1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 #ifndef _BCACHE_UTIL_H
4 #define _BCACHE_UTIL_H
5 
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/kernel.h>
10 #include <linux/sched/clock.h>
11 #include <linux/llist.h>
12 #include <linux/min_heap.h>
13 #include <linux/ratelimit.h>
14 #include <linux/vmalloc.h>
15 #include <linux/workqueue.h>
16 #include <linux/crc64.h>
17 
18 struct closure;
19 
20 #ifdef CONFIG_BCACHE_DEBUG
21 
22 #define EBUG_ON(cond)			BUG_ON(cond)
23 #define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
24 #define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)
25 
26 #else /* DEBUG */
27 
28 #define EBUG_ON(cond)		do { if (cond) do {} while (0); } while (0)
29 #define atomic_dec_bug(v)	atomic_dec(v)
30 #define atomic_inc_bug(v, i)	atomic_inc(v)
31 
32 #endif
33 
34 #define init_heap(heap, _size, gfp)					\
35 ({									\
36 	size_t _bytes;							\
37 	(heap)->nr = 0;						\
38 	(heap)->size = (_size);						\
39 	_bytes = (heap)->size * sizeof(*(heap)->data);			\
40 	(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
41 	(heap)->data;							\
42 })
43 
44 #define free_heap(heap)							\
45 do {									\
46 	kvfree((heap)->data);						\
47 	(heap)->data = NULL;						\
48 } while (0)
49 
50 #define DECLARE_FIFO(type, name)					\
51 	struct {							\
52 		size_t front, back, size, mask;				\
53 		type *data;						\
54 	} name
55 
56 #define fifo_for_each(c, fifo, iter)					\
57 	for (iter = (fifo)->front;					\
58 	     c = (fifo)->data[iter], iter != (fifo)->back;		\
59 	     iter = (iter + 1) & (fifo)->mask)
60 
61 #define __init_fifo(fifo, gfp)						\
62 ({									\
63 	size_t _allocated_size, _bytes;					\
64 	BUG_ON(!(fifo)->size);						\
65 									\
66 	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
67 	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
68 									\
69 	(fifo)->mask = _allocated_size - 1;				\
70 	(fifo)->front = (fifo)->back = 0;				\
71 									\
72 	(fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
73 	(fifo)->data;							\
74 })
75 
76 #define init_fifo_exact(fifo, _size, gfp)				\
77 ({									\
78 	(fifo)->size = (_size);						\
79 	__init_fifo(fifo, gfp);						\
80 })
81 
82 #define init_fifo(fifo, _size, gfp)					\
83 ({									\
84 	(fifo)->size = (_size);						\
85 	if ((fifo)->size > 4)						\
86 		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
87 	__init_fifo(fifo, gfp);						\
88 })
89 
90 #define free_fifo(fifo)							\
91 do {									\
92 	kvfree((fifo)->data);						\
93 	(fifo)->data = NULL;						\
94 } while (0)
95 
96 #define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
97 #define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))
98 
99 #define fifo_empty(fifo)	(!fifo_used(fifo))
100 #define fifo_full(fifo)		(!fifo_free(fifo))
101 
102 #define fifo_front(fifo)	((fifo)->data[(fifo)->front])
103 #define fifo_back(fifo)							\
104 	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
105 
106 #define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)
107 
108 #define fifo_push_back(fifo, i)						\
109 ({									\
110 	bool _r = !fifo_full((fifo));					\
111 	if (_r) {							\
112 		(fifo)->data[(fifo)->back++] = (i);			\
113 		(fifo)->back &= (fifo)->mask;				\
114 	}								\
115 	_r;								\
116 })
117 
118 #define fifo_pop_front(fifo, i)						\
119 ({									\
120 	bool _r = !fifo_empty((fifo));					\
121 	if (_r) {							\
122 		(i) = (fifo)->data[(fifo)->front++];			\
123 		(fifo)->front &= (fifo)->mask;				\
124 	}								\
125 	_r;								\
126 })
127 
128 #define fifo_push_front(fifo, i)					\
129 ({									\
130 	bool _r = !fifo_full((fifo));					\
131 	if (_r) {							\
132 		--(fifo)->front;					\
133 		(fifo)->front &= (fifo)->mask;				\
134 		(fifo)->data[(fifo)->front] = (i);			\
135 	}								\
136 	_r;								\
137 })
138 
139 #define fifo_pop_back(fifo, i)						\
140 ({									\
141 	bool _r = !fifo_empty((fifo));					\
142 	if (_r) {							\
143 		--(fifo)->back;						\
144 		(fifo)->back &= (fifo)->mask;				\
145 		(i) = (fifo)->data[(fifo)->back]			\
146 	}								\
147 	_r;								\
148 })
149 
150 #define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
151 #define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))
152 
153 #define fifo_swap(l, r)							\
154 do {									\
155 	swap((l)->front, (r)->front);					\
156 	swap((l)->back, (r)->back);					\
157 	swap((l)->size, (r)->size);					\
158 	swap((l)->mask, (r)->mask);					\
159 	swap((l)->data, (r)->data);					\
160 } while (0)
161 
162 #define fifo_move(dest, src)						\
163 do {									\
164 	typeof(*((dest)->data)) _t;					\
165 	while (!fifo_full(dest) &&					\
166 	       fifo_pop(src, _t))					\
167 		fifo_push(dest, _t);					\
168 } while (0)
169 
170 /*
171  * Simple array based allocator - preallocates a number of elements and you can
172  * never allocate more than that, also has no locking.
173  *
174  * Handy because if you know you only need a fixed number of elements you don't
175  * have to worry about memory allocation failure, and sometimes a mempool isn't
176  * what you want.
177  *
178  * We treat the free elements as entries in a singly linked list, and the
179  * freelist as a stack - allocating and freeing push and pop off the freelist.
180  */
181 
182 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
183 	struct {							\
184 		type	*freelist;					\
185 		type	data[size];					\
186 	} name
187 
188 #define array_alloc(array)						\
189 ({									\
190 	typeof((array)->freelist) _ret = (array)->freelist;		\
191 									\
192 	if (_ret)							\
193 		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
194 									\
195 	_ret;								\
196 })
197 
198 #define array_free(array, ptr)						\
199 do {									\
200 	typeof((array)->freelist) _ptr = ptr;				\
201 									\
202 	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
203 	(array)->freelist = _ptr;					\
204 } while (0)
205 
206 #define array_allocator_init(array)					\
207 do {									\
208 	typeof((array)->freelist) _i;					\
209 									\
210 	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
211 	(array)->freelist = NULL;					\
212 									\
213 	for (_i = (array)->data;					\
214 	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
215 	     _i++)							\
216 		array_free(array, _i);					\
217 } while (0)
218 
219 #define array_freelist_empty(array)	((array)->freelist == NULL)
220 
221 #define ANYSINT_MAX(t)							\
222 	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
223 
224 int bch_strtoint_h(const char *cp, int *res);
225 int bch_strtouint_h(const char *cp, unsigned int *res);
226 int bch_strtoll_h(const char *cp, long long *res);
227 int bch_strtoull_h(const char *cp, unsigned long long *res);
228 
bch_strtol_h(const char * cp,long * res)229 static inline int bch_strtol_h(const char *cp, long *res)
230 {
231 #if BITS_PER_LONG == 32
232 	return bch_strtoint_h(cp, (int *) res);
233 #else
234 	return bch_strtoll_h(cp, (long long *) res);
235 #endif
236 }
237 
bch_strtoul_h(const char * cp,long * res)238 static inline int bch_strtoul_h(const char *cp, long *res)
239 {
240 #if BITS_PER_LONG == 32
241 	return bch_strtouint_h(cp, (unsigned int *) res);
242 #else
243 	return bch_strtoull_h(cp, (unsigned long long *) res);
244 #endif
245 }
246 
247 #define strtoi_h(cp, res)						\
248 	(__builtin_types_compatible_p(typeof(*res), int)		\
249 	? bch_strtoint_h(cp, (void *) res)				\
250 	: __builtin_types_compatible_p(typeof(*res), long)		\
251 	? bch_strtol_h(cp, (void *) res)				\
252 	: __builtin_types_compatible_p(typeof(*res), long long)		\
253 	? bch_strtoll_h(cp, (void *) res)				\
254 	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
255 	? bch_strtouint_h(cp, (void *) res)				\
256 	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
257 	? bch_strtoul_h(cp, (void *) res)				\
258 	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
259 	? bch_strtoull_h(cp, (void *) res) : -EINVAL)
260 
261 #define strtoul_safe(cp, var)						\
262 ({									\
263 	unsigned long _v;						\
264 	int _r = kstrtoul(cp, 10, &_v);					\
265 	if (!_r)							\
266 		var = _v;						\
267 	_r;								\
268 })
269 
270 #define strtoul_safe_clamp(cp, var, min, max)				\
271 ({									\
272 	unsigned long _v;						\
273 	int _r = kstrtoul(cp, 10, &_v);					\
274 	if (!_r)							\
275 		var = clamp_t(typeof(var), _v, min, max);		\
276 	_r;								\
277 })
278 
279 ssize_t bch_hprint(char *buf, int64_t v);
280 
281 bool bch_is_zero(const char *p, size_t n);
282 int bch_parse_uuid(const char *s, char *uuid);
283 
284 struct time_stats {
285 	spinlock_t	lock;
286 	/*
287 	 * all fields are in nanoseconds, averages are ewmas stored left shifted
288 	 * by 8
289 	 */
290 	uint64_t	max_duration;
291 	uint64_t	average_duration;
292 	uint64_t	average_frequency;
293 	uint64_t	last;
294 };
295 
296 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
297 
local_clock_us(void)298 static inline unsigned int local_clock_us(void)
299 {
300 	return local_clock() >> 10;
301 }
302 
303 #define NSEC_PER_ns			1L
304 #define NSEC_PER_us			NSEC_PER_USEC
305 #define NSEC_PER_ms			NSEC_PER_MSEC
306 #define NSEC_PER_sec			NSEC_PER_SEC
307 
308 #define __print_time_stat(stats, name, stat, units)			\
309 	sysfs_print(name ## _ ## stat ## _ ## units,			\
310 		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
311 
312 #define sysfs_print_time_stats(stats, name,				\
313 			       frequency_units,				\
314 			       duration_units)				\
315 do {									\
316 	__print_time_stat(stats, name,					\
317 			  average_frequency,	frequency_units);	\
318 	__print_time_stat(stats, name,					\
319 			  average_duration,	duration_units);	\
320 	sysfs_print(name ## _ ##max_duration ## _ ## duration_units,	\
321 			div_u64((stats)->max_duration,			\
322 				NSEC_PER_ ## duration_units));		\
323 									\
324 	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
325 		    ? div_s64(local_clock() - (stats)->last,		\
326 			      NSEC_PER_ ## frequency_units)		\
327 		    : -1LL);						\
328 } while (0)
329 
330 #define sysfs_time_stats_attribute(name,				\
331 				   frequency_units,			\
332 				   duration_units)			\
333 read_attribute(name ## _average_frequency_ ## frequency_units);		\
334 read_attribute(name ## _average_duration_ ## duration_units);		\
335 read_attribute(name ## _max_duration_ ## duration_units);		\
336 read_attribute(name ## _last_ ## frequency_units)
337 
338 #define sysfs_time_stats_attribute_list(name,				\
339 					frequency_units,		\
340 					duration_units)			\
341 &sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
342 &sysfs_ ## name ## _average_duration_ ## duration_units,		\
343 &sysfs_ ## name ## _max_duration_ ## duration_units,			\
344 &sysfs_ ## name ## _last_ ## frequency_units,
345 
346 #define ewma_add(ewma, val, weight, factor)				\
347 ({									\
348 	(ewma) *= (weight) - 1;						\
349 	(ewma) += (val) << factor;					\
350 	(ewma) /= (weight);						\
351 	(ewma) >> factor;						\
352 })
353 
354 struct bch_ratelimit {
355 	/* Next time we want to do some work, in nanoseconds */
356 	uint64_t		next;
357 
358 	/*
359 	 * Rate at which we want to do work, in units per second
360 	 * The units here correspond to the units passed to bch_next_delay()
361 	 */
362 	atomic_long_t		rate;
363 };
364 
bch_ratelimit_reset(struct bch_ratelimit * d)365 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
366 {
367 	d->next = local_clock();
368 }
369 
370 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
371 
372 #define __DIV_SAFE(n, d, zero)						\
373 ({									\
374 	typeof(n) _n = (n);						\
375 	typeof(d) _d = (d);						\
376 	_d ? _n / _d : zero;						\
377 })
378 
379 #define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)
380 
381 #define container_of_or_null(ptr, type, member)				\
382 ({									\
383 	typeof(ptr) _ptr = ptr;						\
384 	_ptr ? container_of(_ptr, type, member) : NULL;			\
385 })
386 
387 #define RB_INSERT(root, new, member, cmp)				\
388 ({									\
389 	__label__ dup;							\
390 	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
391 	typeof(new) this;						\
392 	int res, ret = -1;						\
393 									\
394 	while (*n) {							\
395 		parent = *n;						\
396 		this = container_of(*n, typeof(*(new)), member);	\
397 		res = cmp(new, this);					\
398 		if (!res)						\
399 			goto dup;					\
400 		n = res < 0						\
401 			? &(*n)->rb_left				\
402 			: &(*n)->rb_right;				\
403 	}								\
404 									\
405 	rb_link_node(&(new)->member, parent, n);			\
406 	rb_insert_color(&(new)->member, root);				\
407 	ret = 0;							\
408 dup:									\
409 	ret;								\
410 })
411 
412 #define RB_SEARCH(root, search, member, cmp)				\
413 ({									\
414 	struct rb_node *n = (root)->rb_node;				\
415 	typeof(&(search)) this, ret = NULL;				\
416 	int res;							\
417 									\
418 	while (n) {							\
419 		this = container_of(n, typeof(search), member);		\
420 		res = cmp(&(search), this);				\
421 		if (!res) {						\
422 			ret = this;					\
423 			break;						\
424 		}							\
425 		n = res < 0						\
426 			? n->rb_left					\
427 			: n->rb_right;					\
428 	}								\
429 	ret;								\
430 })
431 
432 #define RB_GREATER(root, search, member, cmp)				\
433 ({									\
434 	struct rb_node *n = (root)->rb_node;				\
435 	typeof(&(search)) this, ret = NULL;				\
436 	int res;							\
437 									\
438 	while (n) {							\
439 		this = container_of(n, typeof(search), member);		\
440 		res = cmp(&(search), this);				\
441 		if (res < 0) {						\
442 			ret = this;					\
443 			n = n->rb_left;					\
444 		} else							\
445 			n = n->rb_right;				\
446 	}								\
447 	ret;								\
448 })
449 
450 #define RB_FIRST(root, type, member)					\
451 	container_of_or_null(rb_first(root), type, member)
452 
453 #define RB_LAST(root, type, member)					\
454 	container_of_or_null(rb_last(root), type, member)
455 
456 #define RB_NEXT(ptr, member)						\
457 	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
458 
459 #define RB_PREV(ptr, member)						\
460 	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
461 
bch_crc64(const void * p,size_t len)462 static inline uint64_t bch_crc64(const void *p, size_t len)
463 {
464 	uint64_t crc = 0xffffffffffffffffULL;
465 
466 	crc = crc64_be(crc, p, len);
467 	return crc ^ 0xffffffffffffffffULL;
468 }
469 
470 /*
471  * A stepwise-linear pseudo-exponential.  This returns 1 << (x >>
472  * frac_bits), with the less-significant bits filled in by linear
473  * interpolation.
474  *
475  * This can also be interpreted as a floating-point number format,
476  * where the low frac_bits are the mantissa (with implicit leading
477  * 1 bit), and the more significant bits are the exponent.
478  * The return value is 1.mantissa * 2^exponent.
479  *
480  * The way this is used, fract_bits is 6 and the largest possible
481  * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
482  * so the maximum output is 0x1fc00.
483  */
fract_exp_two(unsigned int x,unsigned int fract_bits)484 static inline unsigned int fract_exp_two(unsigned int x,
485 					 unsigned int fract_bits)
486 {
487 	unsigned int mantissa = 1 << fract_bits;	/* Implicit bit */
488 
489 	mantissa += x & (mantissa - 1);
490 	x >>= fract_bits;	/* The exponent */
491 	/* Largest intermediate value 0x7f0000 */
492 	return mantissa << x >> fract_bits;
493 }
494 
495 void bch_bio_map(struct bio *bio, void *base);
496 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
497 
498 #endif /* _BCACHE_UTIL_H */
499