1  /*
2   * Copyright 2022 Advanced Micro Devices, Inc.
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice shall be included in
12   * all copies or substantial portions of the Software.
13   *
14   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17   * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20   * OTHER DEALINGS IN THE SOFTWARE.
21   */
22  
23  #include <linux/firmware.h>
24  #include <drm/drm_drv.h>
25  
26  #include "amdgpu.h"
27  #include "amdgpu_ucode.h"
28  #include "amdgpu_vpe.h"
29  #include "amdgpu_smu.h"
30  #include "soc15_common.h"
31  #include "vpe_v6_1.h"
32  
33  #define AMDGPU_CSA_VPE_SIZE 	64
34  /* VPE CSA resides in the 4th page of CSA */
35  #define AMDGPU_CSA_VPE_OFFSET 	(4096 * 3)
36  
37  /* 1 second timeout */
38  #define VPE_IDLE_TIMEOUT	msecs_to_jiffies(1000)
39  
40  #define VPE_MAX_DPM_LEVEL			4
41  #define FIXED1_8_BITS_PER_FRACTIONAL_PART	8
42  #define GET_PRATIO_INTEGER_PART(x)		((x) >> FIXED1_8_BITS_PER_FRACTIONAL_PART)
43  
44  static void vpe_set_ring_funcs(struct amdgpu_device *adev);
45  
div16_u16_rem(uint16_t dividend,uint16_t divisor,uint16_t * remainder)46  static inline uint16_t div16_u16_rem(uint16_t dividend, uint16_t divisor, uint16_t *remainder)
47  {
48  	*remainder = dividend % divisor;
49  	return dividend / divisor;
50  }
51  
complete_integer_division_u16(uint16_t dividend,uint16_t divisor,uint16_t * remainder)52  static inline uint16_t complete_integer_division_u16(
53  	uint16_t dividend,
54  	uint16_t divisor,
55  	uint16_t *remainder)
56  {
57  	return div16_u16_rem(dividend, divisor, (uint16_t *)remainder);
58  }
59  
vpe_u1_8_from_fraction(uint16_t numerator,uint16_t denominator)60  static uint16_t vpe_u1_8_from_fraction(uint16_t numerator, uint16_t denominator)
61  {
62  	u16 arg1_value = numerator;
63  	u16 arg2_value = denominator;
64  
65  	uint16_t remainder;
66  
67  	/* determine integer part */
68  	uint16_t res_value = complete_integer_division_u16(
69  		arg1_value, arg2_value, &remainder);
70  
71  	if (res_value > 127 /* CHAR_MAX */)
72  		return 0;
73  
74  	/* determine fractional part */
75  	{
76  		unsigned int i = FIXED1_8_BITS_PER_FRACTIONAL_PART;
77  
78  		do {
79  			remainder <<= 1;
80  
81  			res_value <<= 1;
82  
83  			if (remainder >= arg2_value) {
84  				res_value |= 1;
85  				remainder -= arg2_value;
86  			}
87  		} while (--i != 0);
88  	}
89  
90  	/* round up LSB */
91  	{
92  		uint16_t summand = (remainder << 1) >= arg2_value;
93  
94  		if ((res_value + summand) > 32767 /* SHRT_MAX */)
95  			return 0;
96  
97  		res_value += summand;
98  	}
99  
100  	return res_value;
101  }
102  
vpe_internal_get_pratio(uint16_t from_frequency,uint16_t to_frequency)103  static uint16_t vpe_internal_get_pratio(uint16_t from_frequency, uint16_t to_frequency)
104  {
105  	uint16_t pratio = vpe_u1_8_from_fraction(from_frequency, to_frequency);
106  
107  	if (GET_PRATIO_INTEGER_PART(pratio) > 1)
108  		pratio = 0;
109  
110  	return pratio;
111  }
112  
113  /*
114   * VPE has 4 DPM levels from level 0 (lowerest) to 3 (highest),
115   * VPE FW will dynamically decide which level should be used according to current loading.
116   *
117   * Get VPE and SOC clocks from PM, and select the appropriate four clock values,
118   * calculate the ratios of adjusting from one clock to another.
119   * The VPE FW can then request the appropriate frequency from the PMFW.
120   */
amdgpu_vpe_configure_dpm(struct amdgpu_vpe * vpe)121  int amdgpu_vpe_configure_dpm(struct amdgpu_vpe *vpe)
122  {
123  	struct amdgpu_device *adev = vpe->ring.adev;
124  	uint32_t dpm_ctl;
125  
126  	if (adev->pm.dpm_enabled) {
127  		struct dpm_clocks clock_table = { 0 };
128  		struct dpm_clock *VPEClks;
129  		struct dpm_clock *SOCClks;
130  		uint32_t idx;
131  		uint32_t vpeclk_enalbled_num = 0;
132  		uint32_t pratio_vmax_vnorm = 0, pratio_vnorm_vmid = 0, pratio_vmid_vmin = 0;
133  		uint16_t pratio_vmin_freq = 0, pratio_vmid_freq = 0, pratio_vnorm_freq = 0, pratio_vmax_freq = 0;
134  
135  		dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable));
136  		dpm_ctl |= 1; /* DPM enablement */
137  		WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl);
138  
139  		/* Get VPECLK and SOCCLK */
140  		if (amdgpu_dpm_get_dpm_clock_table(adev, &clock_table)) {
141  			dev_dbg(adev->dev, "%s: get clock failed!\n", __func__);
142  			goto disable_dpm;
143  		}
144  
145  		SOCClks = clock_table.SocClocks;
146  		VPEClks = clock_table.VPEClocks;
147  
148  		/* Comfirm enabled vpe clk num
149  		 * Enabled VPE clocks are ordered from low to high in VPEClks
150  		 * The highest valid clock index+1 is the number of VPEClks
151  		 */
152  		for (idx = PP_SMU_NUM_VPECLK_DPM_LEVELS; idx && !vpeclk_enalbled_num; idx--)
153  			if (VPEClks[idx-1].Freq)
154  				vpeclk_enalbled_num = idx;
155  
156  		/* vpe dpm only cares 4 levels. */
157  		for (idx = 0; idx < VPE_MAX_DPM_LEVEL; idx++) {
158  			uint32_t soc_dpm_level;
159  			uint32_t min_freq;
160  
161  			if (idx == 0)
162  				soc_dpm_level = 0;
163  			else
164  				soc_dpm_level = (idx * 2) + 1;
165  
166  			/* clamp the max level */
167  			if (soc_dpm_level > vpeclk_enalbled_num - 1)
168  				soc_dpm_level = vpeclk_enalbled_num - 1;
169  
170  			min_freq = (SOCClks[soc_dpm_level].Freq < VPEClks[soc_dpm_level].Freq) ?
171  				   SOCClks[soc_dpm_level].Freq : VPEClks[soc_dpm_level].Freq;
172  
173  			switch (idx) {
174  			case 0:
175  				pratio_vmin_freq = min_freq;
176  				break;
177  			case 1:
178  				pratio_vmid_freq = min_freq;
179  				break;
180  			case 2:
181  				pratio_vnorm_freq = min_freq;
182  				break;
183  			case 3:
184  				pratio_vmax_freq = min_freq;
185  				break;
186  			default:
187  				break;
188  			}
189  		}
190  
191  		if (pratio_vmin_freq && pratio_vmid_freq && pratio_vnorm_freq && pratio_vmax_freq) {
192  			uint32_t pratio_ctl;
193  
194  			pratio_vmax_vnorm = (uint32_t)vpe_internal_get_pratio(pratio_vmax_freq, pratio_vnorm_freq);
195  			pratio_vnorm_vmid = (uint32_t)vpe_internal_get_pratio(pratio_vnorm_freq, pratio_vmid_freq);
196  			pratio_vmid_vmin = (uint32_t)vpe_internal_get_pratio(pratio_vmid_freq, pratio_vmin_freq);
197  
198  			pratio_ctl = pratio_vmax_vnorm | (pratio_vnorm_vmid << 9) | (pratio_vmid_vmin << 18);
199  			WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_pratio), pratio_ctl);		/* PRatio */
200  			WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_request_interval), 24000);	/* 1ms, unit=1/24MHz */
201  			WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_decision_threshold), 1200000);	/* 50ms */
202  			WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_busy_clamp_threshold), 1200000);/* 50ms */
203  			WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_idle_clamp_threshold), 1200000);/* 50ms */
204  			dev_dbg(adev->dev, "%s: configure vpe dpm pratio done!\n", __func__);
205  		} else {
206  			dev_dbg(adev->dev, "%s: invalid pratio parameters!\n", __func__);
207  			goto disable_dpm;
208  		}
209  	}
210  	return 0;
211  
212  disable_dpm:
213  	dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable));
214  	dpm_ctl &= 0xfffffffe; /* Disable DPM */
215  	WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl);
216  	dev_dbg(adev->dev, "%s: disable vpe dpm\n", __func__);
217  	return -EINVAL;
218  }
219  
amdgpu_vpe_psp_update_sram(struct amdgpu_device * adev)220  int amdgpu_vpe_psp_update_sram(struct amdgpu_device *adev)
221  {
222  	struct amdgpu_firmware_info ucode = {
223  		.ucode_id = AMDGPU_UCODE_ID_VPE,
224  		.mc_addr = adev->vpe.cmdbuf_gpu_addr,
225  		.ucode_size = 8,
226  	};
227  
228  	return psp_execute_ip_fw_load(&adev->psp, &ucode);
229  }
230  
amdgpu_vpe_init_microcode(struct amdgpu_vpe * vpe)231  int amdgpu_vpe_init_microcode(struct amdgpu_vpe *vpe)
232  {
233  	struct amdgpu_device *adev = vpe->ring.adev;
234  	const struct vpe_firmware_header_v1_0 *vpe_hdr;
235  	char fw_prefix[32];
236  	int ret;
237  
238  	amdgpu_ucode_ip_version_decode(adev, VPE_HWIP, fw_prefix, sizeof(fw_prefix));
239  	ret = amdgpu_ucode_request(adev, &adev->vpe.fw, "amdgpu/%s.bin", fw_prefix);
240  	if (ret)
241  		goto out;
242  
243  	vpe_hdr = (const struct vpe_firmware_header_v1_0 *)adev->vpe.fw->data;
244  	adev->vpe.fw_version = le32_to_cpu(vpe_hdr->header.ucode_version);
245  	adev->vpe.feature_version = le32_to_cpu(vpe_hdr->ucode_feature_version);
246  
247  	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
248  		struct amdgpu_firmware_info *info;
249  
250  		info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTX];
251  		info->ucode_id = AMDGPU_UCODE_ID_VPE_CTX;
252  		info->fw = adev->vpe.fw;
253  		adev->firmware.fw_size +=
254  			ALIGN(le32_to_cpu(vpe_hdr->ctx_ucode_size_bytes), PAGE_SIZE);
255  
256  		info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTL];
257  		info->ucode_id = AMDGPU_UCODE_ID_VPE_CTL;
258  		info->fw = adev->vpe.fw;
259  		adev->firmware.fw_size +=
260  			ALIGN(le32_to_cpu(vpe_hdr->ctl_ucode_size_bytes), PAGE_SIZE);
261  	}
262  
263  	return 0;
264  out:
265  	dev_err(adev->dev, "fail to initialize vpe microcode\n");
266  	release_firmware(adev->vpe.fw);
267  	adev->vpe.fw = NULL;
268  	return ret;
269  }
270  
amdgpu_vpe_ring_init(struct amdgpu_vpe * vpe)271  int amdgpu_vpe_ring_init(struct amdgpu_vpe *vpe)
272  {
273  	struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe);
274  	struct amdgpu_ring *ring = &vpe->ring;
275  	int ret;
276  
277  	ring->ring_obj = NULL;
278  	ring->use_doorbell = true;
279  	ring->vm_hub = AMDGPU_MMHUB0(0);
280  	ring->doorbell_index = (adev->doorbell_index.vpe_ring << 1);
281  	snprintf(ring->name, 4, "vpe");
282  
283  	ret = amdgpu_ring_init(adev, ring, 1024, &vpe->trap_irq, 0,
284  			     AMDGPU_RING_PRIO_DEFAULT, NULL);
285  	if (ret)
286  		return ret;
287  
288  	return 0;
289  }
290  
amdgpu_vpe_ring_fini(struct amdgpu_vpe * vpe)291  int amdgpu_vpe_ring_fini(struct amdgpu_vpe *vpe)
292  {
293  	amdgpu_ring_fini(&vpe->ring);
294  
295  	return 0;
296  }
297  
vpe_early_init(void * handle)298  static int vpe_early_init(void *handle)
299  {
300  	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
301  	struct amdgpu_vpe *vpe = &adev->vpe;
302  
303  	switch (amdgpu_ip_version(adev, VPE_HWIP, 0)) {
304  	case IP_VERSION(6, 1, 0):
305  	case IP_VERSION(6, 1, 3):
306  		vpe_v6_1_set_funcs(vpe);
307  		break;
308  	case IP_VERSION(6, 1, 1):
309  		vpe_v6_1_set_funcs(vpe);
310  		vpe->collaborate_mode = true;
311  		break;
312  	default:
313  		return -EINVAL;
314  	}
315  
316  	vpe_set_ring_funcs(adev);
317  	vpe_set_regs(vpe);
318  
319  	dev_info(adev->dev, "VPE: collaborate mode %s", vpe->collaborate_mode ? "true" : "false");
320  
321  	return 0;
322  }
323  
vpe_idle_work_handler(struct work_struct * work)324  static void vpe_idle_work_handler(struct work_struct *work)
325  {
326  	struct amdgpu_device *adev =
327  		container_of(work, struct amdgpu_device, vpe.idle_work.work);
328  	unsigned int fences = 0;
329  
330  	fences += amdgpu_fence_count_emitted(&adev->vpe.ring);
331  
332  	if (fences == 0)
333  		amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE);
334  	else
335  		schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT);
336  }
337  
vpe_common_init(struct amdgpu_vpe * vpe)338  static int vpe_common_init(struct amdgpu_vpe *vpe)
339  {
340  	struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe);
341  	int r;
342  
343  	r = amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
344  				    AMDGPU_GEM_DOMAIN_GTT,
345  				    &adev->vpe.cmdbuf_obj,
346  				    &adev->vpe.cmdbuf_gpu_addr,
347  				    (void **)&adev->vpe.cmdbuf_cpu_addr);
348  	if (r) {
349  		dev_err(adev->dev, "VPE: failed to allocate cmdbuf bo %d\n", r);
350  		return r;
351  	}
352  
353  	vpe->context_started = false;
354  	INIT_DELAYED_WORK(&adev->vpe.idle_work, vpe_idle_work_handler);
355  
356  	return 0;
357  }
358  
vpe_sw_init(void * handle)359  static int vpe_sw_init(void *handle)
360  {
361  	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
362  	struct amdgpu_vpe *vpe = &adev->vpe;
363  	int ret;
364  
365  	ret = vpe_common_init(vpe);
366  	if (ret)
367  		goto out;
368  
369  	ret = vpe_irq_init(vpe);
370  	if (ret)
371  		goto out;
372  
373  	ret = vpe_ring_init(vpe);
374  	if (ret)
375  		goto out;
376  
377  	ret = vpe_init_microcode(vpe);
378  	if (ret)
379  		goto out;
380  out:
381  	return ret;
382  }
383  
vpe_sw_fini(void * handle)384  static int vpe_sw_fini(void *handle)
385  {
386  	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
387  	struct amdgpu_vpe *vpe = &adev->vpe;
388  
389  	release_firmware(vpe->fw);
390  	vpe->fw = NULL;
391  
392  	vpe_ring_fini(vpe);
393  
394  	amdgpu_bo_free_kernel(&adev->vpe.cmdbuf_obj,
395  			      &adev->vpe.cmdbuf_gpu_addr,
396  			      (void **)&adev->vpe.cmdbuf_cpu_addr);
397  
398  	return 0;
399  }
400  
vpe_hw_init(void * handle)401  static int vpe_hw_init(void *handle)
402  {
403  	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
404  	struct amdgpu_vpe *vpe = &adev->vpe;
405  	int ret;
406  
407  	/* Power on VPE */
408  	ret = amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE,
409  						     AMD_PG_STATE_UNGATE);
410  	if (ret)
411  		return ret;
412  
413  	ret = vpe_load_microcode(vpe);
414  	if (ret)
415  		return ret;
416  
417  	ret = vpe_ring_start(vpe);
418  	if (ret)
419  		return ret;
420  
421  	return 0;
422  }
423  
vpe_hw_fini(void * handle)424  static int vpe_hw_fini(void *handle)
425  {
426  	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
427  	struct amdgpu_vpe *vpe = &adev->vpe;
428  
429  	vpe_ring_stop(vpe);
430  
431  	/* Power off VPE */
432  	amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE);
433  
434  	return 0;
435  }
436  
vpe_suspend(void * handle)437  static int vpe_suspend(void *handle)
438  {
439  	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
440  
441  	cancel_delayed_work_sync(&adev->vpe.idle_work);
442  
443  	return vpe_hw_fini(adev);
444  }
445  
vpe_resume(void * handle)446  static int vpe_resume(void *handle)
447  {
448  	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
449  
450  	return vpe_hw_init(adev);
451  }
452  
vpe_ring_insert_nop(struct amdgpu_ring * ring,uint32_t count)453  static void vpe_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
454  {
455  	int i;
456  
457  	for (i = 0; i < count; i++)
458  		if (i == 0)
459  			amdgpu_ring_write(ring, ring->funcs->nop |
460  				VPE_CMD_NOP_HEADER_COUNT(count - 1));
461  		else
462  			amdgpu_ring_write(ring, ring->funcs->nop);
463  }
464  
vpe_get_csa_mc_addr(struct amdgpu_ring * ring,uint32_t vmid)465  static uint64_t vpe_get_csa_mc_addr(struct amdgpu_ring *ring, uint32_t vmid)
466  {
467  	struct amdgpu_device *adev = ring->adev;
468  	uint32_t index = 0;
469  	uint64_t csa_mc_addr;
470  
471  	if (amdgpu_sriov_vf(adev) || vmid == 0 || !adev->gfx.mcbp)
472  		return 0;
473  
474  	csa_mc_addr = amdgpu_csa_vaddr(adev) + AMDGPU_CSA_VPE_OFFSET +
475  		      index * AMDGPU_CSA_VPE_SIZE;
476  
477  	return csa_mc_addr;
478  }
479  
vpe_ring_emit_pred_exec(struct amdgpu_ring * ring,uint32_t device_select,uint32_t exec_count)480  static void vpe_ring_emit_pred_exec(struct amdgpu_ring *ring,
481  				    uint32_t device_select,
482  				    uint32_t exec_count)
483  {
484  	if (!ring->adev->vpe.collaborate_mode)
485  		return;
486  
487  	amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_PRED_EXE, 0) |
488  				(device_select << 16));
489  	amdgpu_ring_write(ring, exec_count & 0x1fff);
490  }
491  
vpe_ring_emit_ib(struct amdgpu_ring * ring,struct amdgpu_job * job,struct amdgpu_ib * ib,uint32_t flags)492  static void vpe_ring_emit_ib(struct amdgpu_ring *ring,
493  			     struct amdgpu_job *job,
494  			     struct amdgpu_ib *ib,
495  			     uint32_t flags)
496  {
497  	uint32_t vmid = AMDGPU_JOB_GET_VMID(job);
498  	uint64_t csa_mc_addr = vpe_get_csa_mc_addr(ring, vmid);
499  
500  	amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_INDIRECT, 0) |
501  				VPE_CMD_INDIRECT_HEADER_VMID(vmid & 0xf));
502  
503  	/* base must be 32 byte aligned */
504  	amdgpu_ring_write(ring, ib->gpu_addr & 0xffffffe0);
505  	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
506  	amdgpu_ring_write(ring, ib->length_dw);
507  	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
508  	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
509  }
510  
vpe_ring_emit_fence(struct amdgpu_ring * ring,uint64_t addr,uint64_t seq,unsigned int flags)511  static void vpe_ring_emit_fence(struct amdgpu_ring *ring, uint64_t addr,
512  				uint64_t seq, unsigned int flags)
513  {
514  	int i = 0;
515  
516  	do {
517  		/* write the fence */
518  		amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0));
519  		/* zero in first two bits */
520  		WARN_ON_ONCE(addr & 0x3);
521  		amdgpu_ring_write(ring, lower_32_bits(addr));
522  		amdgpu_ring_write(ring, upper_32_bits(addr));
523  		amdgpu_ring_write(ring, i == 0 ? lower_32_bits(seq) : upper_32_bits(seq));
524  		addr += 4;
525  	} while ((flags & AMDGPU_FENCE_FLAG_64BIT) && (i++ < 1));
526  
527  	if (flags & AMDGPU_FENCE_FLAG_INT) {
528  		/* generate an interrupt */
529  		amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_TRAP, 0));
530  		amdgpu_ring_write(ring, 0);
531  	}
532  
533  }
534  
vpe_ring_emit_pipeline_sync(struct amdgpu_ring * ring)535  static void vpe_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
536  {
537  	uint32_t seq = ring->fence_drv.sync_seq;
538  	uint64_t addr = ring->fence_drv.gpu_addr;
539  
540  	vpe_ring_emit_pred_exec(ring, 0, 6);
541  
542  	/* wait for idle */
543  	amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM,
544  				VPE_POLL_REGMEM_SUBOP_REGMEM) |
545  				VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
546  				VPE_CMD_POLL_REGMEM_HEADER_MEM(1));
547  	amdgpu_ring_write(ring, addr & 0xfffffffc);
548  	amdgpu_ring_write(ring, upper_32_bits(addr));
549  	amdgpu_ring_write(ring, seq); /* reference */
550  	amdgpu_ring_write(ring, 0xffffffff); /* mask */
551  	amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
552  				VPE_CMD_POLL_REGMEM_DW5_INTERVAL(4));
553  }
554  
vpe_ring_emit_wreg(struct amdgpu_ring * ring,uint32_t reg,uint32_t val)555  static void vpe_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val)
556  {
557  	vpe_ring_emit_pred_exec(ring, 0, 3);
558  
559  	amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_REG_WRITE, 0));
560  	amdgpu_ring_write(ring,	reg << 2);
561  	amdgpu_ring_write(ring, val);
562  }
563  
vpe_ring_emit_reg_wait(struct amdgpu_ring * ring,uint32_t reg,uint32_t val,uint32_t mask)564  static void vpe_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
565  				   uint32_t val, uint32_t mask)
566  {
567  	vpe_ring_emit_pred_exec(ring, 0, 6);
568  
569  	amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM,
570  				VPE_POLL_REGMEM_SUBOP_REGMEM) |
571  				VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
572  				VPE_CMD_POLL_REGMEM_HEADER_MEM(0));
573  	amdgpu_ring_write(ring, reg << 2);
574  	amdgpu_ring_write(ring, 0);
575  	amdgpu_ring_write(ring, val); /* reference */
576  	amdgpu_ring_write(ring, mask); /* mask */
577  	amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
578  				VPE_CMD_POLL_REGMEM_DW5_INTERVAL(10));
579  }
580  
vpe_ring_emit_vm_flush(struct amdgpu_ring * ring,unsigned int vmid,uint64_t pd_addr)581  static void vpe_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned int vmid,
582  				   uint64_t pd_addr)
583  {
584  	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
585  }
586  
vpe_ring_init_cond_exec(struct amdgpu_ring * ring,uint64_t addr)587  static unsigned int vpe_ring_init_cond_exec(struct amdgpu_ring *ring,
588  					    uint64_t addr)
589  {
590  	unsigned int ret;
591  
592  	amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_COND_EXE, 0));
593  	amdgpu_ring_write(ring, lower_32_bits(addr));
594  	amdgpu_ring_write(ring, upper_32_bits(addr));
595  	amdgpu_ring_write(ring, 1);
596  	ret = ring->wptr & ring->buf_mask;
597  	amdgpu_ring_write(ring, 0);
598  
599  	return ret;
600  }
601  
vpe_ring_preempt_ib(struct amdgpu_ring * ring)602  static int vpe_ring_preempt_ib(struct amdgpu_ring *ring)
603  {
604  	struct amdgpu_device *adev = ring->adev;
605  	struct amdgpu_vpe *vpe = &adev->vpe;
606  	uint32_t preempt_reg = vpe->regs.queue0_preempt;
607  	int i, r = 0;
608  
609  	/* assert preemption condition */
610  	amdgpu_ring_set_preempt_cond_exec(ring, false);
611  
612  	/* emit the trailing fence */
613  	ring->trail_seq += 1;
614  	amdgpu_ring_alloc(ring, 10);
615  	vpe_ring_emit_fence(ring, ring->trail_fence_gpu_addr, ring->trail_seq, 0);
616  	amdgpu_ring_commit(ring);
617  
618  	/* assert IB preemption */
619  	WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 1);
620  
621  	/* poll the trailing fence */
622  	for (i = 0; i < adev->usec_timeout; i++) {
623  		if (ring->trail_seq ==
624  		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
625  			break;
626  		udelay(1);
627  	}
628  
629  	if (i >= adev->usec_timeout) {
630  		r = -EINVAL;
631  		dev_err(adev->dev, "ring %d failed to be preempted\n", ring->idx);
632  	}
633  
634  	/* deassert IB preemption */
635  	WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 0);
636  
637  	/* deassert the preemption condition */
638  	amdgpu_ring_set_preempt_cond_exec(ring, true);
639  
640  	return r;
641  }
642  
vpe_set_clockgating_state(void * handle,enum amd_clockgating_state state)643  static int vpe_set_clockgating_state(void *handle,
644  				     enum amd_clockgating_state state)
645  {
646  	return 0;
647  }
648  
vpe_set_powergating_state(void * handle,enum amd_powergating_state state)649  static int vpe_set_powergating_state(void *handle,
650  				     enum amd_powergating_state state)
651  {
652  	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
653  	struct amdgpu_vpe *vpe = &adev->vpe;
654  
655  	if (!adev->pm.dpm_enabled)
656  		dev_err(adev->dev, "Without PM, cannot support powergating\n");
657  
658  	dev_dbg(adev->dev, "%s: %s!\n", __func__, (state == AMD_PG_STATE_GATE) ? "GATE":"UNGATE");
659  
660  	if (state == AMD_PG_STATE_GATE) {
661  		amdgpu_dpm_enable_vpe(adev, false);
662  		vpe->context_started = false;
663  	} else {
664  		amdgpu_dpm_enable_vpe(adev, true);
665  	}
666  
667  	return 0;
668  }
669  
vpe_ring_get_rptr(struct amdgpu_ring * ring)670  static uint64_t vpe_ring_get_rptr(struct amdgpu_ring *ring)
671  {
672  	struct amdgpu_device *adev = ring->adev;
673  	struct amdgpu_vpe *vpe = &adev->vpe;
674  	uint64_t rptr;
675  
676  	if (ring->use_doorbell) {
677  		rptr = atomic64_read((atomic64_t *)ring->rptr_cpu_addr);
678  		dev_dbg(adev->dev, "rptr/doorbell before shift == 0x%016llx\n", rptr);
679  	} else {
680  		rptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_hi));
681  		rptr = rptr << 32;
682  		rptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_lo));
683  		dev_dbg(adev->dev, "rptr before shift [%i] == 0x%016llx\n", ring->me, rptr);
684  	}
685  
686  	return (rptr >> 2);
687  }
688  
vpe_ring_get_wptr(struct amdgpu_ring * ring)689  static uint64_t vpe_ring_get_wptr(struct amdgpu_ring *ring)
690  {
691  	struct amdgpu_device *adev = ring->adev;
692  	struct amdgpu_vpe *vpe = &adev->vpe;
693  	uint64_t wptr;
694  
695  	if (ring->use_doorbell) {
696  		wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr);
697  		dev_dbg(adev->dev, "wptr/doorbell before shift == 0x%016llx\n", wptr);
698  	} else {
699  		wptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_hi));
700  		wptr = wptr << 32;
701  		wptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_lo));
702  		dev_dbg(adev->dev, "wptr before shift [%i] == 0x%016llx\n", ring->me, wptr);
703  	}
704  
705  	return (wptr >> 2);
706  }
707  
vpe_ring_set_wptr(struct amdgpu_ring * ring)708  static void vpe_ring_set_wptr(struct amdgpu_ring *ring)
709  {
710  	struct amdgpu_device *adev = ring->adev;
711  	struct amdgpu_vpe *vpe = &adev->vpe;
712  
713  	if (ring->use_doorbell) {
714  		dev_dbg(adev->dev, "Using doorbell, \
715  			wptr_offs == 0x%08x, \
716  			lower_32_bits(ring->wptr) << 2 == 0x%08x, \
717  			upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
718  			ring->wptr_offs,
719  			lower_32_bits(ring->wptr << 2),
720  			upper_32_bits(ring->wptr << 2));
721  		atomic64_set((atomic64_t *)ring->wptr_cpu_addr, ring->wptr << 2);
722  		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
723  		if (vpe->collaborate_mode)
724  			WDOORBELL64(ring->doorbell_index + 4, ring->wptr << 2);
725  	} else {
726  		int i;
727  
728  		for (i = 0; i < vpe->num_instances; i++) {
729  			dev_dbg(adev->dev, "Not using doorbell, \
730  				regVPEC_QUEUE0_RB_WPTR == 0x%08x, \
731  				regVPEC_QUEUE0_RB_WPTR_HI == 0x%08x\n",
732  				lower_32_bits(ring->wptr << 2),
733  				upper_32_bits(ring->wptr << 2));
734  			WREG32(vpe_get_reg_offset(vpe, i, vpe->regs.queue0_rb_wptr_lo),
735  			       lower_32_bits(ring->wptr << 2));
736  			WREG32(vpe_get_reg_offset(vpe, i, vpe->regs.queue0_rb_wptr_hi),
737  			       upper_32_bits(ring->wptr << 2));
738  		}
739  	}
740  }
741  
vpe_ring_test_ring(struct amdgpu_ring * ring)742  static int vpe_ring_test_ring(struct amdgpu_ring *ring)
743  {
744  	struct amdgpu_device *adev = ring->adev;
745  	const uint32_t test_pattern = 0xdeadbeef;
746  	uint32_t index, i;
747  	uint64_t wb_addr;
748  	int ret;
749  
750  	ret = amdgpu_device_wb_get(adev, &index);
751  	if (ret) {
752  		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret);
753  		return ret;
754  	}
755  
756  	adev->wb.wb[index] = 0;
757  	wb_addr = adev->wb.gpu_addr + (index * 4);
758  
759  	ret = amdgpu_ring_alloc(ring, 4);
760  	if (ret) {
761  		dev_err(adev->dev, "amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, ret);
762  		goto out;
763  	}
764  
765  	amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0));
766  	amdgpu_ring_write(ring, lower_32_bits(wb_addr));
767  	amdgpu_ring_write(ring, upper_32_bits(wb_addr));
768  	amdgpu_ring_write(ring, test_pattern);
769  	amdgpu_ring_commit(ring);
770  
771  	for (i = 0; i < adev->usec_timeout; i++) {
772  		if (le32_to_cpu(adev->wb.wb[index]) == test_pattern)
773  			goto out;
774  		udelay(1);
775  	}
776  
777  	ret = -ETIMEDOUT;
778  out:
779  	amdgpu_device_wb_free(adev, index);
780  
781  	return ret;
782  }
783  
vpe_ring_test_ib(struct amdgpu_ring * ring,long timeout)784  static int vpe_ring_test_ib(struct amdgpu_ring *ring, long timeout)
785  {
786  	struct amdgpu_device *adev = ring->adev;
787  	const uint32_t test_pattern = 0xdeadbeef;
788  	struct amdgpu_ib ib = {};
789  	struct dma_fence *f = NULL;
790  	uint32_t index;
791  	uint64_t wb_addr;
792  	int ret;
793  
794  	ret = amdgpu_device_wb_get(adev, &index);
795  	if (ret) {
796  		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret);
797  		return ret;
798  	}
799  
800  	adev->wb.wb[index] = 0;
801  	wb_addr = adev->wb.gpu_addr + (index * 4);
802  
803  	ret = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib);
804  	if (ret)
805  		goto err0;
806  
807  	ib.ptr[0] = VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0);
808  	ib.ptr[1] = lower_32_bits(wb_addr);
809  	ib.ptr[2] = upper_32_bits(wb_addr);
810  	ib.ptr[3] = test_pattern;
811  	ib.ptr[4] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
812  	ib.ptr[5] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
813  	ib.ptr[6] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
814  	ib.ptr[7] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
815  	ib.length_dw = 8;
816  
817  	ret = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
818  	if (ret)
819  		goto err1;
820  
821  	ret = dma_fence_wait_timeout(f, false, timeout);
822  	if (ret <= 0) {
823  		ret = ret ? : -ETIMEDOUT;
824  		goto err1;
825  	}
826  
827  	ret = (le32_to_cpu(adev->wb.wb[index]) == test_pattern) ? 0 : -EINVAL;
828  
829  err1:
830  	amdgpu_ib_free(adev, &ib, NULL);
831  	dma_fence_put(f);
832  err0:
833  	amdgpu_device_wb_free(adev, index);
834  
835  	return ret;
836  }
837  
vpe_ring_begin_use(struct amdgpu_ring * ring)838  static void vpe_ring_begin_use(struct amdgpu_ring *ring)
839  {
840  	struct amdgpu_device *adev = ring->adev;
841  	struct amdgpu_vpe *vpe = &adev->vpe;
842  
843  	cancel_delayed_work_sync(&adev->vpe.idle_work);
844  
845  	/* Power on VPE and notify VPE of new context  */
846  	if (!vpe->context_started) {
847  		uint32_t context_notify;
848  
849  		/* Power on VPE */
850  		amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_UNGATE);
851  
852  		/* Indicates that a job from a new context has been submitted. */
853  		context_notify = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator));
854  		if ((context_notify & 0x1) == 0)
855  			context_notify |= 0x1;
856  		else
857  			context_notify &= ~(0x1);
858  		WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator), context_notify);
859  		vpe->context_started = true;
860  	}
861  }
862  
vpe_ring_end_use(struct amdgpu_ring * ring)863  static void vpe_ring_end_use(struct amdgpu_ring *ring)
864  {
865  	struct amdgpu_device *adev = ring->adev;
866  
867  	schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT);
868  }
869  
870  static const struct amdgpu_ring_funcs vpe_ring_funcs = {
871  	.type = AMDGPU_RING_TYPE_VPE,
872  	.align_mask = 0xf,
873  	.nop = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0),
874  	.support_64bit_ptrs = true,
875  	.get_rptr = vpe_ring_get_rptr,
876  	.get_wptr = vpe_ring_get_wptr,
877  	.set_wptr = vpe_ring_set_wptr,
878  	.emit_frame_size =
879  		5 + /* vpe_ring_init_cond_exec */
880  		6 + /* vpe_ring_emit_pipeline_sync */
881  		10 + 10 + 10 + /* vpe_ring_emit_fence */
882  		/* vpe_ring_emit_vm_flush */
883  		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
884  		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6,
885  	.emit_ib_size = 7 + 6,
886  	.emit_ib = vpe_ring_emit_ib,
887  	.emit_pipeline_sync = vpe_ring_emit_pipeline_sync,
888  	.emit_fence = vpe_ring_emit_fence,
889  	.emit_vm_flush = vpe_ring_emit_vm_flush,
890  	.emit_wreg = vpe_ring_emit_wreg,
891  	.emit_reg_wait = vpe_ring_emit_reg_wait,
892  	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
893  	.insert_nop = vpe_ring_insert_nop,
894  	.pad_ib = amdgpu_ring_generic_pad_ib,
895  	.test_ring = vpe_ring_test_ring,
896  	.test_ib = vpe_ring_test_ib,
897  	.init_cond_exec = vpe_ring_init_cond_exec,
898  	.preempt_ib = vpe_ring_preempt_ib,
899  	.begin_use = vpe_ring_begin_use,
900  	.end_use = vpe_ring_end_use,
901  };
902  
vpe_set_ring_funcs(struct amdgpu_device * adev)903  static void vpe_set_ring_funcs(struct amdgpu_device *adev)
904  {
905  	adev->vpe.ring.funcs = &vpe_ring_funcs;
906  }
907  
908  const struct amd_ip_funcs vpe_ip_funcs = {
909  	.name = "vpe_v6_1",
910  	.early_init = vpe_early_init,
911  	.late_init = NULL,
912  	.sw_init = vpe_sw_init,
913  	.sw_fini = vpe_sw_fini,
914  	.hw_init = vpe_hw_init,
915  	.hw_fini = vpe_hw_fini,
916  	.suspend = vpe_suspend,
917  	.resume = vpe_resume,
918  	.soft_reset = NULL,
919  	.set_clockgating_state = vpe_set_clockgating_state,
920  	.set_powergating_state = vpe_set_powergating_state,
921  };
922  
923  const struct amdgpu_ip_block_version vpe_v6_1_ip_block = {
924  	.type = AMD_IP_BLOCK_TYPE_VPE,
925  	.major = 6,
926  	.minor = 1,
927  	.rev = 0,
928  	.funcs = &vpe_ip_funcs,
929  };
930