1  /*
2   * Copyright 2019 Advanced Micro Devices, Inc.
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice shall be included in
12   * all copies or substantial portions of the Software.
13   *
14   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17   * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20   * OTHER DEALINGS IN THE SOFTWARE.
21   *
22   */
23  
24  #include "amdgpu_ras_eeprom.h"
25  #include "amdgpu.h"
26  #include "amdgpu_ras.h"
27  #include <linux/bits.h>
28  #include "atom.h"
29  #include "amdgpu_eeprom.h"
30  #include "amdgpu_atomfirmware.h"
31  #include <linux/debugfs.h>
32  #include <linux/uaccess.h>
33  
34  #include "amdgpu_reset.h"
35  
36  /* These are memory addresses as would be seen by one or more EEPROM
37   * chips strung on the I2C bus, usually by manipulating pins 1-3 of a
38   * set of EEPROM devices. They form a continuous memory space.
39   *
40   * The I2C device address includes the device type identifier, 1010b,
41   * which is a reserved value and indicates that this is an I2C EEPROM
42   * device. It also includes the top 3 bits of the 19 bit EEPROM memory
43   * address, namely bits 18, 17, and 16. This makes up the 7 bit
44   * address sent on the I2C bus with bit 0 being the direction bit,
45   * which is not represented here, and sent by the hardware directly.
46   *
47   * For instance,
48   *   50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0.
49   *   54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h.
50   *   56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h.
51   * Depending on the size of the I2C EEPROM device(s), bits 18:16 may
52   * address memory in a device or a device on the I2C bus, depending on
53   * the status of pins 1-3. See top of amdgpu_eeprom.c.
54   *
55   * The RAS table lives either at address 0 or address 40000h of EEPROM.
56   */
57  #define EEPROM_I2C_MADDR_0      0x0
58  #define EEPROM_I2C_MADDR_4      0x40000
59  
60  /*
61   * The 2 macros below represent the actual size in bytes that
62   * those entities occupy in the EEPROM memory.
63   * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
64   * uses uint64 to store 6b fields such as retired_page.
65   */
66  #define RAS_TABLE_HEADER_SIZE   20
67  #define RAS_TABLE_RECORD_SIZE   24
68  
69  /* Table hdr is 'AMDR' */
70  #define RAS_TABLE_HDR_VAL       0x414d4452
71  
72  /* Bad GPU tag ‘BADG’ */
73  #define RAS_TABLE_HDR_BAD       0x42414447
74  
75  /*
76   * EEPROM Table structure v1
77   * ---------------------------------
78   * |                               |
79   * |     EEPROM TABLE HEADER       |
80   * |      ( size 20 Bytes )        |
81   * |                               |
82   * ---------------------------------
83   * |                               |
84   * |    BAD PAGE RECORD AREA       |
85   * |                               |
86   * ---------------------------------
87   */
88  
89  /* Assume 2-Mbit size EEPROM and take up the whole space. */
90  #define RAS_TBL_SIZE_BYTES      (256 * 1024)
91  #define RAS_TABLE_START         0
92  #define RAS_HDR_START           RAS_TABLE_START
93  #define RAS_RECORD_START        (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
94  #define RAS_MAX_RECORD_COUNT    ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
95  				 / RAS_TABLE_RECORD_SIZE)
96  
97  /*
98   * EEPROM Table structrue v2.1
99   * ---------------------------------
100   * |                               |
101   * |     EEPROM TABLE HEADER       |
102   * |      ( size 20 Bytes )        |
103   * |                               |
104   * ---------------------------------
105   * |                               |
106   * |     EEPROM TABLE RAS INFO     |
107   * | (available info size 4 Bytes) |
108   * |  ( reserved size 252 Bytes )  |
109   * |                               |
110   * ---------------------------------
111   * |                               |
112   * |     BAD PAGE RECORD AREA      |
113   * |                               |
114   * ---------------------------------
115   */
116  
117  /* EEPROM Table V2_1 */
118  #define RAS_TABLE_V2_1_INFO_SIZE       256
119  #define RAS_TABLE_V2_1_INFO_START      RAS_TABLE_HEADER_SIZE
120  #define RAS_RECORD_START_V2_1          (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \
121  					RAS_TABLE_V2_1_INFO_SIZE)
122  #define RAS_MAX_RECORD_COUNT_V2_1      ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \
123  					RAS_TABLE_V2_1_INFO_SIZE) \
124  					/ RAS_TABLE_RECORD_SIZE)
125  
126  /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
127   * offset off of RAS_TABLE_START.  That is, this is something you can
128   * add to control->i2c_address, and then tell I2C layer to read
129   * from/write to there. _N is the so called absolute index,
130   * because it starts right after the table header.
131   */
132  #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
133  				     (_N) * RAS_TABLE_RECORD_SIZE)
134  
135  #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
136  				      (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
137  
138  /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
139   * of "fri", return the absolute record index off of the end of
140   * the table header.
141   */
142  #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
143  			      (_C)->ras_max_record_count)
144  
145  #define RAS_NUM_RECS(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
146  				  RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
147  
148  #define RAS_NUM_RECS_V2_1(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
149  				       RAS_TABLE_HEADER_SIZE - \
150  				       RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE)
151  
152  #define to_amdgpu_device(x) ((container_of(x, struct amdgpu_ras, eeprom_control))->adev)
153  
__is_ras_eeprom_supported(struct amdgpu_device * adev)154  static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
155  {
156  	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
157  	case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */
158  	case IP_VERSION(11, 0, 7): /* Sienna cichlid */
159  	case IP_VERSION(13, 0, 0):
160  	case IP_VERSION(13, 0, 2): /* Aldebaran */
161  	case IP_VERSION(13, 0, 10):
162  		return true;
163  	case IP_VERSION(13, 0, 6):
164  	case IP_VERSION(13, 0, 14):
165  		return (adev->gmc.is_app_apu) ? false : true;
166  	default:
167  		return false;
168  	}
169  }
170  
__get_eeprom_i2c_addr(struct amdgpu_device * adev,struct amdgpu_ras_eeprom_control * control)171  static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
172  				  struct amdgpu_ras_eeprom_control *control)
173  {
174  	struct atom_context *atom_ctx = adev->mode_info.atom_context;
175  	u8 i2c_addr;
176  
177  	if (!control)
178  		return false;
179  
180  	if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) {
181  		/* The address given by VBIOS is an 8-bit, wire-format
182  		 * address, i.e. the most significant byte.
183  		 *
184  		 * Normalize it to a 19-bit EEPROM address. Remove the
185  		 * device type identifier and make it a 7-bit address;
186  		 * then make it a 19-bit EEPROM address. See top of
187  		 * amdgpu_eeprom.c.
188  		 */
189  		i2c_addr = (i2c_addr & 0x0F) >> 1;
190  		control->i2c_address = ((u32) i2c_addr) << 16;
191  
192  		return true;
193  	}
194  
195  	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
196  	case IP_VERSION(11, 0, 2):
197  		/* VEGA20 and ARCTURUS */
198  		if (adev->asic_type == CHIP_VEGA20)
199  			control->i2c_address = EEPROM_I2C_MADDR_0;
200  		else if (strnstr(atom_ctx->vbios_pn,
201  				 "D342",
202  				 sizeof(atom_ctx->vbios_pn)))
203  			control->i2c_address = EEPROM_I2C_MADDR_0;
204  		else
205  			control->i2c_address = EEPROM_I2C_MADDR_4;
206  		return true;
207  	case IP_VERSION(11, 0, 7):
208  		control->i2c_address = EEPROM_I2C_MADDR_0;
209  		return true;
210  	case IP_VERSION(13, 0, 2):
211  		if (strnstr(atom_ctx->vbios_pn, "D673",
212  			    sizeof(atom_ctx->vbios_pn)))
213  			control->i2c_address = EEPROM_I2C_MADDR_4;
214  		else
215  			control->i2c_address = EEPROM_I2C_MADDR_0;
216  		return true;
217  	case IP_VERSION(13, 0, 0):
218  		if (strnstr(atom_ctx->vbios_pn, "D707",
219  			    sizeof(atom_ctx->vbios_pn)))
220  			control->i2c_address = EEPROM_I2C_MADDR_0;
221  		else
222  			control->i2c_address = EEPROM_I2C_MADDR_4;
223  		return true;
224  	case IP_VERSION(13, 0, 6):
225  	case IP_VERSION(13, 0, 10):
226  	case IP_VERSION(13, 0, 14):
227  		control->i2c_address = EEPROM_I2C_MADDR_4;
228  		return true;
229  	default:
230  		return false;
231  	}
232  }
233  
234  static void
__encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header * hdr,unsigned char * buf)235  __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr,
236  			     unsigned char *buf)
237  {
238  	u32 *pp = (uint32_t *)buf;
239  
240  	pp[0] = cpu_to_le32(hdr->header);
241  	pp[1] = cpu_to_le32(hdr->version);
242  	pp[2] = cpu_to_le32(hdr->first_rec_offset);
243  	pp[3] = cpu_to_le32(hdr->tbl_size);
244  	pp[4] = cpu_to_le32(hdr->checksum);
245  }
246  
247  static void
__decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header * hdr,unsigned char * buf)248  __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr,
249  			       unsigned char *buf)
250  {
251  	u32 *pp = (uint32_t *)buf;
252  
253  	hdr->header	      = le32_to_cpu(pp[0]);
254  	hdr->version	      = le32_to_cpu(pp[1]);
255  	hdr->first_rec_offset = le32_to_cpu(pp[2]);
256  	hdr->tbl_size	      = le32_to_cpu(pp[3]);
257  	hdr->checksum	      = le32_to_cpu(pp[4]);
258  }
259  
__write_table_header(struct amdgpu_ras_eeprom_control * control)260  static int __write_table_header(struct amdgpu_ras_eeprom_control *control)
261  {
262  	u8 buf[RAS_TABLE_HEADER_SIZE];
263  	struct amdgpu_device *adev = to_amdgpu_device(control);
264  	int res;
265  
266  	memset(buf, 0, sizeof(buf));
267  	__encode_table_header_to_buf(&control->tbl_hdr, buf);
268  
269  	/* i2c may be unstable in gpu reset */
270  	down_read(&adev->reset_domain->sem);
271  	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
272  				  control->i2c_address +
273  				  control->ras_header_offset,
274  				  buf, RAS_TABLE_HEADER_SIZE);
275  	up_read(&adev->reset_domain->sem);
276  
277  	if (res < 0) {
278  		DRM_ERROR("Failed to write EEPROM table header:%d", res);
279  	} else if (res < RAS_TABLE_HEADER_SIZE) {
280  		DRM_ERROR("Short write:%d out of %d\n",
281  			  res, RAS_TABLE_HEADER_SIZE);
282  		res = -EIO;
283  	} else {
284  		res = 0;
285  	}
286  
287  	return res;
288  }
289  
290  static void
__encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info * rai,unsigned char * buf)291  __encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
292  			       unsigned char *buf)
293  {
294  	u32 *pp = (uint32_t *)buf;
295  	u32 tmp;
296  
297  	tmp = ((uint32_t)(rai->rma_status) & 0xFF) |
298  	      (((uint32_t)(rai->health_percent) << 8) & 0xFF00) |
299  	      (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000);
300  	pp[0] = cpu_to_le32(tmp);
301  }
302  
303  static void
__decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info * rai,unsigned char * buf)304  __decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
305  				 unsigned char *buf)
306  {
307  	u32 *pp = (uint32_t *)buf;
308  	u32 tmp;
309  
310  	tmp = le32_to_cpu(pp[0]);
311  	rai->rma_status = tmp & 0xFF;
312  	rai->health_percent = (tmp >> 8) & 0xFF;
313  	rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF;
314  }
315  
__write_table_ras_info(struct amdgpu_ras_eeprom_control * control)316  static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control)
317  {
318  	struct amdgpu_device *adev = to_amdgpu_device(control);
319  	u8 *buf;
320  	int res;
321  
322  	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
323  	if (!buf) {
324  		DRM_ERROR("Failed to alloc buf to write table ras info\n");
325  		return -ENOMEM;
326  	}
327  
328  	__encode_table_ras_info_to_buf(&control->tbl_rai, buf);
329  
330  	/* i2c may be unstable in gpu reset */
331  	down_read(&adev->reset_domain->sem);
332  	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
333  				  control->i2c_address +
334  				  control->ras_info_offset,
335  				  buf, RAS_TABLE_V2_1_INFO_SIZE);
336  	up_read(&adev->reset_domain->sem);
337  
338  	if (res < 0) {
339  		DRM_ERROR("Failed to write EEPROM table ras info:%d", res);
340  	} else if (res < RAS_TABLE_V2_1_INFO_SIZE) {
341  		DRM_ERROR("Short write:%d out of %d\n",
342  			  res, RAS_TABLE_V2_1_INFO_SIZE);
343  		res = -EIO;
344  	} else {
345  		res = 0;
346  	}
347  
348  	kfree(buf);
349  
350  	return res;
351  }
352  
__calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control * control)353  static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
354  {
355  	int ii;
356  	u8  *pp, csum;
357  	size_t sz;
358  
359  	/* Header checksum, skip checksum field in the calculation */
360  	sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
361  	pp = (u8 *) &control->tbl_hdr;
362  	csum = 0;
363  	for (ii = 0; ii < sz; ii++, pp++)
364  		csum += *pp;
365  
366  	return csum;
367  }
368  
__calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control * control)369  static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control)
370  {
371  	int ii;
372  	u8  *pp, csum;
373  	size_t sz;
374  
375  	sz = sizeof(control->tbl_rai);
376  	pp = (u8 *) &control->tbl_rai;
377  	csum = 0;
378  	for (ii = 0; ii < sz; ii++, pp++)
379  		csum += *pp;
380  
381  	return csum;
382  }
383  
amdgpu_ras_eeprom_correct_header_tag(struct amdgpu_ras_eeprom_control * control,uint32_t header)384  static int amdgpu_ras_eeprom_correct_header_tag(
385  	struct amdgpu_ras_eeprom_control *control,
386  	uint32_t header)
387  {
388  	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
389  	u8 *hh;
390  	int res;
391  	u8 csum;
392  
393  	csum = -hdr->checksum;
394  
395  	hh = (void *) &hdr->header;
396  	csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
397  	hh = (void *) &header;
398  	csum += hh[0] + hh[1] + hh[2] + hh[3];
399  	csum = -csum;
400  	mutex_lock(&control->ras_tbl_mutex);
401  	hdr->header = header;
402  	hdr->checksum = csum;
403  	res = __write_table_header(control);
404  	mutex_unlock(&control->ras_tbl_mutex);
405  
406  	return res;
407  }
408  
amdgpu_ras_set_eeprom_table_version(struct amdgpu_ras_eeprom_control * control)409  static void amdgpu_ras_set_eeprom_table_version(struct amdgpu_ras_eeprom_control *control)
410  {
411  	struct amdgpu_device *adev = to_amdgpu_device(control);
412  	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
413  
414  	switch (amdgpu_ip_version(adev, UMC_HWIP, 0)) {
415  	case IP_VERSION(8, 10, 0):
416  	case IP_VERSION(12, 0, 0):
417  		hdr->version = RAS_TABLE_VER_V2_1;
418  		return;
419  	default:
420  		hdr->version = RAS_TABLE_VER_V1;
421  		return;
422  	}
423  }
424  
425  /**
426   * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table
427   * @control: pointer to control structure
428   *
429   * Reset the contents of the header of the RAS EEPROM table.
430   * Return 0 on success, -errno on error.
431   */
amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control * control)432  int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
433  {
434  	struct amdgpu_device *adev = to_amdgpu_device(control);
435  	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
436  	struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
437  	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
438  	u8 csum;
439  	int res;
440  
441  	mutex_lock(&control->ras_tbl_mutex);
442  
443  	hdr->header = RAS_TABLE_HDR_VAL;
444  	amdgpu_ras_set_eeprom_table_version(control);
445  
446  	if (hdr->version == RAS_TABLE_VER_V2_1) {
447  		hdr->first_rec_offset = RAS_RECORD_START_V2_1;
448  		hdr->tbl_size = RAS_TABLE_HEADER_SIZE +
449  				RAS_TABLE_V2_1_INFO_SIZE;
450  		rai->rma_status = GPU_HEALTH_USABLE;
451  		/**
452  		 * GPU health represented as a percentage.
453  		 * 0 means worst health, 100 means fully health.
454  		 */
455  		rai->health_percent = 100;
456  		/* ecc_page_threshold = 0 means disable bad page retirement */
457  		rai->ecc_page_threshold = con->bad_page_cnt_threshold;
458  	} else {
459  		hdr->first_rec_offset = RAS_RECORD_START;
460  		hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
461  	}
462  
463  	csum = __calc_hdr_byte_sum(control);
464  	if (hdr->version == RAS_TABLE_VER_V2_1)
465  		csum += __calc_ras_info_byte_sum(control);
466  	csum = -csum;
467  	hdr->checksum = csum;
468  	res = __write_table_header(control);
469  	if (!res && hdr->version > RAS_TABLE_VER_V1)
470  		res = __write_table_ras_info(control);
471  
472  	control->ras_num_recs = 0;
473  	control->ras_fri = 0;
474  
475  	amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs);
476  
477  	control->bad_channel_bitmap = 0;
478  	amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap);
479  	con->update_channel_flag = false;
480  
481  	amdgpu_ras_debugfs_set_ret_size(control);
482  
483  	mutex_unlock(&control->ras_tbl_mutex);
484  
485  	return res;
486  }
487  
488  static void
__encode_table_record_to_buf(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,unsigned char * buf)489  __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control,
490  			     struct eeprom_table_record *record,
491  			     unsigned char *buf)
492  {
493  	__le64 tmp = 0;
494  	int i = 0;
495  
496  	/* Next are all record fields according to EEPROM page spec in LE foramt */
497  	buf[i++] = record->err_type;
498  
499  	buf[i++] = record->bank;
500  
501  	tmp = cpu_to_le64(record->ts);
502  	memcpy(buf + i, &tmp, 8);
503  	i += 8;
504  
505  	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
506  	memcpy(buf + i, &tmp, 6);
507  	i += 6;
508  
509  	buf[i++] = record->mem_channel;
510  	buf[i++] = record->mcumc_id;
511  
512  	tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
513  	memcpy(buf + i, &tmp, 6);
514  }
515  
516  static void
__decode_table_record_from_buf(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,unsigned char * buf)517  __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control,
518  			       struct eeprom_table_record *record,
519  			       unsigned char *buf)
520  {
521  	__le64 tmp = 0;
522  	int i =  0;
523  
524  	/* Next are all record fields according to EEPROM page spec in LE foramt */
525  	record->err_type = buf[i++];
526  
527  	record->bank = buf[i++];
528  
529  	memcpy(&tmp, buf + i, 8);
530  	record->ts = le64_to_cpu(tmp);
531  	i += 8;
532  
533  	memcpy(&tmp, buf + i, 6);
534  	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
535  	i += 6;
536  
537  	record->mem_channel = buf[i++];
538  	record->mcumc_id = buf[i++];
539  
540  	memcpy(&tmp, buf + i,  6);
541  	record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
542  }
543  
amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device * adev)544  bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
545  {
546  	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
547  
548  	if (!__is_ras_eeprom_supported(adev) ||
549  	    !amdgpu_bad_page_threshold)
550  		return false;
551  
552  	/* skip check eeprom table for VEGA20 Gaming */
553  	if (!con)
554  		return false;
555  	else
556  		if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
557  			return false;
558  
559  	if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
560  		if (amdgpu_bad_page_threshold == -1) {
561  			dev_warn(adev->dev, "RAS records:%d exceed threshold:%d",
562  				con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold);
563  			dev_warn(adev->dev,
564  				"But GPU can be operated due to bad_page_threshold = -1.\n");
565  			return false;
566  		} else {
567  			dev_warn(adev->dev, "This GPU is in BAD status.");
568  			dev_warn(adev->dev, "Please retire it or set a larger "
569  				 "threshold value when reloading driver.\n");
570  			return true;
571  		}
572  	}
573  
574  	return false;
575  }
576  
577  /**
578   * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM
579   * @control: pointer to control structure
580   * @buf: pointer to buffer containing data to write
581   * @fri: start writing at this index
582   * @num: number of records to write
583   *
584   * The caller must hold the table mutex in @control.
585   * Return 0 on success, -errno otherwise.
586   */
__amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control * control,u8 * buf,const u32 fri,const u32 num)587  static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
588  				     u8 *buf, const u32 fri, const u32 num)
589  {
590  	struct amdgpu_device *adev = to_amdgpu_device(control);
591  	u32 buf_size;
592  	int res;
593  
594  	/* i2c may be unstable in gpu reset */
595  	down_read(&adev->reset_domain->sem);
596  	buf_size = num * RAS_TABLE_RECORD_SIZE;
597  	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
598  				  control->i2c_address +
599  				  RAS_INDEX_TO_OFFSET(control, fri),
600  				  buf, buf_size);
601  	up_read(&adev->reset_domain->sem);
602  	if (res < 0) {
603  		DRM_ERROR("Writing %d EEPROM table records error:%d",
604  			  num, res);
605  	} else if (res < buf_size) {
606  		/* Short write, return error.
607  		 */
608  		DRM_ERROR("Wrote %d records out of %d",
609  			  res / RAS_TABLE_RECORD_SIZE, num);
610  		res = -EIO;
611  	} else {
612  		res = 0;
613  	}
614  
615  	return res;
616  }
617  
618  static int
amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,const u32 num)619  amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control,
620  			       struct eeprom_table_record *record,
621  			       const u32 num)
622  {
623  	struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control));
624  	u32 a, b, i;
625  	u8 *buf, *pp;
626  	int res;
627  
628  	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
629  	if (!buf)
630  		return -ENOMEM;
631  
632  	/* Encode all of them in one go.
633  	 */
634  	pp = buf;
635  	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
636  		__encode_table_record_to_buf(control, &record[i], pp);
637  
638  		/* update bad channel bitmap */
639  		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
640  		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
641  			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
642  			con->update_channel_flag = true;
643  		}
644  	}
645  
646  	/* a, first record index to write into.
647  	 * b, last record index to write into.
648  	 * a = first index to read (fri) + number of records in the table,
649  	 * b = a + @num - 1.
650  	 * Let N = control->ras_max_num_record_count, then we have,
651  	 * case 0: 0 <= a <= b < N,
652  	 *   just append @num records starting at a;
653  	 * case 1: 0 <= a < N <= b,
654  	 *   append (N - a) records starting at a, and
655  	 *   append the remainder,  b % N + 1, starting at 0.
656  	 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
657  	 * case 2a: 0 <= a <= b < N
658  	 *   append num records starting at a; and fix fri if b overwrote it,
659  	 *   and since a <= b, if b overwrote it then a must've also,
660  	 *   and if b didn't overwrite it, then a didn't also.
661  	 * case 2b: 0 <= b < a < N
662  	 *   write num records starting at a, which wraps around 0=N
663  	 *   and overwrite fri unconditionally. Now from case 2a,
664  	 *   this means that b eclipsed fri to overwrite it and wrap
665  	 *   around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
666  	 *   set fri = b + 1 (mod N).
667  	 * Now, since fri is updated in every case, except the trivial case 0,
668  	 * the number of records present in the table after writing, is,
669  	 * num_recs - 1 = b - fri (mod N), and we take the positive value,
670  	 * by adding an arbitrary multiple of N before taking the modulo N
671  	 * as shown below.
672  	 */
673  	a = control->ras_fri + control->ras_num_recs;
674  	b = a + num  - 1;
675  	if (b < control->ras_max_record_count) {
676  		res = __amdgpu_ras_eeprom_write(control, buf, a, num);
677  	} else if (a < control->ras_max_record_count) {
678  		u32 g0, g1;
679  
680  		g0 = control->ras_max_record_count - a;
681  		g1 = b % control->ras_max_record_count + 1;
682  		res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
683  		if (res)
684  			goto Out;
685  		res = __amdgpu_ras_eeprom_write(control,
686  						buf + g0 * RAS_TABLE_RECORD_SIZE,
687  						0, g1);
688  		if (res)
689  			goto Out;
690  		if (g1 > control->ras_fri)
691  			control->ras_fri = g1 % control->ras_max_record_count;
692  	} else {
693  		a %= control->ras_max_record_count;
694  		b %= control->ras_max_record_count;
695  
696  		if (a <= b) {
697  			/* Note that, b - a + 1 = num. */
698  			res = __amdgpu_ras_eeprom_write(control, buf, a, num);
699  			if (res)
700  				goto Out;
701  			if (b >= control->ras_fri)
702  				control->ras_fri = (b + 1) % control->ras_max_record_count;
703  		} else {
704  			u32 g0, g1;
705  
706  			/* b < a, which means, we write from
707  			 * a to the end of the table, and from
708  			 * the start of the table to b.
709  			 */
710  			g0 = control->ras_max_record_count - a;
711  			g1 = b + 1;
712  			res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
713  			if (res)
714  				goto Out;
715  			res = __amdgpu_ras_eeprom_write(control,
716  							buf + g0 * RAS_TABLE_RECORD_SIZE,
717  							0, g1);
718  			if (res)
719  				goto Out;
720  			control->ras_fri = g1 % control->ras_max_record_count;
721  		}
722  	}
723  	control->ras_num_recs = 1 + (control->ras_max_record_count + b
724  				     - control->ras_fri)
725  		% control->ras_max_record_count;
726  Out:
727  	kfree(buf);
728  	return res;
729  }
730  
731  static int
amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control * control)732  amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control)
733  {
734  	struct amdgpu_device *adev = to_amdgpu_device(control);
735  	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
736  	u8 *buf, *pp, csum;
737  	u32 buf_size;
738  	int res;
739  
740  	/* Modify the header if it exceeds.
741  	 */
742  	if (amdgpu_bad_page_threshold != 0 &&
743  	    control->ras_num_recs >= ras->bad_page_cnt_threshold) {
744  		dev_warn(adev->dev,
745  			"Saved bad pages %d reaches threshold value %d\n",
746  			control->ras_num_recs, ras->bad_page_cnt_threshold);
747  		control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
748  		if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) {
749  			control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD;
750  			control->tbl_rai.health_percent = 0;
751  		}
752  
753  		if (amdgpu_bad_page_threshold != -1)
754  			ras->is_rma = true;
755  
756  		/* ignore the -ENOTSUPP return value */
757  		amdgpu_dpm_send_rma_reason(adev);
758  	}
759  
760  	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
761  		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
762  					    RAS_TABLE_V2_1_INFO_SIZE +
763  					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
764  	else
765  		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
766  					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
767  	control->tbl_hdr.checksum = 0;
768  
769  	buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
770  	buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
771  	if (!buf) {
772  		DRM_ERROR("allocating memory for table of size %d bytes failed\n",
773  			  control->tbl_hdr.tbl_size);
774  		res = -ENOMEM;
775  		goto Out;
776  	}
777  
778  	down_read(&adev->reset_domain->sem);
779  	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
780  				 control->i2c_address +
781  				 control->ras_record_offset,
782  				 buf, buf_size);
783  	up_read(&adev->reset_domain->sem);
784  	if (res < 0) {
785  		DRM_ERROR("EEPROM failed reading records:%d\n",
786  			  res);
787  		goto Out;
788  	} else if (res < buf_size) {
789  		DRM_ERROR("EEPROM read %d out of %d bytes\n",
790  			  res, buf_size);
791  		res = -EIO;
792  		goto Out;
793  	}
794  
795  	/**
796  	 * bad page records have been stored in eeprom,
797  	 * now calculate gpu health percent
798  	 */
799  	if (amdgpu_bad_page_threshold != 0 &&
800  	    control->tbl_hdr.version == RAS_TABLE_VER_V2_1 &&
801  	    control->ras_num_recs < ras->bad_page_cnt_threshold)
802  		control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold -
803  						   control->ras_num_recs) * 100) /
804  						   ras->bad_page_cnt_threshold;
805  
806  	/* Recalc the checksum.
807  	 */
808  	csum = 0;
809  	for (pp = buf; pp < buf + buf_size; pp++)
810  		csum += *pp;
811  
812  	csum += __calc_hdr_byte_sum(control);
813  	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
814  		csum += __calc_ras_info_byte_sum(control);
815  	/* avoid sign extension when assigning to "checksum" */
816  	csum = -csum;
817  	control->tbl_hdr.checksum = csum;
818  	res = __write_table_header(control);
819  	if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1)
820  		res = __write_table_ras_info(control);
821  Out:
822  	kfree(buf);
823  	return res;
824  }
825  
826  /**
827   * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table
828   * @control: pointer to control structure
829   * @record: array of records to append
830   * @num: number of records in @record array
831   *
832   * Append @num records to the table, calculate the checksum and write
833   * the table back to EEPROM. The maximum number of records that
834   * can be appended is between 1 and control->ras_max_record_count,
835   * regardless of how many records are already stored in the table.
836   *
837   * Return 0 on success or if EEPROM is not supported, -errno on error.
838   */
amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,const u32 num)839  int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control,
840  			     struct eeprom_table_record *record,
841  			     const u32 num)
842  {
843  	struct amdgpu_device *adev = to_amdgpu_device(control);
844  	int res;
845  
846  	if (!__is_ras_eeprom_supported(adev))
847  		return 0;
848  
849  	if (num == 0) {
850  		DRM_ERROR("will not append 0 records\n");
851  		return -EINVAL;
852  	} else if (num > control->ras_max_record_count) {
853  		DRM_ERROR("cannot append %d records than the size of table %d\n",
854  			  num, control->ras_max_record_count);
855  		return -EINVAL;
856  	}
857  
858  	mutex_lock(&control->ras_tbl_mutex);
859  
860  	res = amdgpu_ras_eeprom_append_table(control, record, num);
861  	if (!res)
862  		res = amdgpu_ras_eeprom_update_header(control);
863  	if (!res)
864  		amdgpu_ras_debugfs_set_ret_size(control);
865  
866  	mutex_unlock(&control->ras_tbl_mutex);
867  	return res;
868  }
869  
870  /**
871   * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer
872   * @control: pointer to control structure
873   * @buf: pointer to buffer to read into
874   * @fri: first record index, start reading at this index, absolute index
875   * @num: number of records to read
876   *
877   * The caller must hold the table mutex in @control.
878   * Return 0 on success, -errno otherwise.
879   */
__amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control * control,u8 * buf,const u32 fri,const u32 num)880  static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
881  				    u8 *buf, const u32 fri, const u32 num)
882  {
883  	struct amdgpu_device *adev = to_amdgpu_device(control);
884  	u32 buf_size;
885  	int res;
886  
887  	/* i2c may be unstable in gpu reset */
888  	down_read(&adev->reset_domain->sem);
889  	buf_size = num * RAS_TABLE_RECORD_SIZE;
890  	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
891  				 control->i2c_address +
892  				 RAS_INDEX_TO_OFFSET(control, fri),
893  				 buf, buf_size);
894  	up_read(&adev->reset_domain->sem);
895  	if (res < 0) {
896  		DRM_ERROR("Reading %d EEPROM table records error:%d",
897  			  num, res);
898  	} else if (res < buf_size) {
899  		/* Short read, return error.
900  		 */
901  		DRM_ERROR("Read %d records out of %d",
902  			  res / RAS_TABLE_RECORD_SIZE, num);
903  		res = -EIO;
904  	} else {
905  		res = 0;
906  	}
907  
908  	return res;
909  }
910  
911  /**
912   * amdgpu_ras_eeprom_read -- read EEPROM
913   * @control: pointer to control structure
914   * @record: array of records to read into
915   * @num: number of records in @record
916   *
917   * Reads num records from the RAS table in EEPROM and
918   * writes the data into @record array.
919   *
920   * Returns 0 on success, -errno on error.
921   */
amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,const u32 num)922  int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
923  			   struct eeprom_table_record *record,
924  			   const u32 num)
925  {
926  	struct amdgpu_device *adev = to_amdgpu_device(control);
927  	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
928  	int i, res;
929  	u8 *buf, *pp;
930  	u32 g0, g1;
931  
932  	if (!__is_ras_eeprom_supported(adev))
933  		return 0;
934  
935  	if (num == 0) {
936  		DRM_ERROR("will not read 0 records\n");
937  		return -EINVAL;
938  	} else if (num > control->ras_num_recs) {
939  		DRM_ERROR("too many records to read:%d available:%d\n",
940  			  num, control->ras_num_recs);
941  		return -EINVAL;
942  	}
943  
944  	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
945  	if (!buf)
946  		return -ENOMEM;
947  
948  	/* Determine how many records to read, from the first record
949  	 * index, fri, to the end of the table, and from the beginning
950  	 * of the table, such that the total number of records is
951  	 * @num, and we handle wrap around when fri > 0 and
952  	 * fri + num > RAS_MAX_RECORD_COUNT.
953  	 *
954  	 * First we compute the index of the last element
955  	 * which would be fetched from each region,
956  	 * g0 is in [fri, fri + num - 1], and
957  	 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
958  	 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
959  	 * the last element to fetch, we set g0 to _the number_
960  	 * of elements to fetch, @num, since we know that the last
961  	 * indexed to be fetched does not exceed the table.
962  	 *
963  	 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then
964  	 * we set g0 to the number of elements to read
965  	 * until the end of the table, and g1 to the number of
966  	 * elements to read from the beginning of the table.
967  	 */
968  	g0 = control->ras_fri + num - 1;
969  	g1 = g0 % control->ras_max_record_count;
970  	if (g0 < control->ras_max_record_count) {
971  		g0 = num;
972  		g1 = 0;
973  	} else {
974  		g0 = control->ras_max_record_count - control->ras_fri;
975  		g1 += 1;
976  	}
977  
978  	mutex_lock(&control->ras_tbl_mutex);
979  	res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0);
980  	if (res)
981  		goto Out;
982  	if (g1) {
983  		res = __amdgpu_ras_eeprom_read(control,
984  					       buf + g0 * RAS_TABLE_RECORD_SIZE,
985  					       0, g1);
986  		if (res)
987  			goto Out;
988  	}
989  
990  	res = 0;
991  
992  	/* Read up everything? Then transform.
993  	 */
994  	pp = buf;
995  	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
996  		__decode_table_record_from_buf(control, &record[i], pp);
997  
998  		/* update bad channel bitmap */
999  		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
1000  		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
1001  			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
1002  			con->update_channel_flag = true;
1003  		}
1004  	}
1005  Out:
1006  	kfree(buf);
1007  	mutex_unlock(&control->ras_tbl_mutex);
1008  
1009  	return res;
1010  }
1011  
amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control * control)1012  uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control)
1013  {
1014  	/* get available eeprom table version first before eeprom table init */
1015  	amdgpu_ras_set_eeprom_table_version(control);
1016  
1017  	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
1018  		return RAS_MAX_RECORD_COUNT_V2_1;
1019  	else
1020  		return RAS_MAX_RECORD_COUNT;
1021  }
1022  
1023  static ssize_t
amdgpu_ras_debugfs_eeprom_size_read(struct file * f,char __user * buf,size_t size,loff_t * pos)1024  amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf,
1025  				    size_t size, loff_t *pos)
1026  {
1027  	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1028  	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1029  	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1030  	u8 data[50];
1031  	int res;
1032  
1033  	if (!size)
1034  		return size;
1035  
1036  	if (!ras || !control) {
1037  		res = snprintf(data, sizeof(data), "Not supported\n");
1038  	} else {
1039  		res = snprintf(data, sizeof(data), "%d bytes or %d records\n",
1040  			       RAS_TBL_SIZE_BYTES, control->ras_max_record_count);
1041  	}
1042  
1043  	if (*pos >= res)
1044  		return 0;
1045  
1046  	res -= *pos;
1047  	res = min_t(size_t, res, size);
1048  
1049  	if (copy_to_user(buf, &data[*pos], res))
1050  		return -EFAULT;
1051  
1052  	*pos += res;
1053  
1054  	return res;
1055  }
1056  
1057  const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = {
1058  	.owner = THIS_MODULE,
1059  	.read = amdgpu_ras_debugfs_eeprom_size_read,
1060  	.write = NULL,
1061  	.llseek = default_llseek,
1062  };
1063  
1064  static const char *tbl_hdr_str = " Signature    Version  FirstOffs       Size   Checksum\n";
1065  static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n";
1066  #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1)
1067  static const char *rec_hdr_str = "Index  Offset ErrType Bank/CU          TimeStamp      Offs/Addr MemChl MCUMCID    RetiredPage\n";
1068  static const char *rec_hdr_fmt = "%5d 0x%05X %7s    0x%02X 0x%016llX 0x%012llX   0x%02X    0x%02X 0x%012llX\n";
1069  #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1)
1070  
1071  static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = {
1072  	"ignore",
1073  	"re",
1074  	"ue",
1075  };
1076  
amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control * control)1077  static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control)
1078  {
1079  	return strlen(tbl_hdr_str) + tbl_hdr_fmt_size +
1080  		strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs;
1081  }
1082  
amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control * control)1083  void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control)
1084  {
1085  	struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras,
1086  					      eeprom_control);
1087  	struct dentry *de = ras->de_ras_eeprom_table;
1088  
1089  	if (de)
1090  		d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control);
1091  }
1092  
amdgpu_ras_debugfs_table_read(struct file * f,char __user * buf,size_t size,loff_t * pos)1093  static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf,
1094  					     size_t size, loff_t *pos)
1095  {
1096  	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1097  	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1098  	struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control;
1099  	const size_t orig_size = size;
1100  	int res = -EFAULT;
1101  	size_t data_len;
1102  
1103  	mutex_lock(&control->ras_tbl_mutex);
1104  
1105  	/* We want *pos - data_len > 0, which means there's
1106  	 * bytes to be printed from data.
1107  	 */
1108  	data_len = strlen(tbl_hdr_str);
1109  	if (*pos < data_len) {
1110  		data_len -= *pos;
1111  		data_len = min_t(size_t, data_len, size);
1112  		if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len))
1113  			goto Out;
1114  		buf += data_len;
1115  		size -= data_len;
1116  		*pos += data_len;
1117  	}
1118  
1119  	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size;
1120  	if (*pos < data_len && size > 0) {
1121  		u8 data[tbl_hdr_fmt_size + 1];
1122  		loff_t lpos;
1123  
1124  		snprintf(data, sizeof(data), tbl_hdr_fmt,
1125  			 control->tbl_hdr.header,
1126  			 control->tbl_hdr.version,
1127  			 control->tbl_hdr.first_rec_offset,
1128  			 control->tbl_hdr.tbl_size,
1129  			 control->tbl_hdr.checksum);
1130  
1131  		data_len -= *pos;
1132  		data_len = min_t(size_t, data_len, size);
1133  		lpos = *pos - strlen(tbl_hdr_str);
1134  		if (copy_to_user(buf, &data[lpos], data_len))
1135  			goto Out;
1136  		buf += data_len;
1137  		size -= data_len;
1138  		*pos += data_len;
1139  	}
1140  
1141  	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str);
1142  	if (*pos < data_len && size > 0) {
1143  		loff_t lpos;
1144  
1145  		data_len -= *pos;
1146  		data_len = min_t(size_t, data_len, size);
1147  		lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size;
1148  		if (copy_to_user(buf, &rec_hdr_str[lpos], data_len))
1149  			goto Out;
1150  		buf += data_len;
1151  		size -= data_len;
1152  		*pos += data_len;
1153  	}
1154  
1155  	data_len = amdgpu_ras_debugfs_table_size(control);
1156  	if (*pos < data_len && size > 0) {
1157  		u8 dare[RAS_TABLE_RECORD_SIZE];
1158  		u8 data[rec_hdr_fmt_size + 1];
1159  		struct eeprom_table_record record;
1160  		int s, r;
1161  
1162  		/* Find the starting record index
1163  		 */
1164  		s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1165  			strlen(rec_hdr_str);
1166  		s = s / rec_hdr_fmt_size;
1167  		r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1168  			strlen(rec_hdr_str);
1169  		r = r % rec_hdr_fmt_size;
1170  
1171  		for ( ; size > 0 && s < control->ras_num_recs; s++) {
1172  			u32 ai = RAS_RI_TO_AI(control, s);
1173  			/* Read a single record
1174  			 */
1175  			res = __amdgpu_ras_eeprom_read(control, dare, ai, 1);
1176  			if (res)
1177  				goto Out;
1178  			__decode_table_record_from_buf(control, &record, dare);
1179  			snprintf(data, sizeof(data), rec_hdr_fmt,
1180  				 s,
1181  				 RAS_INDEX_TO_OFFSET(control, ai),
1182  				 record_err_type_str[record.err_type],
1183  				 record.bank,
1184  				 record.ts,
1185  				 record.offset,
1186  				 record.mem_channel,
1187  				 record.mcumc_id,
1188  				 record.retired_page);
1189  
1190  			data_len = min_t(size_t, rec_hdr_fmt_size - r, size);
1191  			if (copy_to_user(buf, &data[r], data_len)) {
1192  				res = -EFAULT;
1193  				goto Out;
1194  			}
1195  			buf += data_len;
1196  			size -= data_len;
1197  			*pos += data_len;
1198  			r = 0;
1199  		}
1200  	}
1201  	res = 0;
1202  Out:
1203  	mutex_unlock(&control->ras_tbl_mutex);
1204  	return res < 0 ? res : orig_size - size;
1205  }
1206  
1207  static ssize_t
amdgpu_ras_debugfs_eeprom_table_read(struct file * f,char __user * buf,size_t size,loff_t * pos)1208  amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf,
1209  				     size_t size, loff_t *pos)
1210  {
1211  	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1212  	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1213  	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1214  	u8 data[81];
1215  	int res;
1216  
1217  	if (!size)
1218  		return size;
1219  
1220  	if (!ras || !control) {
1221  		res = snprintf(data, sizeof(data), "Not supported\n");
1222  		if (*pos >= res)
1223  			return 0;
1224  
1225  		res -= *pos;
1226  		res = min_t(size_t, res, size);
1227  
1228  		if (copy_to_user(buf, &data[*pos], res))
1229  			return -EFAULT;
1230  
1231  		*pos += res;
1232  
1233  		return res;
1234  	} else {
1235  		return amdgpu_ras_debugfs_table_read(f, buf, size, pos);
1236  	}
1237  }
1238  
1239  const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = {
1240  	.owner = THIS_MODULE,
1241  	.read = amdgpu_ras_debugfs_eeprom_table_read,
1242  	.write = NULL,
1243  	.llseek = default_llseek,
1244  };
1245  
1246  /**
1247   * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
1248   * @control: pointer to control structure
1249   *
1250   * Check the checksum of the stored in EEPROM RAS table.
1251   *
1252   * Return 0 if the checksum is correct,
1253   * positive if it is not correct, and
1254   * -errno on I/O error.
1255   */
__verify_ras_table_checksum(struct amdgpu_ras_eeprom_control * control)1256  static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control)
1257  {
1258  	struct amdgpu_device *adev = to_amdgpu_device(control);
1259  	int buf_size, res;
1260  	u8  csum, *buf, *pp;
1261  
1262  	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
1263  		buf_size = RAS_TABLE_HEADER_SIZE +
1264  			   RAS_TABLE_V2_1_INFO_SIZE +
1265  			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1266  	else
1267  		buf_size = RAS_TABLE_HEADER_SIZE +
1268  			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1269  
1270  	buf = kzalloc(buf_size, GFP_KERNEL);
1271  	if (!buf) {
1272  		DRM_ERROR("Out of memory checking RAS table checksum.\n");
1273  		return -ENOMEM;
1274  	}
1275  
1276  	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1277  				 control->i2c_address +
1278  				 control->ras_header_offset,
1279  				 buf, buf_size);
1280  	if (res < buf_size) {
1281  		DRM_ERROR("Partial read for checksum, res:%d\n", res);
1282  		/* On partial reads, return -EIO.
1283  		 */
1284  		if (res >= 0)
1285  			res = -EIO;
1286  		goto Out;
1287  	}
1288  
1289  	csum = 0;
1290  	for (pp = buf; pp < buf + buf_size; pp++)
1291  		csum += *pp;
1292  Out:
1293  	kfree(buf);
1294  	return res < 0 ? res : csum;
1295  }
1296  
__read_table_ras_info(struct amdgpu_ras_eeprom_control * control)1297  static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control)
1298  {
1299  	struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
1300  	struct amdgpu_device *adev = to_amdgpu_device(control);
1301  	unsigned char *buf;
1302  	int res;
1303  
1304  	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
1305  	if (!buf) {
1306  		DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n");
1307  		return -ENOMEM;
1308  	}
1309  
1310  	/**
1311  	 * EEPROM table V2_1 supports ras info,
1312  	 * read EEPROM table ras info
1313  	 */
1314  	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1315  				 control->i2c_address + control->ras_info_offset,
1316  				 buf, RAS_TABLE_V2_1_INFO_SIZE);
1317  	if (res < RAS_TABLE_V2_1_INFO_SIZE) {
1318  		DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res);
1319  		res = res >= 0 ? -EIO : res;
1320  		goto Out;
1321  	}
1322  
1323  	__decode_table_ras_info_from_buf(rai, buf);
1324  
1325  Out:
1326  	kfree(buf);
1327  	return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res;
1328  }
1329  
amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control * control)1330  int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control)
1331  {
1332  	struct amdgpu_device *adev = to_amdgpu_device(control);
1333  	unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
1334  	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
1335  	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1336  	int res;
1337  
1338  	ras->is_rma = false;
1339  
1340  	if (!__is_ras_eeprom_supported(adev))
1341  		return 0;
1342  
1343  	/* Verify i2c adapter is initialized */
1344  	if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo)
1345  		return -ENOENT;
1346  
1347  	if (!__get_eeprom_i2c_addr(adev, control))
1348  		return -EINVAL;
1349  
1350  	control->ras_header_offset = RAS_HDR_START;
1351  	control->ras_info_offset = RAS_TABLE_V2_1_INFO_START;
1352  	mutex_init(&control->ras_tbl_mutex);
1353  
1354  	/* Read the table header from EEPROM address */
1355  	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1356  				 control->i2c_address + control->ras_header_offset,
1357  				 buf, RAS_TABLE_HEADER_SIZE);
1358  	if (res < RAS_TABLE_HEADER_SIZE) {
1359  		DRM_ERROR("Failed to read EEPROM table header, res:%d", res);
1360  		return res >= 0 ? -EIO : res;
1361  	}
1362  
1363  	__decode_table_header_from_buf(hdr, buf);
1364  
1365  	if (hdr->version == RAS_TABLE_VER_V2_1) {
1366  		control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr);
1367  		control->ras_record_offset = RAS_RECORD_START_V2_1;
1368  		control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1;
1369  	} else {
1370  		control->ras_num_recs = RAS_NUM_RECS(hdr);
1371  		control->ras_record_offset = RAS_RECORD_START;
1372  		control->ras_max_record_count = RAS_MAX_RECORD_COUNT;
1373  	}
1374  	control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
1375  
1376  	if (hdr->header == RAS_TABLE_HDR_VAL) {
1377  		DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
1378  				 control->ras_num_recs);
1379  
1380  		if (hdr->version == RAS_TABLE_VER_V2_1) {
1381  			res = __read_table_ras_info(control);
1382  			if (res)
1383  				return res;
1384  		}
1385  
1386  		res = __verify_ras_table_checksum(control);
1387  		if (res)
1388  			DRM_ERROR("RAS table incorrect checksum or error:%d\n",
1389  				  res);
1390  
1391  		/* Warn if we are at 90% of the threshold or above
1392  		 */
1393  		if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold)
1394  			dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d",
1395  					control->ras_num_recs,
1396  					ras->bad_page_cnt_threshold);
1397  	} else if (hdr->header == RAS_TABLE_HDR_BAD &&
1398  		   amdgpu_bad_page_threshold != 0) {
1399  		if (hdr->version == RAS_TABLE_VER_V2_1) {
1400  			res = __read_table_ras_info(control);
1401  			if (res)
1402  				return res;
1403  		}
1404  
1405  		res = __verify_ras_table_checksum(control);
1406  		if (res)
1407  			DRM_ERROR("RAS Table incorrect checksum or error:%d\n",
1408  				  res);
1409  		if (ras->bad_page_cnt_threshold > control->ras_num_recs) {
1410  			/* This means that, the threshold was increased since
1411  			 * the last time the system was booted, and now,
1412  			 * ras->bad_page_cnt_threshold - control->num_recs > 0,
1413  			 * so that at least one more record can be saved,
1414  			 * before the page count threshold is reached.
1415  			 */
1416  			dev_info(adev->dev,
1417  				 "records:%d threshold:%d, resetting "
1418  				 "RAS table header signature",
1419  				 control->ras_num_recs,
1420  				 ras->bad_page_cnt_threshold);
1421  			res = amdgpu_ras_eeprom_correct_header_tag(control,
1422  								   RAS_TABLE_HDR_VAL);
1423  		} else {
1424  			dev_err(adev->dev, "RAS records:%d exceed threshold:%d",
1425  				control->ras_num_recs, ras->bad_page_cnt_threshold);
1426  			if (amdgpu_bad_page_threshold == -1) {
1427  				dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1.");
1428  				res = 0;
1429  			} else {
1430  				ras->is_rma = true;
1431  				dev_err(adev->dev,
1432  					"RAS records:%d exceed threshold:%d, "
1433  					"GPU will not be initialized. Replace this GPU or increase the threshold",
1434  					control->ras_num_recs, ras->bad_page_cnt_threshold);
1435  			}
1436  		}
1437  	} else {
1438  		DRM_INFO("Creating a new EEPROM table");
1439  
1440  		res = amdgpu_ras_eeprom_reset_table(control);
1441  	}
1442  
1443  	return res < 0 ? res : 0;
1444  }
1445