1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * async.c: Asynchronous function calls for boot performance
4   *
5   * (C) Copyright 2009 Intel Corporation
6   * Author: Arjan van de Ven <arjan@linux.intel.com>
7   */
8  
9  
10  /*
11  
12  Goals and Theory of Operation
13  
14  The primary goal of this feature is to reduce the kernel boot time,
15  by doing various independent hardware delays and discovery operations
16  decoupled and not strictly serialized.
17  
18  More specifically, the asynchronous function call concept allows
19  certain operations (primarily during system boot) to happen
20  asynchronously, out of order, while these operations still
21  have their externally visible parts happen sequentially and in-order.
22  (not unlike how out-of-order CPUs retire their instructions in order)
23  
24  Key to the asynchronous function call implementation is the concept of
25  a "sequence cookie" (which, although it has an abstracted type, can be
26  thought of as a monotonically incrementing number).
27  
28  The async core will assign each scheduled event such a sequence cookie and
29  pass this to the called functions.
30  
31  The asynchronously called function should before doing a globally visible
32  operation, such as registering device numbers, call the
33  async_synchronize_cookie() function and pass in its own cookie. The
34  async_synchronize_cookie() function will make sure that all asynchronous
35  operations that were scheduled prior to the operation corresponding with the
36  cookie have completed.
37  
38  Subsystem/driver initialization code that scheduled asynchronous probe
39  functions, but which shares global resources with other drivers/subsystems
40  that do not use the asynchronous call feature, need to do a full
41  synchronization with the async_synchronize_full() function, before returning
42  from their init function. This is to maintain strict ordering between the
43  asynchronous and synchronous parts of the kernel.
44  
45  */
46  
47  #include <linux/async.h>
48  #include <linux/atomic.h>
49  #include <linux/export.h>
50  #include <linux/ktime.h>
51  #include <linux/pid.h>
52  #include <linux/sched.h>
53  #include <linux/slab.h>
54  #include <linux/wait.h>
55  #include <linux/workqueue.h>
56  
57  #include "workqueue_internal.h"
58  
59  static async_cookie_t next_cookie = 1;
60  
61  #define MAX_WORK		32768
62  #define ASYNC_COOKIE_MAX	ULLONG_MAX	/* infinity cookie */
63  
64  static LIST_HEAD(async_global_pending);	/* pending from all registered doms */
65  static ASYNC_DOMAIN(async_dfl_domain);
66  static DEFINE_SPINLOCK(async_lock);
67  static struct workqueue_struct *async_wq;
68  
69  struct async_entry {
70  	struct list_head	domain_list;
71  	struct list_head	global_list;
72  	struct work_struct	work;
73  	async_cookie_t		cookie;
74  	async_func_t		func;
75  	void			*data;
76  	struct async_domain	*domain;
77  };
78  
79  static DECLARE_WAIT_QUEUE_HEAD(async_done);
80  
81  static atomic_t entry_count;
82  
microseconds_since(ktime_t start)83  static long long microseconds_since(ktime_t start)
84  {
85  	ktime_t now = ktime_get();
86  	return ktime_to_ns(ktime_sub(now, start)) >> 10;
87  }
88  
lowest_in_progress(struct async_domain * domain)89  static async_cookie_t lowest_in_progress(struct async_domain *domain)
90  {
91  	struct async_entry *first = NULL;
92  	async_cookie_t ret = ASYNC_COOKIE_MAX;
93  	unsigned long flags;
94  
95  	spin_lock_irqsave(&async_lock, flags);
96  
97  	if (domain) {
98  		if (!list_empty(&domain->pending))
99  			first = list_first_entry(&domain->pending,
100  					struct async_entry, domain_list);
101  	} else {
102  		if (!list_empty(&async_global_pending))
103  			first = list_first_entry(&async_global_pending,
104  					struct async_entry, global_list);
105  	}
106  
107  	if (first)
108  		ret = first->cookie;
109  
110  	spin_unlock_irqrestore(&async_lock, flags);
111  	return ret;
112  }
113  
114  /*
115   * pick the first pending entry and run it
116   */
async_run_entry_fn(struct work_struct * work)117  static void async_run_entry_fn(struct work_struct *work)
118  {
119  	struct async_entry *entry =
120  		container_of(work, struct async_entry, work);
121  	unsigned long flags;
122  	ktime_t calltime;
123  
124  	/* 1) run (and print duration) */
125  	pr_debug("calling  %lli_%pS @ %i\n", (long long)entry->cookie,
126  		 entry->func, task_pid_nr(current));
127  	calltime = ktime_get();
128  
129  	entry->func(entry->data, entry->cookie);
130  
131  	pr_debug("initcall %lli_%pS returned after %lld usecs\n",
132  		 (long long)entry->cookie, entry->func,
133  		 microseconds_since(calltime));
134  
135  	/* 2) remove self from the pending queues */
136  	spin_lock_irqsave(&async_lock, flags);
137  	list_del_init(&entry->domain_list);
138  	list_del_init(&entry->global_list);
139  
140  	/* 3) free the entry */
141  	kfree(entry);
142  	atomic_dec(&entry_count);
143  
144  	spin_unlock_irqrestore(&async_lock, flags);
145  
146  	/* 4) wake up any waiters */
147  	wake_up(&async_done);
148  }
149  
__async_schedule_node_domain(async_func_t func,void * data,int node,struct async_domain * domain,struct async_entry * entry)150  static async_cookie_t __async_schedule_node_domain(async_func_t func,
151  						   void *data, int node,
152  						   struct async_domain *domain,
153  						   struct async_entry *entry)
154  {
155  	async_cookie_t newcookie;
156  	unsigned long flags;
157  
158  	INIT_LIST_HEAD(&entry->domain_list);
159  	INIT_LIST_HEAD(&entry->global_list);
160  	INIT_WORK(&entry->work, async_run_entry_fn);
161  	entry->func = func;
162  	entry->data = data;
163  	entry->domain = domain;
164  
165  	spin_lock_irqsave(&async_lock, flags);
166  
167  	/* allocate cookie and queue */
168  	newcookie = entry->cookie = next_cookie++;
169  
170  	list_add_tail(&entry->domain_list, &domain->pending);
171  	if (domain->registered)
172  		list_add_tail(&entry->global_list, &async_global_pending);
173  
174  	atomic_inc(&entry_count);
175  	spin_unlock_irqrestore(&async_lock, flags);
176  
177  	/* schedule for execution */
178  	queue_work_node(node, async_wq, &entry->work);
179  
180  	return newcookie;
181  }
182  
183  /**
184   * async_schedule_node_domain - NUMA specific version of async_schedule_domain
185   * @func: function to execute asynchronously
186   * @data: data pointer to pass to the function
187   * @node: NUMA node that we want to schedule this on or close to
188   * @domain: the domain
189   *
190   * Returns an async_cookie_t that may be used for checkpointing later.
191   * @domain may be used in the async_synchronize_*_domain() functions to
192   * wait within a certain synchronization domain rather than globally.
193   *
194   * Note: This function may be called from atomic or non-atomic contexts.
195   *
196   * The node requested will be honored on a best effort basis. If the node
197   * has no CPUs associated with it then the work is distributed among all
198   * available CPUs.
199   */
async_schedule_node_domain(async_func_t func,void * data,int node,struct async_domain * domain)200  async_cookie_t async_schedule_node_domain(async_func_t func, void *data,
201  					  int node, struct async_domain *domain)
202  {
203  	struct async_entry *entry;
204  	unsigned long flags;
205  	async_cookie_t newcookie;
206  
207  	/* allow irq-off callers */
208  	entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
209  
210  	/*
211  	 * If we're out of memory or if there's too much work
212  	 * pending already, we execute synchronously.
213  	 */
214  	if (!entry || atomic_read(&entry_count) > MAX_WORK) {
215  		kfree(entry);
216  		spin_lock_irqsave(&async_lock, flags);
217  		newcookie = next_cookie++;
218  		spin_unlock_irqrestore(&async_lock, flags);
219  
220  		/* low on memory.. run synchronously */
221  		func(data, newcookie);
222  		return newcookie;
223  	}
224  
225  	return __async_schedule_node_domain(func, data, node, domain, entry);
226  }
227  EXPORT_SYMBOL_GPL(async_schedule_node_domain);
228  
229  /**
230   * async_schedule_node - NUMA specific version of async_schedule
231   * @func: function to execute asynchronously
232   * @data: data pointer to pass to the function
233   * @node: NUMA node that we want to schedule this on or close to
234   *
235   * Returns an async_cookie_t that may be used for checkpointing later.
236   * Note: This function may be called from atomic or non-atomic contexts.
237   *
238   * The node requested will be honored on a best effort basis. If the node
239   * has no CPUs associated with it then the work is distributed among all
240   * available CPUs.
241   */
async_schedule_node(async_func_t func,void * data,int node)242  async_cookie_t async_schedule_node(async_func_t func, void *data, int node)
243  {
244  	return async_schedule_node_domain(func, data, node, &async_dfl_domain);
245  }
246  EXPORT_SYMBOL_GPL(async_schedule_node);
247  
248  /**
249   * async_schedule_dev_nocall - A simplified variant of async_schedule_dev()
250   * @func: function to execute asynchronously
251   * @dev: device argument to be passed to function
252   *
253   * @dev is used as both the argument for the function and to provide NUMA
254   * context for where to run the function.
255   *
256   * If the asynchronous execution of @func is scheduled successfully, return
257   * true. Otherwise, do nothing and return false, unlike async_schedule_dev()
258   * that will run the function synchronously then.
259   */
async_schedule_dev_nocall(async_func_t func,struct device * dev)260  bool async_schedule_dev_nocall(async_func_t func, struct device *dev)
261  {
262  	struct async_entry *entry;
263  
264  	entry = kzalloc(sizeof(struct async_entry), GFP_KERNEL);
265  
266  	/* Give up if there is no memory or too much work. */
267  	if (!entry || atomic_read(&entry_count) > MAX_WORK) {
268  		kfree(entry);
269  		return false;
270  	}
271  
272  	__async_schedule_node_domain(func, dev, dev_to_node(dev),
273  				     &async_dfl_domain, entry);
274  	return true;
275  }
276  
277  /**
278   * async_synchronize_full - synchronize all asynchronous function calls
279   *
280   * This function waits until all asynchronous function calls have been done.
281   */
async_synchronize_full(void)282  void async_synchronize_full(void)
283  {
284  	async_synchronize_full_domain(NULL);
285  }
286  EXPORT_SYMBOL_GPL(async_synchronize_full);
287  
288  /**
289   * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain
290   * @domain: the domain to synchronize
291   *
292   * This function waits until all asynchronous function calls for the
293   * synchronization domain specified by @domain have been done.
294   */
async_synchronize_full_domain(struct async_domain * domain)295  void async_synchronize_full_domain(struct async_domain *domain)
296  {
297  	async_synchronize_cookie_domain(ASYNC_COOKIE_MAX, domain);
298  }
299  EXPORT_SYMBOL_GPL(async_synchronize_full_domain);
300  
301  /**
302   * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing
303   * @cookie: async_cookie_t to use as checkpoint
304   * @domain: the domain to synchronize (%NULL for all registered domains)
305   *
306   * This function waits until all asynchronous function calls for the
307   * synchronization domain specified by @domain submitted prior to @cookie
308   * have been done.
309   */
async_synchronize_cookie_domain(async_cookie_t cookie,struct async_domain * domain)310  void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain)
311  {
312  	ktime_t starttime;
313  
314  	pr_debug("async_waiting @ %i\n", task_pid_nr(current));
315  	starttime = ktime_get();
316  
317  	wait_event(async_done, lowest_in_progress(domain) >= cookie);
318  
319  	pr_debug("async_continuing @ %i after %lli usec\n", task_pid_nr(current),
320  		 microseconds_since(starttime));
321  }
322  EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain);
323  
324  /**
325   * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing
326   * @cookie: async_cookie_t to use as checkpoint
327   *
328   * This function waits until all asynchronous function calls prior to @cookie
329   * have been done.
330   */
async_synchronize_cookie(async_cookie_t cookie)331  void async_synchronize_cookie(async_cookie_t cookie)
332  {
333  	async_synchronize_cookie_domain(cookie, &async_dfl_domain);
334  }
335  EXPORT_SYMBOL_GPL(async_synchronize_cookie);
336  
337  /**
338   * current_is_async - is %current an async worker task?
339   *
340   * Returns %true if %current is an async worker task.
341   */
current_is_async(void)342  bool current_is_async(void)
343  {
344  	struct worker *worker = current_wq_worker();
345  
346  	return worker && worker->current_func == async_run_entry_fn;
347  }
348  EXPORT_SYMBOL_GPL(current_is_async);
349  
async_init(void)350  void __init async_init(void)
351  {
352  	/*
353  	 * Async can schedule a number of interdependent work items. However,
354  	 * unbound workqueues can handle only upto min_active interdependent
355  	 * work items. The default min_active of 8 isn't sufficient for async
356  	 * and can lead to stalls. Let's use a dedicated workqueue with raised
357  	 * min_active.
358  	 */
359  	async_wq = alloc_workqueue("async", WQ_UNBOUND, 0);
360  	BUG_ON(!async_wq);
361  	workqueue_set_min_active(async_wq, WQ_DFL_ACTIVE);
362  }
363