1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Based on arch/arm/mm/fault.c
4   *
5   * Copyright (C) 1995  Linus Torvalds
6   * Copyright (C) 1995-2004 Russell King
7   * Copyright (C) 2012 ARM Ltd.
8   */
9  
10  #include <linux/acpi.h>
11  #include <linux/bitfield.h>
12  #include <linux/extable.h>
13  #include <linux/kfence.h>
14  #include <linux/signal.h>
15  #include <linux/mm.h>
16  #include <linux/hardirq.h>
17  #include <linux/init.h>
18  #include <linux/kasan.h>
19  #include <linux/kprobes.h>
20  #include <linux/uaccess.h>
21  #include <linux/page-flags.h>
22  #include <linux/sched/signal.h>
23  #include <linux/sched/debug.h>
24  #include <linux/highmem.h>
25  #include <linux/perf_event.h>
26  #include <linux/pkeys.h>
27  #include <linux/preempt.h>
28  #include <linux/hugetlb.h>
29  
30  #include <asm/acpi.h>
31  #include <asm/bug.h>
32  #include <asm/cmpxchg.h>
33  #include <asm/cpufeature.h>
34  #include <asm/efi.h>
35  #include <asm/exception.h>
36  #include <asm/daifflags.h>
37  #include <asm/debug-monitors.h>
38  #include <asm/esr.h>
39  #include <asm/kprobes.h>
40  #include <asm/mte.h>
41  #include <asm/processor.h>
42  #include <asm/sysreg.h>
43  #include <asm/system_misc.h>
44  #include <asm/tlbflush.h>
45  #include <asm/traps.h>
46  
47  struct fault_info {
48  	int	(*fn)(unsigned long far, unsigned long esr,
49  		      struct pt_regs *regs);
50  	int	sig;
51  	int	code;
52  	const char *name;
53  };
54  
55  static const struct fault_info fault_info[];
56  static struct fault_info debug_fault_info[];
57  
esr_to_fault_info(unsigned long esr)58  static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
59  {
60  	return fault_info + (esr & ESR_ELx_FSC);
61  }
62  
esr_to_debug_fault_info(unsigned long esr)63  static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
64  {
65  	return debug_fault_info + DBG_ESR_EVT(esr);
66  }
67  
data_abort_decode(unsigned long esr)68  static void data_abort_decode(unsigned long esr)
69  {
70  	unsigned long iss2 = ESR_ELx_ISS2(esr);
71  
72  	pr_alert("Data abort info:\n");
73  
74  	if (esr & ESR_ELx_ISV) {
75  		pr_alert("  Access size = %u byte(s)\n",
76  			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
77  		pr_alert("  SSE = %lu, SRT = %lu\n",
78  			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
79  			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
80  		pr_alert("  SF = %lu, AR = %lu\n",
81  			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
82  			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
83  	} else {
84  		pr_alert("  ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
85  			 esr & ESR_ELx_ISS_MASK, iss2);
86  	}
87  
88  	pr_alert("  CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
89  		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
90  		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
91  		 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
92  		 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
93  
94  	pr_alert("  GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
95  		 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
96  		 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
97  		 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
98  		 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
99  }
100  
mem_abort_decode(unsigned long esr)101  static void mem_abort_decode(unsigned long esr)
102  {
103  	pr_alert("Mem abort info:\n");
104  
105  	pr_alert("  ESR = 0x%016lx\n", esr);
106  	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
107  		 ESR_ELx_EC(esr), esr_get_class_string(esr),
108  		 (esr & ESR_ELx_IL) ? 32 : 16);
109  	pr_alert("  SET = %lu, FnV = %lu\n",
110  		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
111  		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
112  	pr_alert("  EA = %lu, S1PTW = %lu\n",
113  		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
114  		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
115  	pr_alert("  FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
116  		 esr_to_fault_info(esr)->name);
117  
118  	if (esr_is_data_abort(esr))
119  		data_abort_decode(esr);
120  }
121  
mm_to_pgd_phys(struct mm_struct * mm)122  static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
123  {
124  	/* Either init_pg_dir or swapper_pg_dir */
125  	if (mm == &init_mm)
126  		return __pa_symbol(mm->pgd);
127  
128  	return (unsigned long)virt_to_phys(mm->pgd);
129  }
130  
131  /*
132   * Dump out the page tables associated with 'addr' in the currently active mm.
133   */
show_pte(unsigned long addr)134  static void show_pte(unsigned long addr)
135  {
136  	struct mm_struct *mm;
137  	pgd_t *pgdp;
138  	pgd_t pgd;
139  
140  	if (is_ttbr0_addr(addr)) {
141  		/* TTBR0 */
142  		mm = current->active_mm;
143  		if (mm == &init_mm) {
144  			pr_alert("[%016lx] user address but active_mm is swapper\n",
145  				 addr);
146  			return;
147  		}
148  	} else if (is_ttbr1_addr(addr)) {
149  		/* TTBR1 */
150  		mm = &init_mm;
151  	} else {
152  		pr_alert("[%016lx] address between user and kernel address ranges\n",
153  			 addr);
154  		return;
155  	}
156  
157  	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
158  		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
159  		 vabits_actual, mm_to_pgd_phys(mm));
160  	pgdp = pgd_offset(mm, addr);
161  	pgd = READ_ONCE(*pgdp);
162  	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
163  
164  	do {
165  		p4d_t *p4dp, p4d;
166  		pud_t *pudp, pud;
167  		pmd_t *pmdp, pmd;
168  		pte_t *ptep, pte;
169  
170  		if (pgd_none(pgd) || pgd_bad(pgd))
171  			break;
172  
173  		p4dp = p4d_offset(pgdp, addr);
174  		p4d = READ_ONCE(*p4dp);
175  		pr_cont(", p4d=%016llx", p4d_val(p4d));
176  		if (p4d_none(p4d) || p4d_bad(p4d))
177  			break;
178  
179  		pudp = pud_offset(p4dp, addr);
180  		pud = READ_ONCE(*pudp);
181  		pr_cont(", pud=%016llx", pud_val(pud));
182  		if (pud_none(pud) || pud_bad(pud))
183  			break;
184  
185  		pmdp = pmd_offset(pudp, addr);
186  		pmd = READ_ONCE(*pmdp);
187  		pr_cont(", pmd=%016llx", pmd_val(pmd));
188  		if (pmd_none(pmd) || pmd_bad(pmd))
189  			break;
190  
191  		ptep = pte_offset_map(pmdp, addr);
192  		if (!ptep)
193  			break;
194  
195  		pte = __ptep_get(ptep);
196  		pr_cont(", pte=%016llx", pte_val(pte));
197  		pte_unmap(ptep);
198  	} while(0);
199  
200  	pr_cont("\n");
201  }
202  
203  /*
204   * This function sets the access flags (dirty, accessed), as well as write
205   * permission, and only to a more permissive setting.
206   *
207   * It needs to cope with hardware update of the accessed/dirty state by other
208   * agents in the system and can safely skip the __sync_icache_dcache() call as,
209   * like __set_ptes(), the PTE is never changed from no-exec to exec here.
210   *
211   * Returns whether or not the PTE actually changed.
212   */
__ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)213  int __ptep_set_access_flags(struct vm_area_struct *vma,
214  			    unsigned long address, pte_t *ptep,
215  			    pte_t entry, int dirty)
216  {
217  	pteval_t old_pteval, pteval;
218  	pte_t pte = __ptep_get(ptep);
219  
220  	if (pte_same(pte, entry))
221  		return 0;
222  
223  	/* only preserve the access flags and write permission */
224  	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
225  
226  	/*
227  	 * Setting the flags must be done atomically to avoid racing with the
228  	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
229  	 * be set to the most permissive (lowest value) of *ptep and entry
230  	 * (calculated as: a & b == ~(~a | ~b)).
231  	 */
232  	pte_val(entry) ^= PTE_RDONLY;
233  	pteval = pte_val(pte);
234  	do {
235  		old_pteval = pteval;
236  		pteval ^= PTE_RDONLY;
237  		pteval |= pte_val(entry);
238  		pteval ^= PTE_RDONLY;
239  		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
240  	} while (pteval != old_pteval);
241  
242  	/* Invalidate a stale read-only entry */
243  	if (dirty)
244  		flush_tlb_page(vma, address);
245  	return 1;
246  }
247  
is_el1_instruction_abort(unsigned long esr)248  static bool is_el1_instruction_abort(unsigned long esr)
249  {
250  	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
251  }
252  
is_el1_data_abort(unsigned long esr)253  static bool is_el1_data_abort(unsigned long esr)
254  {
255  	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
256  }
257  
is_el1_permission_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)258  static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
259  					   struct pt_regs *regs)
260  {
261  	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
262  		return false;
263  
264  	if (esr_fsc_is_permission_fault(esr))
265  		return true;
266  
267  	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
268  		return esr_fsc_is_translation_fault(esr) &&
269  			(regs->pstate & PSR_PAN_BIT);
270  
271  	return false;
272  }
273  
is_spurious_el1_translation_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)274  static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
275  							unsigned long esr,
276  							struct pt_regs *regs)
277  {
278  	unsigned long flags;
279  	u64 par, dfsc;
280  
281  	if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
282  		return false;
283  
284  	local_irq_save(flags);
285  	asm volatile("at s1e1r, %0" :: "r" (addr));
286  	isb();
287  	par = read_sysreg_par();
288  	local_irq_restore(flags);
289  
290  	/*
291  	 * If we now have a valid translation, treat the translation fault as
292  	 * spurious.
293  	 */
294  	if (!(par & SYS_PAR_EL1_F))
295  		return true;
296  
297  	/*
298  	 * If we got a different type of fault from the AT instruction,
299  	 * treat the translation fault as spurious.
300  	 */
301  	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
302  	return !esr_fsc_is_translation_fault(dfsc);
303  }
304  
die_kernel_fault(const char * msg,unsigned long addr,unsigned long esr,struct pt_regs * regs)305  static void die_kernel_fault(const char *msg, unsigned long addr,
306  			     unsigned long esr, struct pt_regs *regs)
307  {
308  	bust_spinlocks(1);
309  
310  	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
311  		 addr);
312  
313  	kasan_non_canonical_hook(addr);
314  
315  	mem_abort_decode(esr);
316  
317  	show_pte(addr);
318  	die("Oops", regs, esr);
319  	bust_spinlocks(0);
320  	make_task_dead(SIGKILL);
321  }
322  
323  #ifdef CONFIG_KASAN_HW_TAGS
report_tag_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)324  static void report_tag_fault(unsigned long addr, unsigned long esr,
325  			     struct pt_regs *regs)
326  {
327  	/*
328  	 * SAS bits aren't set for all faults reported in EL1, so we can't
329  	 * find out access size.
330  	 */
331  	bool is_write = !!(esr & ESR_ELx_WNR);
332  	kasan_report((void *)addr, 0, is_write, regs->pc);
333  }
334  #else
335  /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
report_tag_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)336  static inline void report_tag_fault(unsigned long addr, unsigned long esr,
337  				    struct pt_regs *regs) { }
338  #endif
339  
do_tag_recovery(unsigned long addr,unsigned long esr,struct pt_regs * regs)340  static void do_tag_recovery(unsigned long addr, unsigned long esr,
341  			   struct pt_regs *regs)
342  {
343  
344  	report_tag_fault(addr, esr, regs);
345  
346  	/*
347  	 * Disable MTE Tag Checking on the local CPU for the current EL.
348  	 * It will be done lazily on the other CPUs when they will hit a
349  	 * tag fault.
350  	 */
351  	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
352  			 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
353  	isb();
354  }
355  
is_el1_mte_sync_tag_check_fault(unsigned long esr)356  static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
357  {
358  	unsigned long fsc = esr & ESR_ELx_FSC;
359  
360  	if (!is_el1_data_abort(esr))
361  		return false;
362  
363  	if (fsc == ESR_ELx_FSC_MTE)
364  		return true;
365  
366  	return false;
367  }
368  
__do_kernel_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)369  static void __do_kernel_fault(unsigned long addr, unsigned long esr,
370  			      struct pt_regs *regs)
371  {
372  	const char *msg;
373  
374  	/*
375  	 * Are we prepared to handle this kernel fault?
376  	 * We are almost certainly not prepared to handle instruction faults.
377  	 */
378  	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
379  		return;
380  
381  	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
382  	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
383  		return;
384  
385  	if (is_el1_mte_sync_tag_check_fault(esr)) {
386  		do_tag_recovery(addr, esr, regs);
387  
388  		return;
389  	}
390  
391  	if (is_el1_permission_fault(addr, esr, regs)) {
392  		if (esr & ESR_ELx_WNR)
393  			msg = "write to read-only memory";
394  		else if (is_el1_instruction_abort(esr))
395  			msg = "execute from non-executable memory";
396  		else
397  			msg = "read from unreadable memory";
398  	} else if (addr < PAGE_SIZE) {
399  		msg = "NULL pointer dereference";
400  	} else {
401  		if (esr_fsc_is_translation_fault(esr) &&
402  		    kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
403  			return;
404  
405  		msg = "paging request";
406  	}
407  
408  	if (efi_runtime_fixup_exception(regs, msg))
409  		return;
410  
411  	die_kernel_fault(msg, addr, esr, regs);
412  }
413  
set_thread_esr(unsigned long address,unsigned long esr)414  static void set_thread_esr(unsigned long address, unsigned long esr)
415  {
416  	current->thread.fault_address = address;
417  
418  	/*
419  	 * If the faulting address is in the kernel, we must sanitize the ESR.
420  	 * From userspace's point of view, kernel-only mappings don't exist
421  	 * at all, so we report them as level 0 translation faults.
422  	 * (This is not quite the way that "no mapping there at all" behaves:
423  	 * an alignment fault not caused by the memory type would take
424  	 * precedence over translation fault for a real access to empty
425  	 * space. Unfortunately we can't easily distinguish "alignment fault
426  	 * not caused by memory type" from "alignment fault caused by memory
427  	 * type", so we ignore this wrinkle and just return the translation
428  	 * fault.)
429  	 */
430  	if (!is_ttbr0_addr(current->thread.fault_address)) {
431  		switch (ESR_ELx_EC(esr)) {
432  		case ESR_ELx_EC_DABT_LOW:
433  			/*
434  			 * These bits provide only information about the
435  			 * faulting instruction, which userspace knows already.
436  			 * We explicitly clear bits which are architecturally
437  			 * RES0 in case they are given meanings in future.
438  			 * We always report the ESR as if the fault was taken
439  			 * to EL1 and so ISV and the bits in ISS[23:14] are
440  			 * clear. (In fact it always will be a fault to EL1.)
441  			 */
442  			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
443  				ESR_ELx_CM | ESR_ELx_WNR;
444  			esr |= ESR_ELx_FSC_FAULT;
445  			break;
446  		case ESR_ELx_EC_IABT_LOW:
447  			/*
448  			 * Claim a level 0 translation fault.
449  			 * All other bits are architecturally RES0 for faults
450  			 * reported with that DFSC value, so we clear them.
451  			 */
452  			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
453  			esr |= ESR_ELx_FSC_FAULT;
454  			break;
455  		default:
456  			/*
457  			 * This should never happen (entry.S only brings us
458  			 * into this code for insn and data aborts from a lower
459  			 * exception level). Fail safe by not providing an ESR
460  			 * context record at all.
461  			 */
462  			WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
463  			esr = 0;
464  			break;
465  		}
466  	}
467  
468  	current->thread.fault_code = esr;
469  }
470  
do_bad_area(unsigned long far,unsigned long esr,struct pt_regs * regs)471  static void do_bad_area(unsigned long far, unsigned long esr,
472  			struct pt_regs *regs)
473  {
474  	unsigned long addr = untagged_addr(far);
475  
476  	/*
477  	 * If we are in kernel mode at this point, we have no context to
478  	 * handle this fault with.
479  	 */
480  	if (user_mode(regs)) {
481  		const struct fault_info *inf = esr_to_fault_info(esr);
482  
483  		set_thread_esr(addr, esr);
484  		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
485  	} else {
486  		__do_kernel_fault(addr, esr, regs);
487  	}
488  }
489  
fault_from_pkey(unsigned long esr,struct vm_area_struct * vma,unsigned int mm_flags)490  static bool fault_from_pkey(unsigned long esr, struct vm_area_struct *vma,
491  			unsigned int mm_flags)
492  {
493  	unsigned long iss2 = ESR_ELx_ISS2(esr);
494  
495  	if (!system_supports_poe())
496  		return false;
497  
498  	if (esr_fsc_is_permission_fault(esr) && (iss2 & ESR_ELx_Overlay))
499  		return true;
500  
501  	return !arch_vma_access_permitted(vma,
502  			mm_flags & FAULT_FLAG_WRITE,
503  			mm_flags & FAULT_FLAG_INSTRUCTION,
504  			false);
505  }
506  
is_el0_instruction_abort(unsigned long esr)507  static bool is_el0_instruction_abort(unsigned long esr)
508  {
509  	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
510  }
511  
512  /*
513   * Note: not valid for EL1 DC IVAC, but we never use that such that it
514   * should fault. EL0 cannot issue DC IVAC (undef).
515   */
is_write_abort(unsigned long esr)516  static bool is_write_abort(unsigned long esr)
517  {
518  	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
519  }
520  
do_page_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)521  static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
522  				   struct pt_regs *regs)
523  {
524  	const struct fault_info *inf;
525  	struct mm_struct *mm = current->mm;
526  	vm_fault_t fault;
527  	unsigned long vm_flags;
528  	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
529  	unsigned long addr = untagged_addr(far);
530  	struct vm_area_struct *vma;
531  	int si_code;
532  	int pkey = -1;
533  
534  	if (kprobe_page_fault(regs, esr))
535  		return 0;
536  
537  	/*
538  	 * If we're in an interrupt or have no user context, we must not take
539  	 * the fault.
540  	 */
541  	if (faulthandler_disabled() || !mm)
542  		goto no_context;
543  
544  	if (user_mode(regs))
545  		mm_flags |= FAULT_FLAG_USER;
546  
547  	/*
548  	 * vm_flags tells us what bits we must have in vma->vm_flags
549  	 * for the fault to be benign, __do_page_fault() would check
550  	 * vma->vm_flags & vm_flags and returns an error if the
551  	 * intersection is empty
552  	 */
553  	if (is_el0_instruction_abort(esr)) {
554  		/* It was exec fault */
555  		vm_flags = VM_EXEC;
556  		mm_flags |= FAULT_FLAG_INSTRUCTION;
557  	} else if (is_write_abort(esr)) {
558  		/* It was write fault */
559  		vm_flags = VM_WRITE;
560  		mm_flags |= FAULT_FLAG_WRITE;
561  	} else {
562  		/* It was read fault */
563  		vm_flags = VM_READ;
564  		/* Write implies read */
565  		vm_flags |= VM_WRITE;
566  		/* If EPAN is absent then exec implies read */
567  		if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
568  			vm_flags |= VM_EXEC;
569  	}
570  
571  	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
572  		if (is_el1_instruction_abort(esr))
573  			die_kernel_fault("execution of user memory",
574  					 addr, esr, regs);
575  
576  		if (!search_exception_tables(regs->pc))
577  			die_kernel_fault("access to user memory outside uaccess routines",
578  					 addr, esr, regs);
579  	}
580  
581  	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
582  
583  	if (!(mm_flags & FAULT_FLAG_USER))
584  		goto lock_mmap;
585  
586  	vma = lock_vma_under_rcu(mm, addr);
587  	if (!vma)
588  		goto lock_mmap;
589  
590  	if (!(vma->vm_flags & vm_flags)) {
591  		vma_end_read(vma);
592  		fault = 0;
593  		si_code = SEGV_ACCERR;
594  		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
595  		goto bad_area;
596  	}
597  
598  	if (fault_from_pkey(esr, vma, mm_flags)) {
599  		pkey = vma_pkey(vma);
600  		vma_end_read(vma);
601  		fault = 0;
602  		si_code = SEGV_PKUERR;
603  		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
604  		goto bad_area;
605  	}
606  
607  	fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
608  	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
609  		vma_end_read(vma);
610  
611  	if (!(fault & VM_FAULT_RETRY)) {
612  		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
613  		goto done;
614  	}
615  	count_vm_vma_lock_event(VMA_LOCK_RETRY);
616  	if (fault & VM_FAULT_MAJOR)
617  		mm_flags |= FAULT_FLAG_TRIED;
618  
619  	/* Quick path to respond to signals */
620  	if (fault_signal_pending(fault, regs)) {
621  		if (!user_mode(regs))
622  			goto no_context;
623  		return 0;
624  	}
625  lock_mmap:
626  
627  retry:
628  	vma = lock_mm_and_find_vma(mm, addr, regs);
629  	if (unlikely(!vma)) {
630  		fault = 0;
631  		si_code = SEGV_MAPERR;
632  		goto bad_area;
633  	}
634  
635  	if (!(vma->vm_flags & vm_flags)) {
636  		mmap_read_unlock(mm);
637  		fault = 0;
638  		si_code = SEGV_ACCERR;
639  		goto bad_area;
640  	}
641  
642  	if (fault_from_pkey(esr, vma, mm_flags)) {
643  		pkey = vma_pkey(vma);
644  		mmap_read_unlock(mm);
645  		fault = 0;
646  		si_code = SEGV_PKUERR;
647  		goto bad_area;
648  	}
649  
650  	fault = handle_mm_fault(vma, addr, mm_flags, regs);
651  
652  	/* Quick path to respond to signals */
653  	if (fault_signal_pending(fault, regs)) {
654  		if (!user_mode(regs))
655  			goto no_context;
656  		return 0;
657  	}
658  
659  	/* The fault is fully completed (including releasing mmap lock) */
660  	if (fault & VM_FAULT_COMPLETED)
661  		return 0;
662  
663  	if (fault & VM_FAULT_RETRY) {
664  		mm_flags |= FAULT_FLAG_TRIED;
665  		goto retry;
666  	}
667  	mmap_read_unlock(mm);
668  
669  done:
670  	/* Handle the "normal" (no error) case first. */
671  	if (likely(!(fault & VM_FAULT_ERROR)))
672  		return 0;
673  
674  	si_code = SEGV_MAPERR;
675  bad_area:
676  	/*
677  	 * If we are in kernel mode at this point, we have no context to
678  	 * handle this fault with.
679  	 */
680  	if (!user_mode(regs))
681  		goto no_context;
682  
683  	if (fault & VM_FAULT_OOM) {
684  		/*
685  		 * We ran out of memory, call the OOM killer, and return to
686  		 * userspace (which will retry the fault, or kill us if we got
687  		 * oom-killed).
688  		 */
689  		pagefault_out_of_memory();
690  		return 0;
691  	}
692  
693  	inf = esr_to_fault_info(esr);
694  	set_thread_esr(addr, esr);
695  	if (fault & VM_FAULT_SIGBUS) {
696  		/*
697  		 * We had some memory, but were unable to successfully fix up
698  		 * this page fault.
699  		 */
700  		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
701  	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
702  		unsigned int lsb;
703  
704  		lsb = PAGE_SHIFT;
705  		if (fault & VM_FAULT_HWPOISON_LARGE)
706  			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
707  
708  		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
709  	} else {
710  		/*
711  		 * The pkey value that we return to userspace can be different
712  		 * from the pkey that caused the fault.
713  		 *
714  		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
715  		 * 2. T1   : set POR_EL0 to deny access to pkey=4, touches, page
716  		 * 3. T1   : faults...
717  		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
718  		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
719  		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
720  		 *	     faulted on a pte with its pkey=4.
721  		 */
722  		/* Something tried to access memory that out of memory map */
723  		if (si_code == SEGV_PKUERR)
724  			arm64_force_sig_fault_pkey(far, inf->name, pkey);
725  		else
726  			arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name);
727  	}
728  
729  	return 0;
730  
731  no_context:
732  	__do_kernel_fault(addr, esr, regs);
733  	return 0;
734  }
735  
do_translation_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)736  static int __kprobes do_translation_fault(unsigned long far,
737  					  unsigned long esr,
738  					  struct pt_regs *regs)
739  {
740  	unsigned long addr = untagged_addr(far);
741  
742  	if (is_ttbr0_addr(addr))
743  		return do_page_fault(far, esr, regs);
744  
745  	do_bad_area(far, esr, regs);
746  	return 0;
747  }
748  
do_alignment_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)749  static int do_alignment_fault(unsigned long far, unsigned long esr,
750  			      struct pt_regs *regs)
751  {
752  	if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
753  	    compat_user_mode(regs))
754  		return do_compat_alignment_fixup(far, regs);
755  	do_bad_area(far, esr, regs);
756  	return 0;
757  }
758  
do_bad(unsigned long far,unsigned long esr,struct pt_regs * regs)759  static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
760  {
761  	return 1; /* "fault" */
762  }
763  
do_sea(unsigned long far,unsigned long esr,struct pt_regs * regs)764  static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
765  {
766  	const struct fault_info *inf;
767  	unsigned long siaddr;
768  
769  	inf = esr_to_fault_info(esr);
770  
771  	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
772  		/*
773  		 * APEI claimed this as a firmware-first notification.
774  		 * Some processing deferred to task_work before ret_to_user().
775  		 */
776  		return 0;
777  	}
778  
779  	if (esr & ESR_ELx_FnV) {
780  		siaddr = 0;
781  	} else {
782  		/*
783  		 * The architecture specifies that the tag bits of FAR_EL1 are
784  		 * UNKNOWN for synchronous external aborts. Mask them out now
785  		 * so that userspace doesn't see them.
786  		 */
787  		siaddr  = untagged_addr(far);
788  	}
789  	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
790  
791  	return 0;
792  }
793  
do_tag_check_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)794  static int do_tag_check_fault(unsigned long far, unsigned long esr,
795  			      struct pt_regs *regs)
796  {
797  	/*
798  	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
799  	 * for tag check faults. Set them to corresponding bits in the untagged
800  	 * address.
801  	 */
802  	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
803  	do_bad_area(far, esr, regs);
804  	return 0;
805  }
806  
807  static const struct fault_info fault_info[] = {
808  	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
809  	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
810  	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
811  	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
812  	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
813  	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
814  	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
815  	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
816  	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 0 access flag fault"	},
817  	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
818  	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
819  	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
820  	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 0 permission fault"	},
821  	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
822  	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
823  	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
824  	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
825  	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
826  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
827  	{ do_sea,		SIGKILL, SI_KERNEL,	"level -1 (translation table walk)"	},
828  	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
829  	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
830  	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
831  	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
832  	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
833  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
834  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
835  	{ do_sea,		SIGKILL, SI_KERNEL,	"level -1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
836  	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
837  	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
838  	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
839  	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
840  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
841  	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
842  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
843  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
844  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
845  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
846  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
847  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
848  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
849  	{ do_bad,		SIGKILL, SI_KERNEL,	"level -1 address size fault"	},
850  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
851  	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level -1 translation fault"	},
852  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
853  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
854  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
855  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
856  	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
857  	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
858  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
859  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
860  	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
861  	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
862  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
863  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
864  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
865  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
866  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
867  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
868  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
869  	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
870  	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
871  	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
872  };
873  
do_mem_abort(unsigned long far,unsigned long esr,struct pt_regs * regs)874  void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
875  {
876  	const struct fault_info *inf = esr_to_fault_info(esr);
877  	unsigned long addr = untagged_addr(far);
878  
879  	if (!inf->fn(far, esr, regs))
880  		return;
881  
882  	if (!user_mode(regs))
883  		die_kernel_fault(inf->name, addr, esr, regs);
884  
885  	/*
886  	 * At this point we have an unrecognized fault type whose tag bits may
887  	 * have been defined as UNKNOWN. Therefore we only expose the untagged
888  	 * address to the signal handler.
889  	 */
890  	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
891  }
892  NOKPROBE_SYMBOL(do_mem_abort);
893  
do_sp_pc_abort(unsigned long addr,unsigned long esr,struct pt_regs * regs)894  void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
895  {
896  	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
897  			 addr, esr);
898  }
899  NOKPROBE_SYMBOL(do_sp_pc_abort);
900  
901  /*
902   * __refdata because early_brk64 is __init, but the reference to it is
903   * clobbered at arch_initcall time.
904   * See traps.c and debug-monitors.c:debug_traps_init().
905   */
906  static struct fault_info __refdata debug_fault_info[] = {
907  	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
908  	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
909  	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
910  	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
911  	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
912  	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
913  	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
914  	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
915  };
916  
hook_debug_fault_code(int nr,int (* fn)(unsigned long,unsigned long,struct pt_regs *),int sig,int code,const char * name)917  void __init hook_debug_fault_code(int nr,
918  				  int (*fn)(unsigned long, unsigned long, struct pt_regs *),
919  				  int sig, int code, const char *name)
920  {
921  	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
922  
923  	debug_fault_info[nr].fn		= fn;
924  	debug_fault_info[nr].sig	= sig;
925  	debug_fault_info[nr].code	= code;
926  	debug_fault_info[nr].name	= name;
927  }
928  
929  /*
930   * In debug exception context, we explicitly disable preemption despite
931   * having interrupts disabled.
932   * This serves two purposes: it makes it much less likely that we would
933   * accidentally schedule in exception context and it will force a warning
934   * if we somehow manage to schedule by accident.
935   */
debug_exception_enter(struct pt_regs * regs)936  static void debug_exception_enter(struct pt_regs *regs)
937  {
938  	preempt_disable();
939  
940  	/* This code is a bit fragile.  Test it. */
941  	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
942  }
943  NOKPROBE_SYMBOL(debug_exception_enter);
944  
debug_exception_exit(struct pt_regs * regs)945  static void debug_exception_exit(struct pt_regs *regs)
946  {
947  	preempt_enable_no_resched();
948  }
949  NOKPROBE_SYMBOL(debug_exception_exit);
950  
do_debug_exception(unsigned long addr_if_watchpoint,unsigned long esr,struct pt_regs * regs)951  void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
952  			struct pt_regs *regs)
953  {
954  	const struct fault_info *inf = esr_to_debug_fault_info(esr);
955  	unsigned long pc = instruction_pointer(regs);
956  
957  	debug_exception_enter(regs);
958  
959  	if (user_mode(regs) && !is_ttbr0_addr(pc))
960  		arm64_apply_bp_hardening();
961  
962  	if (inf->fn(addr_if_watchpoint, esr, regs)) {
963  		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
964  	}
965  
966  	debug_exception_exit(regs);
967  }
968  NOKPROBE_SYMBOL(do_debug_exception);
969  
970  /*
971   * Used during anonymous page fault handling.
972   */
vma_alloc_zeroed_movable_folio(struct vm_area_struct * vma,unsigned long vaddr)973  struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
974  						unsigned long vaddr)
975  {
976  	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
977  
978  	/*
979  	 * If the page is mapped with PROT_MTE, initialise the tags at the
980  	 * point of allocation and page zeroing as this is usually faster than
981  	 * separate DC ZVA and STGM.
982  	 */
983  	if (vma->vm_flags & VM_MTE)
984  		flags |= __GFP_ZEROTAGS;
985  
986  	return vma_alloc_folio(flags, 0, vma, vaddr, false);
987  }
988  
tag_clear_highpage(struct page * page)989  void tag_clear_highpage(struct page *page)
990  {
991  	/* Newly allocated page, shouldn't have been tagged yet */
992  	WARN_ON_ONCE(!try_page_mte_tagging(page));
993  	mte_zero_clear_page_tags(page_address(page));
994  	set_page_mte_tagged(page);
995  }
996