask)
3456  			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3457  						     dev->udma_mask);
3458  		else
3459  			dma_mask = 0;
3460  
3461  		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3462  		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3463  
3464  		found = 1;
3465  		if (ata_dma_enabled(dev))
3466  			used_dma = 1;
3467  	}
3468  	if (!found)
3469  		goto out;
3470  
3471  	/* step 2: always set host PIO timings */
3472  	ata_for_each_dev(dev, link, ENABLED) {
3473  		if (dev->pio_mode == 0xff) {
3474  			ata_dev_warn(dev, "no PIO support\n");
3475  			rc = -EINVAL;
3476  			goto out;
3477  		}
3478  
3479  		dev->xfer_mode = dev->pio_mode;
3480  		dev->xfer_shift = ATA_SHIFT_PIO;
3481  		if (ap->ops->set_piomode)
3482  			ap->ops->set_piomode(ap, dev);
3483  	}
3484  
3485  	/* step 3: set host DMA timings */
3486  	ata_for_each_dev(dev, link, ENABLED) {
3487  		if (!ata_dma_enabled(dev))
3488  			continue;
3489  
3490  		dev->xfer_mode = dev->dma_mode;
3491  		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3492  		if (ap->ops->set_dmamode)
3493  			ap->ops->set_dmamode(ap, dev);
3494  	}
3495  
3496  	/* step 4: update devices' xfer mode */
3497  	ata_for_each_dev(dev, link, ENABLED) {
3498  		rc = ata_dev_set_mode(dev);
3499  		if (rc)
3500  			goto out;
3501  	}
3502  
3503  	/* Record simplex status. If we selected DMA then the other
3504  	 * host channels are not permitted to do so.
3505  	 */
3506  	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3507  		ap->host->simplex_claimed = ap;
3508  
3509   out:
3510  	if (rc)
3511  		*r_failed_dev = dev;
3512  	return rc;
3513  }
3514  EXPORT_SYMBOL_GPL(ata_do_set_mode);
3515  
3516  /**
3517   *	ata_wait_ready - wait for link to become ready
3518   *	@link: link to be waited on
3519   *	@deadline: deadline jiffies for the operation
3520   *	@check_ready: callback to check link readiness
3521   *
3522   *	Wait for @link to become ready.  @check_ready should return
3523   *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3524   *	link doesn't seem to be occupied, other errno for other error
3525   *	conditions.
3526   *
3527   *	Transient -ENODEV conditions are allowed for
3528   *	ATA_TMOUT_FF_WAIT.
3529   *
3530   *	LOCKING:
3531   *	EH context.
3532   *
3533   *	RETURNS:
3534   *	0 if @link is ready before @deadline; otherwise, -errno.
3535   */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3536  int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3537  		   int (*check_ready)(struct ata_link *link))
3538  {
3539  	unsigned long start = jiffies;
3540  	unsigned long nodev_deadline;
3541  	int warned = 0;
3542  
3543  	/* choose which 0xff timeout to use, read comment in libata.h */
3544  	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3545  		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3546  	else
3547  		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3548  
3549  	/* Slave readiness can't be tested separately from master.  On
3550  	 * M/S emulation configuration, this function should be called
3551  	 * only on the master and it will handle both master and slave.
3552  	 */
3553  	WARN_ON(link == link->ap->slave_link);
3554  
3555  	if (time_after(nodev_deadline, deadline))
3556  		nodev_deadline = deadline;
3557  
3558  	while (1) {
3559  		unsigned long now = jiffies;
3560  		int ready, tmp;
3561  
3562  		ready = tmp = check_ready(link);
3563  		if (ready > 0)
3564  			return 0;
3565  
3566  		/*
3567  		 * -ENODEV could be transient.  Ignore -ENODEV if link
3568  		 * is online.  Also, some SATA devices take a long
3569  		 * time to clear 0xff after reset.  Wait for
3570  		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3571  		 * offline.
3572  		 *
3573  		 * Note that some PATA controllers (pata_ali) explode
3574  		 * if status register is read more than once when
3575  		 * there's no device attached.
3576  		 */
3577  		if (ready == -ENODEV) {
3578  			if (ata_link_online(link))
3579  				ready = 0;
3580  			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3581  				 !ata_link_offline(link) &&
3582  				 time_before(now, nodev_deadline))
3583  				ready = 0;
3584  		}
3585  
3586  		if (ready)
3587  			return ready;
3588  		if (time_after(now, deadline))
3589  			return -EBUSY;
3590  
3591  		if (!warned && time_after(now, start + 5 * HZ) &&
3592  		    (deadline - now > 3 * HZ)) {
3593  			ata_link_warn(link,
3594  				"link is slow to respond, please be patient "
3595  				"(ready=%d)\n", tmp);
3596  			warned = 1;
3597  		}
3598  
3599  		ata_msleep(link->ap, 50);
3600  	}
3601  }
3602  
3603  /**
3604   *	ata_wait_after_reset - wait for link to become ready after reset
3605   *	@link: link to be waited on
3606   *	@deadline: deadline jiffies for the operation
3607   *	@check_ready: callback to check link readiness
3608   *
3609   *	Wait for @link to become ready after reset.
3610   *
3611   *	LOCKING:
3612   *	EH context.
3613   *
3614   *	RETURNS:
3615   *	0 if @link is ready before @deadline; otherwise, -errno.
3616   */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3617  int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3618  				int (*check_ready)(struct ata_link *link))
3619  {
3620  	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3621  
3622  	return ata_wait_ready(link, deadline, check_ready);
3623  }
3624  EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3625  
3626  /**
3627   *	ata_std_prereset - prepare for reset
3628   *	@link: ATA link to be reset
3629   *	@deadline: deadline jiffies for the operation
3630   *
3631   *	@link is about to be reset.  Initialize it.  Failure from
3632   *	prereset makes libata abort whole reset sequence and give up
3633   *	that port, so prereset should be best-effort.  It does its
3634   *	best to prepare for reset sequence but if things go wrong, it
3635   *	should just whine, not fail.
3636   *
3637   *	LOCKING:
3638   *	Kernel thread context (may sleep)
3639   *
3640   *	RETURNS:
3641   *	Always 0.
3642   */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3643  int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3644  {
3645  	struct ata_port *ap = link->ap;
3646  	struct ata_eh_context *ehc = &link->eh_context;
3647  	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3648  	int rc;
3649  
3650  	/* if we're about to do hardreset, nothing more to do */
3651  	if (ehc->i.action & ATA_EH_HARDRESET)
3652  		return 0;
3653  
3654  	/* if SATA, resume link */
3655  	if (ap->flags & ATA_FLAG_SATA) {
3656  		rc = sata_link_resume(link, timing, deadline);
3657  		/* whine about phy resume failure but proceed */
3658  		if (rc && rc != -EOPNOTSUPP)
3659  			ata_link_warn(link,
3660  				      "failed to resume link for reset (errno=%d)\n",
3661  				      rc);
3662  	}
3663  
3664  	/* no point in trying softreset on offline link */
3665  	if (ata_phys_link_offline(link))
3666  		ehc->i.action &= ~ATA_EH_SOFTRESET;
3667  
3668  	return 0;
3669  }
3670  EXPORT_SYMBOL_GPL(ata_std_prereset);
3671  
3672  /**
3673   *	ata_std_postreset - standard postreset callback
3674   *	@link: the target ata_link
3675   *	@classes: classes of attached devices
3676   *
3677   *	This function is invoked after a successful reset.  Note that
3678   *	the device might have been reset more than once using
3679   *	different reset methods before postreset is invoked.
3680   *
3681   *	LOCKING:
3682   *	Kernel thread context (may sleep)
3683   */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3684  void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3685  {
3686  	u32 serror;
3687  
3688  	/* reset complete, clear SError */
3689  	if (!sata_scr_read(link, SCR_ERROR, &serror))
3690  		sata_scr_write(link, SCR_ERROR, serror);
3691  
3692  	/* print link status */
3693  	sata_print_link_status(link);
3694  }
3695  EXPORT_SYMBOL_GPL(ata_std_postreset);
3696  
3697  /**
3698   *	ata_dev_same_device - Determine whether new ID matches configured device
3699   *	@dev: device to compare against
3700   *	@new_class: class of the new device
3701   *	@new_id: IDENTIFY page of the new device
3702   *
3703   *	Compare @new_class and @new_id against @dev and determine
3704   *	whether @dev is the device indicated by @new_class and
3705   *	@new_id.
3706   *
3707   *	LOCKING:
3708   *	None.
3709   *
3710   *	RETURNS:
3711   *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3712   */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3713  static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3714  			       const u16 *new_id)
3715  {
3716  	const u16 *old_id = dev->id;
3717  	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3718  	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3719  
3720  	if (dev->class != new_class) {
3721  		ata_dev_info(dev, "class mismatch %d != %d\n",
3722  			     dev->class, new_class);
3723  		return 0;
3724  	}
3725  
3726  	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3727  	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3728  	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3729  	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3730  
3731  	if (strcmp(model[0], model[1])) {
3732  		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3733  			     model[0], model[1]);
3734  		return 0;
3735  	}
3736  
3737  	if (strcmp(serial[0], serial[1])) {
3738  		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3739  			     serial[0], serial[1]);
3740  		return 0;
3741  	}
3742  
3743  	return 1;
3744  }
3745  
3746  /**
3747   *	ata_dev_reread_id - Re-read IDENTIFY data
3748   *	@dev: target ATA device
3749   *	@readid_flags: read ID flags
3750   *
3751   *	Re-read IDENTIFY page and make sure @dev is still attached to
3752   *	the port.
3753   *
3754   *	LOCKING:
3755   *	Kernel thread context (may sleep)
3756   *
3757   *	RETURNS:
3758   *	0 on success, negative errno otherwise
3759   */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3760  int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3761  {
3762  	unsigned int class = dev->class;
3763  	u16 *id = (void *)dev->sector_buf;
3764  	int rc;
3765  
3766  	/* read ID data */
3767  	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3768  	if (rc)
3769  		return rc;
3770  
3771  	/* is the device still there? */
3772  	if (!ata_dev_same_device(dev, class, id))
3773  		return -ENODEV;
3774  
3775  	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3776  	return 0;
3777  }
3778  
3779  /**
3780   *	ata_dev_revalidate - Revalidate ATA device
3781   *	@dev: device to revalidate
3782   *	@new_class: new class code
3783   *	@readid_flags: read ID flags
3784   *
3785   *	Re-read IDENTIFY page, make sure @dev is still attached to the
3786   *	port and reconfigure it according to the new IDENTIFY page.
3787   *
3788   *	LOCKING:
3789   *	Kernel thread context (may sleep)
3790   *
3791   *	RETURNS:
3792   *	0 on success, negative errno otherwise
3793   */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3794  int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3795  		       unsigned int readid_flags)
3796  {
3797  	u64 n_sectors = dev->n_sectors;
3798  	u64 n_native_sectors = dev->n_native_sectors;
3799  	int rc;
3800  
3801  	if (!ata_dev_enabled(dev))
3802  		return -ENODEV;
3803  
3804  	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3805  	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3806  		ata_dev_info(dev, "class mismatch %u != %u\n",
3807  			     dev->class, new_class);
3808  		rc = -ENODEV;
3809  		goto fail;
3810  	}
3811  
3812  	/* re-read ID */
3813  	rc = ata_dev_reread_id(dev, readid_flags);
3814  	if (rc)
3815  		goto fail;
3816  
3817  	/* configure device according to the new ID */
3818  	rc = ata_dev_configure(dev);
3819  	if (rc)
3820  		goto fail;
3821  
3822  	/* verify n_sectors hasn't changed */
3823  	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3824  	    dev->n_sectors == n_sectors)
3825  		return 0;
3826  
3827  	/* n_sectors has changed */
3828  	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3829  		     (unsigned long long)n_sectors,
3830  		     (unsigned long long)dev->n_sectors);
3831  
3832  	/*
3833  	 * Something could have caused HPA to be unlocked
3834  	 * involuntarily.  If n_native_sectors hasn't changed and the
3835  	 * new size matches it, keep the device.
3836  	 */
3837  	if (dev->n_native_sectors == n_native_sectors &&
3838  	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3839  		ata_dev_warn(dev,
3840  			     "new n_sectors matches native, probably "
3841  			     "late HPA unlock, n_sectors updated\n");
3842  		/* use the larger n_sectors */
3843  		return 0;
3844  	}
3845  
3846  	/*
3847  	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3848  	 * unlocking HPA in those cases.
3849  	 *
3850  	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3851  	 */
3852  	if (dev->n_native_sectors == n_native_sectors &&
3853  	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3854  	    !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3855  		ata_dev_warn(dev,
3856  			     "old n_sectors matches native, probably "
3857  			     "late HPA lock, will try to unlock HPA\n");
3858  		/* try unlocking HPA */
3859  		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3860  		rc = -EIO;
3861  	} else
3862  		rc = -ENODEV;
3863  
3864  	/* restore original n_[native_]sectors and fail */
3865  	dev->n_native_sectors = n_native_sectors;
3866  	dev->n_sectors = n_sectors;
3867   fail:
3868  	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3869  	return rc;
3870  }
3871  
3872  static const char * const ata_quirk_names[] = {
3873  	[__ATA_QUIRK_DIAGNOSTIC]	= "diagnostic",
3874  	[__ATA_QUIRK_NODMA]		= "nodma",
3875  	[__ATA_QUIRK_NONCQ]		= "noncq",
3876  	[__ATA_QUIRK_MAX_SEC_128]	= "maxsec128",
3877  	[__ATA_QUIRK_BROKEN_HPA]	= "brokenhpa",
3878  	[__ATA_QUIRK_DISABLE]		= "disable",
3879  	[__ATA_QUIRK_HPA_SIZE]		= "hpasize",
3880  	[__ATA_QUIRK_IVB]		= "ivb",
3881  	[__ATA_QUIRK_STUCK_ERR]		= "stuckerr",
3882  	[__ATA_QUIRK_BRIDGE_OK]		= "bridgeok",
3883  	[__ATA_QUIRK_ATAPI_MOD16_DMA]	= "atapimod16dma",
3884  	[__ATA_QUIRK_FIRMWARE_WARN]	= "firmwarewarn",
3885  	[__ATA_QUIRK_1_5_GBPS]		= "1.5gbps",
3886  	[__ATA_QUIRK_NOSETXFER]		= "nosetxfer",
3887  	[__ATA_QUIRK_BROKEN_FPDMA_AA]	= "brokenfpdmaaa",
3888  	[__ATA_QUIRK_DUMP_ID]		= "dumpid",
3889  	[__ATA_QUIRK_MAX_SEC_LBA48]	= "maxseclba48",
3890  	[__ATA_QUIRK_ATAPI_DMADIR]	= "atapidmadir",
3891  	[__ATA_QUIRK_NO_NCQ_TRIM]	= "noncqtrim",
3892  	[__ATA_QUIRK_NOLPM]		= "nolpm",
3893  	[__ATA_QUIRK_WD_BROKEN_LPM]	= "wdbrokenlpm",
3894  	[__ATA_QUIRK_ZERO_AFTER_TRIM]	= "zeroaftertrim",
3895  	[__ATA_QUIRK_NO_DMA_LOG]	= "nodmalog",
3896  	[__ATA_QUIRK_NOTRIM]		= "notrim",
3897  	[__ATA_QUIRK_MAX_SEC_1024]	= "maxsec1024",
3898  	[__ATA_QUIRK_MAX_TRIM_128M]	= "maxtrim128m",
3899  	[__ATA_QUIRK_NO_NCQ_ON_ATI]	= "noncqonati",
3900  	[__ATA_QUIRK_NO_ID_DEV_LOG]	= "noiddevlog",
3901  	[__ATA_QUIRK_NO_LOG_DIR]	= "nologdir",
3902  	[__ATA_QUIRK_NO_FUA]		= "nofua",
3903  };
3904  
ata_dev_print_quirks(const struct ata_device * dev,const char * model,const char * rev,unsigned int quirks)3905  static void ata_dev_print_quirks(const struct ata_device *dev,
3906  				 const char *model, const char *rev,
3907  				 unsigned int quirks)
3908  {
3909  	struct ata_eh_context *ehc = &dev->link->eh_context;
3910  	int n = 0, i;
3911  	size_t sz;
3912  	char *str;
3913  
3914  	if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
3915  		return;
3916  
3917  	ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
3918  
3919  	if (!quirks)
3920  		return;
3921  
3922  	sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
3923  	str = kmalloc(sz, GFP_KERNEL);
3924  	if (!str)
3925  		return;
3926  
3927  	n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
3928  		     model, rev);
3929  
3930  	for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
3931  		if (quirks & (1U << i))
3932  			n += snprintf(str + n, sz - n,
3933  				      " %s", ata_quirk_names[i]);
3934  	}
3935  
3936  	ata_dev_warn(dev, "%s\n", str);
3937  
3938  	kfree(str);
3939  }
3940  
3941  struct ata_dev_quirks_entry {
3942  	const char *model_num;
3943  	const char *model_rev;
3944  	unsigned int quirks;
3945  };
3946  
3947  static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
3948  	/* Devices with DMA related problems under Linux */
3949  	{ "WDC AC11000H",	NULL,		ATA_QUIRK_NODMA },
3950  	{ "WDC AC22100H",	NULL,		ATA_QUIRK_NODMA },
3951  	{ "WDC AC32500H",	NULL,		ATA_QUIRK_NODMA },
3952  	{ "WDC AC33100H",	NULL,		ATA_QUIRK_NODMA },
3953  	{ "WDC AC31600H",	NULL,		ATA_QUIRK_NODMA },
3954  	{ "WDC AC32100H",	"24.09P07",	ATA_QUIRK_NODMA },
3955  	{ "WDC AC23200L",	"21.10N21",	ATA_QUIRK_NODMA },
3956  	{ "Compaq CRD-8241B",	NULL,		ATA_QUIRK_NODMA },
3957  	{ "CRD-8400B",		NULL,		ATA_QUIRK_NODMA },
3958  	{ "CRD-848[02]B",	NULL,		ATA_QUIRK_NODMA },
3959  	{ "CRD-84",		NULL,		ATA_QUIRK_NODMA },
3960  	{ "SanDisk SDP3B",	NULL,		ATA_QUIRK_NODMA },
3961  	{ "SanDisk SDP3B-64",	NULL,		ATA_QUIRK_NODMA },
3962  	{ "SANYO CD-ROM CRD",	NULL,		ATA_QUIRK_NODMA },
3963  	{ "HITACHI CDR-8",	NULL,		ATA_QUIRK_NODMA },
3964  	{ "HITACHI CDR-8[34]35", NULL,		ATA_QUIRK_NODMA },
3965  	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_QUIRK_NODMA },
3966  	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_QUIRK_NODMA },
3967  	{ "CD-532E-A",		NULL,		ATA_QUIRK_NODMA },
3968  	{ "E-IDE CD-ROM CR-840", NULL,		ATA_QUIRK_NODMA },
3969  	{ "CD-ROM Drive/F5A",	NULL,		ATA_QUIRK_NODMA },
3970  	{ "WPI CDD-820",	NULL,		ATA_QUIRK_NODMA },
3971  	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_QUIRK_NODMA },
3972  	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_QUIRK_NODMA },
3973  	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
3974  	{ "_NEC DV5800A",	NULL,		ATA_QUIRK_NODMA },
3975  	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_QUIRK_NODMA },
3976  	{ "Seagate STT20000A", NULL,		ATA_QUIRK_NODMA },
3977  	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_QUIRK_NODMA },
3978  	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_QUIRK_NODMA },
3979  	/* Odd clown on sil3726/4726 PMPs */
3980  	{ "Config  Disk",	NULL,		ATA_QUIRK_DISABLE },
3981  	/* Similar story with ASMedia 1092 */
3982  	{ "ASMT109x- Config",	NULL,		ATA_QUIRK_DISABLE },
3983  
3984  	/* Weird ATAPI devices */
3985  	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_QUIRK_MAX_SEC_128 },
3986  	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_QUIRK_ATAPI_MOD16_DMA },
3987  	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_QUIRK_MAX_SEC_LBA48 },
3988  	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_QUIRK_MAX_SEC_LBA48 },
3989  
3990  	/*
3991  	 * Causes silent data corruption with higher max sects.
3992  	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3993  	 */
3994  	{ "ST380013AS",		"3.20",		ATA_QUIRK_MAX_SEC_1024 },
3995  
3996  	/*
3997  	 * These devices time out with higher max sects.
3998  	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3999  	 */
4000  	{ "LITEON CX1-JB*-HP",	NULL,		ATA_QUIRK_MAX_SEC_1024 },
4001  	{ "LITEON EP1-*",	NULL,		ATA_QUIRK_MAX_SEC_1024 },
4002  
4003  	/* Devices we expect to fail diagnostics */
4004  
4005  	/* Devices where NCQ should be avoided */
4006  	/* NCQ is slow */
4007  	{ "WDC WD740ADFD-00",	NULL,		ATA_QUIRK_NONCQ },
4008  	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_QUIRK_NONCQ },
4009  	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4010  	{ "FUJITSU MHT2060BH",	NULL,		ATA_QUIRK_NONCQ },
4011  	/* NCQ is broken */
4012  	{ "Maxtor *",		"BANC*",	ATA_QUIRK_NONCQ },
4013  	{ "Maxtor 7V300F0",	"VA111630",	ATA_QUIRK_NONCQ },
4014  	{ "ST380817AS",		"3.42",		ATA_QUIRK_NONCQ },
4015  	{ "ST3160023AS",	"3.42",		ATA_QUIRK_NONCQ },
4016  	{ "OCZ CORE_SSD",	"02.10104",	ATA_QUIRK_NONCQ },
4017  
4018  	/* Seagate NCQ + FLUSH CACHE firmware bug */
4019  	{ "ST31500341AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4020  						ATA_QUIRK_FIRMWARE_WARN },
4021  
4022  	{ "ST31000333AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4023  						ATA_QUIRK_FIRMWARE_WARN },
4024  
4025  	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4026  						ATA_QUIRK_FIRMWARE_WARN },
4027  
4028  	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4029  						ATA_QUIRK_FIRMWARE_WARN },
4030  
4031  	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4032  	   the ST disks also have LPM issues */
4033  	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_QUIRK_BROKEN_FPDMA_AA |
4034  						ATA_QUIRK_NOLPM },
4035  	{ "VB0250EAVER",	"HPG7",		ATA_QUIRK_BROKEN_FPDMA_AA },
4036  
4037  	/* Blacklist entries taken from Silicon Image 3124/3132
4038  	   Windows driver .inf file - also several Linux problem reports */
4039  	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_QUIRK_NONCQ },
4040  	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_QUIRK_NONCQ },
4041  	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_QUIRK_NONCQ },
4042  
4043  	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4044  	{ "C300-CTFDDAC128MAG",	"0001",		ATA_QUIRK_NONCQ },
4045  
4046  	/* Sandisk SD7/8/9s lock up hard on large trims */
4047  	{ "SanDisk SD[789]*",	NULL,		ATA_QUIRK_MAX_TRIM_128M },
4048  
4049  	/* devices which puke on READ_NATIVE_MAX */
4050  	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_QUIRK_BROKEN_HPA },
4051  	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4052  	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4053  	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_QUIRK_BROKEN_HPA },
4054  
4055  	/* this one allows HPA unlocking but fails IOs on the area */
4056  	{ "OCZ-VERTEX",		    "1.30",	ATA_QUIRK_BROKEN_HPA },
4057  
4058  	/* Devices which report 1 sector over size HPA */
4059  	{ "ST340823A",		NULL,		ATA_QUIRK_HPA_SIZE },
4060  	{ "ST320413A",		NULL,		ATA_QUIRK_HPA_SIZE },
4061  	{ "ST310211A",		NULL,		ATA_QUIRK_HPA_SIZE },
4062  
4063  	/* Devices which get the IVB wrong */
4064  	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4065  	/* Maybe we should just add all TSSTcorp devices... */
4066  	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_QUIRK_IVB },
4067  
4068  	/* Devices that do not need bridging limits applied */
4069  	{ "MTRON MSP-SATA*",		NULL,	ATA_QUIRK_BRIDGE_OK },
4070  	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_QUIRK_BRIDGE_OK },
4071  
4072  	/* Devices which aren't very happy with higher link speeds */
4073  	{ "WD My Book",			NULL,	ATA_QUIRK_1_5_GBPS },
4074  	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_QUIRK_1_5_GBPS },
4075  
4076  	/*
4077  	 * Devices which choke on SETXFER.  Applies only if both the
4078  	 * device and controller are SATA.
4079  	 */
4080  	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_QUIRK_NOSETXFER },
4081  	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_QUIRK_NOSETXFER },
4082  	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_QUIRK_NOSETXFER },
4083  	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_QUIRK_NOSETXFER },
4084  	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_QUIRK_NOSETXFER },
4085  
4086  	/* These specific Pioneer models have LPM issues */
4087  	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_QUIRK_NOLPM },
4088  	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_QUIRK_NOLPM },
4089  
4090  	/* Crucial devices with broken LPM support */
4091  	{ "CT*0BX*00SSD1",		NULL,	ATA_QUIRK_NOLPM },
4092  
4093  	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4094  	{ "Crucial_CT512MX100*",	"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4095  						ATA_QUIRK_ZERO_AFTER_TRIM |
4096  						ATA_QUIRK_NOLPM },
4097  	/* 512GB MX100 with newer firmware has only LPM issues */
4098  	{ "Crucial_CT512MX100*",	NULL,	ATA_QUIRK_ZERO_AFTER_TRIM |
4099  						ATA_QUIRK_NOLPM },
4100  
4101  	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4102  	{ "Crucial_CT480M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4103  						ATA_QUIRK_ZERO_AFTER_TRIM |
4104  						ATA_QUIRK_NOLPM },
4105  	{ "Crucial_CT960M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4106  						ATA_QUIRK_ZERO_AFTER_TRIM |
4107  						ATA_QUIRK_NOLPM },
4108  
4109  	/* AMD Radeon devices with broken LPM support */
4110  	{ "R3SL240G",			NULL,	ATA_QUIRK_NOLPM },
4111  
4112  	/* Apacer models with LPM issues */
4113  	{ "Apacer AS340*",		NULL,	ATA_QUIRK_NOLPM },
4114  
4115  	/* These specific Samsung models/firmware-revs do not handle LPM well */
4116  	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4117  	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_QUIRK_NOLPM },
4118  	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_QUIRK_NOLPM },
4119  	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4120  
4121  	/* devices that don't properly handle queued TRIM commands */
4122  	{ "Micron_M500IT_*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4123  						ATA_QUIRK_ZERO_AFTER_TRIM },
4124  	{ "Micron_M500_*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4125  						ATA_QUIRK_ZERO_AFTER_TRIM },
4126  	{ "Micron_M5[15]0_*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4127  						ATA_QUIRK_ZERO_AFTER_TRIM },
4128  	{ "Micron_1100_*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4129  						ATA_QUIRK_ZERO_AFTER_TRIM, },
4130  	{ "Crucial_CT*M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4131  						ATA_QUIRK_ZERO_AFTER_TRIM },
4132  	{ "Crucial_CT*M550*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4133  						ATA_QUIRK_ZERO_AFTER_TRIM },
4134  	{ "Crucial_CT*MX100*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4135  						ATA_QUIRK_ZERO_AFTER_TRIM },
4136  	{ "Samsung SSD 840 EVO*",	NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4137  						ATA_QUIRK_NO_DMA_LOG |
4138  						ATA_QUIRK_ZERO_AFTER_TRIM },
4139  	{ "Samsung SSD 840*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4140  						ATA_QUIRK_ZERO_AFTER_TRIM },
4141  	{ "Samsung SSD 850*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4142  						ATA_QUIRK_ZERO_AFTER_TRIM },
4143  	{ "Samsung SSD 860*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4144  						ATA_QUIRK_ZERO_AFTER_TRIM |
4145  						ATA_QUIRK_NO_NCQ_ON_ATI },
4146  	{ "Samsung SSD 870*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4147  						ATA_QUIRK_ZERO_AFTER_TRIM |
4148  						ATA_QUIRK_NO_NCQ_ON_ATI },
4149  	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4150  						ATA_QUIRK_ZERO_AFTER_TRIM |
4151  						ATA_QUIRK_NO_NCQ_ON_ATI, },
4152  	{ "FCCT*M500*",			NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4153  						ATA_QUIRK_ZERO_AFTER_TRIM },
4154  
4155  	/* devices that don't properly handle TRIM commands */
4156  	{ "SuperSSpeed S238*",		NULL,	ATA_QUIRK_NOTRIM },
4157  	{ "M88V29*",			NULL,	ATA_QUIRK_NOTRIM },
4158  
4159  	/*
4160  	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4161  	 * (Return Zero After Trim) flags in the ATA Command Set are
4162  	 * unreliable in the sense that they only define what happens if
4163  	 * the device successfully executed the DSM TRIM command. TRIM
4164  	 * is only advisory, however, and the device is free to silently
4165  	 * ignore all or parts of the request.
4166  	 *
4167  	 * Whitelist drives that are known to reliably return zeroes
4168  	 * after TRIM.
4169  	 */
4170  
4171  	/*
4172  	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4173  	 * that model before whitelisting all other intel SSDs.
4174  	 */
4175  	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4176  
4177  	{ "Micron*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4178  	{ "Crucial*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4179  	{ "INTEL*SSD*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4180  	{ "SSD*INTEL*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4181  	{ "Samsung*SSD*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4182  	{ "SAMSUNG*SSD*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4183  	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4184  	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4185  
4186  	/*
4187  	 * Some WD SATA-I drives spin up and down erratically when the link
4188  	 * is put into the slumber mode.  We don't have full list of the
4189  	 * affected devices.  Disable LPM if the device matches one of the
4190  	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4191  	 * lost too.
4192  	 *
4193  	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4194  	 */
4195  	{ "WDC WD800JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4196  	{ "WDC WD1200JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4197  	{ "WDC WD1600JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4198  	{ "WDC WD2000JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4199  	{ "WDC WD2500JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4200  	{ "WDC WD3000JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4201  	{ "WDC WD3200JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4202  
4203  	/*
4204  	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4205  	 * log page is accessed. Ensure we never ask for this log page with
4206  	 * these devices.
4207  	 */
4208  	{ "SATADOM-ML 3ME",		NULL,	ATA_QUIRK_NO_LOG_DIR },
4209  
4210  	/* Buggy FUA */
4211  	{ "Maxtor",		"BANC1G10",	ATA_QUIRK_NO_FUA },
4212  	{ "WDC*WD2500J*",	NULL,		ATA_QUIRK_NO_FUA },
4213  	{ "OCZ-VERTEX*",	NULL,		ATA_QUIRK_NO_FUA },
4214  	{ "INTEL*SSDSC2CT*",	NULL,		ATA_QUIRK_NO_FUA },
4215  
4216  	/* End Marker */
4217  	{ }
4218  };
4219  
ata_dev_quirks(const struct ata_device * dev)4220  static unsigned int ata_dev_quirks(const struct ata_device *dev)
4221  {
4222  	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4223  	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4224  	const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4225  
4226  	/* dev->quirks is an unsigned int. */
4227  	BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4228  
4229  	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4230  	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4231  
4232  	while (ad->model_num) {
4233  		if (glob_match(ad->model_num, model_num) &&
4234  		    (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4235  			ata_dev_print_quirks(dev, model_num, model_rev,
4236  					     ad->quirks);
4237  			return ad->quirks;
4238  		}
4239  		ad++;
4240  	}
4241  	return 0;
4242  }
4243  
ata_dev_nodma(const struct ata_device * dev)4244  static bool ata_dev_nodma(const struct ata_device *dev)
4245  {
4246  	/*
4247  	 * We do not support polling DMA. Deny DMA for those ATAPI devices
4248  	 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4249  	 * the HSM_ST_LAST state.
4250  	 */
4251  	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4252  	    (dev->flags & ATA_DFLAG_CDB_INTR))
4253  		return true;
4254  	return dev->quirks & ATA_QUIRK_NODMA;
4255  }
4256  
4257  /**
4258   *	ata_is_40wire		-	check drive side detection
4259   *	@dev: device
4260   *
4261   *	Perform drive side detection decoding, allowing for device vendors
4262   *	who can't follow the documentation.
4263   */
4264  
ata_is_40wire(struct ata_device * dev)4265  static int ata_is_40wire(struct ata_device *dev)
4266  {
4267  	if (dev->quirks & ATA_QUIRK_IVB)
4268  		return ata_drive_40wire_relaxed(dev->id);
4269  	return ata_drive_40wire(dev->id);
4270  }
4271  
4272  /**
4273   *	cable_is_40wire		-	40/80/SATA decider
4274   *	@ap: port to consider
4275   *
4276   *	This function encapsulates the policy for speed management
4277   *	in one place. At the moment we don't cache the result but
4278   *	there is a good case for setting ap->cbl to the result when
4279   *	we are called with unknown cables (and figuring out if it
4280   *	impacts hotplug at all).
4281   *
4282   *	Return 1 if the cable appears to be 40 wire.
4283   */
4284  
cable_is_40wire(struct ata_port * ap)4285  static int cable_is_40wire(struct ata_port *ap)
4286  {
4287  	struct ata_link *link;
4288  	struct ata_device *dev;
4289  
4290  	/* If the controller thinks we are 40 wire, we are. */
4291  	if (ap->cbl == ATA_CBL_PATA40)
4292  		return 1;
4293  
4294  	/* If the controller thinks we are 80 wire, we are. */
4295  	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4296  		return 0;
4297  
4298  	/* If the system is known to be 40 wire short cable (eg
4299  	 * laptop), then we allow 80 wire modes even if the drive
4300  	 * isn't sure.
4301  	 */
4302  	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4303  		return 0;
4304  
4305  	/* If the controller doesn't know, we scan.
4306  	 *
4307  	 * Note: We look for all 40 wire detects at this point.  Any
4308  	 *       80 wire detect is taken to be 80 wire cable because
4309  	 * - in many setups only the one drive (slave if present) will
4310  	 *   give a valid detect
4311  	 * - if you have a non detect capable drive you don't want it
4312  	 *   to colour the choice
4313  	 */
4314  	ata_for_each_link(link, ap, EDGE) {
4315  		ata_for_each_dev(dev, link, ENABLED) {
4316  			if (!ata_is_40wire(dev))
4317  				return 0;
4318  		}
4319  	}
4320  	return 1;
4321  }
4322  
4323  /**
4324   *	ata_dev_xfermask - Compute supported xfermask of the given device
4325   *	@dev: Device to compute xfermask for
4326   *
4327   *	Compute supported xfermask of @dev and store it in
4328   *	dev->*_mask.  This function is responsible for applying all
4329   *	known limits including host controller limits, device quirks, etc...
4330   *
4331   *	LOCKING:
4332   *	None.
4333   */
ata_dev_xfermask(struct ata_device * dev)4334  static void ata_dev_xfermask(struct ata_device *dev)
4335  {
4336  	struct ata_link *link = dev->link;
4337  	struct ata_port *ap = link->ap;
4338  	struct ata_host *host = ap->host;
4339  	unsigned int xfer_mask;
4340  
4341  	/* controller modes available */
4342  	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4343  				      ap->mwdma_mask, ap->udma_mask);
4344  
4345  	/* drive modes available */
4346  	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4347  				       dev->mwdma_mask, dev->udma_mask);
4348  	xfer_mask &= ata_id_xfermask(dev->id);
4349  
4350  	/*
4351  	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4352  	 *	cable
4353  	 */
4354  	if (ata_dev_pair(dev)) {
4355  		/* No PIO5 or PIO6 */
4356  		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4357  		/* No MWDMA3 or MWDMA 4 */
4358  		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4359  	}
4360  
4361  	if (ata_dev_nodma(dev)) {
4362  		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4363  		ata_dev_warn(dev,
4364  			     "device does not support DMA, disabling DMA\n");
4365  	}
4366  
4367  	if ((host->flags & ATA_HOST_SIMPLEX) &&
4368  	    host->simplex_claimed && host->simplex_claimed != ap) {
4369  		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4370  		ata_dev_warn(dev,
4371  			     "simplex DMA is claimed by other device, disabling DMA\n");
4372  	}
4373  
4374  	if (ap->flags & ATA_FLAG_NO_IORDY)
4375  		xfer_mask &= ata_pio_mask_no_iordy(dev);
4376  
4377  	if (ap->ops->mode_filter)
4378  		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4379  
4380  	/* Apply cable rule here.  Don't apply it early because when
4381  	 * we handle hot plug the cable type can itself change.
4382  	 * Check this last so that we know if the transfer rate was
4383  	 * solely limited by the cable.
4384  	 * Unknown or 80 wire cables reported host side are checked
4385  	 * drive side as well. Cases where we know a 40wire cable
4386  	 * is used safely for 80 are not checked here.
4387  	 */
4388  	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4389  		/* UDMA/44 or higher would be available */
4390  		if (cable_is_40wire(ap)) {
4391  			ata_dev_warn(dev,
4392  				     "limited to UDMA/33 due to 40-wire cable\n");
4393  			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4394  		}
4395  
4396  	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4397  			    &dev->mwdma_mask, &dev->udma_mask);
4398  }
4399  
4400  /**
4401   *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4402   *	@dev: Device to which command will be sent
4403   *
4404   *	Issue SET FEATURES - XFER MODE command to device @dev
4405   *	on port @ap.
4406   *
4407   *	LOCKING:
4408   *	PCI/etc. bus probe sem.
4409   *
4410   *	RETURNS:
4411   *	0 on success, AC_ERR_* mask otherwise.
4412   */
4413  
ata_dev_set_xfermode(struct ata_device * dev)4414  static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4415  {
4416  	struct ata_taskfile tf;
4417  
4418  	/* set up set-features taskfile */
4419  	ata_dev_dbg(dev, "set features - xfer mode\n");
4420  
4421  	/* Some controllers and ATAPI devices show flaky interrupt
4422  	 * behavior after setting xfer mode.  Use polling instead.
4423  	 */
4424  	ata_tf_init(dev, &tf);
4425  	tf.command = ATA_CMD_SET_FEATURES;
4426  	tf.feature = SETFEATURES_XFER;
4427  	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4428  	tf.protocol = ATA_PROT_NODATA;
4429  	/* If we are using IORDY we must send the mode setting command */
4430  	if (ata_pio_need_iordy(dev))
4431  		tf.nsect = dev->xfer_mode;
4432  	/* If the device has IORDY and the controller does not - turn it off */
4433   	else if (ata_id_has_iordy(dev->id))
4434  		tf.nsect = 0x01;
4435  	else /* In the ancient relic department - skip all of this */
4436  		return 0;
4437  
4438  	/*
4439  	 * On some disks, this command causes spin-up, so we need longer
4440  	 * timeout.
4441  	 */
4442  	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4443  }
4444  
4445  /**
4446   *	ata_dev_set_feature - Issue SET FEATURES
4447   *	@dev: Device to which command will be sent
4448   *	@subcmd: The SET FEATURES subcommand to be sent
4449   *	@action: The sector count represents a subcommand specific action
4450   *
4451   *	Issue SET FEATURES command to device @dev on port @ap with sector count
4452   *
4453   *	LOCKING:
4454   *	PCI/etc. bus probe sem.
4455   *
4456   *	RETURNS:
4457   *	0 on success, AC_ERR_* mask otherwise.
4458   */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4459  unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4460  {
4461  	struct ata_taskfile tf;
4462  	unsigned int timeout = 0;
4463  
4464  	/* set up set-features taskfile */
4465  	ata_dev_dbg(dev, "set features\n");
4466  
4467  	ata_tf_init(dev, &tf);
4468  	tf.command = ATA_CMD_SET_FEATURES;
4469  	tf.feature = subcmd;
4470  	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4471  	tf.protocol = ATA_PROT_NODATA;
4472  	tf.nsect = action;
4473  
4474  	if (subcmd == SETFEATURES_SPINUP)
4475  		timeout = ata_probe_timeout ?
4476  			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4477  
4478  	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4479  }
4480  EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4481  
4482  /**
4483   *	ata_dev_init_params - Issue INIT DEV PARAMS command
4484   *	@dev: Device to which command will be sent
4485   *	@heads: Number of heads (taskfile parameter)
4486   *	@sectors: Number of sectors (taskfile parameter)
4487   *
4488   *	LOCKING:
4489   *	Kernel thread context (may sleep)
4490   *
4491   *	RETURNS:
4492   *	0 on success, AC_ERR_* mask otherwise.
4493   */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4494  static unsigned int ata_dev_init_params(struct ata_device *dev,
4495  					u16 heads, u16 sectors)
4496  {
4497  	struct ata_taskfile tf;
4498  	unsigned int err_mask;
4499  
4500  	/* Number of sectors per track 1-255. Number of heads 1-16 */
4501  	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4502  		return AC_ERR_INVALID;
4503  
4504  	/* set up init dev params taskfile */
4505  	ata_dev_dbg(dev, "init dev params \n");
4506  
4507  	ata_tf_init(dev, &tf);
4508  	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4509  	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4510  	tf.protocol = ATA_PROT_NODATA;
4511  	tf.nsect = sectors;
4512  	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4513  
4514  	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4515  	/* A clean abort indicates an original or just out of spec drive
4516  	   and we should continue as we issue the setup based on the
4517  	   drive reported working geometry */
4518  	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4519  		err_mask = 0;
4520  
4521  	return err_mask;
4522  }
4523  
4524  /**
4525   *	atapi_check_dma - Check whether ATAPI DMA can be supported
4526   *	@qc: Metadata associated with taskfile to check
4527   *
4528   *	Allow low-level driver to filter ATA PACKET commands, returning
4529   *	a status indicating whether or not it is OK to use DMA for the
4530   *	supplied PACKET command.
4531   *
4532   *	LOCKING:
4533   *	spin_lock_irqsave(host lock)
4534   *
4535   *	RETURNS: 0 when ATAPI DMA can be used
4536   *               nonzero otherwise
4537   */
atapi_check_dma(struct ata_queued_cmd * qc)4538  int atapi_check_dma(struct ata_queued_cmd *qc)
4539  {
4540  	struct ata_port *ap = qc->ap;
4541  
4542  	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4543  	 * few ATAPI devices choke on such DMA requests.
4544  	 */
4545  	if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4546  	    unlikely(qc->nbytes & 15))
4547  		return 1;
4548  
4549  	if (ap->ops->check_atapi_dma)
4550  		return ap->ops->check_atapi_dma(qc);
4551  
4552  	return 0;
4553  }
4554  
4555  /**
4556   *	ata_std_qc_defer - Check whether a qc needs to be deferred
4557   *	@qc: ATA command in question
4558   *
4559   *	Non-NCQ commands cannot run with any other command, NCQ or
4560   *	not.  As upper layer only knows the queue depth, we are
4561   *	responsible for maintaining exclusion.  This function checks
4562   *	whether a new command @qc can be issued.
4563   *
4564   *	LOCKING:
4565   *	spin_lock_irqsave(host lock)
4566   *
4567   *	RETURNS:
4568   *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4569   */
ata_std_qc_defer(struct ata_queued_cmd * qc)4570  int ata_std_qc_defer(struct ata_queued_cmd *qc)
4571  {
4572  	struct ata_link *link = qc->dev->link;
4573  
4574  	if (ata_is_ncq(qc->tf.protocol)) {
4575  		if (!ata_tag_valid(link->active_tag))
4576  			return 0;
4577  	} else {
4578  		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4579  			return 0;
4580  	}
4581  
4582  	return ATA_DEFER_LINK;
4583  }
4584  EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4585  
4586  /**
4587   *	ata_sg_init - Associate command with scatter-gather table.
4588   *	@qc: Command to be associated
4589   *	@sg: Scatter-gather table.
4590   *	@n_elem: Number of elements in s/g table.
4591   *
4592   *	Initialize the data-related elements of queued_cmd @qc
4593   *	to point to a scatter-gather table @sg, containing @n_elem
4594   *	elements.
4595   *
4596   *	LOCKING:
4597   *	spin_lock_irqsave(host lock)
4598   */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4599  void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4600  		 unsigned int n_elem)
4601  {
4602  	qc->sg = sg;
4603  	qc->n_elem = n_elem;
4604  	qc->cursg = qc->sg;
4605  }
4606  
4607  #ifdef CONFIG_HAS_DMA
4608  
4609  /**
4610   *	ata_sg_clean - Unmap DMA memory associated with command
4611   *	@qc: Command containing DMA memory to be released
4612   *
4613   *	Unmap all mapped DMA memory associated with this command.
4614   *
4615   *	LOCKING:
4616   *	spin_lock_irqsave(host lock)
4617   */
ata_sg_clean(struct ata_queued_cmd * qc)4618  static void ata_sg_clean(struct ata_queued_cmd *qc)
4619  {
4620  	struct ata_port *ap = qc->ap;
4621  	struct scatterlist *sg = qc->sg;
4622  	int dir = qc->dma_dir;
4623  
4624  	WARN_ON_ONCE(sg == NULL);
4625  
4626  	if (qc->n_elem)
4627  		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4628  
4629  	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4630  	qc->sg = NULL;
4631  }
4632  
4633  /**
4634   *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4635   *	@qc: Command with scatter-gather table to be mapped.
4636   *
4637   *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4638   *
4639   *	LOCKING:
4640   *	spin_lock_irqsave(host lock)
4641   *
4642   *	RETURNS:
4643   *	Zero on success, negative on error.
4644   *
4645   */
ata_sg_setup(struct ata_queued_cmd * qc)4646  static int ata_sg_setup(struct ata_queued_cmd *qc)
4647  {
4648  	struct ata_port *ap = qc->ap;
4649  	unsigned int n_elem;
4650  
4651  	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4652  	if (n_elem < 1)
4653  		return -1;
4654  
4655  	qc->orig_n_elem = qc->n_elem;
4656  	qc->n_elem = n_elem;
4657  	qc->flags |= ATA_QCFLAG_DMAMAP;
4658  
4659  	return 0;
4660  }
4661  
4662  #else /* !CONFIG_HAS_DMA */
4663  
ata_sg_clean(struct ata_queued_cmd * qc)4664  static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4665  static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4666  
4667  #endif /* !CONFIG_HAS_DMA */
4668  
4669  /**
4670   *	swap_buf_le16 - swap halves of 16-bit words in place
4671   *	@buf:  Buffer to swap
4672   *	@buf_words:  Number of 16-bit words in buffer.
4673   *
4674   *	Swap halves of 16-bit words if needed to convert from
4675   *	little-endian byte order to native cpu byte order, or
4676   *	vice-versa.
4677   *
4678   *	LOCKING:
4679   *	Inherited from caller.
4680   */
swap_buf_le16(u16 * buf,unsigned int buf_words)4681  void swap_buf_le16(u16 *buf, unsigned int buf_words)
4682  {
4683  #ifdef __BIG_ENDIAN
4684  	unsigned int i;
4685  
4686  	for (i = 0; i < buf_words; i++)
4687  		buf[i] = le16_to_cpu(buf[i]);
4688  #endif /* __BIG_ENDIAN */
4689  }
4690  
4691  /**
4692   *	ata_qc_free - free unused ata_queued_cmd
4693   *	@qc: Command to complete
4694   *
4695   *	Designed to free unused ata_queued_cmd object
4696   *	in case something prevents using it.
4697   *
4698   *	LOCKING:
4699   *	spin_lock_irqsave(host lock)
4700   */
ata_qc_free(struct ata_queued_cmd * qc)4701  void ata_qc_free(struct ata_queued_cmd *qc)
4702  {
4703  	qc->flags = 0;
4704  	if (ata_tag_valid(qc->tag))
4705  		qc->tag = ATA_TAG_POISON;
4706  }
4707  
__ata_qc_complete(struct ata_queued_cmd * qc)4708  void __ata_qc_complete(struct ata_queued_cmd *qc)
4709  {
4710  	struct ata_port *ap;
4711  	struct ata_link *link;
4712  
4713  	if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4714  		return;
4715  
4716  	ap = qc->ap;
4717  	link = qc->dev->link;
4718  
4719  	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4720  		ata_sg_clean(qc);
4721  
4722  	/* command should be marked inactive atomically with qc completion */
4723  	if (ata_is_ncq(qc->tf.protocol)) {
4724  		link->sactive &= ~(1 << qc->hw_tag);
4725  		if (!link->sactive)
4726  			ap->nr_active_links--;
4727  	} else {
4728  		link->active_tag = ATA_TAG_POISON;
4729  		ap->nr_active_links--;
4730  	}
4731  
4732  	/* clear exclusive status */
4733  	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4734  		     ap->excl_link == link))
4735  		ap->excl_link = NULL;
4736  
4737  	/*
4738  	 * Mark qc as inactive to prevent the port interrupt handler from
4739  	 * completing the command twice later, before the error handler is
4740  	 * called.
4741  	 */
4742  	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4743  	ap->qc_active &= ~(1ULL << qc->tag);
4744  
4745  	/* call completion callback */
4746  	qc->complete_fn(qc);
4747  }
4748  
fill_result_tf(struct ata_queued_cmd * qc)4749  static void fill_result_tf(struct ata_queued_cmd *qc)
4750  {
4751  	struct ata_port *ap = qc->ap;
4752  
4753  	/*
4754  	 * rtf may already be filled (e.g. for successful NCQ commands).
4755  	 * If that is the case, we have nothing to do.
4756  	 */
4757  	if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4758  		return;
4759  
4760  	qc->result_tf.flags = qc->tf.flags;
4761  	ap->ops->qc_fill_rtf(qc);
4762  	qc->flags |= ATA_QCFLAG_RTF_FILLED;
4763  }
4764  
ata_verify_xfer(struct ata_queued_cmd * qc)4765  static void ata_verify_xfer(struct ata_queued_cmd *qc)
4766  {
4767  	struct ata_device *dev = qc->dev;
4768  
4769  	if (!ata_is_data(qc->tf.protocol))
4770  		return;
4771  
4772  	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4773  		return;
4774  
4775  	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4776  }
4777  
4778  /**
4779   *	ata_qc_complete - Complete an active ATA command
4780   *	@qc: Command to complete
4781   *
4782   *	Indicate to the mid and upper layers that an ATA command has
4783   *	completed, with either an ok or not-ok status.
4784   *
4785   *	Refrain from calling this function multiple times when
4786   *	successfully completing multiple NCQ commands.
4787   *	ata_qc_complete_multiple() should be used instead, which will
4788   *	properly update IRQ expect state.
4789   *
4790   *	LOCKING:
4791   *	spin_lock_irqsave(host lock)
4792   */
ata_qc_complete(struct ata_queued_cmd * qc)4793  void ata_qc_complete(struct ata_queued_cmd *qc)
4794  {
4795  	struct ata_port *ap = qc->ap;
4796  	struct ata_device *dev = qc->dev;
4797  	struct ata_eh_info *ehi = &dev->link->eh_info;
4798  
4799  	/* Trigger the LED (if available) */
4800  	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4801  
4802  	/*
4803  	 * In order to synchronize EH with the regular execution path, a qc that
4804  	 * is owned by EH is marked with ATA_QCFLAG_EH.
4805  	 *
4806  	 * The normal execution path is responsible for not accessing a qc owned
4807  	 * by EH.  libata core enforces the rule by returning NULL from
4808  	 * ata_qc_from_tag() for qcs owned by EH.
4809  	 */
4810  	if (unlikely(qc->err_mask))
4811  		qc->flags |= ATA_QCFLAG_EH;
4812  
4813  	/*
4814  	 * Finish internal commands without any further processing and always
4815  	 * with the result TF filled.
4816  	 */
4817  	if (unlikely(ata_tag_internal(qc->tag))) {
4818  		fill_result_tf(qc);
4819  		trace_ata_qc_complete_internal(qc);
4820  		__ata_qc_complete(qc);
4821  		return;
4822  	}
4823  
4824  	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4825  	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4826  		fill_result_tf(qc);
4827  		trace_ata_qc_complete_failed(qc);
4828  		ata_qc_schedule_eh(qc);
4829  		return;
4830  	}
4831  
4832  	WARN_ON_ONCE(ata_port_is_frozen(ap));
4833  
4834  	/* read result TF if requested */
4835  	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4836  		fill_result_tf(qc);
4837  
4838  	trace_ata_qc_complete_done(qc);
4839  
4840  	/*
4841  	 * For CDL commands that completed without an error, check if we have
4842  	 * sense data (ATA_SENSE is set). If we do, then the command may have
4843  	 * been aborted by the device due to a limit timeout using the policy
4844  	 * 0xD. For these commands, invoke EH to get the command sense data.
4845  	 */
4846  	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4847  	    qc->result_tf.status & ATA_SENSE) {
4848  		/*
4849  		 * Tell SCSI EH to not overwrite scmd->result even if this
4850  		 * command is finished with result SAM_STAT_GOOD.
4851  		 */
4852  		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4853  		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4854  		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4855  
4856  		/*
4857  		 * set pending so that ata_qc_schedule_eh() does not trigger
4858  		 * fast drain, and freeze the port.
4859  		 */
4860  		ap->pflags |= ATA_PFLAG_EH_PENDING;
4861  		ata_qc_schedule_eh(qc);
4862  		return;
4863  	}
4864  
4865  	/* Some commands need post-processing after successful completion. */
4866  	switch (qc->tf.command) {
4867  	case ATA_CMD_SET_FEATURES:
4868  		if (qc->tf.feature != SETFEATURES_WC_ON &&
4869  		    qc->tf.feature != SETFEATURES_WC_OFF &&
4870  		    qc->tf.feature != SETFEATURES_RA_ON &&
4871  		    qc->tf.feature != SETFEATURES_RA_OFF)
4872  			break;
4873  		fallthrough;
4874  	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4875  	case ATA_CMD_SET_MULTI: /* multi_count changed */
4876  		/* revalidate device */
4877  		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4878  		ata_port_schedule_eh(ap);
4879  		break;
4880  
4881  	case ATA_CMD_SLEEP:
4882  		dev->flags |= ATA_DFLAG_SLEEPING;
4883  		break;
4884  	}
4885  
4886  	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4887  		ata_verify_xfer(qc);
4888  
4889  	__ata_qc_complete(qc);
4890  }
4891  EXPORT_SYMBOL_GPL(ata_qc_complete);
4892  
4893  /**
4894   *	ata_qc_get_active - get bitmask of active qcs
4895   *	@ap: port in question
4896   *
4897   *	LOCKING:
4898   *	spin_lock_irqsave(host lock)
4899   *
4900   *	RETURNS:
4901   *	Bitmask of active qcs
4902   */
ata_qc_get_active(struct ata_port * ap)4903  u64 ata_qc_get_active(struct ata_port *ap)
4904  {
4905  	u64 qc_active = ap->qc_active;
4906  
4907  	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4908  	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4909  		qc_active |= (1 << 0);
4910  		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4911  	}
4912  
4913  	return qc_active;
4914  }
4915  EXPORT_SYMBOL_GPL(ata_qc_get_active);
4916  
4917  /**
4918   *	ata_qc_issue - issue taskfile to device
4919   *	@qc: command to issue to device
4920   *
4921   *	Prepare an ATA command to submission to device.
4922   *	This includes mapping the data into a DMA-able
4923   *	area, filling in the S/G table, and finally
4924   *	writing the taskfile to hardware, starting the command.
4925   *
4926   *	LOCKING:
4927   *	spin_lock_irqsave(host lock)
4928   */
ata_qc_issue(struct ata_queued_cmd * qc)4929  void ata_qc_issue(struct ata_queued_cmd *qc)
4930  {
4931  	struct ata_port *ap = qc->ap;
4932  	struct ata_link *link = qc->dev->link;
4933  	u8 prot = qc->tf.protocol;
4934  
4935  	/* Make sure only one non-NCQ command is outstanding. */
4936  	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4937  
4938  	if (ata_is_ncq(prot)) {
4939  		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4940  
4941  		if (!link->sactive)
4942  			ap->nr_active_links++;
4943  		link->sactive |= 1 << qc->hw_tag;
4944  	} else {
4945  		WARN_ON_ONCE(link->sactive);
4946  
4947  		ap->nr_active_links++;
4948  		link->active_tag = qc->tag;
4949  	}
4950  
4951  	qc->flags |= ATA_QCFLAG_ACTIVE;
4952  	ap->qc_active |= 1ULL << qc->tag;
4953  
4954  	/*
4955  	 * We guarantee to LLDs that they will have at least one
4956  	 * non-zero sg if the command is a data command.
4957  	 */
4958  	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4959  		goto sys_err;
4960  
4961  	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4962  				 (ap->flags & ATA_FLAG_PIO_DMA)))
4963  		if (ata_sg_setup(qc))
4964  			goto sys_err;
4965  
4966  	/* if device is sleeping, schedule reset and abort the link */
4967  	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4968  		link->eh_info.action |= ATA_EH_RESET;
4969  		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4970  		ata_link_abort(link);
4971  		return;
4972  	}
4973  
4974  	if (ap->ops->qc_prep) {
4975  		trace_ata_qc_prep(qc);
4976  		qc->err_mask |= ap->ops->qc_prep(qc);
4977  		if (unlikely(qc->err_mask))
4978  			goto err;
4979  	}
4980  
4981  	trace_ata_qc_issue(qc);
4982  	qc->err_mask |= ap->ops->qc_issue(qc);
4983  	if (unlikely(qc->err_mask))
4984  		goto err;
4985  	return;
4986  
4987  sys_err:
4988  	qc->err_mask |= AC_ERR_SYSTEM;
4989  err:
4990  	ata_qc_complete(qc);
4991  }
4992  
4993  /**
4994   *	ata_phys_link_online - test whether the given link is online
4995   *	@link: ATA link to test
4996   *
4997   *	Test whether @link is online.  Note that this function returns
4998   *	0 if online status of @link cannot be obtained, so
4999   *	ata_link_online(link) != !ata_link_offline(link).
5000   *
5001   *	LOCKING:
5002   *	None.
5003   *
5004   *	RETURNS:
5005   *	True if the port online status is available and online.
5006   */
ata_phys_link_online(struct ata_link * link)5007  bool ata_phys_link_online(struct ata_link *link)
5008  {
5009  	u32 sstatus;
5010  
5011  	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5012  	    ata_sstatus_online(sstatus))
5013  		return true;
5014  	return false;
5015  }
5016  
5017  /**
5018   *	ata_phys_link_offline - test whether the given link is offline
5019   *	@link: ATA link to test
5020   *
5021   *	Test whether @link is offline.  Note that this function
5022   *	returns 0 if offline status of @link cannot be obtained, so
5023   *	ata_link_online(link) != !ata_link_offline(link).
5024   *
5025   *	LOCKING:
5026   *	None.
5027   *
5028   *	RETURNS:
5029   *	True if the port offline status is available and offline.
5030   */
ata_phys_link_offline(struct ata_link * link)5031  bool ata_phys_link_offline(struct ata_link *link)
5032  {
5033  	u32 sstatus;
5034  
5035  	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5036  	    !ata_sstatus_online(sstatus))
5037  		return true;
5038  	return false;
5039  }
5040  
5041  /**
5042   *	ata_link_online - test whether the given link is online
5043   *	@link: ATA link to test
5044   *
5045   *	Test whether @link is online.  This is identical to
5046   *	ata_phys_link_online() when there's no slave link.  When
5047   *	there's a slave link, this function should only be called on
5048   *	the master link and will return true if any of M/S links is
5049   *	online.
5050   *
5051   *	LOCKING:
5052   *	None.
5053   *
5054   *	RETURNS:
5055   *	True if the port online status is available and online.
5056   */
ata_link_online(struct ata_link * link)5057  bool ata_link_online(struct ata_link *link)
5058  {
5059  	struct ata_link *slave = link->ap->slave_link;
5060  
5061  	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5062  
5063  	return ata_phys_link_online(link) ||
5064  		(slave && ata_phys_link_online(slave));
5065  }
5066  EXPORT_SYMBOL_GPL(ata_link_online);
5067  
5068  /**
5069   *	ata_link_offline - test whether the given link is offline
5070   *	@link: ATA link to test
5071   *
5072   *	Test whether @link is offline.  This is identical to
5073   *	ata_phys_link_offline() when there's no slave link.  When
5074   *	there's a slave link, this function should only be called on
5075   *	the master link and will return true if both M/S links are
5076   *	offline.
5077   *
5078   *	LOCKING:
5079   *	None.
5080   *
5081   *	RETURNS:
5082   *	True if the port offline status is available and offline.
5083   */
ata_link_offline(struct ata_link * link)5084  bool ata_link_offline(struct ata_link *link)
5085  {
5086  	struct ata_link *slave = link->ap->slave_link;
5087  
5088  	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5089  
5090  	return ata_phys_link_offline(link) &&
5091  		(!slave || ata_phys_link_offline(slave));
5092  }
5093  EXPORT_SYMBOL_GPL(ata_link_offline);
5094  
5095  #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5096  static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5097  				unsigned int action, unsigned int ehi_flags,
5098  				bool async)
5099  {
5100  	struct ata_link *link;
5101  	unsigned long flags;
5102  
5103  	spin_lock_irqsave(ap->lock, flags);
5104  
5105  	/*
5106  	 * A previous PM operation might still be in progress. Wait for
5107  	 * ATA_PFLAG_PM_PENDING to clear.
5108  	 */
5109  	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5110  		spin_unlock_irqrestore(ap->lock, flags);
5111  		ata_port_wait_eh(ap);
5112  		spin_lock_irqsave(ap->lock, flags);
5113  	}
5114  
5115  	/* Request PM operation to EH */
5116  	ap->pm_mesg = mesg;
5117  	ap->pflags |= ATA_PFLAG_PM_PENDING;
5118  	ata_for_each_link(link, ap, HOST_FIRST) {
5119  		link->eh_info.action |= action;
5120  		link->eh_info.flags |= ehi_flags;
5121  	}
5122  
5123  	ata_port_schedule_eh(ap);
5124  
5125  	spin_unlock_irqrestore(ap->lock, flags);
5126  
5127  	if (!async)
5128  		ata_port_wait_eh(ap);
5129  }
5130  
ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5131  static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5132  			     bool async)
5133  {
5134  	/*
5135  	 * We are about to suspend the port, so we do not care about
5136  	 * scsi_rescan_device() calls scheduled by previous resume operations.
5137  	 * The next resume will schedule the rescan again. So cancel any rescan
5138  	 * that is not done yet.
5139  	 */
5140  	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5141  
5142  	/*
5143  	 * On some hardware, device fails to respond after spun down for
5144  	 * suspend. As the device will not be used until being resumed, we
5145  	 * do not need to touch the device. Ask EH to skip the usual stuff
5146  	 * and proceed directly to suspend.
5147  	 *
5148  	 * http://thread.gmane.org/gmane.linux.ide/46764
5149  	 */
5150  	ata_port_request_pm(ap, mesg, 0,
5151  			    ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5152  			    ATA_EHI_NO_RECOVERY,
5153  			    async);
5154  }
5155  
ata_port_pm_suspend(struct device * dev)5156  static int ata_port_pm_suspend(struct device *dev)
5157  {
5158  	struct ata_port *ap = to_ata_port(dev);
5159  
5160  	if (pm_runtime_suspended(dev))
5161  		return 0;
5162  
5163  	ata_port_suspend(ap, PMSG_SUSPEND, false);
5164  	return 0;
5165  }
5166  
ata_port_pm_freeze(struct device * dev)5167  static int ata_port_pm_freeze(struct device *dev)
5168  {
5169  	struct ata_port *ap = to_ata_port(dev);
5170  
5171  	if (pm_runtime_suspended(dev))
5172  		return 0;
5173  
5174  	ata_port_suspend(ap, PMSG_FREEZE, false);
5175  	return 0;
5176  }
5177  
ata_port_pm_poweroff(struct device * dev)5178  static int ata_port_pm_poweroff(struct device *dev)
5179  {
5180  	if (!pm_runtime_suspended(dev))
5181  		ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5182  	return 0;
5183  }
5184  
ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5185  static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5186  			    bool async)
5187  {
5188  	ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5189  			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5190  			    async);
5191  }
5192  
ata_port_pm_resume(struct device * dev)5193  static int ata_port_pm_resume(struct device *dev)
5194  {
5195  	if (!pm_runtime_suspended(dev))
5196  		ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5197  	return 0;
5198  }
5199  
5200  /*
5201   * For ODDs, the upper layer will poll for media change every few seconds,
5202   * which will make it enter and leave suspend state every few seconds. And
5203   * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5204   * is very little and the ODD may malfunction after constantly being reset.
5205   * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5206   * ODD is attached to the port.
5207   */
ata_port_runtime_idle(struct device * dev)5208  static int ata_port_runtime_idle(struct device *dev)
5209  {
5210  	struct ata_port *ap = to_ata_port(dev);
5211  	struct ata_link *link;
5212  	struct ata_device *adev;
5213  
5214  	ata_for_each_link(link, ap, HOST_FIRST) {
5215  		ata_for_each_dev(adev, link, ENABLED)
5216  			if (adev->class == ATA_DEV_ATAPI &&
5217  			    !zpodd_dev_enabled(adev))
5218  				return -EBUSY;
5219  	}
5220  
5221  	return 0;
5222  }
5223  
ata_port_runtime_suspend(struct device * dev)5224  static int ata_port_runtime_suspend(struct device *dev)
5225  {
5226  	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5227  	return 0;
5228  }
5229  
ata_port_runtime_resume(struct device * dev)5230  static int ata_port_runtime_resume(struct device *dev)
5231  {
5232  	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5233  	return 0;
5234  }
5235  
5236  static const struct dev_pm_ops ata_port_pm_ops = {
5237  	.suspend = ata_port_pm_suspend,
5238  	.resume = ata_port_pm_resume,
5239  	.freeze = ata_port_pm_freeze,
5240  	.thaw = ata_port_pm_resume,
5241  	.poweroff = ata_port_pm_poweroff,
5242  	.restore = ata_port_pm_resume,
5243  
5244  	.runtime_suspend = ata_port_runtime_suspend,
5245  	.runtime_resume = ata_port_runtime_resume,
5246  	.runtime_idle = ata_port_runtime_idle,
5247  };
5248  
5249  /* sas ports don't participate in pm runtime management of ata_ports,
5250   * and need to resume ata devices at the domain level, not the per-port
5251   * level. sas suspend/resume is async to allow parallel port recovery
5252   * since sas has multiple ata_port instances per Scsi_Host.
5253   */
ata_sas_port_suspend(struct ata_port * ap)5254  void ata_sas_port_suspend(struct ata_port *ap)
5255  {
5256  	ata_port_suspend(ap, PMSG_SUSPEND, true);
5257  }
5258  EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5259  
ata_sas_port_resume(struct ata_port * ap)5260  void ata_sas_port_resume(struct ata_port *ap)
5261  {
5262  	ata_port_resume(ap, PMSG_RESUME, true);
5263  }
5264  EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5265  
5266  /**
5267   *	ata_host_suspend - suspend host
5268   *	@host: host to suspend
5269   *	@mesg: PM message
5270   *
5271   *	Suspend @host.  Actual operation is performed by port suspend.
5272   */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5273  void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5274  {
5275  	host->dev->power.power_state = mesg;
5276  }
5277  EXPORT_SYMBOL_GPL(ata_host_suspend);
5278  
5279  /**
5280   *	ata_host_resume - resume host
5281   *	@host: host to resume
5282   *
5283   *	Resume @host.  Actual operation is performed by port resume.
5284   */
ata_host_resume(struct ata_host * host)5285  void ata_host_resume(struct ata_host *host)
5286  {
5287  	host->dev->power.power_state = PMSG_ON;
5288  }
5289  EXPORT_SYMBOL_GPL(ata_host_resume);
5290  #endif
5291  
5292  const struct device_type ata_port_type = {
5293  	.name = ATA_PORT_TYPE_NAME,
5294  #ifdef CONFIG_PM
5295  	.pm = &ata_port_pm_ops,
5296  #endif
5297  };
5298  
5299  /**
5300   *	ata_dev_init - Initialize an ata_device structure
5301   *	@dev: Device structure to initialize
5302   *
5303   *	Initialize @dev in preparation for probing.
5304   *
5305   *	LOCKING:
5306   *	Inherited from caller.
5307   */
ata_dev_init(struct ata_device * dev)5308  void ata_dev_init(struct ata_device *dev)
5309  {
5310  	struct ata_link *link = ata_dev_phys_link(dev);
5311  	struct ata_port *ap = link->ap;
5312  	unsigned long flags;
5313  
5314  	/* SATA spd limit is bound to the attached device, reset together */
5315  	link->sata_spd_limit = link->hw_sata_spd_limit;
5316  	link->sata_spd = 0;
5317  
5318  	/* High bits of dev->flags are used to record warm plug
5319  	 * requests which occur asynchronously.  Synchronize using
5320  	 * host lock.
5321  	 */
5322  	spin_lock_irqsave(ap->lock, flags);
5323  	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5324  	dev->quirks = 0;
5325  	spin_unlock_irqrestore(ap->lock, flags);
5326  
5327  	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5328  	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5329  	dev->pio_mask = UINT_MAX;
5330  	dev->mwdma_mask = UINT_MAX;
5331  	dev->udma_mask = UINT_MAX;
5332  }
5333  
5334  /**
5335   *	ata_link_init - Initialize an ata_link structure
5336   *	@ap: ATA port link is attached to
5337   *	@link: Link structure to initialize
5338   *	@pmp: Port multiplier port number
5339   *
5340   *	Initialize @link.
5341   *
5342   *	LOCKING:
5343   *	Kernel thread context (may sleep)
5344   */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5345  void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5346  {
5347  	int i;
5348  
5349  	/* clear everything except for devices */
5350  	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5351  	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5352  
5353  	link->ap = ap;
5354  	link->pmp = pmp;
5355  	link->active_tag = ATA_TAG_POISON;
5356  	link->hw_sata_spd_limit = UINT_MAX;
5357  
5358  	/* can't use iterator, ap isn't initialized yet */
5359  	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5360  		struct ata_device *dev = &link->device[i];
5361  
5362  		dev->link = link;
5363  		dev->devno = dev - link->device;
5364  #ifdef CONFIG_ATA_ACPI
5365  		dev->gtf_filter = ata_acpi_gtf_filter;
5366  #endif
5367  		ata_dev_init(dev);
5368  	}
5369  }
5370  
5371  /**
5372   *	sata_link_init_spd - Initialize link->sata_spd_limit
5373   *	@link: Link to configure sata_spd_limit for
5374   *
5375   *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5376   *	configured value.
5377   *
5378   *	LOCKING:
5379   *	Kernel thread context (may sleep).
5380   *
5381   *	RETURNS:
5382   *	0 on success, -errno on failure.
5383   */
sata_link_init_spd(struct ata_link * link)5384  int sata_link_init_spd(struct ata_link *link)
5385  {
5386  	u8 spd;
5387  	int rc;
5388  
5389  	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5390  	if (rc)
5391  		return rc;
5392  
5393  	spd = (link->saved_scontrol >> 4) & 0xf;
5394  	if (spd)
5395  		link->hw_sata_spd_limit &= (1 << spd) - 1;
5396  
5397  	ata_force_link_limits(link);
5398  
5399  	link->sata_spd_limit = link->hw_sata_spd_limit;
5400  
5401  	return 0;
5402  }
5403  
5404  /**
5405   *	ata_port_alloc - allocate and initialize basic ATA port resources
5406   *	@host: ATA host this allocated port belongs to
5407   *
5408   *	Allocate and initialize basic ATA port resources.
5409   *
5410   *	RETURNS:
5411   *	Allocate ATA port on success, NULL on failure.
5412   *
5413   *	LOCKING:
5414   *	Inherited from calling layer (may sleep).
5415   */
ata_port_alloc(struct ata_host * host)5416  struct ata_port *ata_port_alloc(struct ata_host *host)
5417  {
5418  	struct ata_port *ap;
5419  	int id;
5420  
5421  	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5422  	if (!ap)
5423  		return NULL;
5424  
5425  	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5426  	ap->lock = &host->lock;
5427  	id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5428  	if (id < 0) {
5429  		kfree(ap);
5430  		return NULL;
5431  	}
5432  	ap->print_id = id;
5433  	ap->host = host;
5434  	ap->dev = host->dev;
5435  
5436  	mutex_init(&ap->scsi_scan_mutex);
5437  	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5438  	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5439  	INIT_LIST_HEAD(&ap->eh_done_q);
5440  	init_waitqueue_head(&ap->eh_wait_q);
5441  	init_completion(&ap->park_req_pending);
5442  	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5443  		    TIMER_DEFERRABLE);
5444  
5445  	ap->cbl = ATA_CBL_NONE;
5446  
5447  	ata_link_init(ap, &ap->link, 0);
5448  
5449  #ifdef ATA_IRQ_TRAP
5450  	ap->stats.unhandled_irq = 1;
5451  	ap->stats.idle_irq = 1;
5452  #endif
5453  	ata_sff_port_init(ap);
5454  
5455  	return ap;
5456  }
5457  EXPORT_SYMBOL_GPL(ata_port_alloc);
5458  
ata_port_free(struct ata_port * ap)5459  void ata_port_free(struct ata_port *ap)
5460  {
5461  	if (!ap)
5462  		return;
5463  
5464  	kfree(ap->pmp_link);
5465  	kfree(ap->slave_link);
5466  	ida_free(&ata_ida, ap->print_id);
5467  	kfree(ap);
5468  }
5469  EXPORT_SYMBOL_GPL(ata_port_free);
5470  
ata_devres_release(struct device * gendev,void * res)5471  static void ata_devres_release(struct device *gendev, void *res)
5472  {
5473  	struct ata_host *host = dev_get_drvdata(gendev);
5474  	int i;
5475  
5476  	for (i = 0; i < host->n_ports; i++) {
5477  		struct ata_port *ap = host->ports[i];
5478  
5479  		if (!ap)
5480  			continue;
5481  
5482  		if (ap->scsi_host)
5483  			scsi_host_put(ap->scsi_host);
5484  
5485  	}
5486  
5487  	dev_set_drvdata(gendev, NULL);
5488  	ata_host_put(host);
5489  }
5490  
ata_host_release(struct kref * kref)5491  static void ata_host_release(struct kref *kref)
5492  {
5493  	struct ata_host *host = container_of(kref, struct ata_host, kref);
5494  	int i;
5495  
5496  	for (i = 0; i < host->n_ports; i++) {
5497  		ata_port_free(host->ports[i]);
5498  		host->ports[i] = NULL;
5499  	}
5500  	kfree(host);
5501  }
5502  
ata_host_get(struct ata_host * host)5503  void ata_host_get(struct ata_host *host)
5504  {
5505  	kref_get(&host->kref);
5506  }
5507  
ata_host_put(struct ata_host * host)5508  void ata_host_put(struct ata_host *host)
5509  {
5510  	kref_put(&host->kref, ata_host_release);
5511  }
5512  EXPORT_SYMBOL_GPL(ata_host_put);
5513  
5514  /**
5515   *	ata_host_alloc - allocate and init basic ATA host resources
5516   *	@dev: generic device this host is associated with
5517   *	@n_ports: the number of ATA ports associated with this host
5518   *
5519   *	Allocate and initialize basic ATA host resources.  LLD calls
5520   *	this function to allocate a host, initializes it fully and
5521   *	attaches it using ata_host_register().
5522   *
5523   *	RETURNS:
5524   *	Allocate ATA host on success, NULL on failure.
5525   *
5526   *	LOCKING:
5527   *	Inherited from calling layer (may sleep).
5528   */
ata_host_alloc(struct device * dev,int n_ports)5529  struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5530  {
5531  	struct ata_host *host;
5532  	size_t sz;
5533  	int i;
5534  	void *dr;
5535  
5536  	/* alloc a container for our list of ATA ports (buses) */
5537  	sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5538  	host = kzalloc(sz, GFP_KERNEL);
5539  	if (!host)
5540  		return NULL;
5541  
5542  	if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5543  		kfree(host);
5544  		return NULL;
5545  	}
5546  
5547  	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5548  	if (!dr) {
5549  		kfree(host);
5550  		goto err_out;
5551  	}
5552  
5553  	devres_add(dev, dr);
5554  	dev_set_drvdata(dev, host);
5555  
5556  	spin_lock_init(&host->lock);
5557  	mutex_init(&host->eh_mutex);
5558  	host->dev = dev;
5559  	host->n_ports = n_ports;
5560  	kref_init(&host->kref);
5561  
5562  	/* allocate ports bound to this host */
5563  	for (i = 0; i < n_ports; i++) {
5564  		struct ata_port *ap;
5565  
5566  		ap = ata_port_alloc(host);
5567  		if (!ap)
5568  			goto err_out;
5569  
5570  		ap->port_no = i;
5571  		host->ports[i] = ap;
5572  	}
5573  
5574  	devres_remove_group(dev, NULL);
5575  	return host;
5576  
5577   err_out:
5578  	devres_release_group(dev, NULL);
5579  	return NULL;
5580  }
5581  EXPORT_SYMBOL_GPL(ata_host_alloc);
5582  
5583  /**
5584   *	ata_host_alloc_pinfo - alloc host and init with port_info array
5585   *	@dev: generic device this host is associated with
5586   *	@ppi: array of ATA port_info to initialize host with
5587   *	@n_ports: number of ATA ports attached to this host
5588   *
5589   *	Allocate ATA host and initialize with info from @ppi.  If NULL
5590   *	terminated, @ppi may contain fewer entries than @n_ports.  The
5591   *	last entry will be used for the remaining ports.
5592   *
5593   *	RETURNS:
5594   *	Allocate ATA host on success, NULL on failure.
5595   *
5596   *	LOCKING:
5597   *	Inherited from calling layer (may sleep).
5598   */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5599  struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5600  				      const struct ata_port_info * const * ppi,
5601  				      int n_ports)
5602  {
5603  	const struct ata_port_info *pi = &ata_dummy_port_info;
5604  	struct ata_host *host;
5605  	int i, j;
5606  
5607  	host = ata_host_alloc(dev, n_ports);
5608  	if (!host)
5609  		return NULL;
5610  
5611  	for (i = 0, j = 0; i < host->n_ports; i++) {
5612  		struct ata_port *ap = host->ports[i];
5613  
5614  		if (ppi[j])
5615  			pi = ppi[j++];
5616  
5617  		ap->pio_mask = pi->pio_mask;
5618  		ap->mwdma_mask = pi->mwdma_mask;
5619  		ap->udma_mask = pi->udma_mask;
5620  		ap->flags |= pi->flags;
5621  		ap->link.flags |= pi->link_flags;
5622  		ap->ops = pi->port_ops;
5623  
5624  		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5625  			host->ops = pi->port_ops;
5626  	}
5627  
5628  	return host;
5629  }
5630  EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5631  
ata_host_stop(struct device * gendev,void * res)5632  static void ata_host_stop(struct device *gendev, void *res)
5633  {
5634  	struct ata_host *host = dev_get_drvdata(gendev);
5635  	int i;
5636  
5637  	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5638  
5639  	for (i = 0; i < host->n_ports; i++) {
5640  		struct ata_port *ap = host->ports[i];
5641  
5642  		if (ap->ops->port_stop)
5643  			ap->ops->port_stop(ap);
5644  	}
5645  
5646  	if (host->ops->host_stop)
5647  		host->ops->host_stop(host);
5648  }
5649  
5650  /**
5651   *	ata_finalize_port_ops - finalize ata_port_operations
5652   *	@ops: ata_port_operations to finalize
5653   *
5654   *	An ata_port_operations can inherit from another ops and that
5655   *	ops can again inherit from another.  This can go on as many
5656   *	times as necessary as long as there is no loop in the
5657   *	inheritance chain.
5658   *
5659   *	Ops tables are finalized when the host is started.  NULL or
5660   *	unspecified entries are inherited from the closet ancestor
5661   *	which has the method and the entry is populated with it.
5662   *	After finalization, the ops table directly points to all the
5663   *	methods and ->inherits is no longer necessary and cleared.
5664   *
5665   *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5666   *
5667   *	LOCKING:
5668   *	None.
5669   */
ata_finalize_port_ops(struct ata_port_operations * ops)5670  static void ata_finalize_port_ops(struct ata_port_operations *ops)
5671  {
5672  	static DEFINE_SPINLOCK(lock);
5673  	const struct ata_port_operations *cur;
5674  	void **begin = (void **)ops;
5675  	void **end = (void **)&ops->inherits;
5676  	void **pp;
5677  
5678  	if (!ops || !ops->inherits)
5679  		return;
5680  
5681  	spin_lock(&lock);
5682  
5683  	for (cur = ops->inherits; cur; cur = cur->inherits) {
5684  		void **inherit = (void **)cur;
5685  
5686  		for (pp = begin; pp < end; pp++, inherit++)
5687  			if (!*pp)
5688  				*pp = *inherit;
5689  	}
5690  
5691  	for (pp = begin; pp < end; pp++)
5692  		if (IS_ERR(*pp))
5693  			*pp = NULL;
5694  
5695  	ops->inherits = NULL;
5696  
5697  	spin_unlock(&lock);
5698  }
5699  
5700  /**
5701   *	ata_host_start - start and freeze ports of an ATA host
5702   *	@host: ATA host to start ports for
5703   *
5704   *	Start and then freeze ports of @host.  Started status is
5705   *	recorded in host->flags, so this function can be called
5706   *	multiple times.  Ports are guaranteed to get started only
5707   *	once.  If host->ops is not initialized yet, it is set to the
5708   *	first non-dummy port ops.
5709   *
5710   *	LOCKING:
5711   *	Inherited from calling layer (may sleep).
5712   *
5713   *	RETURNS:
5714   *	0 if all ports are started successfully, -errno otherwise.
5715   */
ata_host_start(struct ata_host * host)5716  int ata_host_start(struct ata_host *host)
5717  {
5718  	int have_stop = 0;
5719  	void *start_dr = NULL;
5720  	int i, rc;
5721  
5722  	if (host->flags & ATA_HOST_STARTED)
5723  		return 0;
5724  
5725  	ata_finalize_port_ops(host->ops);
5726  
5727  	for (i = 0; i < host->n_ports; i++) {
5728  		struct ata_port *ap = host->ports[i];
5729  
5730  		ata_finalize_port_ops(ap->ops);
5731  
5732  		if (!host->ops && !ata_port_is_dummy(ap))
5733  			host->ops = ap->ops;
5734  
5735  		if (ap->ops->port_stop)
5736  			have_stop = 1;
5737  	}
5738  
5739  	if (host->ops && host->ops->host_stop)
5740  		have_stop = 1;
5741  
5742  	if (have_stop) {
5743  		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5744  		if (!start_dr)
5745  			return -ENOMEM;
5746  	}
5747  
5748  	for (i = 0; i < host->n_ports; i++) {
5749  		struct ata_port *ap = host->ports[i];
5750  
5751  		if (ap->ops->port_start) {
5752  			rc = ap->ops->port_start(ap);
5753  			if (rc) {
5754  				if (rc != -ENODEV)
5755  					dev_err(host->dev,
5756  						"failed to start port %d (errno=%d)\n",
5757  						i, rc);
5758  				goto err_out;
5759  			}
5760  		}
5761  		ata_eh_freeze_port(ap);
5762  	}
5763  
5764  	if (start_dr)
5765  		devres_add(host->dev, start_dr);
5766  	host->flags |= ATA_HOST_STARTED;
5767  	return 0;
5768  
5769   err_out:
5770  	while (--i >= 0) {
5771  		struct ata_port *ap = host->ports[i];
5772  
5773  		if (ap->ops->port_stop)
5774  			ap->ops->port_stop(ap);
5775  	}
5776  	devres_free(start_dr);
5777  	return rc;
5778  }
5779  EXPORT_SYMBOL_GPL(ata_host_start);
5780  
5781  /**
5782   *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5783   *	@host:	host to initialize
5784   *	@dev:	device host is attached to
5785   *	@ops:	port_ops
5786   *
5787   */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5788  void ata_host_init(struct ata_host *host, struct device *dev,
5789  		   struct ata_port_operations *ops)
5790  {
5791  	spin_lock_init(&host->lock);
5792  	mutex_init(&host->eh_mutex);
5793  	host->n_tags = ATA_MAX_QUEUE;
5794  	host->dev = dev;
5795  	host->ops = ops;
5796  	kref_init(&host->kref);
5797  }
5798  EXPORT_SYMBOL_GPL(ata_host_init);
5799  
ata_port_probe(struct ata_port * ap)5800  void ata_port_probe(struct ata_port *ap)
5801  {
5802  	struct ata_eh_info *ehi = &ap->link.eh_info;
5803  	unsigned long flags;
5804  
5805  	/* kick EH for boot probing */
5806  	spin_lock_irqsave(ap->lock, flags);
5807  
5808  	ehi->probe_mask |= ATA_ALL_DEVICES;
5809  	ehi->action |= ATA_EH_RESET;
5810  	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5811  
5812  	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5813  	ap->pflags |= ATA_PFLAG_LOADING;
5814  	ata_port_schedule_eh(ap);
5815  
5816  	spin_unlock_irqrestore(ap->lock, flags);
5817  }
5818  EXPORT_SYMBOL_GPL(ata_port_probe);
5819  
async_port_probe(void * data,async_cookie_t cookie)5820  static void async_port_probe(void *data, async_cookie_t cookie)
5821  {
5822  	struct ata_port *ap = data;
5823  
5824  	/*
5825  	 * If we're not allowed to scan this host in parallel,
5826  	 * we need to wait until all previous scans have completed
5827  	 * before going further.
5828  	 * Jeff Garzik says this is only within a controller, so we
5829  	 * don't need to wait for port 0, only for later ports.
5830  	 */
5831  	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5832  		async_synchronize_cookie(cookie);
5833  
5834  	ata_port_probe(ap);
5835  	ata_port_wait_eh(ap);
5836  
5837  	/* in order to keep device order, we need to synchronize at this point */
5838  	async_synchronize_cookie(cookie);
5839  
5840  	ata_scsi_scan_host(ap, 1);
5841  }
5842  
5843  /**
5844   *	ata_host_register - register initialized ATA host
5845   *	@host: ATA host to register
5846   *	@sht: template for SCSI host
5847   *
5848   *	Register initialized ATA host.  @host is allocated using
5849   *	ata_host_alloc() and fully initialized by LLD.  This function
5850   *	starts ports, registers @host with ATA and SCSI layers and
5851   *	probe registered devices.
5852   *
5853   *	LOCKING:
5854   *	Inherited from calling layer (may sleep).
5855   *
5856   *	RETURNS:
5857   *	0 on success, -errno otherwise.
5858   */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5859  int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5860  {
5861  	int i, rc;
5862  
5863  	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5864  
5865  	/* host must have been started */
5866  	if (!(host->flags & ATA_HOST_STARTED)) {
5867  		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5868  		WARN_ON(1);
5869  		return -EINVAL;
5870  	}
5871  
5872  	/* Create associated sysfs transport objects  */
5873  	for (i = 0; i < host->n_ports; i++) {
5874  		rc = ata_tport_add(host->dev,host->ports[i]);
5875  		if (rc) {
5876  			goto err_tadd;
5877  		}
5878  	}
5879  
5880  	rc = ata_scsi_add_hosts(host, sht);
5881  	if (rc)
5882  		goto err_tadd;
5883  
5884  	/* set cable, sata_spd_limit and report */
5885  	for (i = 0; i < host->n_ports; i++) {
5886  		struct ata_port *ap = host->ports[i];
5887  		unsigned int xfer_mask;
5888  
5889  		/* set SATA cable type if still unset */
5890  		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5891  			ap->cbl = ATA_CBL_SATA;
5892  
5893  		/* init sata_spd_limit to the current value */
5894  		sata_link_init_spd(&ap->link);
5895  		if (ap->slave_link)
5896  			sata_link_init_spd(ap->slave_link);
5897  
5898  		/* print per-port info to dmesg */
5899  		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5900  					      ap->udma_mask);
5901  
5902  		if (!ata_port_is_dummy(ap)) {
5903  			ata_port_info(ap, "%cATA max %s %s\n",
5904  				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5905  				      ata_mode_string(xfer_mask),
5906  				      ap->link.eh_info.desc);
5907  			ata_ehi_clear_desc(&ap->link.eh_info);
5908  		} else
5909  			ata_port_info(ap, "DUMMY\n");
5910  	}
5911  
5912  	/* perform each probe asynchronously */
5913  	for (i = 0; i < host->n_ports; i++) {
5914  		struct ata_port *ap = host->ports[i];
5915  		ap->cookie = async_schedule(async_port_probe, ap);
5916  	}
5917  
5918  	return 0;
5919  
5920   err_tadd:
5921  	while (--i >= 0) {
5922  		ata_tport_delete(host->ports[i]);
5923  	}
5924  	return rc;
5925  
5926  }
5927  EXPORT_SYMBOL_GPL(ata_host_register);
5928  
5929  /**
5930   *	ata_host_activate - start host, request IRQ and register it
5931   *	@host: target ATA host
5932   *	@irq: IRQ to request
5933   *	@irq_handler: irq_handler used when requesting IRQ
5934   *	@irq_flags: irq_flags used when requesting IRQ
5935   *	@sht: scsi_host_template to use when registering the host
5936   *
5937   *	After allocating an ATA host and initializing it, most libata
5938   *	LLDs perform three steps to activate the host - start host,
5939   *	request IRQ and register it.  This helper takes necessary
5940   *	arguments and performs the three steps in one go.
5941   *
5942   *	An invalid IRQ skips the IRQ registration and expects the host to
5943   *	have set polling mode on the port. In this case, @irq_handler
5944   *	should be NULL.
5945   *
5946   *	LOCKING:
5947   *	Inherited from calling layer (may sleep).
5948   *
5949   *	RETURNS:
5950   *	0 on success, -errno otherwise.
5951   */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)5952  int ata_host_activate(struct ata_host *host, int irq,
5953  		      irq_handler_t irq_handler, unsigned long irq_flags,
5954  		      const struct scsi_host_template *sht)
5955  {
5956  	int i, rc;
5957  	char *irq_desc;
5958  
5959  	rc = ata_host_start(host);
5960  	if (rc)
5961  		return rc;
5962  
5963  	/* Special case for polling mode */
5964  	if (!irq) {
5965  		WARN_ON(irq_handler);
5966  		return ata_host_register(host, sht);
5967  	}
5968  
5969  	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5970  				  dev_driver_string(host->dev),
5971  				  dev_name(host->dev));
5972  	if (!irq_desc)
5973  		return -ENOMEM;
5974  
5975  	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5976  			      irq_desc, host);
5977  	if (rc)
5978  		return rc;
5979  
5980  	for (i = 0; i < host->n_ports; i++)
5981  		ata_port_desc_misc(host->ports[i], irq);
5982  
5983  	rc = ata_host_register(host, sht);
5984  	/* if failed, just free the IRQ and leave ports alone */
5985  	if (rc)
5986  		devm_free_irq(host->dev, irq, host);
5987  
5988  	return rc;
5989  }
5990  EXPORT_SYMBOL_GPL(ata_host_activate);
5991  
5992  /**
5993   *	ata_dev_free_resources - Free a device resources
5994   *	@dev: Target ATA device
5995   *
5996   *	Free resources allocated to support a device features.
5997   *
5998   *	LOCKING:
5999   *	Kernel thread context (may sleep).
6000   */
ata_dev_free_resources(struct ata_device * dev)6001  void ata_dev_free_resources(struct ata_device *dev)
6002  {
6003  	if (zpodd_dev_enabled(dev))
6004  		zpodd_exit(dev);
6005  
6006  	ata_dev_cleanup_cdl_resources(dev);
6007  }
6008  
6009  /**
6010   *	ata_port_detach - Detach ATA port in preparation of device removal
6011   *	@ap: ATA port to be detached
6012   *
6013   *	Detach all ATA devices and the associated SCSI devices of @ap;
6014   *	then, remove the associated SCSI host.  @ap is guaranteed to
6015   *	be quiescent on return from this function.
6016   *
6017   *	LOCKING:
6018   *	Kernel thread context (may sleep).
6019   */
ata_port_detach(struct ata_port * ap)6020  static void ata_port_detach(struct ata_port *ap)
6021  {
6022  	unsigned long flags;
6023  	struct ata_link *link;
6024  	struct ata_device *dev;
6025  
6026  	/* Ensure ata_port probe has completed */
6027  	async_synchronize_cookie(ap->cookie + 1);
6028  
6029  	/* Wait for any ongoing EH */
6030  	ata_port_wait_eh(ap);
6031  
6032  	mutex_lock(&ap->scsi_scan_mutex);
6033  	spin_lock_irqsave(ap->lock, flags);
6034  
6035  	/* Remove scsi devices */
6036  	ata_for_each_link(link, ap, HOST_FIRST) {
6037  		ata_for_each_dev(dev, link, ALL) {
6038  			if (dev->sdev) {
6039  				spin_unlock_irqrestore(ap->lock, flags);
6040  				scsi_remove_device(dev->sdev);
6041  				spin_lock_irqsave(ap->lock, flags);
6042  				dev->sdev = NULL;
6043  			}
6044  		}
6045  	}
6046  
6047  	/* Tell EH to disable all devices */
6048  	ap->pflags |= ATA_PFLAG_UNLOADING;
6049  	ata_port_schedule_eh(ap);
6050  
6051  	spin_unlock_irqrestore(ap->lock, flags);
6052  	mutex_unlock(&ap->scsi_scan_mutex);
6053  
6054  	/* wait till EH commits suicide */
6055  	ata_port_wait_eh(ap);
6056  
6057  	/* it better be dead now */
6058  	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6059  
6060  	cancel_delayed_work_sync(&ap->hotplug_task);
6061  	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6062  
6063  	/* Delete port multiplier link transport devices */
6064  	if (ap->pmp_link) {
6065  		int i;
6066  
6067  		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6068  			ata_tlink_delete(&ap->pmp_link[i]);
6069  	}
6070  
6071  	/* Remove the associated SCSI host */
6072  	scsi_remove_host(ap->scsi_host);
6073  	ata_tport_delete(ap);
6074  }
6075  
6076  /**
6077   *	ata_host_detach - Detach all ports of an ATA host
6078   *	@host: Host to detach
6079   *
6080   *	Detach all ports of @host.
6081   *
6082   *	LOCKING:
6083   *	Kernel thread context (may sleep).
6084   */
ata_host_detach(struct ata_host * host)6085  void ata_host_detach(struct ata_host *host)
6086  {
6087  	int i;
6088  
6089  	for (i = 0; i < host->n_ports; i++)
6090  		ata_port_detach(host->ports[i]);
6091  
6092  	/* the host is dead now, dissociate ACPI */
6093  	ata_acpi_dissociate(host);
6094  }
6095  EXPORT_SYMBOL_GPL(ata_host_detach);
6096  
6097  #ifdef CONFIG_PCI
6098  
6099  /**
6100   *	ata_pci_remove_one - PCI layer callback for device removal
6101   *	@pdev: PCI device that was removed
6102   *
6103   *	PCI layer indicates to libata via this hook that hot-unplug or
6104   *	module unload event has occurred.  Detach all ports.  Resource
6105   *	release is handled via devres.
6106   *
6107   *	LOCKING:
6108   *	Inherited from PCI layer (may sleep).
6109   */
ata_pci_remove_one(struct pci_dev * pdev)6110  void ata_pci_remove_one(struct pci_dev *pdev)
6111  {
6112  	struct ata_host *host = pci_get_drvdata(pdev);
6113  
6114  	ata_host_detach(host);
6115  }
6116  EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6117  
ata_pci_shutdown_one(struct pci_dev * pdev)6118  void ata_pci_shutdown_one(struct pci_dev *pdev)
6119  {
6120  	struct ata_host *host = pci_get_drvdata(pdev);
6121  	int i;
6122  
6123  	for (i = 0; i < host->n_ports; i++) {
6124  		struct ata_port *ap = host->ports[i];
6125  
6126  		ap->pflags |= ATA_PFLAG_FROZEN;
6127  
6128  		/* Disable port interrupts */
6129  		if (ap->ops->freeze)
6130  			ap->ops->freeze(ap);
6131  
6132  		/* Stop the port DMA engines */
6133  		if (ap->ops->port_stop)
6134  			ap->ops->port_stop(ap);
6135  	}
6136  }
6137  EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6138  
6139  /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6140  int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6141  {
6142  	unsigned long tmp = 0;
6143  
6144  	switch (bits->width) {
6145  	case 1: {
6146  		u8 tmp8 = 0;
6147  		pci_read_config_byte(pdev, bits->reg, &tmp8);
6148  		tmp = tmp8;
6149  		break;
6150  	}
6151  	case 2: {
6152  		u16 tmp16 = 0;
6153  		pci_read_config_word(pdev, bits->reg, &tmp16);
6154  		tmp = tmp16;
6155  		break;
6156  	}
6157  	case 4: {
6158  		u32 tmp32 = 0;
6159  		pci_read_config_dword(pdev, bits->reg, &tmp32);
6160  		tmp = tmp32;
6161  		break;
6162  	}
6163  
6164  	default:
6165  		return -EINVAL;
6166  	}
6167  
6168  	tmp &= bits->mask;
6169  
6170  	return (tmp == bits->val) ? 1 : 0;
6171  }
6172  EXPORT_SYMBOL_GPL(pci_test_config_bits);
6173  
6174  #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6175  void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6176  {
6177  	pci_save_state(pdev);
6178  	pci_disable_device(pdev);
6179  
6180  	if (mesg.event & PM_EVENT_SLEEP)
6181  		pci_set_power_state(pdev, PCI_D3hot);
6182  }
6183  EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6184  
ata_pci_device_do_resume(struct pci_dev * pdev)6185  int ata_pci_device_do_resume(struct pci_dev *pdev)
6186  {
6187  	int rc;
6188  
6189  	pci_set_power_state(pdev, PCI_D0);
6190  	pci_restore_state(pdev);
6191  
6192  	rc = pcim_enable_device(pdev);
6193  	if (rc) {
6194  		dev_err(&pdev->dev,
6195  			"failed to enable device after resume (%d)\n", rc);
6196  		return rc;
6197  	}
6198  
6199  	pci_set_master(pdev);
6200  	return 0;
6201  }
6202  EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6203  
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6204  int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6205  {
6206  	struct ata_host *host = pci_get_drvdata(pdev);
6207  
6208  	ata_host_suspend(host, mesg);
6209  
6210  	ata_pci_device_do_suspend(pdev, mesg);
6211  
6212  	return 0;
6213  }
6214  EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6215  
ata_pci_device_resume(struct pci_dev * pdev)6216  int ata_pci_device_resume(struct pci_dev *pdev)
6217  {
6218  	struct ata_host *host = pci_get_drvdata(pdev);
6219  	int rc;
6220  
6221  	rc = ata_pci_device_do_resume(pdev);
6222  	if (rc == 0)
6223  		ata_host_resume(host);
6224  	return rc;
6225  }
6226  EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6227  #endif /* CONFIG_PM */
6228  #endif /* CONFIG_PCI */
6229  
6230  /**
6231   *	ata_platform_remove_one - Platform layer callback for device removal
6232   *	@pdev: Platform device that was removed
6233   *
6234   *	Platform layer indicates to libata via this hook that hot-unplug or
6235   *	module unload event has occurred.  Detach all ports.  Resource
6236   *	release is handled via devres.
6237   *
6238   *	LOCKING:
6239   *	Inherited from platform layer (may sleep).
6240   */
ata_platform_remove_one(struct platform_device * pdev)6241  void ata_platform_remove_one(struct platform_device *pdev)
6242  {
6243  	struct ata_host *host = platform_get_drvdata(pdev);
6244  
6245  	ata_host_detach(host);
6246  }
6247  EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6248  
6249  #ifdef CONFIG_ATA_FORCE
6250  
6251  #define force_cbl(name, flag)				\
6252  	{ #name,	.cbl		= (flag) }
6253  
6254  #define force_spd_limit(spd, val)			\
6255  	{ #spd,	.spd_limit		= (val) }
6256  
6257  #define force_xfer(mode, shift)				\
6258  	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6259  
6260  #define force_lflag_on(name, flags)			\
6261  	{ #name,	.lflags_on	= (flags) }
6262  
6263  #define force_lflag_onoff(name, flags)			\
6264  	{ "no" #name,	.lflags_on	= (flags) },	\
6265  	{ #name,	.lflags_off	= (flags) }
6266  
6267  #define force_quirk_on(name, flag)			\
6268  	{ #name,	.quirk_on	= (flag) }
6269  
6270  #define force_quirk_onoff(name, flag)			\
6271  	{ "no" #name,	.quirk_on	= (flag) },	\
6272  	{ #name,	.quirk_off	= (flag) }
6273  
6274  static const struct ata_force_param force_tbl[] __initconst = {
6275  	force_cbl(40c,			ATA_CBL_PATA40),
6276  	force_cbl(80c,			ATA_CBL_PATA80),
6277  	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6278  	force_cbl(unk,			ATA_CBL_PATA_UNK),
6279  	force_cbl(ign,			ATA_CBL_PATA_IGN),
6280  	force_cbl(sata,			ATA_CBL_SATA),
6281  
6282  	force_spd_limit(1.5Gbps,	1),
6283  	force_spd_limit(3.0Gbps,	2),
6284  
6285  	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6286  	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6287  	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6288  	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6289  	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6290  	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6291  	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6292  	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6293  	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6294  	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6295  	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6296  	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6297  	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6298  	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6299  	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6300  	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6301  	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6302  	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6303  	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6304  	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6305  	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6306  	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6307  	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6308  	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6309  	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6310  	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6311  	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6312  	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6313  	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6314  	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6315  	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6316  	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6317  	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6318  	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6319  
6320  	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6321  	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6322  	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6323  	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6324  	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6325  
6326  	force_quirk_onoff(ncq,		ATA_QUIRK_NONCQ),
6327  	force_quirk_onoff(ncqtrim,	ATA_QUIRK_NO_NCQ_TRIM),
6328  	force_quirk_onoff(ncqati,	ATA_QUIRK_NO_NCQ_ON_ATI),
6329  
6330  	force_quirk_onoff(trim,		ATA_QUIRK_NOTRIM),
6331  	force_quirk_on(trim_zero,	ATA_QUIRK_ZERO_AFTER_TRIM),
6332  	force_quirk_on(max_trim_128m,	ATA_QUIRK_MAX_TRIM_128M),
6333  
6334  	force_quirk_onoff(dma,		ATA_QUIRK_NODMA),
6335  	force_quirk_on(atapi_dmadir,	ATA_QUIRK_ATAPI_DMADIR),
6336  	force_quirk_on(atapi_mod16_dma,	ATA_QUIRK_ATAPI_MOD16_DMA),
6337  
6338  	force_quirk_onoff(dmalog,	ATA_QUIRK_NO_DMA_LOG),
6339  	force_quirk_onoff(iddevlog,	ATA_QUIRK_NO_ID_DEV_LOG),
6340  	force_quirk_onoff(logdir,	ATA_QUIRK_NO_LOG_DIR),
6341  
6342  	force_quirk_on(max_sec_128,	ATA_QUIRK_MAX_SEC_128),
6343  	force_quirk_on(max_sec_1024,	ATA_QUIRK_MAX_SEC_1024),
6344  	force_quirk_on(max_sec_lba48,	ATA_QUIRK_MAX_SEC_LBA48),
6345  
6346  	force_quirk_onoff(lpm,		ATA_QUIRK_NOLPM),
6347  	force_quirk_onoff(setxfer,	ATA_QUIRK_NOSETXFER),
6348  	force_quirk_on(dump_id,		ATA_QUIRK_DUMP_ID),
6349  	force_quirk_onoff(fua,		ATA_QUIRK_NO_FUA),
6350  
6351  	force_quirk_on(disable,		ATA_QUIRK_DISABLE),
6352  };
6353  
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6354  static int __init ata_parse_force_one(char **cur,
6355  				      struct ata_force_ent *force_ent,
6356  				      const char **reason)
6357  {
6358  	char *start = *cur, *p = *cur;
6359  	char *id, *val, *endp;
6360  	const struct ata_force_param *match_fp = NULL;
6361  	int nr_matches = 0, i;
6362  
6363  	/* find where this param ends and update *cur */
6364  	while (*p != '\0' && *p != ',')
6365  		p++;
6366  
6367  	if (*p == '\0')
6368  		*cur = p;
6369  	else
6370  		*cur = p + 1;
6371  
6372  	*p = '\0';
6373  
6374  	/* parse */
6375  	p = strchr(start, ':');
6376  	if (!p) {
6377  		val = strstrip(start);
6378  		goto parse_val;
6379  	}
6380  	*p = '\0';
6381  
6382  	id = strstrip(start);
6383  	val = strstrip(p + 1);
6384  
6385  	/* parse id */
6386  	p = strchr(id, '.');
6387  	if (p) {
6388  		*p++ = '\0';
6389  		force_ent->device = simple_strtoul(p, &endp, 10);
6390  		if (p == endp || *endp != '\0') {
6391  			*reason = "invalid device";
6392  			return -EINVAL;
6393  		}
6394  	}
6395  
6396  	force_ent->port = simple_strtoul(id, &endp, 10);
6397  	if (id == endp || *endp != '\0') {
6398  		*reason = "invalid port/link";
6399  		return -EINVAL;
6400  	}
6401  
6402   parse_val:
6403  	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6404  	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6405  		const struct ata_force_param *fp = &force_tbl[i];
6406  
6407  		if (strncasecmp(val, fp->name, strlen(val)))
6408  			continue;
6409  
6410  		nr_matches++;
6411  		match_fp = fp;
6412  
6413  		if (strcasecmp(val, fp->name) == 0) {
6414  			nr_matches = 1;
6415  			break;
6416  		}
6417  	}
6418  
6419  	if (!nr_matches) {
6420  		*reason = "unknown value";
6421  		return -EINVAL;
6422  	}
6423  	if (nr_matches > 1) {
6424  		*reason = "ambiguous value";
6425  		return -EINVAL;
6426  	}
6427  
6428  	force_ent->param = *match_fp;
6429  
6430  	return 0;
6431  }
6432  
ata_parse_force_param(void)6433  static void __init ata_parse_force_param(void)
6434  {
6435  	int idx = 0, size = 1;
6436  	int last_port = -1, last_device = -1;
6437  	char *p, *cur, *next;
6438  
6439  	/* Calculate maximum number of params and allocate ata_force_tbl */
6440  	for (p = ata_force_param_buf; *p; p++)
6441  		if (*p == ',')
6442  			size++;
6443  
6444  	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6445  	if (!ata_force_tbl) {
6446  		printk(KERN_WARNING "ata: failed to extend force table, "
6447  		       "libata.force ignored\n");
6448  		return;
6449  	}
6450  
6451  	/* parse and populate the table */
6452  	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6453  		const char *reason = "";
6454  		struct ata_force_ent te = { .port = -1, .device = -1 };
6455  
6456  		next = cur;
6457  		if (ata_parse_force_one(&next, &te, &reason)) {
6458  			printk(KERN_WARNING "ata: failed to parse force "
6459  			       "parameter \"%s\" (%s)\n",
6460  			       cur, reason);
6461  			continue;
6462  		}
6463  
6464  		if (te.port == -1) {
6465  			te.port = last_port;
6466  			te.device = last_device;
6467  		}
6468  
6469  		ata_force_tbl[idx++] = te;
6470  
6471  		last_port = te.port;
6472  		last_device = te.device;
6473  	}
6474  
6475  	ata_force_tbl_size = idx;
6476  }
6477  
ata_free_force_param(void)6478  static void ata_free_force_param(void)
6479  {
6480  	kfree(ata_force_tbl);
6481  }
6482  #else
ata_parse_force_param(void)6483  static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6484  static inline void ata_free_force_param(void) { }
6485  #endif
6486  
ata_init(void)6487  static int __init ata_init(void)
6488  {
6489  	int rc;
6490  
6491  	ata_parse_force_param();
6492  
6493  	rc = ata_sff_init();
6494  	if (rc) {
6495  		ata_free_force_param();
6496  		return rc;
6497  	}
6498  
6499  	libata_transport_init();
6500  	ata_scsi_transport_template = ata_attach_transport();
6501  	if (!ata_scsi_transport_template) {
6502  		ata_sff_exit();
6503  		rc = -ENOMEM;
6504  		goto err_out;
6505  	}
6506  
6507  	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6508  	return 0;
6509  
6510  err_out:
6511  	return rc;
6512  }
6513  
ata_exit(void)6514  static void __exit ata_exit(void)
6515  {
6516  	ata_release_transport(ata_scsi_transport_template);
6517  	libata_transport_exit();
6518  	ata_sff_exit();
6519  	ata_free_force_param();
6520  }
6521  
6522  subsys_initcall(ata_init);
6523  module_exit(ata_exit);
6524  
6525  static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6526  
ata_ratelimit(void)6527  int ata_ratelimit(void)
6528  {
6529  	return __ratelimit(&ratelimit);
6530  }
6531  EXPORT_SYMBOL_GPL(ata_ratelimit);
6532  
6533  /**
6534   *	ata_msleep - ATA EH owner aware msleep
6535   *	@ap: ATA port to attribute the sleep to
6536   *	@msecs: duration to sleep in milliseconds
6537   *
6538   *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6539   *	ownership is released before going to sleep and reacquired
6540   *	after the sleep is complete.  IOW, other ports sharing the
6541   *	@ap->host will be allowed to own the EH while this task is
6542   *	sleeping.
6543   *
6544   *	LOCKING:
6545   *	Might sleep.
6546   */
ata_msleep(struct ata_port * ap,unsigned int msecs)6547  void ata_msleep(struct ata_port *ap, unsigned int msecs)
6548  {
6549  	bool owns_eh = ap && ap->host->eh_owner == current;
6550  
6551  	if (owns_eh)
6552  		ata_eh_release(ap);
6553  
6554  	if (msecs < 20) {
6555  		unsigned long usecs = msecs * USEC_PER_MSEC;
6556  		usleep_range(usecs, usecs + 50);
6557  	} else {
6558  		msleep(msecs);
6559  	}
6560  
6561  	if (owns_eh)
6562  		ata_eh_acquire(ap);
6563  }
6564  EXPORT_SYMBOL_GPL(ata_msleep);
6565  
6566  /**
6567   *	ata_wait_register - wait until register value changes
6568   *	@ap: ATA port to wait register for, can be NULL
6569   *	@reg: IO-mapped register
6570   *	@mask: Mask to apply to read register value
6571   *	@val: Wait condition
6572   *	@interval: polling interval in milliseconds
6573   *	@timeout: timeout in milliseconds
6574   *
6575   *	Waiting for some bits of register to change is a common
6576   *	operation for ATA controllers.  This function reads 32bit LE
6577   *	IO-mapped register @reg and tests for the following condition.
6578   *
6579   *	(*@reg & mask) != val
6580   *
6581   *	If the condition is met, it returns; otherwise, the process is
6582   *	repeated after @interval_msec until timeout.
6583   *
6584   *	LOCKING:
6585   *	Kernel thread context (may sleep)
6586   *
6587   *	RETURNS:
6588   *	The final register value.
6589   */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6590  u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6591  		      unsigned int interval, unsigned int timeout)
6592  {
6593  	unsigned long deadline;
6594  	u32 tmp;
6595  
6596  	tmp = ioread32(reg);
6597  
6598  	/* Calculate timeout _after_ the first read to make sure
6599  	 * preceding writes reach the controller before starting to
6600  	 * eat away the timeout.
6601  	 */
6602  	deadline = ata_deadline(jiffies, timeout);
6603  
6604  	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6605  		ata_msleep(ap, interval);
6606  		tmp = ioread32(reg);
6607  	}
6608  
6609  	return tmp;
6610  }
6611  EXPORT_SYMBOL_GPL(ata_wait_register);
6612  
6613  /*
6614   * Dummy port_ops
6615   */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6616  static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6617  {
6618  	return AC_ERR_SYSTEM;
6619  }
6620  
ata_dummy_error_handler(struct ata_port * ap)6621  static void ata_dummy_error_handler(struct ata_port *ap)
6622  {
6623  	/* truly dummy */
6624  }
6625  
6626  struct ata_port_operations ata_dummy_port_ops = {
6627  	.qc_issue		= ata_dummy_qc_issue,
6628  	.error_handler		= ata_dummy_error_handler,
6629  	.sched_eh		= ata_std_sched_eh,
6630  	.end_eh			= ata_std_end_eh,
6631  };
6632  EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6633  
6634  const struct ata_port_info ata_dummy_port_info = {
6635  	.port_ops		= &ata_dummy_port_ops,
6636  };
6637  EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6638  
ata_print_version(const struct device * dev,const char * version)6639  void ata_print_version(const struct device *dev, const char *version)
6640  {
6641  	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6642  }
6643  EXPORT_SYMBOL(ata_print_version);
6644  
6645  EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6646  EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6647  EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6648  EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6649  EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6650