1  // SPDX-License-Identifier: GPL-2.0-only
2  #undef DEBUG
3  
4  /*
5   * ARM performance counter support.
6   *
7   * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8   * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9   *
10   * This code is based on the sparc64 perf event code, which is in turn based
11   * on the x86 code.
12   */
13  #define pr_fmt(fmt) "hw perfevents: " fmt
14  
15  #include <linux/bitmap.h>
16  #include <linux/cpumask.h>
17  #include <linux/cpu_pm.h>
18  #include <linux/export.h>
19  #include <linux/kernel.h>
20  #include <linux/perf/arm_pmu.h>
21  #include <linux/slab.h>
22  #include <linux/sched/clock.h>
23  #include <linux/spinlock.h>
24  #include <linux/irq.h>
25  #include <linux/irqdesc.h>
26  
27  #include <asm/irq_regs.h>
28  
29  static int armpmu_count_irq_users(const int irq);
30  
31  struct pmu_irq_ops {
32  	void (*enable_pmuirq)(unsigned int irq);
33  	void (*disable_pmuirq)(unsigned int irq);
34  	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35  };
36  
armpmu_free_pmuirq(unsigned int irq,int cpu,void __percpu * devid)37  static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38  {
39  	free_irq(irq, per_cpu_ptr(devid, cpu));
40  }
41  
42  static const struct pmu_irq_ops pmuirq_ops = {
43  	.enable_pmuirq = enable_irq,
44  	.disable_pmuirq = disable_irq_nosync,
45  	.free_pmuirq = armpmu_free_pmuirq
46  };
47  
armpmu_free_pmunmi(unsigned int irq,int cpu,void __percpu * devid)48  static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49  {
50  	free_nmi(irq, per_cpu_ptr(devid, cpu));
51  }
52  
53  static const struct pmu_irq_ops pmunmi_ops = {
54  	.enable_pmuirq = enable_nmi,
55  	.disable_pmuirq = disable_nmi_nosync,
56  	.free_pmuirq = armpmu_free_pmunmi
57  };
58  
armpmu_enable_percpu_pmuirq(unsigned int irq)59  static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60  {
61  	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62  }
63  
armpmu_free_percpu_pmuirq(unsigned int irq,int cpu,void __percpu * devid)64  static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65  				   void __percpu *devid)
66  {
67  	if (armpmu_count_irq_users(irq) == 1)
68  		free_percpu_irq(irq, devid);
69  }
70  
71  static const struct pmu_irq_ops percpu_pmuirq_ops = {
72  	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73  	.disable_pmuirq = disable_percpu_irq,
74  	.free_pmuirq = armpmu_free_percpu_pmuirq
75  };
76  
armpmu_enable_percpu_pmunmi(unsigned int irq)77  static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78  {
79  	if (!prepare_percpu_nmi(irq))
80  		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81  }
82  
armpmu_disable_percpu_pmunmi(unsigned int irq)83  static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84  {
85  	disable_percpu_nmi(irq);
86  	teardown_percpu_nmi(irq);
87  }
88  
armpmu_free_percpu_pmunmi(unsigned int irq,int cpu,void __percpu * devid)89  static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90  				      void __percpu *devid)
91  {
92  	if (armpmu_count_irq_users(irq) == 1)
93  		free_percpu_nmi(irq, devid);
94  }
95  
96  static const struct pmu_irq_ops percpu_pmunmi_ops = {
97  	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98  	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99  	.free_pmuirq = armpmu_free_percpu_pmunmi
100  };
101  
102  static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103  static DEFINE_PER_CPU(int, cpu_irq);
104  static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105  
106  static bool has_nmi;
107  
arm_pmu_event_max_period(struct perf_event * event)108  static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109  {
110  	if (event->hw.flags & ARMPMU_EVT_64BIT)
111  		return GENMASK_ULL(63, 0);
112  	else if (event->hw.flags & ARMPMU_EVT_63BIT)
113  		return GENMASK_ULL(62, 0);
114  	else if (event->hw.flags & ARMPMU_EVT_47BIT)
115  		return GENMASK_ULL(46, 0);
116  	else
117  		return GENMASK_ULL(31, 0);
118  }
119  
120  static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)121  armpmu_map_cache_event(const unsigned (*cache_map)
122  				      [PERF_COUNT_HW_CACHE_MAX]
123  				      [PERF_COUNT_HW_CACHE_OP_MAX]
124  				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
125  		       u64 config)
126  {
127  	unsigned int cache_type, cache_op, cache_result, ret;
128  
129  	cache_type = (config >>  0) & 0xff;
130  	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
131  		return -EINVAL;
132  
133  	cache_op = (config >>  8) & 0xff;
134  	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135  		return -EINVAL;
136  
137  	cache_result = (config >> 16) & 0xff;
138  	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
139  		return -EINVAL;
140  
141  	if (!cache_map)
142  		return -ENOENT;
143  
144  	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
145  
146  	if (ret == CACHE_OP_UNSUPPORTED)
147  		return -ENOENT;
148  
149  	return ret;
150  }
151  
152  static int
armpmu_map_hw_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)153  armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
154  {
155  	int mapping;
156  
157  	if (config >= PERF_COUNT_HW_MAX)
158  		return -EINVAL;
159  
160  	if (!event_map)
161  		return -ENOENT;
162  
163  	mapping = (*event_map)[config];
164  	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
165  }
166  
167  static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)168  armpmu_map_raw_event(u32 raw_event_mask, u64 config)
169  {
170  	return (int)(config & raw_event_mask);
171  }
172  
173  int
armpmu_map_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)174  armpmu_map_event(struct perf_event *event,
175  		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176  		 const unsigned (*cache_map)
177  				[PERF_COUNT_HW_CACHE_MAX]
178  				[PERF_COUNT_HW_CACHE_OP_MAX]
179  				[PERF_COUNT_HW_CACHE_RESULT_MAX],
180  		 u32 raw_event_mask)
181  {
182  	u64 config = event->attr.config;
183  	int type = event->attr.type;
184  
185  	if (type == event->pmu->type)
186  		return armpmu_map_raw_event(raw_event_mask, config);
187  
188  	switch (type) {
189  	case PERF_TYPE_HARDWARE:
190  		return armpmu_map_hw_event(event_map, config);
191  	case PERF_TYPE_HW_CACHE:
192  		return armpmu_map_cache_event(cache_map, config);
193  	case PERF_TYPE_RAW:
194  		return armpmu_map_raw_event(raw_event_mask, config);
195  	}
196  
197  	return -ENOENT;
198  }
199  
armpmu_event_set_period(struct perf_event * event)200  int armpmu_event_set_period(struct perf_event *event)
201  {
202  	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203  	struct hw_perf_event *hwc = &event->hw;
204  	s64 left = local64_read(&hwc->period_left);
205  	s64 period = hwc->sample_period;
206  	u64 max_period;
207  	int ret = 0;
208  
209  	max_period = arm_pmu_event_max_period(event);
210  	if (unlikely(left <= -period)) {
211  		left = period;
212  		local64_set(&hwc->period_left, left);
213  		hwc->last_period = period;
214  		ret = 1;
215  	}
216  
217  	if (unlikely(left <= 0)) {
218  		left += period;
219  		local64_set(&hwc->period_left, left);
220  		hwc->last_period = period;
221  		ret = 1;
222  	}
223  
224  	/*
225  	 * Limit the maximum period to prevent the counter value
226  	 * from overtaking the one we are about to program. In
227  	 * effect we are reducing max_period to account for
228  	 * interrupt latency (and we are being very conservative).
229  	 */
230  	if (left > (max_period >> 1))
231  		left = (max_period >> 1);
232  
233  	local64_set(&hwc->prev_count, (u64)-left);
234  
235  	armpmu->write_counter(event, (u64)(-left) & max_period);
236  
237  	perf_event_update_userpage(event);
238  
239  	return ret;
240  }
241  
armpmu_event_update(struct perf_event * event)242  u64 armpmu_event_update(struct perf_event *event)
243  {
244  	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245  	struct hw_perf_event *hwc = &event->hw;
246  	u64 delta, prev_raw_count, new_raw_count;
247  	u64 max_period = arm_pmu_event_max_period(event);
248  
249  again:
250  	prev_raw_count = local64_read(&hwc->prev_count);
251  	new_raw_count = armpmu->read_counter(event);
252  
253  	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254  			     new_raw_count) != prev_raw_count)
255  		goto again;
256  
257  	delta = (new_raw_count - prev_raw_count) & max_period;
258  
259  	local64_add(delta, &event->count);
260  	local64_sub(delta, &hwc->period_left);
261  
262  	return new_raw_count;
263  }
264  
265  static void
armpmu_read(struct perf_event * event)266  armpmu_read(struct perf_event *event)
267  {
268  	armpmu_event_update(event);
269  }
270  
271  static void
armpmu_stop(struct perf_event * event,int flags)272  armpmu_stop(struct perf_event *event, int flags)
273  {
274  	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275  	struct hw_perf_event *hwc = &event->hw;
276  
277  	/*
278  	 * ARM pmu always has to update the counter, so ignore
279  	 * PERF_EF_UPDATE, see comments in armpmu_start().
280  	 */
281  	if (!(hwc->state & PERF_HES_STOPPED)) {
282  		armpmu->disable(event);
283  		armpmu_event_update(event);
284  		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
285  	}
286  }
287  
armpmu_start(struct perf_event * event,int flags)288  static void armpmu_start(struct perf_event *event, int flags)
289  {
290  	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291  	struct hw_perf_event *hwc = &event->hw;
292  
293  	/*
294  	 * ARM pmu always has to reprogram the period, so ignore
295  	 * PERF_EF_RELOAD, see the comment below.
296  	 */
297  	if (flags & PERF_EF_RELOAD)
298  		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
299  
300  	hwc->state = 0;
301  	/*
302  	 * Set the period again. Some counters can't be stopped, so when we
303  	 * were stopped we simply disabled the IRQ source and the counter
304  	 * may have been left counting. If we don't do this step then we may
305  	 * get an interrupt too soon or *way* too late if the overflow has
306  	 * happened since disabling.
307  	 */
308  	armpmu_event_set_period(event);
309  	armpmu->enable(event);
310  }
311  
312  static void
armpmu_del(struct perf_event * event,int flags)313  armpmu_del(struct perf_event *event, int flags)
314  {
315  	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316  	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317  	struct hw_perf_event *hwc = &event->hw;
318  	int idx = hwc->idx;
319  
320  	armpmu_stop(event, PERF_EF_UPDATE);
321  	hw_events->events[idx] = NULL;
322  	armpmu->clear_event_idx(hw_events, event);
323  	perf_event_update_userpage(event);
324  	/* Clear the allocated counter */
325  	hwc->idx = -1;
326  }
327  
328  static int
armpmu_add(struct perf_event * event,int flags)329  armpmu_add(struct perf_event *event, int flags)
330  {
331  	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332  	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
333  	struct hw_perf_event *hwc = &event->hw;
334  	int idx;
335  
336  	/* An event following a process won't be stopped earlier */
337  	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
338  		return -ENOENT;
339  
340  	/* If we don't have a space for the counter then finish early. */
341  	idx = armpmu->get_event_idx(hw_events, event);
342  	if (idx < 0)
343  		return idx;
344  
345  	/*
346  	 * If there is an event in the counter we are going to use then make
347  	 * sure it is disabled.
348  	 */
349  	event->hw.idx = idx;
350  	armpmu->disable(event);
351  	hw_events->events[idx] = event;
352  
353  	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
354  	if (flags & PERF_EF_START)
355  		armpmu_start(event, PERF_EF_RELOAD);
356  
357  	/* Propagate our changes to the userspace mapping. */
358  	perf_event_update_userpage(event);
359  
360  	return 0;
361  }
362  
363  static int
validate_event(struct pmu * pmu,struct pmu_hw_events * hw_events,struct perf_event * event)364  validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
365  			       struct perf_event *event)
366  {
367  	struct arm_pmu *armpmu;
368  
369  	if (is_software_event(event))
370  		return 1;
371  
372  	/*
373  	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
374  	 * core perf code won't check that the pmu->ctx == leader->ctx
375  	 * until after pmu->event_init(event).
376  	 */
377  	if (event->pmu != pmu)
378  		return 0;
379  
380  	if (event->state < PERF_EVENT_STATE_OFF)
381  		return 1;
382  
383  	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
384  		return 1;
385  
386  	armpmu = to_arm_pmu(event->pmu);
387  	return armpmu->get_event_idx(hw_events, event) >= 0;
388  }
389  
390  static int
validate_group(struct perf_event * event)391  validate_group(struct perf_event *event)
392  {
393  	struct perf_event *sibling, *leader = event->group_leader;
394  	struct pmu_hw_events fake_pmu;
395  
396  	/*
397  	 * Initialise the fake PMU. We only need to populate the
398  	 * used_mask for the purposes of validation.
399  	 */
400  	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
401  
402  	if (!validate_event(event->pmu, &fake_pmu, leader))
403  		return -EINVAL;
404  
405  	if (event == leader)
406  		return 0;
407  
408  	for_each_sibling_event(sibling, leader) {
409  		if (!validate_event(event->pmu, &fake_pmu, sibling))
410  			return -EINVAL;
411  	}
412  
413  	if (!validate_event(event->pmu, &fake_pmu, event))
414  		return -EINVAL;
415  
416  	return 0;
417  }
418  
armpmu_dispatch_irq(int irq,void * dev)419  static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
420  {
421  	struct arm_pmu *armpmu;
422  	int ret;
423  	u64 start_clock, finish_clock;
424  
425  	/*
426  	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
427  	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
428  	 * do any necessary shifting, we just need to perform the first
429  	 * dereference.
430  	 */
431  	armpmu = *(void **)dev;
432  	if (WARN_ON_ONCE(!armpmu))
433  		return IRQ_NONE;
434  
435  	start_clock = sched_clock();
436  	ret = armpmu->handle_irq(armpmu);
437  	finish_clock = sched_clock();
438  
439  	perf_sample_event_took(finish_clock - start_clock);
440  	return ret;
441  }
442  
443  static int
__hw_perf_event_init(struct perf_event * event)444  __hw_perf_event_init(struct perf_event *event)
445  {
446  	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
447  	struct hw_perf_event *hwc = &event->hw;
448  	int mapping, ret;
449  
450  	hwc->flags = 0;
451  	mapping = armpmu->map_event(event);
452  
453  	if (mapping < 0) {
454  		pr_debug("event %x:%llx not supported\n", event->attr.type,
455  			 event->attr.config);
456  		return mapping;
457  	}
458  
459  	/*
460  	 * We don't assign an index until we actually place the event onto
461  	 * hardware. Use -1 to signify that we haven't decided where to put it
462  	 * yet. For SMP systems, each core has it's own PMU so we can't do any
463  	 * clever allocation or constraints checking at this point.
464  	 */
465  	hwc->idx		= -1;
466  	hwc->config_base	= 0;
467  	hwc->config		= 0;
468  	hwc->event_base		= 0;
469  
470  	/*
471  	 * Check whether we need to exclude the counter from certain modes.
472  	 */
473  	if (armpmu->set_event_filter) {
474  		ret = armpmu->set_event_filter(hwc, &event->attr);
475  		if (ret)
476  			return ret;
477  	}
478  
479  	/*
480  	 * Store the event encoding into the config_base field.
481  	 */
482  	hwc->config_base	    |= (unsigned long)mapping;
483  
484  	if (!is_sampling_event(event)) {
485  		/*
486  		 * For non-sampling runs, limit the sample_period to half
487  		 * of the counter width. That way, the new counter value
488  		 * is far less likely to overtake the previous one unless
489  		 * you have some serious IRQ latency issues.
490  		 */
491  		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
492  		hwc->last_period    = hwc->sample_period;
493  		local64_set(&hwc->period_left, hwc->sample_period);
494  	}
495  
496  	return validate_group(event);
497  }
498  
armpmu_event_init(struct perf_event * event)499  static int armpmu_event_init(struct perf_event *event)
500  {
501  	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
502  
503  	/*
504  	 * Reject CPU-affine events for CPUs that are of a different class to
505  	 * that which this PMU handles. Process-following events (where
506  	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
507  	 * reject them later (in armpmu_add) if they're scheduled on a
508  	 * different class of CPU.
509  	 */
510  	if (event->cpu != -1 &&
511  		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
512  		return -ENOENT;
513  
514  	/* does not support taken branch sampling */
515  	if (has_branch_stack(event))
516  		return -EOPNOTSUPP;
517  
518  	return __hw_perf_event_init(event);
519  }
520  
armpmu_enable(struct pmu * pmu)521  static void armpmu_enable(struct pmu *pmu)
522  {
523  	struct arm_pmu *armpmu = to_arm_pmu(pmu);
524  	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
525  	bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
526  
527  	/* For task-bound events we may be called on other CPUs */
528  	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
529  		return;
530  
531  	if (enabled)
532  		armpmu->start(armpmu);
533  }
534  
armpmu_disable(struct pmu * pmu)535  static void armpmu_disable(struct pmu *pmu)
536  {
537  	struct arm_pmu *armpmu = to_arm_pmu(pmu);
538  
539  	/* For task-bound events we may be called on other CPUs */
540  	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541  		return;
542  
543  	armpmu->stop(armpmu);
544  }
545  
546  /*
547   * In heterogeneous systems, events are specific to a particular
548   * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549   * the same microarchitecture.
550   */
armpmu_filter(struct pmu * pmu,int cpu)551  static bool armpmu_filter(struct pmu *pmu, int cpu)
552  {
553  	struct arm_pmu *armpmu = to_arm_pmu(pmu);
554  	return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
555  }
556  
cpus_show(struct device * dev,struct device_attribute * attr,char * buf)557  static ssize_t cpus_show(struct device *dev,
558  			 struct device_attribute *attr, char *buf)
559  {
560  	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
561  	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
562  }
563  
564  static DEVICE_ATTR_RO(cpus);
565  
566  static struct attribute *armpmu_common_attrs[] = {
567  	&dev_attr_cpus.attr,
568  	NULL,
569  };
570  
571  static const struct attribute_group armpmu_common_attr_group = {
572  	.attrs = armpmu_common_attrs,
573  };
574  
armpmu_count_irq_users(const int irq)575  static int armpmu_count_irq_users(const int irq)
576  {
577  	int cpu, count = 0;
578  
579  	for_each_possible_cpu(cpu) {
580  		if (per_cpu(cpu_irq, cpu) == irq)
581  			count++;
582  	}
583  
584  	return count;
585  }
586  
armpmu_find_irq_ops(int irq)587  static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
588  {
589  	const struct pmu_irq_ops *ops = NULL;
590  	int cpu;
591  
592  	for_each_possible_cpu(cpu) {
593  		if (per_cpu(cpu_irq, cpu) != irq)
594  			continue;
595  
596  		ops = per_cpu(cpu_irq_ops, cpu);
597  		if (ops)
598  			break;
599  	}
600  
601  	return ops;
602  }
603  
armpmu_free_irq(int irq,int cpu)604  void armpmu_free_irq(int irq, int cpu)
605  {
606  	if (per_cpu(cpu_irq, cpu) == 0)
607  		return;
608  	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
609  		return;
610  
611  	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
612  
613  	per_cpu(cpu_irq, cpu) = 0;
614  	per_cpu(cpu_irq_ops, cpu) = NULL;
615  }
616  
armpmu_request_irq(int irq,int cpu)617  int armpmu_request_irq(int irq, int cpu)
618  {
619  	int err = 0;
620  	const irq_handler_t handler = armpmu_dispatch_irq;
621  	const struct pmu_irq_ops *irq_ops;
622  
623  	if (!irq)
624  		return 0;
625  
626  	if (!irq_is_percpu_devid(irq)) {
627  		unsigned long irq_flags;
628  
629  		err = irq_force_affinity(irq, cpumask_of(cpu));
630  
631  		if (err && num_possible_cpus() > 1) {
632  			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
633  				irq, cpu);
634  			goto err_out;
635  		}
636  
637  		irq_flags = IRQF_PERCPU |
638  			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
639  			    IRQF_NO_THREAD;
640  
641  		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
642  				  per_cpu_ptr(&cpu_armpmu, cpu));
643  
644  		/* If cannot get an NMI, get a normal interrupt */
645  		if (err) {
646  			err = request_irq(irq, handler, irq_flags, "arm-pmu",
647  					  per_cpu_ptr(&cpu_armpmu, cpu));
648  			irq_ops = &pmuirq_ops;
649  		} else {
650  			has_nmi = true;
651  			irq_ops = &pmunmi_ops;
652  		}
653  	} else if (armpmu_count_irq_users(irq) == 0) {
654  		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
655  
656  		/* If cannot get an NMI, get a normal interrupt */
657  		if (err) {
658  			err = request_percpu_irq(irq, handler, "arm-pmu",
659  						 &cpu_armpmu);
660  			irq_ops = &percpu_pmuirq_ops;
661  		} else {
662  			has_nmi = true;
663  			irq_ops = &percpu_pmunmi_ops;
664  		}
665  	} else {
666  		/* Per cpudevid irq was already requested by another CPU */
667  		irq_ops = armpmu_find_irq_ops(irq);
668  
669  		if (WARN_ON(!irq_ops))
670  			err = -EINVAL;
671  	}
672  
673  	if (err)
674  		goto err_out;
675  
676  	per_cpu(cpu_irq, cpu) = irq;
677  	per_cpu(cpu_irq_ops, cpu) = irq_ops;
678  	return 0;
679  
680  err_out:
681  	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
682  	return err;
683  }
684  
armpmu_get_cpu_irq(struct arm_pmu * pmu,int cpu)685  static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
686  {
687  	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
688  	return per_cpu(hw_events->irq, cpu);
689  }
690  
arm_pmu_irq_is_nmi(void)691  bool arm_pmu_irq_is_nmi(void)
692  {
693  	return has_nmi;
694  }
695  
696  /*
697   * PMU hardware loses all context when a CPU goes offline.
698   * When a CPU is hotplugged back in, since some hardware registers are
699   * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
700   * junk values out of them.
701   */
arm_perf_starting_cpu(unsigned int cpu,struct hlist_node * node)702  static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
703  {
704  	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
705  	int irq;
706  
707  	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
708  		return 0;
709  	if (pmu->reset)
710  		pmu->reset(pmu);
711  
712  	per_cpu(cpu_armpmu, cpu) = pmu;
713  
714  	irq = armpmu_get_cpu_irq(pmu, cpu);
715  	if (irq)
716  		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
717  
718  	return 0;
719  }
720  
arm_perf_teardown_cpu(unsigned int cpu,struct hlist_node * node)721  static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
722  {
723  	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
724  	int irq;
725  
726  	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
727  		return 0;
728  
729  	irq = armpmu_get_cpu_irq(pmu, cpu);
730  	if (irq)
731  		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
732  
733  	per_cpu(cpu_armpmu, cpu) = NULL;
734  
735  	return 0;
736  }
737  
738  #ifdef CONFIG_CPU_PM
cpu_pm_pmu_setup(struct arm_pmu * armpmu,unsigned long cmd)739  static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
740  {
741  	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
742  	struct perf_event *event;
743  	int idx;
744  
745  	for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
746  		event = hw_events->events[idx];
747  		if (!event)
748  			continue;
749  
750  		switch (cmd) {
751  		case CPU_PM_ENTER:
752  			/*
753  			 * Stop and update the counter
754  			 */
755  			armpmu_stop(event, PERF_EF_UPDATE);
756  			break;
757  		case CPU_PM_EXIT:
758  		case CPU_PM_ENTER_FAILED:
759  			 /*
760  			  * Restore and enable the counter.
761  			  */
762  			armpmu_start(event, PERF_EF_RELOAD);
763  			break;
764  		default:
765  			break;
766  		}
767  	}
768  }
769  
cpu_pm_pmu_notify(struct notifier_block * b,unsigned long cmd,void * v)770  static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
771  			     void *v)
772  {
773  	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
774  	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
775  	bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
776  
777  	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
778  		return NOTIFY_DONE;
779  
780  	/*
781  	 * Always reset the PMU registers on power-up even if
782  	 * there are no events running.
783  	 */
784  	if (cmd == CPU_PM_EXIT && armpmu->reset)
785  		armpmu->reset(armpmu);
786  
787  	if (!enabled)
788  		return NOTIFY_OK;
789  
790  	switch (cmd) {
791  	case CPU_PM_ENTER:
792  		armpmu->stop(armpmu);
793  		cpu_pm_pmu_setup(armpmu, cmd);
794  		break;
795  	case CPU_PM_EXIT:
796  	case CPU_PM_ENTER_FAILED:
797  		cpu_pm_pmu_setup(armpmu, cmd);
798  		armpmu->start(armpmu);
799  		break;
800  	default:
801  		return NOTIFY_DONE;
802  	}
803  
804  	return NOTIFY_OK;
805  }
806  
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)807  static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
808  {
809  	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
810  	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
811  }
812  
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)813  static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
814  {
815  	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
816  }
817  #else
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)818  static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)819  static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
820  #endif
821  
cpu_pmu_init(struct arm_pmu * cpu_pmu)822  static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
823  {
824  	int err;
825  
826  	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
827  				       &cpu_pmu->node);
828  	if (err)
829  		goto out;
830  
831  	err = cpu_pm_pmu_register(cpu_pmu);
832  	if (err)
833  		goto out_unregister;
834  
835  	return 0;
836  
837  out_unregister:
838  	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
839  					    &cpu_pmu->node);
840  out:
841  	return err;
842  }
843  
cpu_pmu_destroy(struct arm_pmu * cpu_pmu)844  static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
845  {
846  	cpu_pm_pmu_unregister(cpu_pmu);
847  	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
848  					    &cpu_pmu->node);
849  }
850  
armpmu_alloc(void)851  struct arm_pmu *armpmu_alloc(void)
852  {
853  	struct arm_pmu *pmu;
854  	int cpu;
855  
856  	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
857  	if (!pmu)
858  		goto out;
859  
860  	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
861  	if (!pmu->hw_events) {
862  		pr_info("failed to allocate per-cpu PMU data.\n");
863  		goto out_free_pmu;
864  	}
865  
866  	pmu->pmu = (struct pmu) {
867  		.pmu_enable	= armpmu_enable,
868  		.pmu_disable	= armpmu_disable,
869  		.event_init	= armpmu_event_init,
870  		.add		= armpmu_add,
871  		.del		= armpmu_del,
872  		.start		= armpmu_start,
873  		.stop		= armpmu_stop,
874  		.read		= armpmu_read,
875  		.filter		= armpmu_filter,
876  		.attr_groups	= pmu->attr_groups,
877  		/*
878  		 * This is a CPU PMU potentially in a heterogeneous
879  		 * configuration (e.g. big.LITTLE) so
880  		 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
881  		 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
882  		 * specific PMU.
883  		 */
884  		.capabilities	= PERF_PMU_CAP_EXTENDED_REGS |
885  				  PERF_PMU_CAP_EXTENDED_HW_TYPE,
886  	};
887  
888  	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
889  		&armpmu_common_attr_group;
890  
891  	for_each_possible_cpu(cpu) {
892  		struct pmu_hw_events *events;
893  
894  		events = per_cpu_ptr(pmu->hw_events, cpu);
895  		events->percpu_pmu = pmu;
896  	}
897  
898  	return pmu;
899  
900  out_free_pmu:
901  	kfree(pmu);
902  out:
903  	return NULL;
904  }
905  
armpmu_free(struct arm_pmu * pmu)906  void armpmu_free(struct arm_pmu *pmu)
907  {
908  	free_percpu(pmu->hw_events);
909  	kfree(pmu);
910  }
911  
armpmu_register(struct arm_pmu * pmu)912  int armpmu_register(struct arm_pmu *pmu)
913  {
914  	int ret;
915  
916  	ret = cpu_pmu_init(pmu);
917  	if (ret)
918  		return ret;
919  
920  	if (!pmu->set_event_filter)
921  		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
922  
923  	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
924  	if (ret)
925  		goto out_destroy;
926  
927  	pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n",
928  		pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS),
929  		ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask,
930  		has_nmi ? ", using NMIs" : "");
931  
932  	kvm_host_pmu_init(pmu);
933  
934  	return 0;
935  
936  out_destroy:
937  	cpu_pmu_destroy(pmu);
938  	return ret;
939  }
940  
arm_pmu_hp_init(void)941  static int arm_pmu_hp_init(void)
942  {
943  	int ret;
944  
945  	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
946  				      "perf/arm/pmu:starting",
947  				      arm_perf_starting_cpu,
948  				      arm_perf_teardown_cpu);
949  	if (ret)
950  		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
951  		       ret);
952  	return ret;
953  }
954  subsys_initcall(arm_pmu_hp_init);
955