1  /*
2   * Copyright 2014 Advanced Micro Devices, Inc.
3   * Copyright 2008 Red Hat Inc.
4   * Copyright 2009 Jerome Glisse.
5   *
6   * Permission is hereby granted, free of charge, to any person obtaining a
7   * copy of this software and associated documentation files (the "Software"),
8   * to deal in the Software without restriction, including without limitation
9   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10   * and/or sell copies of the Software, and to permit persons to whom the
11   * Software is furnished to do so, subject to the following conditions:
12   *
13   * The above copyright notice and this permission notice shall be included in
14   * all copies or substantial portions of the Software.
15   *
16   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19   * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22   * OTHER DEALINGS IN THE SOFTWARE.
23   *
24   */
25  
26  #include <linux/firmware.h>
27  #include <linux/pm_runtime.h>
28  
29  #include "amdgpu.h"
30  #include "amdgpu_gfx.h"
31  #include "amdgpu_rlc.h"
32  #include "amdgpu_ras.h"
33  #include "amdgpu_reset.h"
34  #include "amdgpu_xcp.h"
35  #include "amdgpu_xgmi.h"
36  
37  /* delay 0.1 second to enable gfx off feature */
38  #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
39  
40  #define GFX_OFF_NO_DELAY 0
41  
42  /*
43   * GPU GFX IP block helpers function.
44   */
45  
amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device * adev,int mec,int pipe,int queue)46  int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
47  				int pipe, int queue)
48  {
49  	int bit = 0;
50  
51  	bit += mec * adev->gfx.mec.num_pipe_per_mec
52  		* adev->gfx.mec.num_queue_per_pipe;
53  	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
54  	bit += queue;
55  
56  	return bit;
57  }
58  
amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device * adev,int bit,int * mec,int * pipe,int * queue)59  void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
60  				 int *mec, int *pipe, int *queue)
61  {
62  	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
63  	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
64  		% adev->gfx.mec.num_pipe_per_mec;
65  	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
66  	       / adev->gfx.mec.num_pipe_per_mec;
67  
68  }
69  
amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device * adev,int xcc_id,int mec,int pipe,int queue)70  bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
71  				     int xcc_id, int mec, int pipe, int queue)
72  {
73  	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
74  			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
75  }
76  
amdgpu_gfx_me_queue_to_bit(struct amdgpu_device * adev,int me,int pipe,int queue)77  int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
78  			       int me, int pipe, int queue)
79  {
80  	int bit = 0;
81  
82  	bit += me * adev->gfx.me.num_pipe_per_me
83  		* adev->gfx.me.num_queue_per_pipe;
84  	bit += pipe * adev->gfx.me.num_queue_per_pipe;
85  	bit += queue;
86  
87  	return bit;
88  }
89  
amdgpu_gfx_bit_to_me_queue(struct amdgpu_device * adev,int bit,int * me,int * pipe,int * queue)90  void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
91  				int *me, int *pipe, int *queue)
92  {
93  	*queue = bit % adev->gfx.me.num_queue_per_pipe;
94  	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
95  		% adev->gfx.me.num_pipe_per_me;
96  	*me = (bit / adev->gfx.me.num_queue_per_pipe)
97  		/ adev->gfx.me.num_pipe_per_me;
98  }
99  
amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device * adev,int me,int pipe,int queue)100  bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
101  				    int me, int pipe, int queue)
102  {
103  	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
104  			adev->gfx.me.queue_bitmap);
105  }
106  
107  /**
108   * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
109   *
110   * @mask: array in which the per-shader array disable masks will be stored
111   * @max_se: number of SEs
112   * @max_sh: number of SHs
113   *
114   * The bitmask of CUs to be disabled in the shader array determined by se and
115   * sh is stored in mask[se * max_sh + sh].
116   */
amdgpu_gfx_parse_disable_cu(unsigned int * mask,unsigned int max_se,unsigned int max_sh)117  void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
118  {
119  	unsigned int se, sh, cu;
120  	const char *p;
121  
122  	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
123  
124  	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
125  		return;
126  
127  	p = amdgpu_disable_cu;
128  	for (;;) {
129  		char *next;
130  		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
131  
132  		if (ret < 3) {
133  			DRM_ERROR("amdgpu: could not parse disable_cu\n");
134  			return;
135  		}
136  
137  		if (se < max_se && sh < max_sh && cu < 16) {
138  			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
139  			mask[se * max_sh + sh] |= 1u << cu;
140  		} else {
141  			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
142  				  se, sh, cu);
143  		}
144  
145  		next = strchr(p, ',');
146  		if (!next)
147  			break;
148  		p = next + 1;
149  	}
150  }
151  
amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device * adev)152  static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
153  {
154  	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
155  }
156  
amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device * adev)157  static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
158  {
159  	if (amdgpu_compute_multipipe != -1) {
160  		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
161  			 amdgpu_compute_multipipe);
162  		return amdgpu_compute_multipipe == 1;
163  	}
164  
165  	if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
166  		return true;
167  
168  	/* FIXME: spreading the queues across pipes causes perf regressions
169  	 * on POLARIS11 compute workloads */
170  	if (adev->asic_type == CHIP_POLARIS11)
171  		return false;
172  
173  	return adev->gfx.mec.num_mec > 1;
174  }
175  
amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)176  bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
177  						struct amdgpu_ring *ring)
178  {
179  	int queue = ring->queue;
180  	int pipe = ring->pipe;
181  
182  	/* Policy: use pipe1 queue0 as high priority graphics queue if we
183  	 * have more than one gfx pipe.
184  	 */
185  	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
186  	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
187  		int me = ring->me;
188  		int bit;
189  
190  		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
191  		if (ring == &adev->gfx.gfx_ring[bit])
192  			return true;
193  	}
194  
195  	return false;
196  }
197  
amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)198  bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
199  					       struct amdgpu_ring *ring)
200  {
201  	/* Policy: use 1st queue as high priority compute queue if we
202  	 * have more than one compute queue.
203  	 */
204  	if (adev->gfx.num_compute_rings > 1 &&
205  	    ring == &adev->gfx.compute_ring[0])
206  		return true;
207  
208  	return false;
209  }
210  
amdgpu_gfx_compute_queue_acquire(struct amdgpu_device * adev)211  void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
212  {
213  	int i, j, queue, pipe;
214  	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
215  	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
216  				     adev->gfx.mec.num_queue_per_pipe,
217  				     adev->gfx.num_compute_rings);
218  	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
219  
220  	if (multipipe_policy) {
221  		/* policy: make queues evenly cross all pipes on MEC1 only
222  		 * for multiple xcc, just use the original policy for simplicity */
223  		for (j = 0; j < num_xcc; j++) {
224  			for (i = 0; i < max_queues_per_mec; i++) {
225  				pipe = i % adev->gfx.mec.num_pipe_per_mec;
226  				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
227  					 adev->gfx.mec.num_queue_per_pipe;
228  
229  				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
230  					adev->gfx.mec_bitmap[j].queue_bitmap);
231  			}
232  		}
233  	} else {
234  		/* policy: amdgpu owns all queues in the given pipe */
235  		for (j = 0; j < num_xcc; j++) {
236  			for (i = 0; i < max_queues_per_mec; ++i)
237  				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
238  		}
239  	}
240  
241  	for (j = 0; j < num_xcc; j++) {
242  		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
243  			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
244  	}
245  }
246  
amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device * adev)247  void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
248  {
249  	int i, queue, pipe;
250  	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
251  	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
252  					adev->gfx.me.num_queue_per_pipe;
253  
254  	if (multipipe_policy) {
255  		/* policy: amdgpu owns the first queue per pipe at this stage
256  		 * will extend to mulitple queues per pipe later */
257  		for (i = 0; i < max_queues_per_me; i++) {
258  			pipe = i % adev->gfx.me.num_pipe_per_me;
259  			queue = (i / adev->gfx.me.num_pipe_per_me) %
260  				adev->gfx.me.num_queue_per_pipe;
261  
262  			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
263  				adev->gfx.me.queue_bitmap);
264  		}
265  	} else {
266  		for (i = 0; i < max_queues_per_me; ++i)
267  			set_bit(i, adev->gfx.me.queue_bitmap);
268  	}
269  
270  	/* update the number of active graphics rings */
271  	adev->gfx.num_gfx_rings =
272  		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
273  }
274  
amdgpu_gfx_kiq_acquire(struct amdgpu_device * adev,struct amdgpu_ring * ring,int xcc_id)275  static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
276  				  struct amdgpu_ring *ring, int xcc_id)
277  {
278  	int queue_bit;
279  	int mec, pipe, queue;
280  
281  	queue_bit = adev->gfx.mec.num_mec
282  		    * adev->gfx.mec.num_pipe_per_mec
283  		    * adev->gfx.mec.num_queue_per_pipe;
284  
285  	while (--queue_bit >= 0) {
286  		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
287  			continue;
288  
289  		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
290  
291  		/*
292  		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
293  		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
294  		 * only can be issued on queue 0.
295  		 */
296  		if ((mec == 1 && pipe > 1) || queue != 0)
297  			continue;
298  
299  		ring->me = mec + 1;
300  		ring->pipe = pipe;
301  		ring->queue = queue;
302  
303  		return 0;
304  	}
305  
306  	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
307  	return -EINVAL;
308  }
309  
amdgpu_gfx_kiq_init_ring(struct amdgpu_device * adev,int xcc_id)310  int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
311  {
312  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
313  	struct amdgpu_irq_src *irq = &kiq->irq;
314  	struct amdgpu_ring *ring = &kiq->ring;
315  	int r = 0;
316  
317  	spin_lock_init(&kiq->ring_lock);
318  
319  	ring->adev = NULL;
320  	ring->ring_obj = NULL;
321  	ring->use_doorbell = true;
322  	ring->xcc_id = xcc_id;
323  	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
324  	ring->doorbell_index =
325  		(adev->doorbell_index.kiq +
326  		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
327  		<< 1;
328  
329  	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
330  	if (r)
331  		return r;
332  
333  	ring->eop_gpu_addr = kiq->eop_gpu_addr;
334  	ring->no_scheduler = true;
335  	snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
336  		 (unsigned char)xcc_id, (unsigned char)ring->me,
337  		 (unsigned char)ring->pipe, (unsigned char)ring->queue);
338  	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
339  			     AMDGPU_RING_PRIO_DEFAULT, NULL);
340  	if (r)
341  		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
342  
343  	return r;
344  }
345  
amdgpu_gfx_kiq_free_ring(struct amdgpu_ring * ring)346  void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
347  {
348  	amdgpu_ring_fini(ring);
349  }
350  
amdgpu_gfx_kiq_fini(struct amdgpu_device * adev,int xcc_id)351  void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
352  {
353  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
354  
355  	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
356  }
357  
amdgpu_gfx_kiq_init(struct amdgpu_device * adev,unsigned int hpd_size,int xcc_id)358  int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
359  			unsigned int hpd_size, int xcc_id)
360  {
361  	int r;
362  	u32 *hpd;
363  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
364  
365  	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
366  				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
367  				    &kiq->eop_gpu_addr, (void **)&hpd);
368  	if (r) {
369  		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
370  		return r;
371  	}
372  
373  	memset(hpd, 0, hpd_size);
374  
375  	r = amdgpu_bo_reserve(kiq->eop_obj, true);
376  	if (unlikely(r != 0))
377  		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
378  	amdgpu_bo_kunmap(kiq->eop_obj);
379  	amdgpu_bo_unreserve(kiq->eop_obj);
380  
381  	return 0;
382  }
383  
384  /* create MQD for each compute/gfx queue */
amdgpu_gfx_mqd_sw_init(struct amdgpu_device * adev,unsigned int mqd_size,int xcc_id)385  int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
386  			   unsigned int mqd_size, int xcc_id)
387  {
388  	int r, i, j;
389  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
390  	struct amdgpu_ring *ring = &kiq->ring;
391  	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
392  
393  #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
394  	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
395  	if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
396  		domain |= AMDGPU_GEM_DOMAIN_VRAM;
397  #endif
398  
399  	/* create MQD for KIQ */
400  	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
401  		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
402  		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
403  		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
404  		 * KIQ MQD no matter SRIOV or Bare-metal
405  		 */
406  		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
407  					    AMDGPU_GEM_DOMAIN_VRAM |
408  					    AMDGPU_GEM_DOMAIN_GTT,
409  					    &ring->mqd_obj,
410  					    &ring->mqd_gpu_addr,
411  					    &ring->mqd_ptr);
412  		if (r) {
413  			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
414  			return r;
415  		}
416  
417  		/* prepare MQD backup */
418  		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
419  		if (!kiq->mqd_backup) {
420  			dev_warn(adev->dev,
421  				 "no memory to create MQD backup for ring %s\n", ring->name);
422  			return -ENOMEM;
423  		}
424  	}
425  
426  	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
427  		/* create MQD for each KGQ */
428  		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
429  			ring = &adev->gfx.gfx_ring[i];
430  			if (!ring->mqd_obj) {
431  				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
432  							    domain, &ring->mqd_obj,
433  							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
434  				if (r) {
435  					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
436  					return r;
437  				}
438  
439  				ring->mqd_size = mqd_size;
440  				/* prepare MQD backup */
441  				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
442  				if (!adev->gfx.me.mqd_backup[i]) {
443  					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
444  					return -ENOMEM;
445  				}
446  			}
447  		}
448  	}
449  
450  	/* create MQD for each KCQ */
451  	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
452  		j = i + xcc_id * adev->gfx.num_compute_rings;
453  		ring = &adev->gfx.compute_ring[j];
454  		if (!ring->mqd_obj) {
455  			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
456  						    domain, &ring->mqd_obj,
457  						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
458  			if (r) {
459  				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
460  				return r;
461  			}
462  
463  			ring->mqd_size = mqd_size;
464  			/* prepare MQD backup */
465  			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
466  			if (!adev->gfx.mec.mqd_backup[j]) {
467  				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
468  				return -ENOMEM;
469  			}
470  		}
471  	}
472  
473  	return 0;
474  }
475  
amdgpu_gfx_mqd_sw_fini(struct amdgpu_device * adev,int xcc_id)476  void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
477  {
478  	struct amdgpu_ring *ring = NULL;
479  	int i, j;
480  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
481  
482  	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
483  		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
484  			ring = &adev->gfx.gfx_ring[i];
485  			kfree(adev->gfx.me.mqd_backup[i]);
486  			amdgpu_bo_free_kernel(&ring->mqd_obj,
487  					      &ring->mqd_gpu_addr,
488  					      &ring->mqd_ptr);
489  		}
490  	}
491  
492  	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
493  		j = i + xcc_id * adev->gfx.num_compute_rings;
494  		ring = &adev->gfx.compute_ring[j];
495  		kfree(adev->gfx.mec.mqd_backup[j]);
496  		amdgpu_bo_free_kernel(&ring->mqd_obj,
497  				      &ring->mqd_gpu_addr,
498  				      &ring->mqd_ptr);
499  	}
500  
501  	ring = &kiq->ring;
502  	kfree(kiq->mqd_backup);
503  	amdgpu_bo_free_kernel(&ring->mqd_obj,
504  			      &ring->mqd_gpu_addr,
505  			      &ring->mqd_ptr);
506  }
507  
amdgpu_gfx_disable_kcq(struct amdgpu_device * adev,int xcc_id)508  int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
509  {
510  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
511  	struct amdgpu_ring *kiq_ring = &kiq->ring;
512  	int i, r = 0;
513  	int j;
514  
515  	if (adev->enable_mes) {
516  		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
517  			j = i + xcc_id * adev->gfx.num_compute_rings;
518  			amdgpu_mes_unmap_legacy_queue(adev,
519  						   &adev->gfx.compute_ring[j],
520  						   RESET_QUEUES, 0, 0);
521  		}
522  		return 0;
523  	}
524  
525  	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
526  		return -EINVAL;
527  
528  	spin_lock(&kiq->ring_lock);
529  	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
530  					adev->gfx.num_compute_rings)) {
531  		spin_unlock(&kiq->ring_lock);
532  		return -ENOMEM;
533  	}
534  
535  	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
536  		j = i + xcc_id * adev->gfx.num_compute_rings;
537  		kiq->pmf->kiq_unmap_queues(kiq_ring,
538  					   &adev->gfx.compute_ring[j],
539  					   RESET_QUEUES, 0, 0);
540  	}
541  
542  	/**
543  	 * This is workaround: only skip kiq_ring test
544  	 * during ras recovery in suspend stage for gfx9.4.3
545  	 */
546  	if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
547  	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) &&
548  	    amdgpu_ras_in_recovery(adev)) {
549  		spin_unlock(&kiq->ring_lock);
550  		return 0;
551  	}
552  
553  	if (kiq_ring->sched.ready && !adev->job_hang)
554  		r = amdgpu_ring_test_helper(kiq_ring);
555  	spin_unlock(&kiq->ring_lock);
556  
557  	return r;
558  }
559  
amdgpu_gfx_disable_kgq(struct amdgpu_device * adev,int xcc_id)560  int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
561  {
562  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
563  	struct amdgpu_ring *kiq_ring = &kiq->ring;
564  	int i, r = 0;
565  	int j;
566  
567  	if (adev->enable_mes) {
568  		if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
569  			for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
570  				j = i + xcc_id * adev->gfx.num_gfx_rings;
571  				amdgpu_mes_unmap_legacy_queue(adev,
572  						      &adev->gfx.gfx_ring[j],
573  						      PREEMPT_QUEUES, 0, 0);
574  			}
575  		}
576  		return 0;
577  	}
578  
579  	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
580  		return -EINVAL;
581  
582  	spin_lock(&kiq->ring_lock);
583  	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
584  		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
585  						adev->gfx.num_gfx_rings)) {
586  			spin_unlock(&kiq->ring_lock);
587  			return -ENOMEM;
588  		}
589  
590  		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
591  			j = i + xcc_id * adev->gfx.num_gfx_rings;
592  			kiq->pmf->kiq_unmap_queues(kiq_ring,
593  						   &adev->gfx.gfx_ring[j],
594  						   PREEMPT_QUEUES, 0, 0);
595  		}
596  	}
597  
598  	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
599  		r = amdgpu_ring_test_helper(kiq_ring);
600  	spin_unlock(&kiq->ring_lock);
601  
602  	return r;
603  }
604  
amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device * adev,int queue_bit)605  int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
606  					int queue_bit)
607  {
608  	int mec, pipe, queue;
609  	int set_resource_bit = 0;
610  
611  	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
612  
613  	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
614  
615  	return set_resource_bit;
616  }
617  
amdgpu_gfx_mes_enable_kcq(struct amdgpu_device * adev,int xcc_id)618  static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
619  {
620  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
621  	struct amdgpu_ring *kiq_ring = &kiq->ring;
622  	uint64_t queue_mask = ~0ULL;
623  	int r, i, j;
624  
625  	amdgpu_device_flush_hdp(adev, NULL);
626  
627  	if (!adev->enable_uni_mes) {
628  		spin_lock(&kiq->ring_lock);
629  		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
630  		if (r) {
631  			dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
632  			spin_unlock(&kiq->ring_lock);
633  			return r;
634  		}
635  
636  		kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
637  		r = amdgpu_ring_test_helper(kiq_ring);
638  		spin_unlock(&kiq->ring_lock);
639  		if (r)
640  			dev_err(adev->dev, "KIQ failed to set resources\n");
641  	}
642  
643  	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
644  		j = i + xcc_id * adev->gfx.num_compute_rings;
645  		r = amdgpu_mes_map_legacy_queue(adev,
646  						&adev->gfx.compute_ring[j]);
647  		if (r) {
648  			dev_err(adev->dev, "failed to map compute queue\n");
649  			return r;
650  		}
651  	}
652  
653  	return 0;
654  }
655  
amdgpu_gfx_enable_kcq(struct amdgpu_device * adev,int xcc_id)656  int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
657  {
658  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
659  	struct amdgpu_ring *kiq_ring = &kiq->ring;
660  	uint64_t queue_mask = 0;
661  	int r, i, j;
662  
663  	if (adev->mes.enable_legacy_queue_map)
664  		return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);
665  
666  	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
667  		return -EINVAL;
668  
669  	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
670  		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
671  			continue;
672  
673  		/* This situation may be hit in the future if a new HW
674  		 * generation exposes more than 64 queues. If so, the
675  		 * definition of queue_mask needs updating */
676  		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
677  			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
678  			break;
679  		}
680  
681  		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
682  	}
683  
684  	amdgpu_device_flush_hdp(adev, NULL);
685  
686  	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
687  		 kiq_ring->queue);
688  
689  	spin_lock(&kiq->ring_lock);
690  	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
691  					adev->gfx.num_compute_rings +
692  					kiq->pmf->set_resources_size);
693  	if (r) {
694  		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
695  		spin_unlock(&kiq->ring_lock);
696  		return r;
697  	}
698  
699  	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
700  	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
701  		j = i + xcc_id * adev->gfx.num_compute_rings;
702  		kiq->pmf->kiq_map_queues(kiq_ring,
703  					 &adev->gfx.compute_ring[j]);
704  	}
705  
706  	r = amdgpu_ring_test_helper(kiq_ring);
707  	spin_unlock(&kiq->ring_lock);
708  	if (r)
709  		DRM_ERROR("KCQ enable failed\n");
710  
711  	return r;
712  }
713  
amdgpu_gfx_enable_kgq(struct amdgpu_device * adev,int xcc_id)714  int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
715  {
716  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
717  	struct amdgpu_ring *kiq_ring = &kiq->ring;
718  	int r, i, j;
719  
720  	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
721  		return -EINVAL;
722  
723  	amdgpu_device_flush_hdp(adev, NULL);
724  
725  	if (adev->mes.enable_legacy_queue_map) {
726  		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
727  			j = i + xcc_id * adev->gfx.num_gfx_rings;
728  			r = amdgpu_mes_map_legacy_queue(adev,
729  							&adev->gfx.gfx_ring[j]);
730  			if (r) {
731  				DRM_ERROR("failed to map gfx queue\n");
732  				return r;
733  			}
734  		}
735  
736  		return 0;
737  	}
738  
739  	spin_lock(&kiq->ring_lock);
740  	/* No need to map kcq on the slave */
741  	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
742  		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
743  						adev->gfx.num_gfx_rings);
744  		if (r) {
745  			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
746  			spin_unlock(&kiq->ring_lock);
747  			return r;
748  		}
749  
750  		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
751  			j = i + xcc_id * adev->gfx.num_gfx_rings;
752  			kiq->pmf->kiq_map_queues(kiq_ring,
753  						 &adev->gfx.gfx_ring[j]);
754  		}
755  	}
756  
757  	r = amdgpu_ring_test_helper(kiq_ring);
758  	spin_unlock(&kiq->ring_lock);
759  	if (r)
760  		DRM_ERROR("KGQ enable failed\n");
761  
762  	return r;
763  }
764  
765  /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
766   *
767   * @adev: amdgpu_device pointer
768   * @bool enable true: enable gfx off feature, false: disable gfx off feature
769   *
770   * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
771   * 2. other client can send request to disable gfx off feature, the request should be honored.
772   * 3. other client can cancel their request of disable gfx off feature
773   * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
774   */
775  
amdgpu_gfx_off_ctrl(struct amdgpu_device * adev,bool enable)776  void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
777  {
778  	unsigned long delay = GFX_OFF_DELAY_ENABLE;
779  
780  	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
781  		return;
782  
783  	mutex_lock(&adev->gfx.gfx_off_mutex);
784  
785  	if (enable) {
786  		/* If the count is already 0, it means there's an imbalance bug somewhere.
787  		 * Note that the bug may be in a different caller than the one which triggers the
788  		 * WARN_ON_ONCE.
789  		 */
790  		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
791  			goto unlock;
792  
793  		adev->gfx.gfx_off_req_count--;
794  
795  		if (adev->gfx.gfx_off_req_count == 0 &&
796  		    !adev->gfx.gfx_off_state) {
797  			/* If going to s2idle, no need to wait */
798  			if (adev->in_s0ix) {
799  				if (!amdgpu_dpm_set_powergating_by_smu(adev,
800  						AMD_IP_BLOCK_TYPE_GFX, true))
801  					adev->gfx.gfx_off_state = true;
802  			} else {
803  				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
804  					      delay);
805  			}
806  		}
807  	} else {
808  		if (adev->gfx.gfx_off_req_count == 0) {
809  			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
810  
811  			if (adev->gfx.gfx_off_state &&
812  			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
813  				adev->gfx.gfx_off_state = false;
814  
815  				if (adev->gfx.funcs->init_spm_golden) {
816  					dev_dbg(adev->dev,
817  						"GFXOFF is disabled, re-init SPM golden settings\n");
818  					amdgpu_gfx_init_spm_golden(adev);
819  				}
820  			}
821  		}
822  
823  		adev->gfx.gfx_off_req_count++;
824  	}
825  
826  unlock:
827  	mutex_unlock(&adev->gfx.gfx_off_mutex);
828  }
829  
amdgpu_set_gfx_off_residency(struct amdgpu_device * adev,bool value)830  int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
831  {
832  	int r = 0;
833  
834  	mutex_lock(&adev->gfx.gfx_off_mutex);
835  
836  	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
837  
838  	mutex_unlock(&adev->gfx.gfx_off_mutex);
839  
840  	return r;
841  }
842  
amdgpu_get_gfx_off_residency(struct amdgpu_device * adev,u32 * value)843  int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
844  {
845  	int r = 0;
846  
847  	mutex_lock(&adev->gfx.gfx_off_mutex);
848  
849  	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
850  
851  	mutex_unlock(&adev->gfx.gfx_off_mutex);
852  
853  	return r;
854  }
855  
amdgpu_get_gfx_off_entrycount(struct amdgpu_device * adev,u64 * value)856  int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
857  {
858  	int r = 0;
859  
860  	mutex_lock(&adev->gfx.gfx_off_mutex);
861  
862  	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
863  
864  	mutex_unlock(&adev->gfx.gfx_off_mutex);
865  
866  	return r;
867  }
868  
amdgpu_get_gfx_off_status(struct amdgpu_device * adev,uint32_t * value)869  int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
870  {
871  
872  	int r = 0;
873  
874  	mutex_lock(&adev->gfx.gfx_off_mutex);
875  
876  	r = amdgpu_dpm_get_status_gfxoff(adev, value);
877  
878  	mutex_unlock(&adev->gfx.gfx_off_mutex);
879  
880  	return r;
881  }
882  
amdgpu_gfx_ras_late_init(struct amdgpu_device * adev,struct ras_common_if * ras_block)883  int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
884  {
885  	int r;
886  
887  	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
888  		if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
889  			r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
890  			if (r)
891  				return r;
892  		}
893  
894  		r = amdgpu_ras_block_late_init(adev, ras_block);
895  		if (r)
896  			return r;
897  
898  		if (adev->gfx.cp_ecc_error_irq.funcs) {
899  			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
900  			if (r)
901  				goto late_fini;
902  		}
903  	} else {
904  		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
905  	}
906  
907  	return 0;
908  late_fini:
909  	amdgpu_ras_block_late_fini(adev, ras_block);
910  	return r;
911  }
912  
amdgpu_gfx_ras_sw_init(struct amdgpu_device * adev)913  int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
914  {
915  	int err = 0;
916  	struct amdgpu_gfx_ras *ras = NULL;
917  
918  	/* adev->gfx.ras is NULL, which means gfx does not
919  	 * support ras function, then do nothing here.
920  	 */
921  	if (!adev->gfx.ras)
922  		return 0;
923  
924  	ras = adev->gfx.ras;
925  
926  	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
927  	if (err) {
928  		dev_err(adev->dev, "Failed to register gfx ras block!\n");
929  		return err;
930  	}
931  
932  	strcpy(ras->ras_block.ras_comm.name, "gfx");
933  	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
934  	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
935  	adev->gfx.ras_if = &ras->ras_block.ras_comm;
936  
937  	/* If not define special ras_late_init function, use gfx default ras_late_init */
938  	if (!ras->ras_block.ras_late_init)
939  		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
940  
941  	/* If not defined special ras_cb function, use default ras_cb */
942  	if (!ras->ras_block.ras_cb)
943  		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
944  
945  	return 0;
946  }
947  
amdgpu_gfx_poison_consumption_handler(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry)948  int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
949  						struct amdgpu_iv_entry *entry)
950  {
951  	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
952  		return adev->gfx.ras->poison_consumption_handler(adev, entry);
953  
954  	return 0;
955  }
956  
amdgpu_gfx_process_ras_data_cb(struct amdgpu_device * adev,void * err_data,struct amdgpu_iv_entry * entry)957  int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
958  		void *err_data,
959  		struct amdgpu_iv_entry *entry)
960  {
961  	/* TODO ue will trigger an interrupt.
962  	 *
963  	 * When “Full RAS” is enabled, the per-IP interrupt sources should
964  	 * be disabled and the driver should only look for the aggregated
965  	 * interrupt via sync flood
966  	 */
967  	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
968  		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
969  		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
970  		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
971  			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
972  		amdgpu_ras_reset_gpu(adev);
973  	}
974  	return AMDGPU_RAS_SUCCESS;
975  }
976  
amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)977  int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
978  				  struct amdgpu_irq_src *source,
979  				  struct amdgpu_iv_entry *entry)
980  {
981  	struct ras_common_if *ras_if = adev->gfx.ras_if;
982  	struct ras_dispatch_if ih_data = {
983  		.entry = entry,
984  	};
985  
986  	if (!ras_if)
987  		return 0;
988  
989  	ih_data.head = *ras_if;
990  
991  	DRM_ERROR("CP ECC ERROR IRQ\n");
992  	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
993  	return 0;
994  }
995  
amdgpu_gfx_ras_error_func(struct amdgpu_device * adev,void * ras_error_status,void (* func)(struct amdgpu_device * adev,void * ras_error_status,int xcc_id))996  void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
997  		void *ras_error_status,
998  		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
999  				int xcc_id))
1000  {
1001  	int i;
1002  	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
1003  	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
1004  	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
1005  
1006  	if (err_data) {
1007  		err_data->ue_count = 0;
1008  		err_data->ce_count = 0;
1009  	}
1010  
1011  	for_each_inst(i, xcc_mask)
1012  		func(adev, ras_error_status, i);
1013  }
1014  
amdgpu_kiq_rreg(struct amdgpu_device * adev,uint32_t reg,uint32_t xcc_id)1015  uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
1016  {
1017  	signed long r, cnt = 0;
1018  	unsigned long flags;
1019  	uint32_t seq, reg_val_offs = 0, value = 0;
1020  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1021  	struct amdgpu_ring *ring = &kiq->ring;
1022  
1023  	if (amdgpu_device_skip_hw_access(adev))
1024  		return 0;
1025  
1026  	if (adev->mes.ring[0].sched.ready)
1027  		return amdgpu_mes_rreg(adev, reg);
1028  
1029  	BUG_ON(!ring->funcs->emit_rreg);
1030  
1031  	spin_lock_irqsave(&kiq->ring_lock, flags);
1032  	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
1033  		pr_err("critical bug! too many kiq readers\n");
1034  		goto failed_unlock;
1035  	}
1036  	r = amdgpu_ring_alloc(ring, 32);
1037  	if (r)
1038  		goto failed_unlock;
1039  
1040  	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
1041  	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1042  	if (r)
1043  		goto failed_undo;
1044  
1045  	amdgpu_ring_commit(ring);
1046  	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1047  
1048  	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1049  
1050  	/* don't wait anymore for gpu reset case because this way may
1051  	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1052  	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1053  	 * never return if we keep waiting in virt_kiq_rreg, which cause
1054  	 * gpu_recover() hang there.
1055  	 *
1056  	 * also don't wait anymore for IRQ context
1057  	 * */
1058  	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1059  		goto failed_kiq_read;
1060  
1061  	might_sleep();
1062  	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1063  		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1064  		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1065  	}
1066  
1067  	if (cnt > MAX_KIQ_REG_TRY)
1068  		goto failed_kiq_read;
1069  
1070  	mb();
1071  	value = adev->wb.wb[reg_val_offs];
1072  	amdgpu_device_wb_free(adev, reg_val_offs);
1073  	return value;
1074  
1075  failed_undo:
1076  	amdgpu_ring_undo(ring);
1077  failed_unlock:
1078  	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1079  failed_kiq_read:
1080  	if (reg_val_offs)
1081  		amdgpu_device_wb_free(adev, reg_val_offs);
1082  	dev_err(adev->dev, "failed to read reg:%x\n", reg);
1083  	return ~0;
1084  }
1085  
amdgpu_kiq_wreg(struct amdgpu_device * adev,uint32_t reg,uint32_t v,uint32_t xcc_id)1086  void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
1087  {
1088  	signed long r, cnt = 0;
1089  	unsigned long flags;
1090  	uint32_t seq;
1091  	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1092  	struct amdgpu_ring *ring = &kiq->ring;
1093  
1094  	BUG_ON(!ring->funcs->emit_wreg);
1095  
1096  	if (amdgpu_device_skip_hw_access(adev))
1097  		return;
1098  
1099  	if (adev->mes.ring[0].sched.ready) {
1100  		amdgpu_mes_wreg(adev, reg, v);
1101  		return;
1102  	}
1103  
1104  	spin_lock_irqsave(&kiq->ring_lock, flags);
1105  	r = amdgpu_ring_alloc(ring, 32);
1106  	if (r)
1107  		goto failed_unlock;
1108  
1109  	amdgpu_ring_emit_wreg(ring, reg, v);
1110  	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1111  	if (r)
1112  		goto failed_undo;
1113  
1114  	amdgpu_ring_commit(ring);
1115  	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1116  
1117  	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1118  
1119  	/* don't wait anymore for gpu reset case because this way may
1120  	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1121  	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1122  	 * never return if we keep waiting in virt_kiq_rreg, which cause
1123  	 * gpu_recover() hang there.
1124  	 *
1125  	 * also don't wait anymore for IRQ context
1126  	 * */
1127  	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1128  		goto failed_kiq_write;
1129  
1130  	might_sleep();
1131  	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1132  
1133  		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1134  		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1135  	}
1136  
1137  	if (cnt > MAX_KIQ_REG_TRY)
1138  		goto failed_kiq_write;
1139  
1140  	return;
1141  
1142  failed_undo:
1143  	amdgpu_ring_undo(ring);
1144  failed_unlock:
1145  	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1146  failed_kiq_write:
1147  	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1148  }
1149  
amdgpu_gfx_get_num_kcq(struct amdgpu_device * adev)1150  int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1151  {
1152  	if (amdgpu_num_kcq == -1) {
1153  		return 8;
1154  	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1155  		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1156  		return 8;
1157  	}
1158  	return amdgpu_num_kcq;
1159  }
1160  
amdgpu_gfx_cp_init_microcode(struct amdgpu_device * adev,uint32_t ucode_id)1161  void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1162  				  uint32_t ucode_id)
1163  {
1164  	const struct gfx_firmware_header_v1_0 *cp_hdr;
1165  	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1166  	struct amdgpu_firmware_info *info = NULL;
1167  	const struct firmware *ucode_fw;
1168  	unsigned int fw_size;
1169  
1170  	switch (ucode_id) {
1171  	case AMDGPU_UCODE_ID_CP_PFP:
1172  		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1173  			adev->gfx.pfp_fw->data;
1174  		adev->gfx.pfp_fw_version =
1175  			le32_to_cpu(cp_hdr->header.ucode_version);
1176  		adev->gfx.pfp_feature_version =
1177  			le32_to_cpu(cp_hdr->ucode_feature_version);
1178  		ucode_fw = adev->gfx.pfp_fw;
1179  		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1180  		break;
1181  	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1182  		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1183  			adev->gfx.pfp_fw->data;
1184  		adev->gfx.pfp_fw_version =
1185  			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1186  		adev->gfx.pfp_feature_version =
1187  			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1188  		ucode_fw = adev->gfx.pfp_fw;
1189  		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1190  		break;
1191  	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1192  	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1193  		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1194  			adev->gfx.pfp_fw->data;
1195  		ucode_fw = adev->gfx.pfp_fw;
1196  		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1197  		break;
1198  	case AMDGPU_UCODE_ID_CP_ME:
1199  		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1200  			adev->gfx.me_fw->data;
1201  		adev->gfx.me_fw_version =
1202  			le32_to_cpu(cp_hdr->header.ucode_version);
1203  		adev->gfx.me_feature_version =
1204  			le32_to_cpu(cp_hdr->ucode_feature_version);
1205  		ucode_fw = adev->gfx.me_fw;
1206  		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1207  		break;
1208  	case AMDGPU_UCODE_ID_CP_RS64_ME:
1209  		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1210  			adev->gfx.me_fw->data;
1211  		adev->gfx.me_fw_version =
1212  			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1213  		adev->gfx.me_feature_version =
1214  			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1215  		ucode_fw = adev->gfx.me_fw;
1216  		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1217  		break;
1218  	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1219  	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1220  		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1221  			adev->gfx.me_fw->data;
1222  		ucode_fw = adev->gfx.me_fw;
1223  		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1224  		break;
1225  	case AMDGPU_UCODE_ID_CP_CE:
1226  		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1227  			adev->gfx.ce_fw->data;
1228  		adev->gfx.ce_fw_version =
1229  			le32_to_cpu(cp_hdr->header.ucode_version);
1230  		adev->gfx.ce_feature_version =
1231  			le32_to_cpu(cp_hdr->ucode_feature_version);
1232  		ucode_fw = adev->gfx.ce_fw;
1233  		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1234  		break;
1235  	case AMDGPU_UCODE_ID_CP_MEC1:
1236  		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1237  			adev->gfx.mec_fw->data;
1238  		adev->gfx.mec_fw_version =
1239  			le32_to_cpu(cp_hdr->header.ucode_version);
1240  		adev->gfx.mec_feature_version =
1241  			le32_to_cpu(cp_hdr->ucode_feature_version);
1242  		ucode_fw = adev->gfx.mec_fw;
1243  		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1244  			  le32_to_cpu(cp_hdr->jt_size) * 4;
1245  		break;
1246  	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1247  		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1248  			adev->gfx.mec_fw->data;
1249  		ucode_fw = adev->gfx.mec_fw;
1250  		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1251  		break;
1252  	case AMDGPU_UCODE_ID_CP_MEC2:
1253  		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1254  			adev->gfx.mec2_fw->data;
1255  		adev->gfx.mec2_fw_version =
1256  			le32_to_cpu(cp_hdr->header.ucode_version);
1257  		adev->gfx.mec2_feature_version =
1258  			le32_to_cpu(cp_hdr->ucode_feature_version);
1259  		ucode_fw = adev->gfx.mec2_fw;
1260  		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1261  			  le32_to_cpu(cp_hdr->jt_size) * 4;
1262  		break;
1263  	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1264  		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1265  			adev->gfx.mec2_fw->data;
1266  		ucode_fw = adev->gfx.mec2_fw;
1267  		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1268  		break;
1269  	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1270  		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1271  			adev->gfx.mec_fw->data;
1272  		adev->gfx.mec_fw_version =
1273  			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1274  		adev->gfx.mec_feature_version =
1275  			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1276  		ucode_fw = adev->gfx.mec_fw;
1277  		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1278  		break;
1279  	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1280  	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1281  	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1282  	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1283  		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1284  			adev->gfx.mec_fw->data;
1285  		ucode_fw = adev->gfx.mec_fw;
1286  		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1287  		break;
1288  	default:
1289  		dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
1290  		return;
1291  	}
1292  
1293  	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1294  		info = &adev->firmware.ucode[ucode_id];
1295  		info->ucode_id = ucode_id;
1296  		info->fw = ucode_fw;
1297  		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1298  	}
1299  }
1300  
amdgpu_gfx_is_master_xcc(struct amdgpu_device * adev,int xcc_id)1301  bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1302  {
1303  	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1304  			adev->gfx.num_xcc_per_xcp : 1));
1305  }
1306  
amdgpu_gfx_get_current_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1307  static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1308  						struct device_attribute *addr,
1309  						char *buf)
1310  {
1311  	struct drm_device *ddev = dev_get_drvdata(dev);
1312  	struct amdgpu_device *adev = drm_to_adev(ddev);
1313  	int mode;
1314  
1315  	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1316  					       AMDGPU_XCP_FL_NONE);
1317  
1318  	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1319  }
1320  
amdgpu_gfx_set_compute_partition(struct device * dev,struct device_attribute * addr,const char * buf,size_t count)1321  static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1322  						struct device_attribute *addr,
1323  						const char *buf, size_t count)
1324  {
1325  	struct drm_device *ddev = dev_get_drvdata(dev);
1326  	struct amdgpu_device *adev = drm_to_adev(ddev);
1327  	enum amdgpu_gfx_partition mode;
1328  	int ret = 0, num_xcc;
1329  
1330  	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1331  	if (num_xcc % 2 != 0)
1332  		return -EINVAL;
1333  
1334  	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1335  		mode = AMDGPU_SPX_PARTITION_MODE;
1336  	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1337  		/*
1338  		 * DPX mode needs AIDs to be in multiple of 2.
1339  		 * Each AID connects 2 XCCs.
1340  		 */
1341  		if (num_xcc%4)
1342  			return -EINVAL;
1343  		mode = AMDGPU_DPX_PARTITION_MODE;
1344  	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1345  		if (num_xcc != 6)
1346  			return -EINVAL;
1347  		mode = AMDGPU_TPX_PARTITION_MODE;
1348  	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1349  		if (num_xcc != 8)
1350  			return -EINVAL;
1351  		mode = AMDGPU_QPX_PARTITION_MODE;
1352  	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1353  		mode = AMDGPU_CPX_PARTITION_MODE;
1354  	} else {
1355  		return -EINVAL;
1356  	}
1357  
1358  	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1359  
1360  	if (ret)
1361  		return ret;
1362  
1363  	return count;
1364  }
1365  
amdgpu_gfx_get_available_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1366  static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1367  						struct device_attribute *addr,
1368  						char *buf)
1369  {
1370  	struct drm_device *ddev = dev_get_drvdata(dev);
1371  	struct amdgpu_device *adev = drm_to_adev(ddev);
1372  	char *supported_partition;
1373  
1374  	/* TBD */
1375  	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1376  	case 8:
1377  		supported_partition = "SPX, DPX, QPX, CPX";
1378  		break;
1379  	case 6:
1380  		supported_partition = "SPX, TPX, CPX";
1381  		break;
1382  	case 4:
1383  		supported_partition = "SPX, DPX, CPX";
1384  		break;
1385  	/* this seems only existing in emulation phase */
1386  	case 2:
1387  		supported_partition = "SPX, CPX";
1388  		break;
1389  	default:
1390  		supported_partition = "Not supported";
1391  		break;
1392  	}
1393  
1394  	return sysfs_emit(buf, "%s\n", supported_partition);
1395  }
1396  
amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring * ring)1397  static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring)
1398  {
1399  	struct amdgpu_device *adev = ring->adev;
1400  	struct drm_gpu_scheduler *sched = &ring->sched;
1401  	struct drm_sched_entity entity;
1402  	struct dma_fence *f;
1403  	struct amdgpu_job *job;
1404  	struct amdgpu_ib *ib;
1405  	int i, r;
1406  
1407  	/* Initialize the scheduler entity */
1408  	r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL,
1409  				  &sched, 1, NULL);
1410  	if (r) {
1411  		dev_err(adev->dev, "Failed setting up GFX kernel entity.\n");
1412  		goto err;
1413  	}
1414  
1415  	r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL,
1416  				     64, 0,
1417  				     &job);
1418  	if (r)
1419  		goto err;
1420  
1421  	job->enforce_isolation = true;
1422  
1423  	ib = &job->ibs[0];
1424  	for (i = 0; i <= ring->funcs->align_mask; ++i)
1425  		ib->ptr[i] = ring->funcs->nop;
1426  	ib->length_dw = ring->funcs->align_mask + 1;
1427  
1428  	f = amdgpu_job_submit(job);
1429  
1430  	r = dma_fence_wait(f, false);
1431  	if (r)
1432  		goto err;
1433  
1434  	dma_fence_put(f);
1435  
1436  	/* Clean up the scheduler entity */
1437  	drm_sched_entity_destroy(&entity);
1438  	return 0;
1439  
1440  err:
1441  	return r;
1442  }
1443  
amdgpu_gfx_run_cleaner_shader(struct amdgpu_device * adev,int xcp_id)1444  static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id)
1445  {
1446  	int num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1447  	struct amdgpu_ring *ring;
1448  	int num_xcc_to_clear;
1449  	int i, r, xcc_id;
1450  
1451  	if (adev->gfx.num_xcc_per_xcp)
1452  		num_xcc_to_clear = adev->gfx.num_xcc_per_xcp;
1453  	else
1454  		num_xcc_to_clear = 1;
1455  
1456  	for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) {
1457  		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
1458  			ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
1459  			if ((ring->xcp_id == xcp_id) && ring->sched.ready) {
1460  				r = amdgpu_gfx_run_cleaner_shader_job(ring);
1461  				if (r)
1462  					return r;
1463  				num_xcc_to_clear--;
1464  				break;
1465  			}
1466  		}
1467  	}
1468  
1469  	if (num_xcc_to_clear)
1470  		return -ENOENT;
1471  
1472  	return 0;
1473  }
1474  
amdgpu_gfx_set_run_cleaner_shader(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1475  static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev,
1476  						 struct device_attribute *attr,
1477  						 const char *buf,
1478  						 size_t count)
1479  {
1480  	struct drm_device *ddev = dev_get_drvdata(dev);
1481  	struct amdgpu_device *adev = drm_to_adev(ddev);
1482  	int ret;
1483  	long value;
1484  
1485  	if (amdgpu_in_reset(adev))
1486  		return -EPERM;
1487  	if (adev->in_suspend && !adev->in_runpm)
1488  		return -EPERM;
1489  
1490  	ret = kstrtol(buf, 0, &value);
1491  
1492  	if (ret)
1493  		return -EINVAL;
1494  
1495  	if (value < 0)
1496  		return -EINVAL;
1497  
1498  	if (adev->xcp_mgr) {
1499  		if (value >= adev->xcp_mgr->num_xcps)
1500  			return -EINVAL;
1501  	} else {
1502  		if (value > 1)
1503  			return -EINVAL;
1504  	}
1505  
1506  	ret = pm_runtime_get_sync(ddev->dev);
1507  	if (ret < 0) {
1508  		pm_runtime_put_autosuspend(ddev->dev);
1509  		return ret;
1510  	}
1511  
1512  	ret = amdgpu_gfx_run_cleaner_shader(adev, value);
1513  
1514  	pm_runtime_mark_last_busy(ddev->dev);
1515  	pm_runtime_put_autosuspend(ddev->dev);
1516  
1517  	if (ret)
1518  		return ret;
1519  
1520  	return count;
1521  }
1522  
amdgpu_gfx_get_enforce_isolation(struct device * dev,struct device_attribute * attr,char * buf)1523  static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev,
1524  						struct device_attribute *attr,
1525  						char *buf)
1526  {
1527  	struct drm_device *ddev = dev_get_drvdata(dev);
1528  	struct amdgpu_device *adev = drm_to_adev(ddev);
1529  	int i;
1530  	ssize_t size = 0;
1531  
1532  	if (adev->xcp_mgr) {
1533  		for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
1534  			size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]);
1535  			if (i < (adev->xcp_mgr->num_xcps - 1))
1536  				size += sysfs_emit_at(buf, size, " ");
1537  		}
1538  		buf[size++] = '\n';
1539  	} else {
1540  		size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]);
1541  	}
1542  
1543  	return size;
1544  }
1545  
amdgpu_gfx_set_enforce_isolation(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1546  static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev,
1547  						struct device_attribute *attr,
1548  						const char *buf, size_t count)
1549  {
1550  	struct drm_device *ddev = dev_get_drvdata(dev);
1551  	struct amdgpu_device *adev = drm_to_adev(ddev);
1552  	long partition_values[MAX_XCP] = {0};
1553  	int ret, i, num_partitions;
1554  	const char *input_buf = buf;
1555  
1556  	for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) {
1557  		ret = sscanf(input_buf, "%ld", &partition_values[i]);
1558  		if (ret <= 0)
1559  			break;
1560  
1561  		/* Move the pointer to the next value in the string */
1562  		input_buf = strchr(input_buf, ' ');
1563  		if (input_buf) {
1564  			input_buf++;
1565  		} else {
1566  			i++;
1567  			break;
1568  		}
1569  	}
1570  	num_partitions = i;
1571  
1572  	if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps)
1573  		return -EINVAL;
1574  
1575  	if (!adev->xcp_mgr && num_partitions != 1)
1576  		return -EINVAL;
1577  
1578  	for (i = 0; i < num_partitions; i++) {
1579  		if (partition_values[i] != 0 && partition_values[i] != 1)
1580  			return -EINVAL;
1581  	}
1582  
1583  	mutex_lock(&adev->enforce_isolation_mutex);
1584  
1585  	for (i = 0; i < num_partitions; i++) {
1586  		if (adev->enforce_isolation[i] && !partition_values[i]) {
1587  			/* Going from enabled to disabled */
1588  			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i));
1589  		} else if (!adev->enforce_isolation[i] && partition_values[i]) {
1590  			/* Going from disabled to enabled */
1591  			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i));
1592  		}
1593  		adev->enforce_isolation[i] = partition_values[i];
1594  	}
1595  
1596  	mutex_unlock(&adev->enforce_isolation_mutex);
1597  
1598  	return count;
1599  }
1600  
1601  static DEVICE_ATTR(run_cleaner_shader, 0200,
1602  		   NULL, amdgpu_gfx_set_run_cleaner_shader);
1603  
1604  static DEVICE_ATTR(enforce_isolation, 0644,
1605  		   amdgpu_gfx_get_enforce_isolation,
1606  		   amdgpu_gfx_set_enforce_isolation);
1607  
1608  static DEVICE_ATTR(current_compute_partition, 0644,
1609  		   amdgpu_gfx_get_current_compute_partition,
1610  		   amdgpu_gfx_set_compute_partition);
1611  
1612  static DEVICE_ATTR(available_compute_partition, 0444,
1613  		   amdgpu_gfx_get_available_compute_partition, NULL);
1614  
amdgpu_gfx_sysfs_init(struct amdgpu_device * adev)1615  int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1616  {
1617  	int r;
1618  
1619  	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1620  	if (r)
1621  		return r;
1622  
1623  	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1624  
1625  	return r;
1626  }
1627  
amdgpu_gfx_sysfs_fini(struct amdgpu_device * adev)1628  void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1629  {
1630  	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1631  	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1632  }
1633  
amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device * adev)1634  int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev)
1635  {
1636  	int r;
1637  
1638  	r = device_create_file(adev->dev, &dev_attr_enforce_isolation);
1639  	if (r)
1640  		return r;
1641  
1642  	r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader);
1643  	if (r)
1644  		return r;
1645  
1646  	return 0;
1647  }
1648  
amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device * adev)1649  void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev)
1650  {
1651  	device_remove_file(adev->dev, &dev_attr_enforce_isolation);
1652  	device_remove_file(adev->dev, &dev_attr_run_cleaner_shader);
1653  }
1654  
amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device * adev,unsigned int cleaner_shader_size)1655  int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev,
1656  				      unsigned int cleaner_shader_size)
1657  {
1658  	if (!adev->gfx.enable_cleaner_shader)
1659  		return -EOPNOTSUPP;
1660  
1661  	return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE,
1662  				       AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT,
1663  				       &adev->gfx.cleaner_shader_obj,
1664  				       &adev->gfx.cleaner_shader_gpu_addr,
1665  				       (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1666  }
1667  
amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device * adev)1668  void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev)
1669  {
1670  	if (!adev->gfx.enable_cleaner_shader)
1671  		return;
1672  
1673  	amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj,
1674  			      &adev->gfx.cleaner_shader_gpu_addr,
1675  			      (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1676  }
1677  
amdgpu_gfx_cleaner_shader_init(struct amdgpu_device * adev,unsigned int cleaner_shader_size,const void * cleaner_shader_ptr)1678  void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev,
1679  				    unsigned int cleaner_shader_size,
1680  				    const void *cleaner_shader_ptr)
1681  {
1682  	if (!adev->gfx.enable_cleaner_shader)
1683  		return;
1684  
1685  	if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr)
1686  		memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr,
1687  			    cleaner_shader_size);
1688  }
1689  
1690  /**
1691   * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver)
1692   * @adev: amdgpu_device pointer
1693   * @idx: Index of the scheduler to control
1694   * @enable: Whether to enable or disable the KFD scheduler
1695   *
1696   * This function is used to control the KFD (Kernel Fusion Driver) scheduler
1697   * from the KGD. It is part of the cleaner shader feature. This function plays
1698   * a key role in enforcing process isolation on the GPU.
1699   *
1700   * The function uses a reference count mechanism (kfd_sch_req_count) to keep
1701   * track of the number of requests to enable the KFD scheduler. When a request
1702   * to enable the KFD scheduler is made, the reference count is decremented.
1703   * When the reference count reaches zero, a delayed work is scheduled to
1704   * enforce isolation after a delay of GFX_SLICE_PERIOD.
1705   *
1706   * When a request to disable the KFD scheduler is made, the function first
1707   * checks if the reference count is zero. If it is, it cancels the delayed work
1708   * for enforcing isolation and checks if the KFD scheduler is active. If the
1709   * KFD scheduler is active, it sends a request to stop the KFD scheduler and
1710   * sets the KFD scheduler state to inactive. Then, it increments the reference
1711   * count.
1712   *
1713   * The function is synchronized using the kfd_sch_mutex to ensure that the KFD
1714   * scheduler state and reference count are updated atomically.
1715   *
1716   * Note: If the reference count is already zero when a request to enable the
1717   * KFD scheduler is made, it means there's an imbalance bug somewhere. The
1718   * function triggers a warning in this case.
1719   */
amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device * adev,u32 idx,bool enable)1720  static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx,
1721  				    bool enable)
1722  {
1723  	mutex_lock(&adev->gfx.kfd_sch_mutex);
1724  
1725  	if (enable) {
1726  		/* If the count is already 0, it means there's an imbalance bug somewhere.
1727  		 * Note that the bug may be in a different caller than the one which triggers the
1728  		 * WARN_ON_ONCE.
1729  		 */
1730  		if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) {
1731  			dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n");
1732  			goto unlock;
1733  		}
1734  
1735  		adev->gfx.kfd_sch_req_count[idx]--;
1736  
1737  		if (adev->gfx.kfd_sch_req_count[idx] == 0 &&
1738  		    adev->gfx.kfd_sch_inactive[idx]) {
1739  			schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1740  					      GFX_SLICE_PERIOD);
1741  		}
1742  	} else {
1743  		if (adev->gfx.kfd_sch_req_count[idx] == 0) {
1744  			cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work);
1745  			if (!adev->gfx.kfd_sch_inactive[idx]) {
1746  				amdgpu_amdkfd_stop_sched(adev, idx);
1747  				adev->gfx.kfd_sch_inactive[idx] = true;
1748  			}
1749  		}
1750  
1751  		adev->gfx.kfd_sch_req_count[idx]++;
1752  	}
1753  
1754  unlock:
1755  	mutex_unlock(&adev->gfx.kfd_sch_mutex);
1756  }
1757  
1758  /**
1759   * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation
1760   *
1761   * @work: work_struct.
1762   *
1763   * This function is the work handler for enforcing shader isolation on AMD GPUs.
1764   * It counts the number of emitted fences for each GFX and compute ring. If there
1765   * are any fences, it schedules the `enforce_isolation_work` to be run after a
1766   * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion
1767   * Driver (KFD) to resume the runqueue. The function is synchronized using the
1768   * `enforce_isolation_mutex`.
1769   */
amdgpu_gfx_enforce_isolation_handler(struct work_struct * work)1770  void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work)
1771  {
1772  	struct amdgpu_isolation_work *isolation_work =
1773  		container_of(work, struct amdgpu_isolation_work, work.work);
1774  	struct amdgpu_device *adev = isolation_work->adev;
1775  	u32 i, idx, fences = 0;
1776  
1777  	if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION)
1778  		idx = 0;
1779  	else
1780  		idx = isolation_work->xcp_id;
1781  
1782  	if (idx >= MAX_XCP)
1783  		return;
1784  
1785  	mutex_lock(&adev->enforce_isolation_mutex);
1786  	for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) {
1787  		if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id)
1788  			fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
1789  	}
1790  	for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) {
1791  		if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id)
1792  			fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
1793  	}
1794  	if (fences) {
1795  		schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1796  				      GFX_SLICE_PERIOD);
1797  	} else {
1798  		/* Tell KFD to resume the runqueue */
1799  		if (adev->kfd.init_complete) {
1800  			WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]);
1801  			WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]);
1802  				amdgpu_amdkfd_start_sched(adev, idx);
1803  				adev->gfx.kfd_sch_inactive[idx] = false;
1804  		}
1805  	}
1806  	mutex_unlock(&adev->enforce_isolation_mutex);
1807  }
1808  
amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring * ring)1809  void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring)
1810  {
1811  	struct amdgpu_device *adev = ring->adev;
1812  	u32 idx;
1813  
1814  	if (!adev->gfx.enable_cleaner_shader)
1815  		return;
1816  
1817  	if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
1818  		idx = 0;
1819  	else
1820  		idx = ring->xcp_id;
1821  
1822  	if (idx >= MAX_XCP)
1823  		return;
1824  
1825  	mutex_lock(&adev->enforce_isolation_mutex);
1826  	if (adev->enforce_isolation[idx]) {
1827  		if (adev->kfd.init_complete)
1828  			amdgpu_gfx_kfd_sch_ctrl(adev, idx, false);
1829  	}
1830  	mutex_unlock(&adev->enforce_isolation_mutex);
1831  }
1832  
amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring * ring)1833  void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring)
1834  {
1835  	struct amdgpu_device *adev = ring->adev;
1836  	u32 idx;
1837  
1838  	if (!adev->gfx.enable_cleaner_shader)
1839  		return;
1840  
1841  	if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
1842  		idx = 0;
1843  	else
1844  		idx = ring->xcp_id;
1845  
1846  	if (idx >= MAX_XCP)
1847  		return;
1848  
1849  	mutex_lock(&adev->enforce_isolation_mutex);
1850  	if (adev->enforce_isolation[idx]) {
1851  		if (adev->kfd.init_complete)
1852  			amdgpu_gfx_kfd_sch_ctrl(adev, idx, true);
1853  	}
1854  	mutex_unlock(&adev->enforce_isolation_mutex);
1855  }
1856