1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * Copyright IBM Corp. 2006, 2023
4   * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5   *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6   *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7   *	      Felix Beck <felix.beck@de.ibm.com>
8   *	      Holger Dengler <hd@linux.vnet.ibm.com>
9   *	      Harald Freudenberger <freude@linux.ibm.com>
10   *
11   * Adjunct processor bus.
12   */
13  
14  #define KMSG_COMPONENT "ap"
15  #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16  
17  #include <linux/kernel_stat.h>
18  #include <linux/moduleparam.h>
19  #include <linux/init.h>
20  #include <linux/delay.h>
21  #include <linux/err.h>
22  #include <linux/freezer.h>
23  #include <linux/interrupt.h>
24  #include <linux/workqueue.h>
25  #include <linux/slab.h>
26  #include <linux/notifier.h>
27  #include <linux/kthread.h>
28  #include <linux/mutex.h>
29  #include <asm/airq.h>
30  #include <asm/tpi.h>
31  #include <linux/atomic.h>
32  #include <asm/isc.h>
33  #include <linux/hrtimer.h>
34  #include <linux/ktime.h>
35  #include <asm/facility.h>
36  #include <linux/crypto.h>
37  #include <linux/mod_devicetable.h>
38  #include <linux/debugfs.h>
39  #include <linux/ctype.h>
40  #include <linux/module.h>
41  #include <asm/uv.h>
42  #include <asm/chsc.h>
43  
44  #include "ap_bus.h"
45  #include "ap_debug.h"
46  
47  MODULE_AUTHOR("IBM Corporation");
48  MODULE_DESCRIPTION("Adjunct Processor Bus driver");
49  MODULE_LICENSE("GPL");
50  
51  int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
52  static DEFINE_SPINLOCK(ap_domain_lock);
53  module_param_named(domain, ap_domain_index, int, 0440);
54  MODULE_PARM_DESC(domain, "domain index for ap devices");
55  EXPORT_SYMBOL(ap_domain_index);
56  
57  static int ap_thread_flag;
58  module_param_named(poll_thread, ap_thread_flag, int, 0440);
59  MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
60  
61  static char *apm_str;
62  module_param_named(apmask, apm_str, charp, 0440);
63  MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
64  
65  static char *aqm_str;
66  module_param_named(aqmask, aqm_str, charp, 0440);
67  MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
68  
69  static int ap_useirq = 1;
70  module_param_named(useirq, ap_useirq, int, 0440);
71  MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
72  
73  atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
74  EXPORT_SYMBOL(ap_max_msg_size);
75  
76  static struct device *ap_root_device;
77  
78  /* Hashtable of all queue devices on the AP bus */
79  DEFINE_HASHTABLE(ap_queues, 8);
80  /* lock used for the ap_queues hashtable */
81  DEFINE_SPINLOCK(ap_queues_lock);
82  
83  /* Default permissions (ioctl, card and domain masking) */
84  struct ap_perms ap_perms;
85  EXPORT_SYMBOL(ap_perms);
86  DEFINE_MUTEX(ap_perms_mutex);
87  EXPORT_SYMBOL(ap_perms_mutex);
88  
89  /* # of bindings complete since init */
90  static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91  
92  /* completion for APQN bindings complete */
93  static DECLARE_COMPLETION(ap_apqn_bindings_complete);
94  
95  static struct ap_config_info qci[2];
96  static struct ap_config_info *const ap_qci_info = &qci[0];
97  static struct ap_config_info *const ap_qci_info_old = &qci[1];
98  
99  /*
100   * AP bus related debug feature things.
101   */
102  debug_info_t *ap_dbf_info;
103  
104  /*
105   * AP bus rescan related things.
106   */
107  static bool ap_scan_bus(void);
108  static bool ap_scan_bus_result; /* result of last ap_scan_bus() */
109  static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */
110  static struct task_struct *ap_scan_bus_task; /* thread holding the scan mutex */
111  static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */
112  static int ap_scan_bus_time = AP_CONFIG_TIME;
113  static struct timer_list ap_scan_bus_timer;
114  static void ap_scan_bus_wq_callback(struct work_struct *);
115  static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback);
116  
117  /*
118   * Tasklet & timer for AP request polling and interrupts
119   */
120  static void ap_tasklet_fn(unsigned long);
121  static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
122  static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
123  static struct task_struct *ap_poll_kthread;
124  static DEFINE_MUTEX(ap_poll_thread_mutex);
125  static DEFINE_SPINLOCK(ap_poll_timer_lock);
126  static struct hrtimer ap_poll_timer;
127  /*
128   * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
129   * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
130   */
131  static unsigned long poll_high_timeout = 250000UL;
132  
133  /*
134   * Some state machine states only require a low frequency polling.
135   * We use 25 Hz frequency for these.
136   */
137  static unsigned long poll_low_timeout = 40000000UL;
138  
139  /* Maximum domain id, if not given via qci */
140  static int ap_max_domain_id = 15;
141  /* Maximum adapter id, if not given via qci */
142  static int ap_max_adapter_id = 63;
143  
144  static const struct bus_type ap_bus_type;
145  
146  /* Adapter interrupt definitions */
147  static void ap_interrupt_handler(struct airq_struct *airq,
148  				 struct tpi_info *tpi_info);
149  
150  static bool ap_irq_flag;
151  
152  static struct airq_struct ap_airq = {
153  	.handler = ap_interrupt_handler,
154  	.isc = AP_ISC,
155  };
156  
157  /**
158   * ap_airq_ptr() - Get the address of the adapter interrupt indicator
159   *
160   * Returns the address of the local-summary-indicator of the adapter
161   * interrupt handler for AP, or NULL if adapter interrupts are not
162   * available.
163   */
ap_airq_ptr(void)164  void *ap_airq_ptr(void)
165  {
166  	if (ap_irq_flag)
167  		return ap_airq.lsi_ptr;
168  	return NULL;
169  }
170  
171  /**
172   * ap_interrupts_available(): Test if AP interrupts are available.
173   *
174   * Returns 1 if AP interrupts are available.
175   */
ap_interrupts_available(void)176  static int ap_interrupts_available(void)
177  {
178  	return test_facility(65);
179  }
180  
181  /**
182   * ap_qci_available(): Test if AP configuration
183   * information can be queried via QCI subfunction.
184   *
185   * Returns 1 if subfunction PQAP(QCI) is available.
186   */
ap_qci_available(void)187  static int ap_qci_available(void)
188  {
189  	return test_facility(12);
190  }
191  
192  /**
193   * ap_apft_available(): Test if AP facilities test (APFT)
194   * facility is available.
195   *
196   * Returns 1 if APFT is available.
197   */
ap_apft_available(void)198  static int ap_apft_available(void)
199  {
200  	return test_facility(15);
201  }
202  
203  /*
204   * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
205   *
206   * Returns 1 if the QACT subfunction is available.
207   */
ap_qact_available(void)208  static inline int ap_qact_available(void)
209  {
210  	return ap_qci_info->qact;
211  }
212  
213  /*
214   * ap_sb_available(): Test if the AP secure binding facility is available.
215   *
216   * Returns 1 if secure binding facility is available.
217   */
ap_sb_available(void)218  int ap_sb_available(void)
219  {
220  	return ap_qci_info->apsb;
221  }
222  
223  /*
224   * ap_is_se_guest(): Check for SE guest with AP pass-through support.
225   */
ap_is_se_guest(void)226  bool ap_is_se_guest(void)
227  {
228  	return is_prot_virt_guest() && ap_sb_available();
229  }
230  EXPORT_SYMBOL(ap_is_se_guest);
231  
232  /**
233   * ap_init_qci_info(): Allocate and query qci config info.
234   * Does also update the static variables ap_max_domain_id
235   * and ap_max_adapter_id if this info is available.
236   */
ap_init_qci_info(void)237  static void __init ap_init_qci_info(void)
238  {
239  	if (!ap_qci_available() ||
240  	    ap_qci(ap_qci_info)) {
241  		AP_DBF_INFO("%s QCI not supported\n", __func__);
242  		return;
243  	}
244  	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
245  	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
246  
247  	if (ap_qci_info->apxa) {
248  		if (ap_qci_info->na) {
249  			ap_max_adapter_id = ap_qci_info->na;
250  			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
251  				    __func__, ap_max_adapter_id);
252  		}
253  		if (ap_qci_info->nd) {
254  			ap_max_domain_id = ap_qci_info->nd;
255  			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
256  				    __func__, ap_max_domain_id);
257  		}
258  	}
259  }
260  
261  /*
262   * ap_test_config(): helper function to extract the nrth bit
263   *		     within the unsigned int array field.
264   */
ap_test_config(unsigned int * field,unsigned int nr)265  static inline int ap_test_config(unsigned int *field, unsigned int nr)
266  {
267  	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
268  }
269  
270  /*
271   * ap_test_config_card_id(): Test, whether an AP card ID is configured.
272   *
273   * Returns 0 if the card is not configured
274   *	   1 if the card is configured or
275   *	     if the configuration information is not available
276   */
ap_test_config_card_id(unsigned int id)277  static inline int ap_test_config_card_id(unsigned int id)
278  {
279  	if (id > ap_max_adapter_id)
280  		return 0;
281  	if (ap_qci_info->flags)
282  		return ap_test_config(ap_qci_info->apm, id);
283  	return 1;
284  }
285  
286  /*
287   * ap_test_config_usage_domain(): Test, whether an AP usage domain
288   * is configured.
289   *
290   * Returns 0 if the usage domain is not configured
291   *	   1 if the usage domain is configured or
292   *	     if the configuration information is not available
293   */
ap_test_config_usage_domain(unsigned int domain)294  int ap_test_config_usage_domain(unsigned int domain)
295  {
296  	if (domain > ap_max_domain_id)
297  		return 0;
298  	if (ap_qci_info->flags)
299  		return ap_test_config(ap_qci_info->aqm, domain);
300  	return 1;
301  }
302  EXPORT_SYMBOL(ap_test_config_usage_domain);
303  
304  /*
305   * ap_test_config_ctrl_domain(): Test, whether an AP control domain
306   * is configured.
307   * @domain AP control domain ID
308   *
309   * Returns 1 if the control domain is configured
310   *	   0 in all other cases
311   */
ap_test_config_ctrl_domain(unsigned int domain)312  int ap_test_config_ctrl_domain(unsigned int domain)
313  {
314  	if (!ap_qci_info || domain > ap_max_domain_id)
315  		return 0;
316  	return ap_test_config(ap_qci_info->adm, domain);
317  }
318  EXPORT_SYMBOL(ap_test_config_ctrl_domain);
319  
320  /*
321   * ap_queue_info(): Check and get AP queue info.
322   * Returns: 1 if APQN exists and info is filled,
323   *	    0 if APQN seems to exist but there is no info
324   *	      available (eg. caused by an asynch pending error)
325   *	   -1 invalid APQN, TAPQ error or AP queue status which
326   *	      indicates there is no APQN.
327   */
ap_queue_info(ap_qid_t qid,struct ap_tapq_hwinfo * hwinfo,bool * decfg,bool * cstop)328  static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo,
329  			 bool *decfg, bool *cstop)
330  {
331  	struct ap_queue_status status;
332  
333  	hwinfo->value = 0;
334  
335  	/* make sure we don't run into a specifiation exception */
336  	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
337  	    AP_QID_QUEUE(qid) > ap_max_domain_id)
338  		return -1;
339  
340  	/* call TAPQ on this APQN */
341  	status = ap_test_queue(qid, ap_apft_available(), hwinfo);
342  
343  	switch (status.response_code) {
344  	case AP_RESPONSE_NORMAL:
345  	case AP_RESPONSE_RESET_IN_PROGRESS:
346  	case AP_RESPONSE_DECONFIGURED:
347  	case AP_RESPONSE_CHECKSTOPPED:
348  	case AP_RESPONSE_BUSY:
349  		/* For all these RCs the tapq info should be available */
350  		break;
351  	default:
352  		/* On a pending async error the info should be available */
353  		if (!status.async)
354  			return -1;
355  		break;
356  	}
357  
358  	/* There should be at least one of the mode bits set */
359  	if (WARN_ON_ONCE(!hwinfo->value))
360  		return 0;
361  
362  	*decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
363  	*cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
364  
365  	return 1;
366  }
367  
ap_wait(enum ap_sm_wait wait)368  void ap_wait(enum ap_sm_wait wait)
369  {
370  	ktime_t hr_time;
371  
372  	switch (wait) {
373  	case AP_SM_WAIT_AGAIN:
374  	case AP_SM_WAIT_INTERRUPT:
375  		if (ap_irq_flag)
376  			break;
377  		if (ap_poll_kthread) {
378  			wake_up(&ap_poll_wait);
379  			break;
380  		}
381  		fallthrough;
382  	case AP_SM_WAIT_LOW_TIMEOUT:
383  	case AP_SM_WAIT_HIGH_TIMEOUT:
384  		spin_lock_bh(&ap_poll_timer_lock);
385  		if (!hrtimer_is_queued(&ap_poll_timer)) {
386  			hr_time =
387  				wait == AP_SM_WAIT_LOW_TIMEOUT ?
388  				poll_low_timeout : poll_high_timeout;
389  			hrtimer_forward_now(&ap_poll_timer, hr_time);
390  			hrtimer_restart(&ap_poll_timer);
391  		}
392  		spin_unlock_bh(&ap_poll_timer_lock);
393  		break;
394  	case AP_SM_WAIT_NONE:
395  	default:
396  		break;
397  	}
398  }
399  
400  /**
401   * ap_request_timeout(): Handling of request timeouts
402   * @t: timer making this callback
403   *
404   * Handles request timeouts.
405   */
ap_request_timeout(struct timer_list * t)406  void ap_request_timeout(struct timer_list *t)
407  {
408  	struct ap_queue *aq = from_timer(aq, t, timeout);
409  
410  	spin_lock_bh(&aq->lock);
411  	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
412  	spin_unlock_bh(&aq->lock);
413  }
414  
415  /**
416   * ap_poll_timeout(): AP receive polling for finished AP requests.
417   * @unused: Unused pointer.
418   *
419   * Schedules the AP tasklet using a high resolution timer.
420   */
ap_poll_timeout(struct hrtimer * unused)421  static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
422  {
423  	tasklet_schedule(&ap_tasklet);
424  	return HRTIMER_NORESTART;
425  }
426  
427  /**
428   * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
429   * @airq: pointer to adapter interrupt descriptor
430   * @tpi_info: ignored
431   */
ap_interrupt_handler(struct airq_struct * airq,struct tpi_info * tpi_info)432  static void ap_interrupt_handler(struct airq_struct *airq,
433  				 struct tpi_info *tpi_info)
434  {
435  	inc_irq_stat(IRQIO_APB);
436  	tasklet_schedule(&ap_tasklet);
437  }
438  
439  /**
440   * ap_tasklet_fn(): Tasklet to poll all AP devices.
441   * @dummy: Unused variable
442   *
443   * Poll all AP devices on the bus.
444   */
ap_tasklet_fn(unsigned long dummy)445  static void ap_tasklet_fn(unsigned long dummy)
446  {
447  	int bkt;
448  	struct ap_queue *aq;
449  	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
450  
451  	/* Reset the indicator if interrupts are used. Thus new interrupts can
452  	 * be received. Doing it in the beginning of the tasklet is therefore
453  	 * important that no requests on any AP get lost.
454  	 */
455  	if (ap_irq_flag)
456  		xchg(ap_airq.lsi_ptr, 0);
457  
458  	spin_lock_bh(&ap_queues_lock);
459  	hash_for_each(ap_queues, bkt, aq, hnode) {
460  		spin_lock_bh(&aq->lock);
461  		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
462  		spin_unlock_bh(&aq->lock);
463  	}
464  	spin_unlock_bh(&ap_queues_lock);
465  
466  	ap_wait(wait);
467  }
468  
ap_pending_requests(void)469  static int ap_pending_requests(void)
470  {
471  	int bkt;
472  	struct ap_queue *aq;
473  
474  	spin_lock_bh(&ap_queues_lock);
475  	hash_for_each(ap_queues, bkt, aq, hnode) {
476  		if (aq->queue_count == 0)
477  			continue;
478  		spin_unlock_bh(&ap_queues_lock);
479  		return 1;
480  	}
481  	spin_unlock_bh(&ap_queues_lock);
482  	return 0;
483  }
484  
485  /**
486   * ap_poll_thread(): Thread that polls for finished requests.
487   * @data: Unused pointer
488   *
489   * AP bus poll thread. The purpose of this thread is to poll for
490   * finished requests in a loop if there is a "free" cpu - that is
491   * a cpu that doesn't have anything better to do. The polling stops
492   * as soon as there is another task or if all messages have been
493   * delivered.
494   */
ap_poll_thread(void * data)495  static int ap_poll_thread(void *data)
496  {
497  	DECLARE_WAITQUEUE(wait, current);
498  
499  	set_user_nice(current, MAX_NICE);
500  	set_freezable();
501  	while (!kthread_should_stop()) {
502  		add_wait_queue(&ap_poll_wait, &wait);
503  		set_current_state(TASK_INTERRUPTIBLE);
504  		if (!ap_pending_requests()) {
505  			schedule();
506  			try_to_freeze();
507  		}
508  		set_current_state(TASK_RUNNING);
509  		remove_wait_queue(&ap_poll_wait, &wait);
510  		if (need_resched()) {
511  			schedule();
512  			try_to_freeze();
513  			continue;
514  		}
515  		ap_tasklet_fn(0);
516  	}
517  
518  	return 0;
519  }
520  
ap_poll_thread_start(void)521  static int ap_poll_thread_start(void)
522  {
523  	int rc;
524  
525  	if (ap_irq_flag || ap_poll_kthread)
526  		return 0;
527  	mutex_lock(&ap_poll_thread_mutex);
528  	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
529  	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
530  	if (rc)
531  		ap_poll_kthread = NULL;
532  	mutex_unlock(&ap_poll_thread_mutex);
533  	return rc;
534  }
535  
ap_poll_thread_stop(void)536  static void ap_poll_thread_stop(void)
537  {
538  	if (!ap_poll_kthread)
539  		return;
540  	mutex_lock(&ap_poll_thread_mutex);
541  	kthread_stop(ap_poll_kthread);
542  	ap_poll_kthread = NULL;
543  	mutex_unlock(&ap_poll_thread_mutex);
544  }
545  
546  #define is_card_dev(x) ((x)->parent == ap_root_device)
547  #define is_queue_dev(x) ((x)->parent != ap_root_device)
548  
549  /**
550   * ap_bus_match()
551   * @dev: Pointer to device
552   * @drv: Pointer to device_driver
553   *
554   * AP bus driver registration/unregistration.
555   */
ap_bus_match(struct device * dev,const struct device_driver * drv)556  static int ap_bus_match(struct device *dev, const struct device_driver *drv)
557  {
558  	const struct ap_driver *ap_drv = to_ap_drv(drv);
559  	struct ap_device_id *id;
560  
561  	/*
562  	 * Compare device type of the device with the list of
563  	 * supported types of the device_driver.
564  	 */
565  	for (id = ap_drv->ids; id->match_flags; id++) {
566  		if (is_card_dev(dev) &&
567  		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
568  		    id->dev_type == to_ap_dev(dev)->device_type)
569  			return 1;
570  		if (is_queue_dev(dev) &&
571  		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
572  		    id->dev_type == to_ap_dev(dev)->device_type)
573  			return 1;
574  	}
575  	return 0;
576  }
577  
578  /**
579   * ap_uevent(): Uevent function for AP devices.
580   * @dev: Pointer to device
581   * @env: Pointer to kobj_uevent_env
582   *
583   * It sets up a single environment variable DEV_TYPE which contains the
584   * hardware device type.
585   */
ap_uevent(const struct device * dev,struct kobj_uevent_env * env)586  static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
587  {
588  	int rc = 0;
589  	const struct ap_device *ap_dev = to_ap_dev(dev);
590  
591  	/* Uevents from ap bus core don't need extensions to the env */
592  	if (dev == ap_root_device)
593  		return 0;
594  
595  	if (is_card_dev(dev)) {
596  		struct ap_card *ac = to_ap_card(&ap_dev->device);
597  
598  		/* Set up DEV_TYPE environment variable. */
599  		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
600  		if (rc)
601  			return rc;
602  		/* Add MODALIAS= */
603  		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
604  		if (rc)
605  			return rc;
606  
607  		/* Add MODE=<accel|cca|ep11> */
608  		if (ac->hwinfo.accel)
609  			rc = add_uevent_var(env, "MODE=accel");
610  		else if (ac->hwinfo.cca)
611  			rc = add_uevent_var(env, "MODE=cca");
612  		else if (ac->hwinfo.ep11)
613  			rc = add_uevent_var(env, "MODE=ep11");
614  		if (rc)
615  			return rc;
616  	} else {
617  		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
618  
619  		/* Add MODE=<accel|cca|ep11> */
620  		if (aq->card->hwinfo.accel)
621  			rc = add_uevent_var(env, "MODE=accel");
622  		else if (aq->card->hwinfo.cca)
623  			rc = add_uevent_var(env, "MODE=cca");
624  		else if (aq->card->hwinfo.ep11)
625  			rc = add_uevent_var(env, "MODE=ep11");
626  		if (rc)
627  			return rc;
628  	}
629  
630  	return 0;
631  }
632  
ap_send_init_scan_done_uevent(void)633  static void ap_send_init_scan_done_uevent(void)
634  {
635  	char *envp[] = { "INITSCAN=done", NULL };
636  
637  	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
638  }
639  
ap_send_bindings_complete_uevent(void)640  static void ap_send_bindings_complete_uevent(void)
641  {
642  	char buf[32];
643  	char *envp[] = { "BINDINGS=complete", buf, NULL };
644  
645  	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
646  		 atomic64_inc_return(&ap_bindings_complete_count));
647  	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
648  }
649  
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)650  void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
651  {
652  	char buf[16];
653  	char *envp[] = { buf, NULL };
654  
655  	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
656  
657  	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
658  }
659  EXPORT_SYMBOL(ap_send_config_uevent);
660  
ap_send_online_uevent(struct ap_device * ap_dev,int online)661  void ap_send_online_uevent(struct ap_device *ap_dev, int online)
662  {
663  	char buf[16];
664  	char *envp[] = { buf, NULL };
665  
666  	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
667  
668  	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
669  }
670  EXPORT_SYMBOL(ap_send_online_uevent);
671  
ap_send_mask_changed_uevent(unsigned long * newapm,unsigned long * newaqm)672  static void ap_send_mask_changed_uevent(unsigned long *newapm,
673  					unsigned long *newaqm)
674  {
675  	char buf[100];
676  	char *envp[] = { buf, NULL };
677  
678  	if (newapm)
679  		snprintf(buf, sizeof(buf),
680  			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
681  			 newapm[0], newapm[1], newapm[2], newapm[3]);
682  	else
683  		snprintf(buf, sizeof(buf),
684  			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
685  			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
686  
687  	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
688  }
689  
690  /*
691   * calc # of bound APQNs
692   */
693  
694  struct __ap_calc_ctrs {
695  	unsigned int apqns;
696  	unsigned int bound;
697  };
698  
__ap_calc_helper(struct device * dev,void * arg)699  static int __ap_calc_helper(struct device *dev, void *arg)
700  {
701  	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
702  
703  	if (is_queue_dev(dev)) {
704  		pctrs->apqns++;
705  		if (dev->driver)
706  			pctrs->bound++;
707  	}
708  
709  	return 0;
710  }
711  
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)712  static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
713  {
714  	struct __ap_calc_ctrs ctrs;
715  
716  	memset(&ctrs, 0, sizeof(ctrs));
717  	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
718  
719  	*apqns = ctrs.apqns;
720  	*bound = ctrs.bound;
721  }
722  
723  /*
724   * After ap bus scan do check if all existing APQNs are
725   * bound to device drivers.
726   */
ap_check_bindings_complete(void)727  static void ap_check_bindings_complete(void)
728  {
729  	unsigned int apqns, bound;
730  
731  	if (atomic64_read(&ap_scan_bus_count) >= 1) {
732  		ap_calc_bound_apqns(&apqns, &bound);
733  		if (bound == apqns) {
734  			if (!completion_done(&ap_apqn_bindings_complete)) {
735  				complete_all(&ap_apqn_bindings_complete);
736  				ap_send_bindings_complete_uevent();
737  				pr_debug("all apqn bindings complete\n");
738  			}
739  		}
740  	}
741  }
742  
743  /*
744   * Interface to wait for the AP bus to have done one initial ap bus
745   * scan and all detected APQNs have been bound to device drivers.
746   * If these both conditions are not fulfilled, this function blocks
747   * on a condition with wait_for_completion_interruptible_timeout().
748   * If these both conditions are fulfilled (before the timeout hits)
749   * the return value is 0. If the timeout (in jiffies) hits instead
750   * -ETIME is returned. On failures negative return values are
751   * returned to the caller.
752   */
ap_wait_apqn_bindings_complete(unsigned long timeout)753  int ap_wait_apqn_bindings_complete(unsigned long timeout)
754  {
755  	int rc = 0;
756  	long l;
757  
758  	if (completion_done(&ap_apqn_bindings_complete))
759  		return 0;
760  
761  	if (timeout)
762  		l = wait_for_completion_interruptible_timeout(
763  			&ap_apqn_bindings_complete, timeout);
764  	else
765  		l = wait_for_completion_interruptible(
766  			&ap_apqn_bindings_complete);
767  	if (l < 0)
768  		rc = l == -ERESTARTSYS ? -EINTR : l;
769  	else if (l == 0 && timeout)
770  		rc = -ETIME;
771  
772  	pr_debug("rc=%d\n", rc);
773  	return rc;
774  }
775  EXPORT_SYMBOL(ap_wait_apqn_bindings_complete);
776  
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)777  static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
778  {
779  	if (is_queue_dev(dev) &&
780  	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
781  		device_unregister(dev);
782  	return 0;
783  }
784  
__ap_revise_reserved(struct device * dev,void * dummy)785  static int __ap_revise_reserved(struct device *dev, void *dummy)
786  {
787  	int rc, card, queue, devres, drvres;
788  
789  	if (is_queue_dev(dev)) {
790  		card = AP_QID_CARD(to_ap_queue(dev)->qid);
791  		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
792  		mutex_lock(&ap_perms_mutex);
793  		devres = test_bit_inv(card, ap_perms.apm) &&
794  			test_bit_inv(queue, ap_perms.aqm);
795  		mutex_unlock(&ap_perms_mutex);
796  		drvres = to_ap_drv(dev->driver)->flags
797  			& AP_DRIVER_FLAG_DEFAULT;
798  		if (!!devres != !!drvres) {
799  			pr_debug("reprobing queue=%02x.%04x\n", card, queue);
800  			rc = device_reprobe(dev);
801  			if (rc)
802  				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
803  					    __func__, card, queue);
804  		}
805  	}
806  
807  	return 0;
808  }
809  
ap_bus_revise_bindings(void)810  static void ap_bus_revise_bindings(void)
811  {
812  	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
813  }
814  
815  /**
816   * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
817   *			default host driver or not.
818   * @card: the APID of the adapter card to check
819   * @queue: the APQI of the queue to check
820   *
821   * Note: the ap_perms_mutex must be locked by the caller of this function.
822   *
823   * Return: an int specifying whether the AP adapter is reserved for the host (1)
824   *	   or not (0).
825   */
ap_owned_by_def_drv(int card,int queue)826  int ap_owned_by_def_drv(int card, int queue)
827  {
828  	int rc = 0;
829  
830  	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
831  		return -EINVAL;
832  
833  	if (test_bit_inv(card, ap_perms.apm) &&
834  	    test_bit_inv(queue, ap_perms.aqm))
835  		rc = 1;
836  
837  	return rc;
838  }
839  EXPORT_SYMBOL(ap_owned_by_def_drv);
840  
841  /**
842   * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
843   *				       a set is reserved for the host drivers
844   *				       or not.
845   * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
846   * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
847   *
848   * Note: the ap_perms_mutex must be locked by the caller of this function.
849   *
850   * Return: an int specifying whether each APQN is reserved for the host (1) or
851   *	   not (0)
852   */
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)853  int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
854  				       unsigned long *aqm)
855  {
856  	int card, queue, rc = 0;
857  
858  	for (card = 0; !rc && card < AP_DEVICES; card++)
859  		if (test_bit_inv(card, apm) &&
860  		    test_bit_inv(card, ap_perms.apm))
861  			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
862  				if (test_bit_inv(queue, aqm) &&
863  				    test_bit_inv(queue, ap_perms.aqm))
864  					rc = 1;
865  
866  	return rc;
867  }
868  EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
869  
ap_device_probe(struct device * dev)870  static int ap_device_probe(struct device *dev)
871  {
872  	struct ap_device *ap_dev = to_ap_dev(dev);
873  	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
874  	int card, queue, devres, drvres, rc = -ENODEV;
875  
876  	if (!get_device(dev))
877  		return rc;
878  
879  	if (is_queue_dev(dev)) {
880  		/*
881  		 * If the apqn is marked as reserved/used by ap bus and
882  		 * default drivers, only probe with drivers with the default
883  		 * flag set. If it is not marked, only probe with drivers
884  		 * with the default flag not set.
885  		 */
886  		card = AP_QID_CARD(to_ap_queue(dev)->qid);
887  		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
888  		mutex_lock(&ap_perms_mutex);
889  		devres = test_bit_inv(card, ap_perms.apm) &&
890  			test_bit_inv(queue, ap_perms.aqm);
891  		mutex_unlock(&ap_perms_mutex);
892  		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
893  		if (!!devres != !!drvres)
894  			goto out;
895  	}
896  
897  	/*
898  	 * Rearm the bindings complete completion to trigger
899  	 * bindings complete when all devices are bound again
900  	 */
901  	reinit_completion(&ap_apqn_bindings_complete);
902  
903  	/* Add queue/card to list of active queues/cards */
904  	spin_lock_bh(&ap_queues_lock);
905  	if (is_queue_dev(dev))
906  		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
907  			 to_ap_queue(dev)->qid);
908  	spin_unlock_bh(&ap_queues_lock);
909  
910  	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
911  
912  	if (rc) {
913  		spin_lock_bh(&ap_queues_lock);
914  		if (is_queue_dev(dev))
915  			hash_del(&to_ap_queue(dev)->hnode);
916  		spin_unlock_bh(&ap_queues_lock);
917  	}
918  
919  out:
920  	if (rc)
921  		put_device(dev);
922  	return rc;
923  }
924  
ap_device_remove(struct device * dev)925  static void ap_device_remove(struct device *dev)
926  {
927  	struct ap_device *ap_dev = to_ap_dev(dev);
928  	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
929  
930  	/* prepare ap queue device removal */
931  	if (is_queue_dev(dev))
932  		ap_queue_prepare_remove(to_ap_queue(dev));
933  
934  	/* driver's chance to clean up gracefully */
935  	if (ap_drv->remove)
936  		ap_drv->remove(ap_dev);
937  
938  	/* now do the ap queue device remove */
939  	if (is_queue_dev(dev))
940  		ap_queue_remove(to_ap_queue(dev));
941  
942  	/* Remove queue/card from list of active queues/cards */
943  	spin_lock_bh(&ap_queues_lock);
944  	if (is_queue_dev(dev))
945  		hash_del(&to_ap_queue(dev)->hnode);
946  	spin_unlock_bh(&ap_queues_lock);
947  
948  	put_device(dev);
949  }
950  
ap_get_qdev(ap_qid_t qid)951  struct ap_queue *ap_get_qdev(ap_qid_t qid)
952  {
953  	int bkt;
954  	struct ap_queue *aq;
955  
956  	spin_lock_bh(&ap_queues_lock);
957  	hash_for_each(ap_queues, bkt, aq, hnode) {
958  		if (aq->qid == qid) {
959  			get_device(&aq->ap_dev.device);
960  			spin_unlock_bh(&ap_queues_lock);
961  			return aq;
962  		}
963  	}
964  	spin_unlock_bh(&ap_queues_lock);
965  
966  	return NULL;
967  }
968  EXPORT_SYMBOL(ap_get_qdev);
969  
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)970  int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
971  		       char *name)
972  {
973  	struct device_driver *drv = &ap_drv->driver;
974  	int rc;
975  
976  	drv->bus = &ap_bus_type;
977  	drv->owner = owner;
978  	drv->name = name;
979  	rc = driver_register(drv);
980  
981  	ap_check_bindings_complete();
982  
983  	return rc;
984  }
985  EXPORT_SYMBOL(ap_driver_register);
986  
ap_driver_unregister(struct ap_driver * ap_drv)987  void ap_driver_unregister(struct ap_driver *ap_drv)
988  {
989  	driver_unregister(&ap_drv->driver);
990  }
991  EXPORT_SYMBOL(ap_driver_unregister);
992  
993  /*
994   * Enforce a synchronous AP bus rescan.
995   * Returns true if the bus scan finds a change in the AP configuration
996   * and AP devices have been added or deleted when this function returns.
997   */
ap_bus_force_rescan(void)998  bool ap_bus_force_rescan(void)
999  {
1000  	unsigned long scan_counter = atomic64_read(&ap_scan_bus_count);
1001  	bool rc = false;
1002  
1003  	pr_debug("> scan counter=%lu\n", scan_counter);
1004  
1005  	/* Only trigger AP bus scans after the initial scan is done */
1006  	if (scan_counter <= 0)
1007  		goto out;
1008  
1009  	/*
1010  	 * There is one unlikely but nevertheless valid scenario where the
1011  	 * thread holding the mutex may try to send some crypto load but
1012  	 * all cards are offline so a rescan is triggered which causes
1013  	 * a recursive call of ap_bus_force_rescan(). A simple return if
1014  	 * the mutex is already locked by this thread solves this.
1015  	 */
1016  	if (mutex_is_locked(&ap_scan_bus_mutex)) {
1017  		if (ap_scan_bus_task == current)
1018  			goto out;
1019  	}
1020  
1021  	/* Try to acquire the AP scan bus mutex */
1022  	if (mutex_trylock(&ap_scan_bus_mutex)) {
1023  		/* mutex acquired, run the AP bus scan */
1024  		ap_scan_bus_task = current;
1025  		ap_scan_bus_result = ap_scan_bus();
1026  		rc = ap_scan_bus_result;
1027  		ap_scan_bus_task = NULL;
1028  		mutex_unlock(&ap_scan_bus_mutex);
1029  		goto out;
1030  	}
1031  
1032  	/*
1033  	 * Mutex acquire failed. So there is currently another task
1034  	 * already running the AP bus scan. Then let's simple wait
1035  	 * for the lock which means the other task has finished and
1036  	 * stored the result in ap_scan_bus_result.
1037  	 */
1038  	if (mutex_lock_interruptible(&ap_scan_bus_mutex)) {
1039  		/* some error occurred, ignore and go out */
1040  		goto out;
1041  	}
1042  	rc = ap_scan_bus_result;
1043  	mutex_unlock(&ap_scan_bus_mutex);
1044  
1045  out:
1046  	pr_debug("rc=%d\n", rc);
1047  	return rc;
1048  }
1049  EXPORT_SYMBOL(ap_bus_force_rescan);
1050  
1051  /*
1052   * A config change has happened, force an ap bus rescan.
1053   */
ap_bus_cfg_chg(struct notifier_block * nb,unsigned long action,void * data)1054  static int ap_bus_cfg_chg(struct notifier_block *nb,
1055  			  unsigned long action, void *data)
1056  {
1057  	if (action != CHSC_NOTIFY_AP_CFG)
1058  		return NOTIFY_DONE;
1059  
1060  	pr_debug("config change, forcing bus rescan\n");
1061  
1062  	ap_bus_force_rescan();
1063  
1064  	return NOTIFY_OK;
1065  }
1066  
1067  static struct notifier_block ap_bus_nb = {
1068  	.notifier_call = ap_bus_cfg_chg,
1069  };
1070  
ap_hex2bitmap(const char * str,unsigned long * bitmap,int bits)1071  int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1072  {
1073  	int i, n, b;
1074  
1075  	/* bits needs to be a multiple of 8 */
1076  	if (bits & 0x07)
1077  		return -EINVAL;
1078  
1079  	if (str[0] == '0' && str[1] == 'x')
1080  		str++;
1081  	if (*str == 'x')
1082  		str++;
1083  
1084  	for (i = 0; isxdigit(*str) && i < bits; str++) {
1085  		b = hex_to_bin(*str);
1086  		for (n = 0; n < 4; n++)
1087  			if (b & (0x08 >> n))
1088  				set_bit_inv(i + n, bitmap);
1089  		i += 4;
1090  	}
1091  
1092  	if (*str == '\n')
1093  		str++;
1094  	if (*str)
1095  		return -EINVAL;
1096  	return 0;
1097  }
1098  EXPORT_SYMBOL(ap_hex2bitmap);
1099  
1100  /*
1101   * modify_bitmap() - parse bitmask argument and modify an existing
1102   * bit mask accordingly. A concatenation (done with ',') of these
1103   * terms is recognized:
1104   *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1105   * <bitnr> may be any valid number (hex, decimal or octal) in the range
1106   * 0...bits-1; the leading + or - is required. Here are some examples:
1107   *   +0-15,+32,-128,-0xFF
1108   *   -0-255,+1-16,+0x128
1109   *   +1,+2,+3,+4,-5,-7-10
1110   * Returns the new bitmap after all changes have been applied. Every
1111   * positive value in the string will set a bit and every negative value
1112   * in the string will clear a bit. As a bit may be touched more than once,
1113   * the last 'operation' wins:
1114   * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1115   * cleared again. All other bits are unmodified.
1116   */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1117  static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1118  {
1119  	unsigned long a, i, z;
1120  	char *np, sign;
1121  
1122  	/* bits needs to be a multiple of 8 */
1123  	if (bits & 0x07)
1124  		return -EINVAL;
1125  
1126  	while (*str) {
1127  		sign = *str++;
1128  		if (sign != '+' && sign != '-')
1129  			return -EINVAL;
1130  		a = z = simple_strtoul(str, &np, 0);
1131  		if (str == np || a >= bits)
1132  			return -EINVAL;
1133  		str = np;
1134  		if (*str == '-') {
1135  			z = simple_strtoul(++str, &np, 0);
1136  			if (str == np || a > z || z >= bits)
1137  				return -EINVAL;
1138  			str = np;
1139  		}
1140  		for (i = a; i <= z; i++)
1141  			if (sign == '+')
1142  				set_bit_inv(i, bitmap);
1143  			else
1144  				clear_bit_inv(i, bitmap);
1145  		while (*str == ',' || *str == '\n')
1146  			str++;
1147  	}
1148  
1149  	return 0;
1150  }
1151  
ap_parse_bitmap_str(const char * str,unsigned long * bitmap,int bits,unsigned long * newmap)1152  static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1153  			       unsigned long *newmap)
1154  {
1155  	unsigned long size;
1156  	int rc;
1157  
1158  	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1159  	if (*str == '+' || *str == '-') {
1160  		memcpy(newmap, bitmap, size);
1161  		rc = modify_bitmap(str, newmap, bits);
1162  	} else {
1163  		memset(newmap, 0, size);
1164  		rc = ap_hex2bitmap(str, newmap, bits);
1165  	}
1166  	return rc;
1167  }
1168  
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1169  int ap_parse_mask_str(const char *str,
1170  		      unsigned long *bitmap, int bits,
1171  		      struct mutex *lock)
1172  {
1173  	unsigned long *newmap, size;
1174  	int rc;
1175  
1176  	/* bits needs to be a multiple of 8 */
1177  	if (bits & 0x07)
1178  		return -EINVAL;
1179  
1180  	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1181  	newmap = kmalloc(size, GFP_KERNEL);
1182  	if (!newmap)
1183  		return -ENOMEM;
1184  	if (mutex_lock_interruptible(lock)) {
1185  		kfree(newmap);
1186  		return -ERESTARTSYS;
1187  	}
1188  	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1189  	if (rc == 0)
1190  		memcpy(bitmap, newmap, size);
1191  	mutex_unlock(lock);
1192  	kfree(newmap);
1193  	return rc;
1194  }
1195  EXPORT_SYMBOL(ap_parse_mask_str);
1196  
1197  /*
1198   * AP bus attributes.
1199   */
1200  
ap_domain_show(const struct bus_type * bus,char * buf)1201  static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1202  {
1203  	return sysfs_emit(buf, "%d\n", ap_domain_index);
1204  }
1205  
ap_domain_store(const struct bus_type * bus,const char * buf,size_t count)1206  static ssize_t ap_domain_store(const struct bus_type *bus,
1207  			       const char *buf, size_t count)
1208  {
1209  	int domain;
1210  
1211  	if (sscanf(buf, "%i\n", &domain) != 1 ||
1212  	    domain < 0 || domain > ap_max_domain_id ||
1213  	    !test_bit_inv(domain, ap_perms.aqm))
1214  		return -EINVAL;
1215  
1216  	spin_lock_bh(&ap_domain_lock);
1217  	ap_domain_index = domain;
1218  	spin_unlock_bh(&ap_domain_lock);
1219  
1220  	AP_DBF_INFO("%s stored new default domain=%d\n",
1221  		    __func__, domain);
1222  
1223  	return count;
1224  }
1225  
1226  static BUS_ATTR_RW(ap_domain);
1227  
ap_control_domain_mask_show(const struct bus_type * bus,char * buf)1228  static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1229  {
1230  	if (!ap_qci_info->flags)	/* QCI not supported */
1231  		return sysfs_emit(buf, "not supported\n");
1232  
1233  	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1234  			  ap_qci_info->adm[0], ap_qci_info->adm[1],
1235  			  ap_qci_info->adm[2], ap_qci_info->adm[3],
1236  			  ap_qci_info->adm[4], ap_qci_info->adm[5],
1237  			  ap_qci_info->adm[6], ap_qci_info->adm[7]);
1238  }
1239  
1240  static BUS_ATTR_RO(ap_control_domain_mask);
1241  
ap_usage_domain_mask_show(const struct bus_type * bus,char * buf)1242  static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1243  {
1244  	if (!ap_qci_info->flags)	/* QCI not supported */
1245  		return sysfs_emit(buf, "not supported\n");
1246  
1247  	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1248  			  ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1249  			  ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1250  			  ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1251  			  ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1252  }
1253  
1254  static BUS_ATTR_RO(ap_usage_domain_mask);
1255  
ap_adapter_mask_show(const struct bus_type * bus,char * buf)1256  static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1257  {
1258  	if (!ap_qci_info->flags)	/* QCI not supported */
1259  		return sysfs_emit(buf, "not supported\n");
1260  
1261  	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1262  			  ap_qci_info->apm[0], ap_qci_info->apm[1],
1263  			  ap_qci_info->apm[2], ap_qci_info->apm[3],
1264  			  ap_qci_info->apm[4], ap_qci_info->apm[5],
1265  			  ap_qci_info->apm[6], ap_qci_info->apm[7]);
1266  }
1267  
1268  static BUS_ATTR_RO(ap_adapter_mask);
1269  
ap_interrupts_show(const struct bus_type * bus,char * buf)1270  static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1271  {
1272  	return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1273  }
1274  
1275  static BUS_ATTR_RO(ap_interrupts);
1276  
config_time_show(const struct bus_type * bus,char * buf)1277  static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1278  {
1279  	return sysfs_emit(buf, "%d\n", ap_scan_bus_time);
1280  }
1281  
config_time_store(const struct bus_type * bus,const char * buf,size_t count)1282  static ssize_t config_time_store(const struct bus_type *bus,
1283  				 const char *buf, size_t count)
1284  {
1285  	int time;
1286  
1287  	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1288  		return -EINVAL;
1289  	ap_scan_bus_time = time;
1290  	mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
1291  	return count;
1292  }
1293  
1294  static BUS_ATTR_RW(config_time);
1295  
poll_thread_show(const struct bus_type * bus,char * buf)1296  static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1297  {
1298  	return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1299  }
1300  
poll_thread_store(const struct bus_type * bus,const char * buf,size_t count)1301  static ssize_t poll_thread_store(const struct bus_type *bus,
1302  				 const char *buf, size_t count)
1303  {
1304  	bool value;
1305  	int rc;
1306  
1307  	rc = kstrtobool(buf, &value);
1308  	if (rc)
1309  		return rc;
1310  
1311  	if (value) {
1312  		rc = ap_poll_thread_start();
1313  		if (rc)
1314  			count = rc;
1315  	} else {
1316  		ap_poll_thread_stop();
1317  	}
1318  	return count;
1319  }
1320  
1321  static BUS_ATTR_RW(poll_thread);
1322  
poll_timeout_show(const struct bus_type * bus,char * buf)1323  static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1324  {
1325  	return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1326  }
1327  
poll_timeout_store(const struct bus_type * bus,const char * buf,size_t count)1328  static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1329  				  size_t count)
1330  {
1331  	unsigned long value;
1332  	ktime_t hr_time;
1333  	int rc;
1334  
1335  	rc = kstrtoul(buf, 0, &value);
1336  	if (rc)
1337  		return rc;
1338  
1339  	/* 120 seconds = maximum poll interval */
1340  	if (value > 120000000000UL)
1341  		return -EINVAL;
1342  	poll_high_timeout = value;
1343  	hr_time = poll_high_timeout;
1344  
1345  	spin_lock_bh(&ap_poll_timer_lock);
1346  	hrtimer_cancel(&ap_poll_timer);
1347  	hrtimer_set_expires(&ap_poll_timer, hr_time);
1348  	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1349  	spin_unlock_bh(&ap_poll_timer_lock);
1350  
1351  	return count;
1352  }
1353  
1354  static BUS_ATTR_RW(poll_timeout);
1355  
ap_max_domain_id_show(const struct bus_type * bus,char * buf)1356  static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1357  {
1358  	return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1359  }
1360  
1361  static BUS_ATTR_RO(ap_max_domain_id);
1362  
ap_max_adapter_id_show(const struct bus_type * bus,char * buf)1363  static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1364  {
1365  	return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1366  }
1367  
1368  static BUS_ATTR_RO(ap_max_adapter_id);
1369  
apmask_show(const struct bus_type * bus,char * buf)1370  static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1371  {
1372  	int rc;
1373  
1374  	if (mutex_lock_interruptible(&ap_perms_mutex))
1375  		return -ERESTARTSYS;
1376  	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1377  			ap_perms.apm[0], ap_perms.apm[1],
1378  			ap_perms.apm[2], ap_perms.apm[3]);
1379  	mutex_unlock(&ap_perms_mutex);
1380  
1381  	return rc;
1382  }
1383  
__verify_card_reservations(struct device_driver * drv,void * data)1384  static int __verify_card_reservations(struct device_driver *drv, void *data)
1385  {
1386  	int rc = 0;
1387  	struct ap_driver *ap_drv = to_ap_drv(drv);
1388  	unsigned long *newapm = (unsigned long *)data;
1389  
1390  	/*
1391  	 * increase the driver's module refcounter to be sure it is not
1392  	 * going away when we invoke the callback function.
1393  	 */
1394  	if (!try_module_get(drv->owner))
1395  		return 0;
1396  
1397  	if (ap_drv->in_use) {
1398  		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1399  		if (rc)
1400  			rc = -EBUSY;
1401  	}
1402  
1403  	/* release the driver's module */
1404  	module_put(drv->owner);
1405  
1406  	return rc;
1407  }
1408  
apmask_commit(unsigned long * newapm)1409  static int apmask_commit(unsigned long *newapm)
1410  {
1411  	int rc;
1412  	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1413  
1414  	/*
1415  	 * Check if any bits in the apmask have been set which will
1416  	 * result in queues being removed from non-default drivers
1417  	 */
1418  	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1419  		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1420  				      __verify_card_reservations);
1421  		if (rc)
1422  			return rc;
1423  	}
1424  
1425  	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1426  
1427  	return 0;
1428  }
1429  
apmask_store(const struct bus_type * bus,const char * buf,size_t count)1430  static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1431  			    size_t count)
1432  {
1433  	int rc, changes = 0;
1434  	DECLARE_BITMAP(newapm, AP_DEVICES);
1435  
1436  	if (mutex_lock_interruptible(&ap_perms_mutex))
1437  		return -ERESTARTSYS;
1438  
1439  	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1440  	if (rc)
1441  		goto done;
1442  
1443  	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1444  	if (changes)
1445  		rc = apmask_commit(newapm);
1446  
1447  done:
1448  	mutex_unlock(&ap_perms_mutex);
1449  	if (rc)
1450  		return rc;
1451  
1452  	if (changes) {
1453  		ap_bus_revise_bindings();
1454  		ap_send_mask_changed_uevent(newapm, NULL);
1455  	}
1456  
1457  	return count;
1458  }
1459  
1460  static BUS_ATTR_RW(apmask);
1461  
aqmask_show(const struct bus_type * bus,char * buf)1462  static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1463  {
1464  	int rc;
1465  
1466  	if (mutex_lock_interruptible(&ap_perms_mutex))
1467  		return -ERESTARTSYS;
1468  	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1469  			ap_perms.aqm[0], ap_perms.aqm[1],
1470  			ap_perms.aqm[2], ap_perms.aqm[3]);
1471  	mutex_unlock(&ap_perms_mutex);
1472  
1473  	return rc;
1474  }
1475  
__verify_queue_reservations(struct device_driver * drv,void * data)1476  static int __verify_queue_reservations(struct device_driver *drv, void *data)
1477  {
1478  	int rc = 0;
1479  	struct ap_driver *ap_drv = to_ap_drv(drv);
1480  	unsigned long *newaqm = (unsigned long *)data;
1481  
1482  	/*
1483  	 * increase the driver's module refcounter to be sure it is not
1484  	 * going away when we invoke the callback function.
1485  	 */
1486  	if (!try_module_get(drv->owner))
1487  		return 0;
1488  
1489  	if (ap_drv->in_use) {
1490  		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1491  		if (rc)
1492  			rc = -EBUSY;
1493  	}
1494  
1495  	/* release the driver's module */
1496  	module_put(drv->owner);
1497  
1498  	return rc;
1499  }
1500  
aqmask_commit(unsigned long * newaqm)1501  static int aqmask_commit(unsigned long *newaqm)
1502  {
1503  	int rc;
1504  	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1505  
1506  	/*
1507  	 * Check if any bits in the aqmask have been set which will
1508  	 * result in queues being removed from non-default drivers
1509  	 */
1510  	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1511  		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1512  				      __verify_queue_reservations);
1513  		if (rc)
1514  			return rc;
1515  	}
1516  
1517  	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1518  
1519  	return 0;
1520  }
1521  
aqmask_store(const struct bus_type * bus,const char * buf,size_t count)1522  static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1523  			    size_t count)
1524  {
1525  	int rc, changes = 0;
1526  	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1527  
1528  	if (mutex_lock_interruptible(&ap_perms_mutex))
1529  		return -ERESTARTSYS;
1530  
1531  	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1532  	if (rc)
1533  		goto done;
1534  
1535  	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1536  	if (changes)
1537  		rc = aqmask_commit(newaqm);
1538  
1539  done:
1540  	mutex_unlock(&ap_perms_mutex);
1541  	if (rc)
1542  		return rc;
1543  
1544  	if (changes) {
1545  		ap_bus_revise_bindings();
1546  		ap_send_mask_changed_uevent(NULL, newaqm);
1547  	}
1548  
1549  	return count;
1550  }
1551  
1552  static BUS_ATTR_RW(aqmask);
1553  
scans_show(const struct bus_type * bus,char * buf)1554  static ssize_t scans_show(const struct bus_type *bus, char *buf)
1555  {
1556  	return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1557  }
1558  
scans_store(const struct bus_type * bus,const char * buf,size_t count)1559  static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1560  			   size_t count)
1561  {
1562  	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1563  
1564  	ap_bus_force_rescan();
1565  
1566  	return count;
1567  }
1568  
1569  static BUS_ATTR_RW(scans);
1570  
bindings_show(const struct bus_type * bus,char * buf)1571  static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1572  {
1573  	int rc;
1574  	unsigned int apqns, n;
1575  
1576  	ap_calc_bound_apqns(&apqns, &n);
1577  	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1578  		rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1579  	else
1580  		rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1581  
1582  	return rc;
1583  }
1584  
1585  static BUS_ATTR_RO(bindings);
1586  
features_show(const struct bus_type * bus,char * buf)1587  static ssize_t features_show(const struct bus_type *bus, char *buf)
1588  {
1589  	int n = 0;
1590  
1591  	if (!ap_qci_info->flags)	/* QCI not supported */
1592  		return sysfs_emit(buf, "-\n");
1593  
1594  	if (ap_qci_info->apsc)
1595  		n += sysfs_emit_at(buf, n, "APSC ");
1596  	if (ap_qci_info->apxa)
1597  		n += sysfs_emit_at(buf, n, "APXA ");
1598  	if (ap_qci_info->qact)
1599  		n += sysfs_emit_at(buf, n, "QACT ");
1600  	if (ap_qci_info->rc8a)
1601  		n += sysfs_emit_at(buf, n, "RC8A ");
1602  	if (ap_qci_info->apsb)
1603  		n += sysfs_emit_at(buf, n, "APSB ");
1604  
1605  	sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1606  
1607  	return n;
1608  }
1609  
1610  static BUS_ATTR_RO(features);
1611  
1612  static struct attribute *ap_bus_attrs[] = {
1613  	&bus_attr_ap_domain.attr,
1614  	&bus_attr_ap_control_domain_mask.attr,
1615  	&bus_attr_ap_usage_domain_mask.attr,
1616  	&bus_attr_ap_adapter_mask.attr,
1617  	&bus_attr_config_time.attr,
1618  	&bus_attr_poll_thread.attr,
1619  	&bus_attr_ap_interrupts.attr,
1620  	&bus_attr_poll_timeout.attr,
1621  	&bus_attr_ap_max_domain_id.attr,
1622  	&bus_attr_ap_max_adapter_id.attr,
1623  	&bus_attr_apmask.attr,
1624  	&bus_attr_aqmask.attr,
1625  	&bus_attr_scans.attr,
1626  	&bus_attr_bindings.attr,
1627  	&bus_attr_features.attr,
1628  	NULL,
1629  };
1630  ATTRIBUTE_GROUPS(ap_bus);
1631  
1632  static const struct bus_type ap_bus_type = {
1633  	.name = "ap",
1634  	.bus_groups = ap_bus_groups,
1635  	.match = &ap_bus_match,
1636  	.uevent = &ap_uevent,
1637  	.probe = ap_device_probe,
1638  	.remove = ap_device_remove,
1639  };
1640  
1641  /**
1642   * ap_select_domain(): Select an AP domain if possible and we haven't
1643   * already done so before.
1644   */
ap_select_domain(void)1645  static void ap_select_domain(void)
1646  {
1647  	struct ap_queue_status status;
1648  	int card, dom;
1649  
1650  	/*
1651  	 * Choose the default domain. Either the one specified with
1652  	 * the "domain=" parameter or the first domain with at least
1653  	 * one valid APQN.
1654  	 */
1655  	spin_lock_bh(&ap_domain_lock);
1656  	if (ap_domain_index >= 0) {
1657  		/* Domain has already been selected. */
1658  		goto out;
1659  	}
1660  	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1661  		if (!ap_test_config_usage_domain(dom) ||
1662  		    !test_bit_inv(dom, ap_perms.aqm))
1663  			continue;
1664  		for (card = 0; card <= ap_max_adapter_id; card++) {
1665  			if (!ap_test_config_card_id(card) ||
1666  			    !test_bit_inv(card, ap_perms.apm))
1667  				continue;
1668  			status = ap_test_queue(AP_MKQID(card, dom),
1669  					       ap_apft_available(),
1670  					       NULL);
1671  			if (status.response_code == AP_RESPONSE_NORMAL)
1672  				break;
1673  		}
1674  		if (card <= ap_max_adapter_id)
1675  			break;
1676  	}
1677  	if (dom <= ap_max_domain_id) {
1678  		ap_domain_index = dom;
1679  		AP_DBF_INFO("%s new default domain is %d\n",
1680  			    __func__, ap_domain_index);
1681  	}
1682  out:
1683  	spin_unlock_bh(&ap_domain_lock);
1684  }
1685  
1686  /*
1687   * This function checks the type and returns either 0 for not
1688   * supported or the highest compatible type value (which may
1689   * include the input type value).
1690   */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1691  static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1692  {
1693  	int comp_type = 0;
1694  
1695  	/* < CEX4 is not supported */
1696  	if (rawtype < AP_DEVICE_TYPE_CEX4) {
1697  		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1698  			    __func__, AP_QID_CARD(qid),
1699  			    AP_QID_QUEUE(qid), rawtype);
1700  		return 0;
1701  	}
1702  	/* up to CEX8 known and fully supported */
1703  	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1704  		return rawtype;
1705  	/*
1706  	 * unknown new type > CEX8, check for compatibility
1707  	 * to the highest known and supported type which is
1708  	 * currently CEX8 with the help of the QACT function.
1709  	 */
1710  	if (ap_qact_available()) {
1711  		struct ap_queue_status status;
1712  		union ap_qact_ap_info apinfo = {0};
1713  
1714  		apinfo.mode = (func >> 26) & 0x07;
1715  		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1716  		status = ap_qact(qid, 0, &apinfo);
1717  		if (status.response_code == AP_RESPONSE_NORMAL &&
1718  		    apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1719  		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1720  			comp_type = apinfo.cat;
1721  	}
1722  	if (!comp_type)
1723  		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1724  			    __func__, AP_QID_CARD(qid),
1725  			    AP_QID_QUEUE(qid), rawtype);
1726  	else if (comp_type != rawtype)
1727  		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1728  			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1729  			    rawtype, comp_type);
1730  	return comp_type;
1731  }
1732  
1733  /*
1734   * Helper function to be used with bus_find_dev
1735   * matches for the card device with the given id
1736   */
__match_card_device_with_id(struct device * dev,const void * data)1737  static int __match_card_device_with_id(struct device *dev, const void *data)
1738  {
1739  	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1740  }
1741  
1742  /*
1743   * Helper function to be used with bus_find_dev
1744   * matches for the queue device with a given qid
1745   */
__match_queue_device_with_qid(struct device * dev,const void * data)1746  static int __match_queue_device_with_qid(struct device *dev, const void *data)
1747  {
1748  	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1749  }
1750  
1751  /*
1752   * Helper function to be used with bus_find_dev
1753   * matches any queue device with given queue id
1754   */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1755  static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1756  {
1757  	return is_queue_dev(dev) &&
1758  		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1759  }
1760  
1761  /* Helper function for notify_config_changed */
__drv_notify_config_changed(struct device_driver * drv,void * data)1762  static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1763  {
1764  	struct ap_driver *ap_drv = to_ap_drv(drv);
1765  
1766  	if (try_module_get(drv->owner)) {
1767  		if (ap_drv->on_config_changed)
1768  			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1769  		module_put(drv->owner);
1770  	}
1771  
1772  	return 0;
1773  }
1774  
1775  /* Notify all drivers about an qci config change */
notify_config_changed(void)1776  static inline void notify_config_changed(void)
1777  {
1778  	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1779  			 __drv_notify_config_changed);
1780  }
1781  
1782  /* Helper function for notify_scan_complete */
__drv_notify_scan_complete(struct device_driver * drv,void * data)1783  static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1784  {
1785  	struct ap_driver *ap_drv = to_ap_drv(drv);
1786  
1787  	if (try_module_get(drv->owner)) {
1788  		if (ap_drv->on_scan_complete)
1789  			ap_drv->on_scan_complete(ap_qci_info,
1790  						 ap_qci_info_old);
1791  		module_put(drv->owner);
1792  	}
1793  
1794  	return 0;
1795  }
1796  
1797  /* Notify all drivers about bus scan complete */
notify_scan_complete(void)1798  static inline void notify_scan_complete(void)
1799  {
1800  	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1801  			 __drv_notify_scan_complete);
1802  }
1803  
1804  /*
1805   * Helper function for ap_scan_bus().
1806   * Remove card device and associated queue devices.
1807   */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1808  static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1809  {
1810  	bus_for_each_dev(&ap_bus_type, NULL,
1811  			 (void *)(long)ac->id,
1812  			 __ap_queue_devices_with_id_unregister);
1813  	device_unregister(&ac->ap_dev.device);
1814  }
1815  
1816  /*
1817   * Helper function for ap_scan_bus().
1818   * Does the scan bus job for all the domains within
1819   * a valid adapter given by an ap_card ptr.
1820   */
ap_scan_domains(struct ap_card * ac)1821  static inline void ap_scan_domains(struct ap_card *ac)
1822  {
1823  	struct ap_tapq_hwinfo hwinfo;
1824  	bool decfg, chkstop;
1825  	struct ap_queue *aq;
1826  	struct device *dev;
1827  	ap_qid_t qid;
1828  	int rc, dom;
1829  
1830  	/*
1831  	 * Go through the configuration for the domains and compare them
1832  	 * to the existing queue devices. Also take care of the config
1833  	 * and error state for the queue devices.
1834  	 */
1835  
1836  	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1837  		qid = AP_MKQID(ac->id, dom);
1838  		dev = bus_find_device(&ap_bus_type, NULL,
1839  				      (void *)(long)qid,
1840  				      __match_queue_device_with_qid);
1841  		aq = dev ? to_ap_queue(dev) : NULL;
1842  		if (!ap_test_config_usage_domain(dom)) {
1843  			if (dev) {
1844  				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1845  					    __func__, ac->id, dom);
1846  				device_unregister(dev);
1847  			}
1848  			goto put_dev_and_continue;
1849  		}
1850  		/* domain is valid, get info from this APQN */
1851  		rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop);
1852  		switch (rc) {
1853  		case -1:
1854  			if (dev) {
1855  				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1856  					    __func__, ac->id, dom);
1857  				device_unregister(dev);
1858  			}
1859  			fallthrough;
1860  		case 0:
1861  			goto put_dev_and_continue;
1862  		default:
1863  			break;
1864  		}
1865  		/* if no queue device exists, create a new one */
1866  		if (!aq) {
1867  			aq = ap_queue_create(qid, ac);
1868  			if (!aq) {
1869  				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1870  					    __func__, ac->id, dom);
1871  				continue;
1872  			}
1873  			aq->config = !decfg;
1874  			aq->chkstop = chkstop;
1875  			aq->se_bstate = hwinfo.bs;
1876  			dev = &aq->ap_dev.device;
1877  			dev->bus = &ap_bus_type;
1878  			dev->parent = &ac->ap_dev.device;
1879  			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1880  			/* register queue device */
1881  			rc = device_register(dev);
1882  			if (rc) {
1883  				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1884  					    __func__, ac->id, dom);
1885  				goto put_dev_and_continue;
1886  			}
1887  			/* get it and thus adjust reference counter */
1888  			get_device(dev);
1889  			if (decfg) {
1890  				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1891  					    __func__, ac->id, dom);
1892  			} else if (chkstop) {
1893  				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1894  					    __func__, ac->id, dom);
1895  			} else {
1896  				/* nudge the queue's state machine */
1897  				ap_queue_init_state(aq);
1898  				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1899  					    __func__, ac->id, dom);
1900  			}
1901  			goto put_dev_and_continue;
1902  		}
1903  		/* handle state changes on already existing queue device */
1904  		spin_lock_bh(&aq->lock);
1905  		/* SE bind state */
1906  		aq->se_bstate = hwinfo.bs;
1907  		/* checkstop state */
1908  		if (chkstop && !aq->chkstop) {
1909  			/* checkstop on */
1910  			aq->chkstop = true;
1911  			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1912  				aq->dev_state = AP_DEV_STATE_ERROR;
1913  				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1914  			}
1915  			spin_unlock_bh(&aq->lock);
1916  			pr_debug("(%d,%d) queue dev checkstop on\n",
1917  				 ac->id, dom);
1918  			/* 'receive' pending messages with -EAGAIN */
1919  			ap_flush_queue(aq);
1920  			goto put_dev_and_continue;
1921  		} else if (!chkstop && aq->chkstop) {
1922  			/* checkstop off */
1923  			aq->chkstop = false;
1924  			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1925  				_ap_queue_init_state(aq);
1926  			spin_unlock_bh(&aq->lock);
1927  			pr_debug("(%d,%d) queue dev checkstop off\n",
1928  				 ac->id, dom);
1929  			goto put_dev_and_continue;
1930  		}
1931  		/* config state change */
1932  		if (decfg && aq->config) {
1933  			/* config off this queue device */
1934  			aq->config = false;
1935  			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1936  				aq->dev_state = AP_DEV_STATE_ERROR;
1937  				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1938  			}
1939  			spin_unlock_bh(&aq->lock);
1940  			pr_debug("(%d,%d) queue dev config off\n",
1941  				 ac->id, dom);
1942  			ap_send_config_uevent(&aq->ap_dev, aq->config);
1943  			/* 'receive' pending messages with -EAGAIN */
1944  			ap_flush_queue(aq);
1945  			goto put_dev_and_continue;
1946  		} else if (!decfg && !aq->config) {
1947  			/* config on this queue device */
1948  			aq->config = true;
1949  			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1950  				_ap_queue_init_state(aq);
1951  			spin_unlock_bh(&aq->lock);
1952  			pr_debug("(%d,%d) queue dev config on\n",
1953  				 ac->id, dom);
1954  			ap_send_config_uevent(&aq->ap_dev, aq->config);
1955  			goto put_dev_and_continue;
1956  		}
1957  		/* handle other error states */
1958  		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1959  			spin_unlock_bh(&aq->lock);
1960  			/* 'receive' pending messages with -EAGAIN */
1961  			ap_flush_queue(aq);
1962  			/* re-init (with reset) the queue device */
1963  			ap_queue_init_state(aq);
1964  			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1965  				    __func__, ac->id, dom);
1966  			goto put_dev_and_continue;
1967  		}
1968  		spin_unlock_bh(&aq->lock);
1969  put_dev_and_continue:
1970  		put_device(dev);
1971  	}
1972  }
1973  
1974  /*
1975   * Helper function for ap_scan_bus().
1976   * Does the scan bus job for the given adapter id.
1977   */
ap_scan_adapter(int ap)1978  static inline void ap_scan_adapter(int ap)
1979  {
1980  	struct ap_tapq_hwinfo hwinfo;
1981  	int rc, dom, comp_type;
1982  	bool decfg, chkstop;
1983  	struct ap_card *ac;
1984  	struct device *dev;
1985  	ap_qid_t qid;
1986  
1987  	/* Is there currently a card device for this adapter ? */
1988  	dev = bus_find_device(&ap_bus_type, NULL,
1989  			      (void *)(long)ap,
1990  			      __match_card_device_with_id);
1991  	ac = dev ? to_ap_card(dev) : NULL;
1992  
1993  	/* Adapter not in configuration ? */
1994  	if (!ap_test_config_card_id(ap)) {
1995  		if (ac) {
1996  			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1997  				    __func__, ap);
1998  			ap_scan_rm_card_dev_and_queue_devs(ac);
1999  			put_device(dev);
2000  		}
2001  		return;
2002  	}
2003  
2004  	/*
2005  	 * Adapter ap is valid in the current configuration. So do some checks:
2006  	 * If no card device exists, build one. If a card device exists, check
2007  	 * for type and functions changed. For all this we need to find a valid
2008  	 * APQN first.
2009  	 */
2010  
2011  	for (dom = 0; dom <= ap_max_domain_id; dom++)
2012  		if (ap_test_config_usage_domain(dom)) {
2013  			qid = AP_MKQID(ap, dom);
2014  			if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0)
2015  				break;
2016  		}
2017  	if (dom > ap_max_domain_id) {
2018  		/* Could not find one valid APQN for this adapter */
2019  		if (ac) {
2020  			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2021  				    __func__, ap);
2022  			ap_scan_rm_card_dev_and_queue_devs(ac);
2023  			put_device(dev);
2024  		} else {
2025  			pr_debug("(%d) no type info (no APQN found), ignored\n",
2026  				 ap);
2027  		}
2028  		return;
2029  	}
2030  	if (!hwinfo.at) {
2031  		/* No apdater type info available, an unusable adapter */
2032  		if (ac) {
2033  			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2034  				    __func__, ap);
2035  			ap_scan_rm_card_dev_and_queue_devs(ac);
2036  			put_device(dev);
2037  		} else {
2038  			pr_debug("(%d) no valid type (0) info, ignored\n", ap);
2039  		}
2040  		return;
2041  	}
2042  	hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */
2043  	if (ac) {
2044  		/* Check APQN against existing card device for changes */
2045  		if (ac->hwinfo.at != hwinfo.at) {
2046  			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2047  				    __func__, ap, hwinfo.at);
2048  			ap_scan_rm_card_dev_and_queue_devs(ac);
2049  			put_device(dev);
2050  			ac = NULL;
2051  		} else if (ac->hwinfo.fac != hwinfo.fac) {
2052  			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2053  				    __func__, ap, hwinfo.fac);
2054  			ap_scan_rm_card_dev_and_queue_devs(ac);
2055  			put_device(dev);
2056  			ac = NULL;
2057  		} else {
2058  			/* handle checkstop state change */
2059  			if (chkstop && !ac->chkstop) {
2060  				/* checkstop on */
2061  				ac->chkstop = true;
2062  				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2063  					    __func__, ap);
2064  			} else if (!chkstop && ac->chkstop) {
2065  				/* checkstop off */
2066  				ac->chkstop = false;
2067  				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2068  					    __func__, ap);
2069  			}
2070  			/* handle config state change */
2071  			if (decfg && ac->config) {
2072  				ac->config = false;
2073  				AP_DBF_INFO("%s(%d) card dev config off\n",
2074  					    __func__, ap);
2075  				ap_send_config_uevent(&ac->ap_dev, ac->config);
2076  			} else if (!decfg && !ac->config) {
2077  				ac->config = true;
2078  				AP_DBF_INFO("%s(%d) card dev config on\n",
2079  					    __func__, ap);
2080  				ap_send_config_uevent(&ac->ap_dev, ac->config);
2081  			}
2082  		}
2083  	}
2084  
2085  	if (!ac) {
2086  		/* Build a new card device */
2087  		comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac);
2088  		if (!comp_type) {
2089  			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2090  				    __func__, ap, hwinfo.at);
2091  			return;
2092  		}
2093  		ac = ap_card_create(ap, hwinfo, comp_type);
2094  		if (!ac) {
2095  			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2096  				    __func__, ap);
2097  			return;
2098  		}
2099  		ac->config = !decfg;
2100  		ac->chkstop = chkstop;
2101  		dev = &ac->ap_dev.device;
2102  		dev->bus = &ap_bus_type;
2103  		dev->parent = ap_root_device;
2104  		dev_set_name(dev, "card%02x", ap);
2105  		/* maybe enlarge ap_max_msg_size to support this card */
2106  		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2107  			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2108  			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2109  				    __func__, ap,
2110  				    atomic_read(&ap_max_msg_size));
2111  		}
2112  		/* Register the new card device with AP bus */
2113  		rc = device_register(dev);
2114  		if (rc) {
2115  			AP_DBF_WARN("%s(%d) device_register() failed\n",
2116  				    __func__, ap);
2117  			put_device(dev);
2118  			return;
2119  		}
2120  		/* get it and thus adjust reference counter */
2121  		get_device(dev);
2122  		if (decfg)
2123  			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2124  				    __func__, ap, hwinfo.at, hwinfo.fac);
2125  		else if (chkstop)
2126  			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2127  				    __func__, ap, hwinfo.at, hwinfo.fac);
2128  		else
2129  			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2130  				    __func__, ap, hwinfo.at, hwinfo.fac);
2131  	}
2132  
2133  	/* Verify the domains and the queue devices for this card */
2134  	ap_scan_domains(ac);
2135  
2136  	/* release the card device */
2137  	put_device(&ac->ap_dev.device);
2138  }
2139  
2140  /**
2141   * ap_get_configuration - get the host AP configuration
2142   *
2143   * Stores the host AP configuration information returned from the previous call
2144   * to Query Configuration Information (QCI), then retrieves and stores the
2145   * current AP configuration returned from QCI.
2146   *
2147   * Return: true if the host AP configuration changed between calls to QCI;
2148   * otherwise, return false.
2149   */
ap_get_configuration(void)2150  static bool ap_get_configuration(void)
2151  {
2152  	if (!ap_qci_info->flags)	/* QCI not supported */
2153  		return false;
2154  
2155  	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2156  	ap_qci(ap_qci_info);
2157  
2158  	return memcmp(ap_qci_info, ap_qci_info_old,
2159  		      sizeof(struct ap_config_info)) != 0;
2160  }
2161  
2162  /*
2163   * ap_config_has_new_aps - Check current against old qci info if
2164   * new adapters have appeared. Returns true if at least one new
2165   * adapter in the apm mask is showing up. Existing adapters or
2166   * receding adapters are not counted.
2167   */
ap_config_has_new_aps(void)2168  static bool ap_config_has_new_aps(void)
2169  {
2170  
2171  	unsigned long m[BITS_TO_LONGS(AP_DEVICES)];
2172  
2173  	if (!ap_qci_info->flags)
2174  		return false;
2175  
2176  	bitmap_andnot(m, (unsigned long *)ap_qci_info->apm,
2177  		      (unsigned long *)ap_qci_info_old->apm, AP_DEVICES);
2178  	if (!bitmap_empty(m, AP_DEVICES))
2179  		return true;
2180  
2181  	return false;
2182  }
2183  
2184  /*
2185   * ap_config_has_new_doms - Check current against old qci info if
2186   * new (usage) domains have appeared. Returns true if at least one
2187   * new domain in the aqm mask is showing up. Existing domains or
2188   * receding domains are not counted.
2189   */
ap_config_has_new_doms(void)2190  static bool ap_config_has_new_doms(void)
2191  {
2192  	unsigned long m[BITS_TO_LONGS(AP_DOMAINS)];
2193  
2194  	if (!ap_qci_info->flags)
2195  		return false;
2196  
2197  	bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm,
2198  		      (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS);
2199  	if (!bitmap_empty(m, AP_DOMAINS))
2200  		return true;
2201  
2202  	return false;
2203  }
2204  
2205  /**
2206   * ap_scan_bus(): Scan the AP bus for new devices
2207   * Always run under mutex ap_scan_bus_mutex protection
2208   * which needs to get locked/unlocked by the caller!
2209   * Returns true if any config change has been detected
2210   * during the scan, otherwise false.
2211   */
ap_scan_bus(void)2212  static bool ap_scan_bus(void)
2213  {
2214  	bool config_changed;
2215  	int ap;
2216  
2217  	pr_debug(">\n");
2218  
2219  	/* (re-)fetch configuration via QCI */
2220  	config_changed = ap_get_configuration();
2221  	if (config_changed) {
2222  		if (ap_config_has_new_aps() || ap_config_has_new_doms()) {
2223  			/*
2224  			 * Appearance of new adapters and/or domains need to
2225  			 * build new ap devices which need to get bound to an
2226  			 * device driver. Thus reset the APQN bindings complete
2227  			 * completion.
2228  			 */
2229  			reinit_completion(&ap_apqn_bindings_complete);
2230  		}
2231  		/* post a config change notify */
2232  		notify_config_changed();
2233  	}
2234  	ap_select_domain();
2235  
2236  	/* loop over all possible adapters */
2237  	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2238  		ap_scan_adapter(ap);
2239  
2240  	/* scan complete notify */
2241  	if (config_changed)
2242  		notify_scan_complete();
2243  
2244  	/* check if there is at least one queue available with default domain */
2245  	if (ap_domain_index >= 0) {
2246  		struct device *dev =
2247  			bus_find_device(&ap_bus_type, NULL,
2248  					(void *)(long)ap_domain_index,
2249  					__match_queue_device_with_queue_id);
2250  		if (dev)
2251  			put_device(dev);
2252  		else
2253  			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2254  				    __func__, ap_domain_index);
2255  	}
2256  
2257  	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2258  		pr_debug("init scan complete\n");
2259  		ap_send_init_scan_done_uevent();
2260  	}
2261  
2262  	ap_check_bindings_complete();
2263  
2264  	mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
2265  
2266  	pr_debug("< config_changed=%d\n", config_changed);
2267  
2268  	return config_changed;
2269  }
2270  
2271  /*
2272   * Callback for the ap_scan_bus_timer
2273   * Runs periodically, workqueue timer (ap_scan_bus_time)
2274   */
ap_scan_bus_timer_callback(struct timer_list * unused)2275  static void ap_scan_bus_timer_callback(struct timer_list *unused)
2276  {
2277  	/*
2278  	 * schedule work into the system long wq which when
2279  	 * the work is finally executed, calls the AP bus scan.
2280  	 */
2281  	queue_work(system_long_wq, &ap_scan_bus_work);
2282  }
2283  
2284  /*
2285   * Callback for the ap_scan_bus_work
2286   */
ap_scan_bus_wq_callback(struct work_struct * unused)2287  static void ap_scan_bus_wq_callback(struct work_struct *unused)
2288  {
2289  	/*
2290  	 * Try to invoke an ap_scan_bus(). If the mutex acquisition
2291  	 * fails there is currently another task already running the
2292  	 * AP scan bus and there is no need to wait and re-trigger the
2293  	 * scan again. Please note at the end of the scan bus function
2294  	 * the AP scan bus timer is re-armed which triggers then the
2295  	 * ap_scan_bus_timer_callback which enqueues a work into the
2296  	 * system_long_wq which invokes this function here again.
2297  	 */
2298  	if (mutex_trylock(&ap_scan_bus_mutex)) {
2299  		ap_scan_bus_task = current;
2300  		ap_scan_bus_result = ap_scan_bus();
2301  		ap_scan_bus_task = NULL;
2302  		mutex_unlock(&ap_scan_bus_mutex);
2303  	}
2304  }
2305  
ap_async_exit(void)2306  static inline void __exit ap_async_exit(void)
2307  {
2308  	if (ap_thread_flag)
2309  		ap_poll_thread_stop();
2310  	chsc_notifier_unregister(&ap_bus_nb);
2311  	cancel_work(&ap_scan_bus_work);
2312  	hrtimer_cancel(&ap_poll_timer);
2313  	timer_delete(&ap_scan_bus_timer);
2314  }
2315  
ap_async_init(void)2316  static inline int __init ap_async_init(void)
2317  {
2318  	int rc;
2319  
2320  	/* Setup the AP bus rescan timer. */
2321  	timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0);
2322  
2323  	/*
2324  	 * Setup the high resolution poll timer.
2325  	 * If we are running under z/VM adjust polling to z/VM polling rate.
2326  	 */
2327  	if (MACHINE_IS_VM)
2328  		poll_high_timeout = 1500000;
2329  	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2330  	ap_poll_timer.function = ap_poll_timeout;
2331  
2332  	queue_work(system_long_wq, &ap_scan_bus_work);
2333  
2334  	rc = chsc_notifier_register(&ap_bus_nb);
2335  	if (rc)
2336  		goto out;
2337  
2338  	/* Start the low priority AP bus poll thread. */
2339  	if (!ap_thread_flag)
2340  		return 0;
2341  
2342  	rc = ap_poll_thread_start();
2343  	if (rc)
2344  		goto out_notifier;
2345  
2346  	return 0;
2347  
2348  out_notifier:
2349  	chsc_notifier_unregister(&ap_bus_nb);
2350  out:
2351  	cancel_work(&ap_scan_bus_work);
2352  	hrtimer_cancel(&ap_poll_timer);
2353  	timer_delete(&ap_scan_bus_timer);
2354  	return rc;
2355  }
2356  
ap_irq_exit(void)2357  static inline void ap_irq_exit(void)
2358  {
2359  	if (ap_irq_flag)
2360  		unregister_adapter_interrupt(&ap_airq);
2361  }
2362  
ap_irq_init(void)2363  static inline int __init ap_irq_init(void)
2364  {
2365  	int rc;
2366  
2367  	if (!ap_interrupts_available() || !ap_useirq)
2368  		return 0;
2369  
2370  	rc = register_adapter_interrupt(&ap_airq);
2371  	ap_irq_flag = (rc == 0);
2372  
2373  	return rc;
2374  }
2375  
ap_debug_exit(void)2376  static inline void ap_debug_exit(void)
2377  {
2378  	debug_unregister(ap_dbf_info);
2379  }
2380  
ap_debug_init(void)2381  static inline int __init ap_debug_init(void)
2382  {
2383  	ap_dbf_info = debug_register("ap", 2, 1,
2384  				     AP_DBF_MAX_SPRINTF_ARGS * sizeof(long));
2385  	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2386  	debug_set_level(ap_dbf_info, DBF_ERR);
2387  
2388  	return 0;
2389  }
2390  
ap_perms_init(void)2391  static void __init ap_perms_init(void)
2392  {
2393  	/* all resources usable if no kernel parameter string given */
2394  	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2395  	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2396  	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2397  
2398  	/* apm kernel parameter string */
2399  	if (apm_str) {
2400  		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2401  		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2402  				  &ap_perms_mutex);
2403  	}
2404  
2405  	/* aqm kernel parameter string */
2406  	if (aqm_str) {
2407  		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2408  		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2409  				  &ap_perms_mutex);
2410  	}
2411  }
2412  
2413  /**
2414   * ap_module_init(): The module initialization code.
2415   *
2416   * Initializes the module.
2417   */
ap_module_init(void)2418  static int __init ap_module_init(void)
2419  {
2420  	int rc;
2421  
2422  	rc = ap_debug_init();
2423  	if (rc)
2424  		return rc;
2425  
2426  	if (!ap_instructions_available()) {
2427  		pr_warn("The hardware system does not support AP instructions\n");
2428  		return -ENODEV;
2429  	}
2430  
2431  	/* init ap_queue hashtable */
2432  	hash_init(ap_queues);
2433  
2434  	/* set up the AP permissions (ioctls, ap and aq masks) */
2435  	ap_perms_init();
2436  
2437  	/* Get AP configuration data if available */
2438  	ap_init_qci_info();
2439  
2440  	/* check default domain setting */
2441  	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2442  	    (ap_domain_index >= 0 &&
2443  	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2444  		pr_warn("%d is not a valid cryptographic domain\n",
2445  			ap_domain_index);
2446  		ap_domain_index = -1;
2447  	}
2448  
2449  	/* Create /sys/bus/ap. */
2450  	rc = bus_register(&ap_bus_type);
2451  	if (rc)
2452  		goto out;
2453  
2454  	/* Create /sys/devices/ap. */
2455  	ap_root_device = root_device_register("ap");
2456  	rc = PTR_ERR_OR_ZERO(ap_root_device);
2457  	if (rc)
2458  		goto out_bus;
2459  	ap_root_device->bus = &ap_bus_type;
2460  
2461  	/* enable interrupts if available */
2462  	rc = ap_irq_init();
2463  	if (rc)
2464  		goto out_device;
2465  
2466  	/* Setup asynchronous work (timers, workqueue, etc). */
2467  	rc = ap_async_init();
2468  	if (rc)
2469  		goto out_irq;
2470  
2471  	return 0;
2472  
2473  out_irq:
2474  	ap_irq_exit();
2475  out_device:
2476  	root_device_unregister(ap_root_device);
2477  out_bus:
2478  	bus_unregister(&ap_bus_type);
2479  out:
2480  	ap_debug_exit();
2481  	return rc;
2482  }
2483  
ap_module_exit(void)2484  static void __exit ap_module_exit(void)
2485  {
2486  	ap_async_exit();
2487  	ap_irq_exit();
2488  	root_device_unregister(ap_root_device);
2489  	bus_unregister(&ap_bus_type);
2490  	ap_debug_exit();
2491  }
2492  
2493  module_init(ap_module_init);
2494  module_exit(ap_module_exit);
2495