1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 
41 static const struct btrfs_csums {
42 	u16		size;
43 	const char	name[10];
44 	const char	driver[12];
45 } btrfs_csums[] = {
46 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 				     .driver = "blake2b-256" },
51 };
52 
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
leaf_data_end(const struct extent_buffer * leaf)57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 	u32 nr = btrfs_header_nritems(leaf);
60 
61 	if (nr == 0)
62 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 	return btrfs_item_offset(leaf, nr - 1);
64 }
65 
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:	leaf that we're doing a memmove on
70  * @dst_offset:	item data offset we're moving to
71  * @src_offset:	item data offset were' moving from
72  * @len:	length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
memmove_leaf_data(const struct extent_buffer * leaf,unsigned long dst_offset,unsigned long src_offset,unsigned long len)79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 				     unsigned long dst_offset,
81 				     unsigned long src_offset,
82 				     unsigned long len)
83 {
84 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87 
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:	destination leaf that we're copying into
92  * @src:	source leaf that we're copying from
93  * @dst_offset:	item data offset we're copying to
94  * @src_offset:	item data offset were' copying from
95  * @len:	length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
copy_leaf_data(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 				  const struct extent_buffer *src,
104 				  unsigned long dst_offset,
105 				  unsigned long src_offset, unsigned long len)
106 {
107 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110 
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:	destination leaf for the items
115  * @dst_item:	the item nr we're copying into
116  * @src_item:	the item nr we're copying from
117  * @nr_items:	the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
memmove_leaf_items(const struct extent_buffer * leaf,int dst_item,int src_item,int nr_items)122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 				      int dst_item, int src_item, int nr_items)
124 {
125 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 			      btrfs_item_nr_offset(leaf, src_item),
127 			      nr_items * sizeof(struct btrfs_item));
128 }
129 
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:	destination leaf for the items
134  * @src:	source leaf for the items
135  * @dst_item:	the item nr we're copying into
136  * @src_item:	the item nr we're copying from
137  * @nr_items:	the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
copy_leaf_items(const struct extent_buffer * dst,const struct extent_buffer * src,int dst_item,int src_item,int nr_items)142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 				   const struct extent_buffer *src,
144 				   int dst_item, int src_item, int nr_items)
145 {
146 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 			      btrfs_item_nr_offset(src, src_item),
148 			      nr_items * sizeof(struct btrfs_item));
149 }
150 
151 /* This exists for btrfs-progs usages. */
btrfs_csum_type_size(u16 type)152 u16 btrfs_csum_type_size(u16 type)
153 {
154 	return btrfs_csums[type].size;
155 }
156 
btrfs_super_csum_size(const struct btrfs_super_block * s)157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 	u16 t = btrfs_super_csum_type(s);
160 	/*
161 	 * csum type is validated at mount time
162 	 */
163 	return btrfs_csum_type_size(t);
164 }
165 
btrfs_super_csum_name(u16 csum_type)166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 	/* csum type is validated at mount time */
169 	return btrfs_csums[csum_type].name;
170 }
171 
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
btrfs_super_csum_driver(u16 csum_type)176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 	/* csum type is validated at mount time */
179 	return btrfs_csums[csum_type].driver[0] ?
180 		btrfs_csums[csum_type].driver :
181 		btrfs_csums[csum_type].name;
182 }
183 
btrfs_get_num_csums(void)184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 	return ARRAY_SIZE(btrfs_csums);
187 }
188 
btrfs_alloc_path(void)189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 	might_sleep();
192 
193 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195 
196 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 	if (!p)
200 		return;
201 	btrfs_release_path(p);
202 	kmem_cache_free(btrfs_path_cachep, p);
203 }
204 
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
btrfs_release_path(struct btrfs_path * p)211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 	int i;
214 
215 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 		p->slots[i] = 0;
217 		if (!p->nodes[i])
218 			continue;
219 		if (p->locks[i]) {
220 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 			p->locks[i] = 0;
222 		}
223 		free_extent_buffer(p->nodes[i]);
224 		p->nodes[i] = NULL;
225 	}
226 }
227 
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
abort_should_print_stack(int error)233 bool __cold abort_should_print_stack(int error)
234 {
235 	switch (error) {
236 	case -EIO:
237 	case -EROFS:
238 	case -ENOMEM:
239 		return false;
240 	}
241 	return true;
242 }
243 
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
btrfs_root_node(struct btrfs_root * root)254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 	struct extent_buffer *eb;
257 
258 	while (1) {
259 		rcu_read_lock();
260 		eb = rcu_dereference(root->node);
261 
262 		/*
263 		 * RCU really hurts here, we could free up the root node because
264 		 * it was COWed but we may not get the new root node yet so do
265 		 * the inc_not_zero dance and if it doesn't work then
266 		 * synchronize_rcu and try again.
267 		 */
268 		if (atomic_inc_not_zero(&eb->refs)) {
269 			rcu_read_unlock();
270 			break;
271 		}
272 		rcu_read_unlock();
273 		synchronize_rcu();
274 	}
275 	return eb;
276 }
277 
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
add_root_to_dirty_list(struct btrfs_root * root)283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 	struct btrfs_fs_info *fs_info = root->fs_info;
286 
287 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 		return;
290 
291 	spin_lock(&fs_info->trans_lock);
292 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 		/* Want the extent tree to be the last on the list */
294 		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
295 			list_move_tail(&root->dirty_list,
296 				       &fs_info->dirty_cowonly_roots);
297 		else
298 			list_move(&root->dirty_list,
299 				  &fs_info->dirty_cowonly_roots);
300 	}
301 	spin_unlock(&fs_info->trans_lock);
302 }
303 
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 		      struct btrfs_root *root,
311 		      struct extent_buffer *buf,
312 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 	struct btrfs_fs_info *fs_info = root->fs_info;
315 	struct extent_buffer *cow;
316 	int ret = 0;
317 	int level;
318 	struct btrfs_disk_key disk_key;
319 	u64 reloc_src_root = 0;
320 
321 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322 		trans->transid != fs_info->running_transaction->transid);
323 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324 		trans->transid != btrfs_get_root_last_trans(root));
325 
326 	level = btrfs_header_level(buf);
327 	if (level == 0)
328 		btrfs_item_key(buf, &disk_key, 0);
329 	else
330 		btrfs_node_key(buf, &disk_key, 0);
331 
332 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333 		reloc_src_root = btrfs_header_owner(buf);
334 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335 				     &disk_key, level, buf->start, 0,
336 				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337 	if (IS_ERR(cow))
338 		return PTR_ERR(cow);
339 
340 	copy_extent_buffer_full(cow, buf);
341 	btrfs_set_header_bytenr(cow, cow->start);
342 	btrfs_set_header_generation(cow, trans->transid);
343 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345 				     BTRFS_HEADER_FLAG_RELOC);
346 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348 	else
349 		btrfs_set_header_owner(cow, new_root_objectid);
350 
351 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
352 
353 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
354 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
355 		ret = btrfs_inc_ref(trans, root, cow, 1);
356 	else
357 		ret = btrfs_inc_ref(trans, root, cow, 0);
358 	if (ret) {
359 		btrfs_tree_unlock(cow);
360 		free_extent_buffer(cow);
361 		btrfs_abort_transaction(trans, ret);
362 		return ret;
363 	}
364 
365 	btrfs_mark_buffer_dirty(trans, cow);
366 	*cow_ret = cow;
367 	return 0;
368 }
369 
370 /*
371  * check if the tree block can be shared by multiple trees
372  */
btrfs_block_can_be_shared(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)373 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
374 			       struct btrfs_root *root,
375 			       struct extent_buffer *buf)
376 {
377 	const u64 buf_gen = btrfs_header_generation(buf);
378 
379 	/*
380 	 * Tree blocks not in shareable trees and tree roots are never shared.
381 	 * If a block was allocated after the last snapshot and the block was
382 	 * not allocated by tree relocation, we know the block is not shared.
383 	 */
384 
385 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
386 		return false;
387 
388 	if (buf == root->node)
389 		return false;
390 
391 	if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
392 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
393 		return false;
394 
395 	if (buf != root->commit_root)
396 		return true;
397 
398 	/*
399 	 * An extent buffer that used to be the commit root may still be shared
400 	 * because the tree height may have increased and it became a child of a
401 	 * higher level root. This can happen when snapshotting a subvolume
402 	 * created in the current transaction.
403 	 */
404 	if (buf_gen == trans->transid)
405 		return true;
406 
407 	return false;
408 }
409 
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)410 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
411 				       struct btrfs_root *root,
412 				       struct extent_buffer *buf,
413 				       struct extent_buffer *cow,
414 				       int *last_ref)
415 {
416 	struct btrfs_fs_info *fs_info = root->fs_info;
417 	u64 refs;
418 	u64 owner;
419 	u64 flags;
420 	int ret;
421 
422 	/*
423 	 * Backrefs update rules:
424 	 *
425 	 * Always use full backrefs for extent pointers in tree block
426 	 * allocated by tree relocation.
427 	 *
428 	 * If a shared tree block is no longer referenced by its owner
429 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
430 	 * use full backrefs for extent pointers in tree block.
431 	 *
432 	 * If a tree block is been relocating
433 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
434 	 * use full backrefs for extent pointers in tree block.
435 	 * The reason for this is some operations (such as drop tree)
436 	 * are only allowed for blocks use full backrefs.
437 	 */
438 
439 	if (btrfs_block_can_be_shared(trans, root, buf)) {
440 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
441 					       btrfs_header_level(buf), 1,
442 					       &refs, &flags, NULL);
443 		if (ret)
444 			return ret;
445 		if (unlikely(refs == 0)) {
446 			btrfs_crit(fs_info,
447 		"found 0 references for tree block at bytenr %llu level %d root %llu",
448 				   buf->start, btrfs_header_level(buf),
449 				   btrfs_root_id(root));
450 			ret = -EUCLEAN;
451 			btrfs_abort_transaction(trans, ret);
452 			return ret;
453 		}
454 	} else {
455 		refs = 1;
456 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
457 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
458 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
459 		else
460 			flags = 0;
461 	}
462 
463 	owner = btrfs_header_owner(buf);
464 	if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
465 		     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
466 		btrfs_crit(fs_info,
467 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
468 			   buf->start, btrfs_header_level(buf),
469 			   btrfs_root_id(root), refs, flags);
470 		ret = -EUCLEAN;
471 		btrfs_abort_transaction(trans, ret);
472 		return ret;
473 	}
474 
475 	if (refs > 1) {
476 		if ((owner == btrfs_root_id(root) ||
477 		     btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
478 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
479 			ret = btrfs_inc_ref(trans, root, buf, 1);
480 			if (ret)
481 				return ret;
482 
483 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
484 				ret = btrfs_dec_ref(trans, root, buf, 0);
485 				if (ret)
486 					return ret;
487 				ret = btrfs_inc_ref(trans, root, cow, 1);
488 				if (ret)
489 					return ret;
490 			}
491 			ret = btrfs_set_disk_extent_flags(trans, buf,
492 						  BTRFS_BLOCK_FLAG_FULL_BACKREF);
493 			if (ret)
494 				return ret;
495 		} else {
496 
497 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
498 				ret = btrfs_inc_ref(trans, root, cow, 1);
499 			else
500 				ret = btrfs_inc_ref(trans, root, cow, 0);
501 			if (ret)
502 				return ret;
503 		}
504 	} else {
505 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
506 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
507 				ret = btrfs_inc_ref(trans, root, cow, 1);
508 			else
509 				ret = btrfs_inc_ref(trans, root, cow, 0);
510 			if (ret)
511 				return ret;
512 			ret = btrfs_dec_ref(trans, root, buf, 1);
513 			if (ret)
514 				return ret;
515 		}
516 		btrfs_clear_buffer_dirty(trans, buf);
517 		*last_ref = 1;
518 	}
519 	return 0;
520 }
521 
522 /*
523  * does the dirty work in cow of a single block.  The parent block (if
524  * supplied) is updated to point to the new cow copy.  The new buffer is marked
525  * dirty and returned locked.  If you modify the block it needs to be marked
526  * dirty again.
527  *
528  * search_start -- an allocation hint for the new block
529  *
530  * empty_size -- a hint that you plan on doing more cow.  This is the size in
531  * bytes the allocator should try to find free next to the block it returns.
532  * This is just a hint and may be ignored by the allocator.
533  */
btrfs_force_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)534 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
535 			  struct btrfs_root *root,
536 			  struct extent_buffer *buf,
537 			  struct extent_buffer *parent, int parent_slot,
538 			  struct extent_buffer **cow_ret,
539 			  u64 search_start, u64 empty_size,
540 			  enum btrfs_lock_nesting nest)
541 {
542 	struct btrfs_fs_info *fs_info = root->fs_info;
543 	struct btrfs_disk_key disk_key;
544 	struct extent_buffer *cow;
545 	int level, ret;
546 	int last_ref = 0;
547 	int unlock_orig = 0;
548 	u64 parent_start = 0;
549 	u64 reloc_src_root = 0;
550 
551 	if (*cow_ret == buf)
552 		unlock_orig = 1;
553 
554 	btrfs_assert_tree_write_locked(buf);
555 
556 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
557 		trans->transid != fs_info->running_transaction->transid);
558 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
559 		trans->transid != btrfs_get_root_last_trans(root));
560 
561 	level = btrfs_header_level(buf);
562 
563 	if (level == 0)
564 		btrfs_item_key(buf, &disk_key, 0);
565 	else
566 		btrfs_node_key(buf, &disk_key, 0);
567 
568 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
569 		if (parent)
570 			parent_start = parent->start;
571 		reloc_src_root = btrfs_header_owner(buf);
572 	}
573 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
574 				     btrfs_root_id(root), &disk_key, level,
575 				     search_start, empty_size, reloc_src_root, nest);
576 	if (IS_ERR(cow))
577 		return PTR_ERR(cow);
578 
579 	/* cow is set to blocking by btrfs_init_new_buffer */
580 
581 	copy_extent_buffer_full(cow, buf);
582 	btrfs_set_header_bytenr(cow, cow->start);
583 	btrfs_set_header_generation(cow, trans->transid);
584 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
585 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
586 				     BTRFS_HEADER_FLAG_RELOC);
587 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
588 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
589 	else
590 		btrfs_set_header_owner(cow, btrfs_root_id(root));
591 
592 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
593 
594 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
595 	if (ret) {
596 		btrfs_abort_transaction(trans, ret);
597 		goto error_unlock_cow;
598 	}
599 
600 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
601 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
602 		if (ret) {
603 			btrfs_abort_transaction(trans, ret);
604 			goto error_unlock_cow;
605 		}
606 	}
607 
608 	if (buf == root->node) {
609 		WARN_ON(parent && parent != buf);
610 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
611 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
612 			parent_start = buf->start;
613 
614 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
615 		if (ret < 0) {
616 			btrfs_abort_transaction(trans, ret);
617 			goto error_unlock_cow;
618 		}
619 		atomic_inc(&cow->refs);
620 		rcu_assign_pointer(root->node, cow);
621 
622 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
623 					    parent_start, last_ref);
624 		free_extent_buffer(buf);
625 		add_root_to_dirty_list(root);
626 		if (ret < 0) {
627 			btrfs_abort_transaction(trans, ret);
628 			goto error_unlock_cow;
629 		}
630 	} else {
631 		WARN_ON(trans->transid != btrfs_header_generation(parent));
632 		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
633 						    BTRFS_MOD_LOG_KEY_REPLACE);
634 		if (ret) {
635 			btrfs_abort_transaction(trans, ret);
636 			goto error_unlock_cow;
637 		}
638 		btrfs_set_node_blockptr(parent, parent_slot,
639 					cow->start);
640 		btrfs_set_node_ptr_generation(parent, parent_slot,
641 					      trans->transid);
642 		btrfs_mark_buffer_dirty(trans, parent);
643 		if (last_ref) {
644 			ret = btrfs_tree_mod_log_free_eb(buf);
645 			if (ret) {
646 				btrfs_abort_transaction(trans, ret);
647 				goto error_unlock_cow;
648 			}
649 		}
650 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
651 					    parent_start, last_ref);
652 		if (ret < 0) {
653 			btrfs_abort_transaction(trans, ret);
654 			goto error_unlock_cow;
655 		}
656 	}
657 	if (unlock_orig)
658 		btrfs_tree_unlock(buf);
659 	free_extent_buffer_stale(buf);
660 	btrfs_mark_buffer_dirty(trans, cow);
661 	*cow_ret = cow;
662 	return 0;
663 
664 error_unlock_cow:
665 	btrfs_tree_unlock(cow);
666 	free_extent_buffer(cow);
667 	return ret;
668 }
669 
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)670 static inline int should_cow_block(struct btrfs_trans_handle *trans,
671 				   struct btrfs_root *root,
672 				   struct extent_buffer *buf)
673 {
674 	if (btrfs_is_testing(root->fs_info))
675 		return 0;
676 
677 	/* Ensure we can see the FORCE_COW bit */
678 	smp_mb__before_atomic();
679 
680 	/*
681 	 * We do not need to cow a block if
682 	 * 1) this block is not created or changed in this transaction;
683 	 * 2) this block does not belong to TREE_RELOC tree;
684 	 * 3) the root is not forced COW.
685 	 *
686 	 * What is forced COW:
687 	 *    when we create snapshot during committing the transaction,
688 	 *    after we've finished copying src root, we must COW the shared
689 	 *    block to ensure the metadata consistency.
690 	 */
691 	if (btrfs_header_generation(buf) == trans->transid &&
692 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
693 	    !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
694 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
695 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
696 		return 0;
697 	return 1;
698 }
699 
700 /*
701  * COWs a single block, see btrfs_force_cow_block() for the real work.
702  * This version of it has extra checks so that a block isn't COWed more than
703  * once per transaction, as long as it hasn't been written yet
704  */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)705 int btrfs_cow_block(struct btrfs_trans_handle *trans,
706 		    struct btrfs_root *root, struct extent_buffer *buf,
707 		    struct extent_buffer *parent, int parent_slot,
708 		    struct extent_buffer **cow_ret,
709 		    enum btrfs_lock_nesting nest)
710 {
711 	struct btrfs_fs_info *fs_info = root->fs_info;
712 	u64 search_start;
713 	int ret;
714 
715 	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
716 		btrfs_abort_transaction(trans, -EUCLEAN);
717 		btrfs_crit(fs_info,
718 		   "attempt to COW block %llu on root %llu that is being deleted",
719 			   buf->start, btrfs_root_id(root));
720 		return -EUCLEAN;
721 	}
722 
723 	/*
724 	 * COWing must happen through a running transaction, which always
725 	 * matches the current fs generation (it's a transaction with a state
726 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
727 	 * into error state to prevent the commit of any transaction.
728 	 */
729 	if (unlikely(trans->transaction != fs_info->running_transaction ||
730 		     trans->transid != fs_info->generation)) {
731 		btrfs_abort_transaction(trans, -EUCLEAN);
732 		btrfs_crit(fs_info,
733 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
734 			   buf->start, btrfs_root_id(root), trans->transid,
735 			   fs_info->running_transaction->transid,
736 			   fs_info->generation);
737 		return -EUCLEAN;
738 	}
739 
740 	if (!should_cow_block(trans, root, buf)) {
741 		*cow_ret = buf;
742 		return 0;
743 	}
744 
745 	search_start = round_down(buf->start, SZ_1G);
746 
747 	/*
748 	 * Before CoWing this block for later modification, check if it's
749 	 * the subtree root and do the delayed subtree trace if needed.
750 	 *
751 	 * Also We don't care about the error, as it's handled internally.
752 	 */
753 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
754 	ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
755 				    cow_ret, search_start, 0, nest);
756 
757 	trace_btrfs_cow_block(root, buf, *cow_ret);
758 
759 	return ret;
760 }
761 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
762 
763 /*
764  * same as comp_keys only with two btrfs_key's
765  */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)766 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
767 {
768 	if (k1->objectid > k2->objectid)
769 		return 1;
770 	if (k1->objectid < k2->objectid)
771 		return -1;
772 	if (k1->type > k2->type)
773 		return 1;
774 	if (k1->type < k2->type)
775 		return -1;
776 	if (k1->offset > k2->offset)
777 		return 1;
778 	if (k1->offset < k2->offset)
779 		return -1;
780 	return 0;
781 }
782 
783 /*
784  * Search for a key in the given extent_buffer.
785  *
786  * The lower boundary for the search is specified by the slot number @first_slot.
787  * Use a value of 0 to search over the whole extent buffer. Works for both
788  * leaves and nodes.
789  *
790  * The slot in the extent buffer is returned via @slot. If the key exists in the
791  * extent buffer, then @slot will point to the slot where the key is, otherwise
792  * it points to the slot where you would insert the key.
793  *
794  * Slot may point to the total number of items (i.e. one position beyond the last
795  * key) if the key is bigger than the last key in the extent buffer.
796  */
btrfs_bin_search(struct extent_buffer * eb,int first_slot,const struct btrfs_key * key,int * slot)797 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
798 		     const struct btrfs_key *key, int *slot)
799 {
800 	unsigned long p;
801 	int item_size;
802 	/*
803 	 * Use unsigned types for the low and high slots, so that we get a more
804 	 * efficient division in the search loop below.
805 	 */
806 	u32 low = first_slot;
807 	u32 high = btrfs_header_nritems(eb);
808 	int ret;
809 	const int key_size = sizeof(struct btrfs_disk_key);
810 
811 	if (unlikely(low > high)) {
812 		btrfs_err(eb->fs_info,
813 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
814 			  __func__, low, high, eb->start,
815 			  btrfs_header_owner(eb), btrfs_header_level(eb));
816 		return -EINVAL;
817 	}
818 
819 	if (btrfs_header_level(eb) == 0) {
820 		p = offsetof(struct btrfs_leaf, items);
821 		item_size = sizeof(struct btrfs_item);
822 	} else {
823 		p = offsetof(struct btrfs_node, ptrs);
824 		item_size = sizeof(struct btrfs_key_ptr);
825 	}
826 
827 	while (low < high) {
828 		const int unit_size = eb->folio_size;
829 		unsigned long oil;
830 		unsigned long offset;
831 		struct btrfs_disk_key *tmp;
832 		struct btrfs_disk_key unaligned;
833 		int mid;
834 
835 		mid = (low + high) / 2;
836 		offset = p + mid * item_size;
837 		oil = get_eb_offset_in_folio(eb, offset);
838 
839 		if (oil + key_size <= unit_size) {
840 			const unsigned long idx = get_eb_folio_index(eb, offset);
841 			char *kaddr = folio_address(eb->folios[idx]);
842 
843 			oil = get_eb_offset_in_folio(eb, offset);
844 			tmp = (struct btrfs_disk_key *)(kaddr + oil);
845 		} else {
846 			read_extent_buffer(eb, &unaligned, offset, key_size);
847 			tmp = &unaligned;
848 		}
849 
850 		ret = btrfs_comp_keys(tmp, key);
851 
852 		if (ret < 0)
853 			low = mid + 1;
854 		else if (ret > 0)
855 			high = mid;
856 		else {
857 			*slot = mid;
858 			return 0;
859 		}
860 	}
861 	*slot = low;
862 	return 1;
863 }
864 
root_add_used_bytes(struct btrfs_root * root)865 static void root_add_used_bytes(struct btrfs_root *root)
866 {
867 	spin_lock(&root->accounting_lock);
868 	btrfs_set_root_used(&root->root_item,
869 		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
870 	spin_unlock(&root->accounting_lock);
871 }
872 
root_sub_used_bytes(struct btrfs_root * root)873 static void root_sub_used_bytes(struct btrfs_root *root)
874 {
875 	spin_lock(&root->accounting_lock);
876 	btrfs_set_root_used(&root->root_item,
877 		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
878 	spin_unlock(&root->accounting_lock);
879 }
880 
881 /* given a node and slot number, this reads the blocks it points to.  The
882  * extent buffer is returned with a reference taken (but unlocked).
883  */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)884 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
885 					   int slot)
886 {
887 	int level = btrfs_header_level(parent);
888 	struct btrfs_tree_parent_check check = { 0 };
889 	struct extent_buffer *eb;
890 
891 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
892 		return ERR_PTR(-ENOENT);
893 
894 	ASSERT(level);
895 
896 	check.level = level - 1;
897 	check.transid = btrfs_node_ptr_generation(parent, slot);
898 	check.owner_root = btrfs_header_owner(parent);
899 	check.has_first_key = true;
900 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
901 
902 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
903 			     &check);
904 	if (IS_ERR(eb))
905 		return eb;
906 	if (!extent_buffer_uptodate(eb)) {
907 		free_extent_buffer(eb);
908 		return ERR_PTR(-EIO);
909 	}
910 
911 	return eb;
912 }
913 
914 /*
915  * node level balancing, used to make sure nodes are in proper order for
916  * item deletion.  We balance from the top down, so we have to make sure
917  * that a deletion won't leave an node completely empty later on.
918  */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)919 static noinline int balance_level(struct btrfs_trans_handle *trans,
920 			 struct btrfs_root *root,
921 			 struct btrfs_path *path, int level)
922 {
923 	struct btrfs_fs_info *fs_info = root->fs_info;
924 	struct extent_buffer *right = NULL;
925 	struct extent_buffer *mid;
926 	struct extent_buffer *left = NULL;
927 	struct extent_buffer *parent = NULL;
928 	int ret = 0;
929 	int wret;
930 	int pslot;
931 	int orig_slot = path->slots[level];
932 	u64 orig_ptr;
933 
934 	ASSERT(level > 0);
935 
936 	mid = path->nodes[level];
937 
938 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
939 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
940 
941 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
942 
943 	if (level < BTRFS_MAX_LEVEL - 1) {
944 		parent = path->nodes[level + 1];
945 		pslot = path->slots[level + 1];
946 	}
947 
948 	/*
949 	 * deal with the case where there is only one pointer in the root
950 	 * by promoting the node below to a root
951 	 */
952 	if (!parent) {
953 		struct extent_buffer *child;
954 
955 		if (btrfs_header_nritems(mid) != 1)
956 			return 0;
957 
958 		/* promote the child to a root */
959 		child = btrfs_read_node_slot(mid, 0);
960 		if (IS_ERR(child)) {
961 			ret = PTR_ERR(child);
962 			goto out;
963 		}
964 
965 		btrfs_tree_lock(child);
966 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
967 				      BTRFS_NESTING_COW);
968 		if (ret) {
969 			btrfs_tree_unlock(child);
970 			free_extent_buffer(child);
971 			goto out;
972 		}
973 
974 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
975 		if (ret < 0) {
976 			btrfs_tree_unlock(child);
977 			free_extent_buffer(child);
978 			btrfs_abort_transaction(trans, ret);
979 			goto out;
980 		}
981 		rcu_assign_pointer(root->node, child);
982 
983 		add_root_to_dirty_list(root);
984 		btrfs_tree_unlock(child);
985 
986 		path->locks[level] = 0;
987 		path->nodes[level] = NULL;
988 		btrfs_clear_buffer_dirty(trans, mid);
989 		btrfs_tree_unlock(mid);
990 		/* once for the path */
991 		free_extent_buffer(mid);
992 
993 		root_sub_used_bytes(root);
994 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
995 		/* once for the root ptr */
996 		free_extent_buffer_stale(mid);
997 		if (ret < 0) {
998 			btrfs_abort_transaction(trans, ret);
999 			goto out;
1000 		}
1001 		return 0;
1002 	}
1003 	if (btrfs_header_nritems(mid) >
1004 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1005 		return 0;
1006 
1007 	if (pslot) {
1008 		left = btrfs_read_node_slot(parent, pslot - 1);
1009 		if (IS_ERR(left)) {
1010 			ret = PTR_ERR(left);
1011 			left = NULL;
1012 			goto out;
1013 		}
1014 
1015 		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1016 		wret = btrfs_cow_block(trans, root, left,
1017 				       parent, pslot - 1, &left,
1018 				       BTRFS_NESTING_LEFT_COW);
1019 		if (wret) {
1020 			ret = wret;
1021 			goto out;
1022 		}
1023 	}
1024 
1025 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1026 		right = btrfs_read_node_slot(parent, pslot + 1);
1027 		if (IS_ERR(right)) {
1028 			ret = PTR_ERR(right);
1029 			right = NULL;
1030 			goto out;
1031 		}
1032 
1033 		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1034 		wret = btrfs_cow_block(trans, root, right,
1035 				       parent, pslot + 1, &right,
1036 				       BTRFS_NESTING_RIGHT_COW);
1037 		if (wret) {
1038 			ret = wret;
1039 			goto out;
1040 		}
1041 	}
1042 
1043 	/* first, try to make some room in the middle buffer */
1044 	if (left) {
1045 		orig_slot += btrfs_header_nritems(left);
1046 		wret = push_node_left(trans, left, mid, 1);
1047 		if (wret < 0)
1048 			ret = wret;
1049 	}
1050 
1051 	/*
1052 	 * then try to empty the right most buffer into the middle
1053 	 */
1054 	if (right) {
1055 		wret = push_node_left(trans, mid, right, 1);
1056 		if (wret < 0 && wret != -ENOSPC)
1057 			ret = wret;
1058 		if (btrfs_header_nritems(right) == 0) {
1059 			btrfs_clear_buffer_dirty(trans, right);
1060 			btrfs_tree_unlock(right);
1061 			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1062 			if (ret < 0) {
1063 				free_extent_buffer_stale(right);
1064 				right = NULL;
1065 				goto out;
1066 			}
1067 			root_sub_used_bytes(root);
1068 			ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1069 						    right, 0, 1);
1070 			free_extent_buffer_stale(right);
1071 			right = NULL;
1072 			if (ret < 0) {
1073 				btrfs_abort_transaction(trans, ret);
1074 				goto out;
1075 			}
1076 		} else {
1077 			struct btrfs_disk_key right_key;
1078 			btrfs_node_key(right, &right_key, 0);
1079 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1080 					BTRFS_MOD_LOG_KEY_REPLACE);
1081 			if (ret < 0) {
1082 				btrfs_abort_transaction(trans, ret);
1083 				goto out;
1084 			}
1085 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1086 			btrfs_mark_buffer_dirty(trans, parent);
1087 		}
1088 	}
1089 	if (btrfs_header_nritems(mid) == 1) {
1090 		/*
1091 		 * we're not allowed to leave a node with one item in the
1092 		 * tree during a delete.  A deletion from lower in the tree
1093 		 * could try to delete the only pointer in this node.
1094 		 * So, pull some keys from the left.
1095 		 * There has to be a left pointer at this point because
1096 		 * otherwise we would have pulled some pointers from the
1097 		 * right
1098 		 */
1099 		if (unlikely(!left)) {
1100 			btrfs_crit(fs_info,
1101 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1102 				   parent->start, btrfs_header_level(parent),
1103 				   mid->start, btrfs_root_id(root));
1104 			ret = -EUCLEAN;
1105 			btrfs_abort_transaction(trans, ret);
1106 			goto out;
1107 		}
1108 		wret = balance_node_right(trans, mid, left);
1109 		if (wret < 0) {
1110 			ret = wret;
1111 			goto out;
1112 		}
1113 		if (wret == 1) {
1114 			wret = push_node_left(trans, left, mid, 1);
1115 			if (wret < 0)
1116 				ret = wret;
1117 		}
1118 		BUG_ON(wret == 1);
1119 	}
1120 	if (btrfs_header_nritems(mid) == 0) {
1121 		btrfs_clear_buffer_dirty(trans, mid);
1122 		btrfs_tree_unlock(mid);
1123 		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1124 		if (ret < 0) {
1125 			free_extent_buffer_stale(mid);
1126 			mid = NULL;
1127 			goto out;
1128 		}
1129 		root_sub_used_bytes(root);
1130 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1131 		free_extent_buffer_stale(mid);
1132 		mid = NULL;
1133 		if (ret < 0) {
1134 			btrfs_abort_transaction(trans, ret);
1135 			goto out;
1136 		}
1137 	} else {
1138 		/* update the parent key to reflect our changes */
1139 		struct btrfs_disk_key mid_key;
1140 		btrfs_node_key(mid, &mid_key, 0);
1141 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1142 						    BTRFS_MOD_LOG_KEY_REPLACE);
1143 		if (ret < 0) {
1144 			btrfs_abort_transaction(trans, ret);
1145 			goto out;
1146 		}
1147 		btrfs_set_node_key(parent, &mid_key, pslot);
1148 		btrfs_mark_buffer_dirty(trans, parent);
1149 	}
1150 
1151 	/* update the path */
1152 	if (left) {
1153 		if (btrfs_header_nritems(left) > orig_slot) {
1154 			atomic_inc(&left->refs);
1155 			/* left was locked after cow */
1156 			path->nodes[level] = left;
1157 			path->slots[level + 1] -= 1;
1158 			path->slots[level] = orig_slot;
1159 			if (mid) {
1160 				btrfs_tree_unlock(mid);
1161 				free_extent_buffer(mid);
1162 			}
1163 		} else {
1164 			orig_slot -= btrfs_header_nritems(left);
1165 			path->slots[level] = orig_slot;
1166 		}
1167 	}
1168 	/* double check we haven't messed things up */
1169 	if (orig_ptr !=
1170 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1171 		BUG();
1172 out:
1173 	if (right) {
1174 		btrfs_tree_unlock(right);
1175 		free_extent_buffer(right);
1176 	}
1177 	if (left) {
1178 		if (path->nodes[level] != left)
1179 			btrfs_tree_unlock(left);
1180 		free_extent_buffer(left);
1181 	}
1182 	return ret;
1183 }
1184 
1185 /* Node balancing for insertion.  Here we only split or push nodes around
1186  * when they are completely full.  This is also done top down, so we
1187  * have to be pessimistic.
1188  */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1189 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1190 					  struct btrfs_root *root,
1191 					  struct btrfs_path *path, int level)
1192 {
1193 	struct btrfs_fs_info *fs_info = root->fs_info;
1194 	struct extent_buffer *right = NULL;
1195 	struct extent_buffer *mid;
1196 	struct extent_buffer *left = NULL;
1197 	struct extent_buffer *parent = NULL;
1198 	int ret = 0;
1199 	int wret;
1200 	int pslot;
1201 	int orig_slot = path->slots[level];
1202 
1203 	if (level == 0)
1204 		return 1;
1205 
1206 	mid = path->nodes[level];
1207 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1208 
1209 	if (level < BTRFS_MAX_LEVEL - 1) {
1210 		parent = path->nodes[level + 1];
1211 		pslot = path->slots[level + 1];
1212 	}
1213 
1214 	if (!parent)
1215 		return 1;
1216 
1217 	/* first, try to make some room in the middle buffer */
1218 	if (pslot) {
1219 		u32 left_nr;
1220 
1221 		left = btrfs_read_node_slot(parent, pslot - 1);
1222 		if (IS_ERR(left))
1223 			return PTR_ERR(left);
1224 
1225 		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1226 
1227 		left_nr = btrfs_header_nritems(left);
1228 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1229 			wret = 1;
1230 		} else {
1231 			ret = btrfs_cow_block(trans, root, left, parent,
1232 					      pslot - 1, &left,
1233 					      BTRFS_NESTING_LEFT_COW);
1234 			if (ret)
1235 				wret = 1;
1236 			else {
1237 				wret = push_node_left(trans, left, mid, 0);
1238 			}
1239 		}
1240 		if (wret < 0)
1241 			ret = wret;
1242 		if (wret == 0) {
1243 			struct btrfs_disk_key disk_key;
1244 			orig_slot += left_nr;
1245 			btrfs_node_key(mid, &disk_key, 0);
1246 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1247 					BTRFS_MOD_LOG_KEY_REPLACE);
1248 			if (ret < 0) {
1249 				btrfs_tree_unlock(left);
1250 				free_extent_buffer(left);
1251 				btrfs_abort_transaction(trans, ret);
1252 				return ret;
1253 			}
1254 			btrfs_set_node_key(parent, &disk_key, pslot);
1255 			btrfs_mark_buffer_dirty(trans, parent);
1256 			if (btrfs_header_nritems(left) > orig_slot) {
1257 				path->nodes[level] = left;
1258 				path->slots[level + 1] -= 1;
1259 				path->slots[level] = orig_slot;
1260 				btrfs_tree_unlock(mid);
1261 				free_extent_buffer(mid);
1262 			} else {
1263 				orig_slot -=
1264 					btrfs_header_nritems(left);
1265 				path->slots[level] = orig_slot;
1266 				btrfs_tree_unlock(left);
1267 				free_extent_buffer(left);
1268 			}
1269 			return 0;
1270 		}
1271 		btrfs_tree_unlock(left);
1272 		free_extent_buffer(left);
1273 	}
1274 
1275 	/*
1276 	 * then try to empty the right most buffer into the middle
1277 	 */
1278 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1279 		u32 right_nr;
1280 
1281 		right = btrfs_read_node_slot(parent, pslot + 1);
1282 		if (IS_ERR(right))
1283 			return PTR_ERR(right);
1284 
1285 		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1286 
1287 		right_nr = btrfs_header_nritems(right);
1288 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1289 			wret = 1;
1290 		} else {
1291 			ret = btrfs_cow_block(trans, root, right,
1292 					      parent, pslot + 1,
1293 					      &right, BTRFS_NESTING_RIGHT_COW);
1294 			if (ret)
1295 				wret = 1;
1296 			else {
1297 				wret = balance_node_right(trans, right, mid);
1298 			}
1299 		}
1300 		if (wret < 0)
1301 			ret = wret;
1302 		if (wret == 0) {
1303 			struct btrfs_disk_key disk_key;
1304 
1305 			btrfs_node_key(right, &disk_key, 0);
1306 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1307 					BTRFS_MOD_LOG_KEY_REPLACE);
1308 			if (ret < 0) {
1309 				btrfs_tree_unlock(right);
1310 				free_extent_buffer(right);
1311 				btrfs_abort_transaction(trans, ret);
1312 				return ret;
1313 			}
1314 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1315 			btrfs_mark_buffer_dirty(trans, parent);
1316 
1317 			if (btrfs_header_nritems(mid) <= orig_slot) {
1318 				path->nodes[level] = right;
1319 				path->slots[level + 1] += 1;
1320 				path->slots[level] = orig_slot -
1321 					btrfs_header_nritems(mid);
1322 				btrfs_tree_unlock(mid);
1323 				free_extent_buffer(mid);
1324 			} else {
1325 				btrfs_tree_unlock(right);
1326 				free_extent_buffer(right);
1327 			}
1328 			return 0;
1329 		}
1330 		btrfs_tree_unlock(right);
1331 		free_extent_buffer(right);
1332 	}
1333 	return 1;
1334 }
1335 
1336 /*
1337  * readahead one full node of leaves, finding things that are close
1338  * to the block in 'slot', and triggering ra on them.
1339  */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1340 static void reada_for_search(struct btrfs_fs_info *fs_info,
1341 			     struct btrfs_path *path,
1342 			     int level, int slot, u64 objectid)
1343 {
1344 	struct extent_buffer *node;
1345 	struct btrfs_disk_key disk_key;
1346 	u32 nritems;
1347 	u64 search;
1348 	u64 target;
1349 	u64 nread = 0;
1350 	u64 nread_max;
1351 	u32 nr;
1352 	u32 blocksize;
1353 	u32 nscan = 0;
1354 
1355 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1356 		return;
1357 
1358 	if (!path->nodes[level])
1359 		return;
1360 
1361 	node = path->nodes[level];
1362 
1363 	/*
1364 	 * Since the time between visiting leaves is much shorter than the time
1365 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1366 	 * much IO at once (possibly random).
1367 	 */
1368 	if (path->reada == READA_FORWARD_ALWAYS) {
1369 		if (level > 1)
1370 			nread_max = node->fs_info->nodesize;
1371 		else
1372 			nread_max = SZ_128K;
1373 	} else {
1374 		nread_max = SZ_64K;
1375 	}
1376 
1377 	search = btrfs_node_blockptr(node, slot);
1378 	blocksize = fs_info->nodesize;
1379 	if (path->reada != READA_FORWARD_ALWAYS) {
1380 		struct extent_buffer *eb;
1381 
1382 		eb = find_extent_buffer(fs_info, search);
1383 		if (eb) {
1384 			free_extent_buffer(eb);
1385 			return;
1386 		}
1387 	}
1388 
1389 	target = search;
1390 
1391 	nritems = btrfs_header_nritems(node);
1392 	nr = slot;
1393 
1394 	while (1) {
1395 		if (path->reada == READA_BACK) {
1396 			if (nr == 0)
1397 				break;
1398 			nr--;
1399 		} else if (path->reada == READA_FORWARD ||
1400 			   path->reada == READA_FORWARD_ALWAYS) {
1401 			nr++;
1402 			if (nr >= nritems)
1403 				break;
1404 		}
1405 		if (path->reada == READA_BACK && objectid) {
1406 			btrfs_node_key(node, &disk_key, nr);
1407 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1408 				break;
1409 		}
1410 		search = btrfs_node_blockptr(node, nr);
1411 		if (path->reada == READA_FORWARD_ALWAYS ||
1412 		    (search <= target && target - search <= 65536) ||
1413 		    (search > target && search - target <= 65536)) {
1414 			btrfs_readahead_node_child(node, nr);
1415 			nread += blocksize;
1416 		}
1417 		nscan++;
1418 		if (nread > nread_max || nscan > 32)
1419 			break;
1420 	}
1421 }
1422 
reada_for_balance(struct btrfs_path * path,int level)1423 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1424 {
1425 	struct extent_buffer *parent;
1426 	int slot;
1427 	int nritems;
1428 
1429 	parent = path->nodes[level + 1];
1430 	if (!parent)
1431 		return;
1432 
1433 	nritems = btrfs_header_nritems(parent);
1434 	slot = path->slots[level + 1];
1435 
1436 	if (slot > 0)
1437 		btrfs_readahead_node_child(parent, slot - 1);
1438 	if (slot + 1 < nritems)
1439 		btrfs_readahead_node_child(parent, slot + 1);
1440 }
1441 
1442 
1443 /*
1444  * when we walk down the tree, it is usually safe to unlock the higher layers
1445  * in the tree.  The exceptions are when our path goes through slot 0, because
1446  * operations on the tree might require changing key pointers higher up in the
1447  * tree.
1448  *
1449  * callers might also have set path->keep_locks, which tells this code to keep
1450  * the lock if the path points to the last slot in the block.  This is part of
1451  * walking through the tree, and selecting the next slot in the higher block.
1452  *
1453  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1454  * if lowest_unlock is 1, level 0 won't be unlocked
1455  */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1456 static noinline void unlock_up(struct btrfs_path *path, int level,
1457 			       int lowest_unlock, int min_write_lock_level,
1458 			       int *write_lock_level)
1459 {
1460 	int i;
1461 	int skip_level = level;
1462 	bool check_skip = true;
1463 
1464 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1465 		if (!path->nodes[i])
1466 			break;
1467 		if (!path->locks[i])
1468 			break;
1469 
1470 		if (check_skip) {
1471 			if (path->slots[i] == 0) {
1472 				skip_level = i + 1;
1473 				continue;
1474 			}
1475 
1476 			if (path->keep_locks) {
1477 				u32 nritems;
1478 
1479 				nritems = btrfs_header_nritems(path->nodes[i]);
1480 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1481 					skip_level = i + 1;
1482 					continue;
1483 				}
1484 			}
1485 		}
1486 
1487 		if (i >= lowest_unlock && i > skip_level) {
1488 			check_skip = false;
1489 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1490 			path->locks[i] = 0;
1491 			if (write_lock_level &&
1492 			    i > min_write_lock_level &&
1493 			    i <= *write_lock_level) {
1494 				*write_lock_level = i - 1;
1495 			}
1496 		}
1497 	}
1498 }
1499 
1500 /*
1501  * Helper function for btrfs_search_slot() and other functions that do a search
1502  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1503  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1504  * its pages from disk.
1505  *
1506  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1507  * whole btree search, starting again from the current root node.
1508  */
1509 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)1510 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1511 		      struct extent_buffer **eb_ret, int level, int slot,
1512 		      const struct btrfs_key *key)
1513 {
1514 	struct btrfs_fs_info *fs_info = root->fs_info;
1515 	struct btrfs_tree_parent_check check = { 0 };
1516 	u64 blocknr;
1517 	u64 gen;
1518 	struct extent_buffer *tmp;
1519 	int ret;
1520 	int parent_level;
1521 	bool unlock_up;
1522 
1523 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1524 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1525 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1526 	parent_level = btrfs_header_level(*eb_ret);
1527 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1528 	check.has_first_key = true;
1529 	check.level = parent_level - 1;
1530 	check.transid = gen;
1531 	check.owner_root = btrfs_root_id(root);
1532 
1533 	/*
1534 	 * If we need to read an extent buffer from disk and we are holding locks
1535 	 * on upper level nodes, we unlock all the upper nodes before reading the
1536 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1537 	 * restart the search. We don't release the lock on the current level
1538 	 * because we need to walk this node to figure out which blocks to read.
1539 	 */
1540 	tmp = find_extent_buffer(fs_info, blocknr);
1541 	if (tmp) {
1542 		if (p->reada == READA_FORWARD_ALWAYS)
1543 			reada_for_search(fs_info, p, level, slot, key->objectid);
1544 
1545 		/* first we do an atomic uptodate check */
1546 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1547 			/*
1548 			 * Do extra check for first_key, eb can be stale due to
1549 			 * being cached, read from scrub, or have multiple
1550 			 * parents (shared tree blocks).
1551 			 */
1552 			if (btrfs_verify_level_key(tmp,
1553 					parent_level - 1, &check.first_key, gen)) {
1554 				free_extent_buffer(tmp);
1555 				return -EUCLEAN;
1556 			}
1557 			*eb_ret = tmp;
1558 			return 0;
1559 		}
1560 
1561 		if (p->nowait) {
1562 			free_extent_buffer(tmp);
1563 			return -EAGAIN;
1564 		}
1565 
1566 		if (unlock_up)
1567 			btrfs_unlock_up_safe(p, level + 1);
1568 
1569 		/* now we're allowed to do a blocking uptodate check */
1570 		ret = btrfs_read_extent_buffer(tmp, &check);
1571 		if (ret) {
1572 			free_extent_buffer(tmp);
1573 			btrfs_release_path(p);
1574 			return ret;
1575 		}
1576 
1577 		if (unlock_up)
1578 			ret = -EAGAIN;
1579 
1580 		goto out;
1581 	} else if (p->nowait) {
1582 		return -EAGAIN;
1583 	}
1584 
1585 	if (unlock_up) {
1586 		btrfs_unlock_up_safe(p, level + 1);
1587 		ret = -EAGAIN;
1588 	} else {
1589 		ret = 0;
1590 	}
1591 
1592 	if (p->reada != READA_NONE)
1593 		reada_for_search(fs_info, p, level, slot, key->objectid);
1594 
1595 	tmp = read_tree_block(fs_info, blocknr, &check);
1596 	if (IS_ERR(tmp)) {
1597 		btrfs_release_path(p);
1598 		return PTR_ERR(tmp);
1599 	}
1600 	/*
1601 	 * If the read above didn't mark this buffer up to date,
1602 	 * it will never end up being up to date.  Set ret to EIO now
1603 	 * and give up so that our caller doesn't loop forever
1604 	 * on our EAGAINs.
1605 	 */
1606 	if (!extent_buffer_uptodate(tmp))
1607 		ret = -EIO;
1608 
1609 out:
1610 	if (ret == 0) {
1611 		*eb_ret = tmp;
1612 	} else {
1613 		free_extent_buffer(tmp);
1614 		btrfs_release_path(p);
1615 	}
1616 
1617 	return ret;
1618 }
1619 
1620 /*
1621  * helper function for btrfs_search_slot.  This does all of the checks
1622  * for node-level blocks and does any balancing required based on
1623  * the ins_len.
1624  *
1625  * If no extra work was required, zero is returned.  If we had to
1626  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1627  * start over
1628  */
1629 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1630 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1631 		       struct btrfs_root *root, struct btrfs_path *p,
1632 		       struct extent_buffer *b, int level, int ins_len,
1633 		       int *write_lock_level)
1634 {
1635 	struct btrfs_fs_info *fs_info = root->fs_info;
1636 	int ret = 0;
1637 
1638 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1639 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1640 
1641 		if (*write_lock_level < level + 1) {
1642 			*write_lock_level = level + 1;
1643 			btrfs_release_path(p);
1644 			return -EAGAIN;
1645 		}
1646 
1647 		reada_for_balance(p, level);
1648 		ret = split_node(trans, root, p, level);
1649 
1650 		b = p->nodes[level];
1651 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1652 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1653 
1654 		if (*write_lock_level < level + 1) {
1655 			*write_lock_level = level + 1;
1656 			btrfs_release_path(p);
1657 			return -EAGAIN;
1658 		}
1659 
1660 		reada_for_balance(p, level);
1661 		ret = balance_level(trans, root, p, level);
1662 		if (ret)
1663 			return ret;
1664 
1665 		b = p->nodes[level];
1666 		if (!b) {
1667 			btrfs_release_path(p);
1668 			return -EAGAIN;
1669 		}
1670 		BUG_ON(btrfs_header_nritems(b) == 1);
1671 	}
1672 	return ret;
1673 }
1674 
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1675 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1676 		u64 iobjectid, u64 ioff, u8 key_type,
1677 		struct btrfs_key *found_key)
1678 {
1679 	int ret;
1680 	struct btrfs_key key;
1681 	struct extent_buffer *eb;
1682 
1683 	ASSERT(path);
1684 	ASSERT(found_key);
1685 
1686 	key.type = key_type;
1687 	key.objectid = iobjectid;
1688 	key.offset = ioff;
1689 
1690 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1691 	if (ret < 0)
1692 		return ret;
1693 
1694 	eb = path->nodes[0];
1695 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1696 		ret = btrfs_next_leaf(fs_root, path);
1697 		if (ret)
1698 			return ret;
1699 		eb = path->nodes[0];
1700 	}
1701 
1702 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1703 	if (found_key->type != key.type ||
1704 			found_key->objectid != key.objectid)
1705 		return 1;
1706 
1707 	return 0;
1708 }
1709 
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1710 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1711 							struct btrfs_path *p,
1712 							int write_lock_level)
1713 {
1714 	struct extent_buffer *b;
1715 	int root_lock = 0;
1716 	int level = 0;
1717 
1718 	if (p->search_commit_root) {
1719 		b = root->commit_root;
1720 		atomic_inc(&b->refs);
1721 		level = btrfs_header_level(b);
1722 		/*
1723 		 * Ensure that all callers have set skip_locking when
1724 		 * p->search_commit_root = 1.
1725 		 */
1726 		ASSERT(p->skip_locking == 1);
1727 
1728 		goto out;
1729 	}
1730 
1731 	if (p->skip_locking) {
1732 		b = btrfs_root_node(root);
1733 		level = btrfs_header_level(b);
1734 		goto out;
1735 	}
1736 
1737 	/* We try very hard to do read locks on the root */
1738 	root_lock = BTRFS_READ_LOCK;
1739 
1740 	/*
1741 	 * If the level is set to maximum, we can skip trying to get the read
1742 	 * lock.
1743 	 */
1744 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1745 		/*
1746 		 * We don't know the level of the root node until we actually
1747 		 * have it read locked
1748 		 */
1749 		if (p->nowait) {
1750 			b = btrfs_try_read_lock_root_node(root);
1751 			if (IS_ERR(b))
1752 				return b;
1753 		} else {
1754 			b = btrfs_read_lock_root_node(root);
1755 		}
1756 		level = btrfs_header_level(b);
1757 		if (level > write_lock_level)
1758 			goto out;
1759 
1760 		/* Whoops, must trade for write lock */
1761 		btrfs_tree_read_unlock(b);
1762 		free_extent_buffer(b);
1763 	}
1764 
1765 	b = btrfs_lock_root_node(root);
1766 	root_lock = BTRFS_WRITE_LOCK;
1767 
1768 	/* The level might have changed, check again */
1769 	level = btrfs_header_level(b);
1770 
1771 out:
1772 	/*
1773 	 * The root may have failed to write out at some point, and thus is no
1774 	 * longer valid, return an error in this case.
1775 	 */
1776 	if (!extent_buffer_uptodate(b)) {
1777 		if (root_lock)
1778 			btrfs_tree_unlock_rw(b, root_lock);
1779 		free_extent_buffer(b);
1780 		return ERR_PTR(-EIO);
1781 	}
1782 
1783 	p->nodes[level] = b;
1784 	if (!p->skip_locking)
1785 		p->locks[level] = root_lock;
1786 	/*
1787 	 * Callers are responsible for dropping b's references.
1788 	 */
1789 	return b;
1790 }
1791 
1792 /*
1793  * Replace the extent buffer at the lowest level of the path with a cloned
1794  * version. The purpose is to be able to use it safely, after releasing the
1795  * commit root semaphore, even if relocation is happening in parallel, the
1796  * transaction used for relocation is committed and the extent buffer is
1797  * reallocated in the next transaction.
1798  *
1799  * This is used in a context where the caller does not prevent transaction
1800  * commits from happening, either by holding a transaction handle or holding
1801  * some lock, while it's doing searches through a commit root.
1802  * At the moment it's only used for send operations.
1803  */
finish_need_commit_sem_search(struct btrfs_path * path)1804 static int finish_need_commit_sem_search(struct btrfs_path *path)
1805 {
1806 	const int i = path->lowest_level;
1807 	const int slot = path->slots[i];
1808 	struct extent_buffer *lowest = path->nodes[i];
1809 	struct extent_buffer *clone;
1810 
1811 	ASSERT(path->need_commit_sem);
1812 
1813 	if (!lowest)
1814 		return 0;
1815 
1816 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1817 
1818 	clone = btrfs_clone_extent_buffer(lowest);
1819 	if (!clone)
1820 		return -ENOMEM;
1821 
1822 	btrfs_release_path(path);
1823 	path->nodes[i] = clone;
1824 	path->slots[i] = slot;
1825 
1826 	return 0;
1827 }
1828 
search_for_key_slot(struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1829 static inline int search_for_key_slot(struct extent_buffer *eb,
1830 				      int search_low_slot,
1831 				      const struct btrfs_key *key,
1832 				      int prev_cmp,
1833 				      int *slot)
1834 {
1835 	/*
1836 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1837 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1838 	 * always be at slot 0 on lower levels, since each key pointer
1839 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1840 	 * subtree it points to. Thus we can skip searching lower levels.
1841 	 */
1842 	if (prev_cmp == 0) {
1843 		*slot = 0;
1844 		return 0;
1845 	}
1846 
1847 	return btrfs_bin_search(eb, search_low_slot, key, slot);
1848 }
1849 
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1850 static int search_leaf(struct btrfs_trans_handle *trans,
1851 		       struct btrfs_root *root,
1852 		       const struct btrfs_key *key,
1853 		       struct btrfs_path *path,
1854 		       int ins_len,
1855 		       int prev_cmp)
1856 {
1857 	struct extent_buffer *leaf = path->nodes[0];
1858 	int leaf_free_space = -1;
1859 	int search_low_slot = 0;
1860 	int ret;
1861 	bool do_bin_search = true;
1862 
1863 	/*
1864 	 * If we are doing an insertion, the leaf has enough free space and the
1865 	 * destination slot for the key is not slot 0, then we can unlock our
1866 	 * write lock on the parent, and any other upper nodes, before doing the
1867 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1868 	 * tasks to lock the parent and any other upper nodes.
1869 	 */
1870 	if (ins_len > 0) {
1871 		/*
1872 		 * Cache the leaf free space, since we will need it later and it
1873 		 * will not change until then.
1874 		 */
1875 		leaf_free_space = btrfs_leaf_free_space(leaf);
1876 
1877 		/*
1878 		 * !path->locks[1] means we have a single node tree, the leaf is
1879 		 * the root of the tree.
1880 		 */
1881 		if (path->locks[1] && leaf_free_space >= ins_len) {
1882 			struct btrfs_disk_key first_key;
1883 
1884 			ASSERT(btrfs_header_nritems(leaf) > 0);
1885 			btrfs_item_key(leaf, &first_key, 0);
1886 
1887 			/*
1888 			 * Doing the extra comparison with the first key is cheap,
1889 			 * taking into account that the first key is very likely
1890 			 * already in a cache line because it immediately follows
1891 			 * the extent buffer's header and we have recently accessed
1892 			 * the header's level field.
1893 			 */
1894 			ret = btrfs_comp_keys(&first_key, key);
1895 			if (ret < 0) {
1896 				/*
1897 				 * The first key is smaller than the key we want
1898 				 * to insert, so we are safe to unlock all upper
1899 				 * nodes and we have to do the binary search.
1900 				 *
1901 				 * We do use btrfs_unlock_up_safe() and not
1902 				 * unlock_up() because the later does not unlock
1903 				 * nodes with a slot of 0 - we can safely unlock
1904 				 * any node even if its slot is 0 since in this
1905 				 * case the key does not end up at slot 0 of the
1906 				 * leaf and there's no need to split the leaf.
1907 				 */
1908 				btrfs_unlock_up_safe(path, 1);
1909 				search_low_slot = 1;
1910 			} else {
1911 				/*
1912 				 * The first key is >= then the key we want to
1913 				 * insert, so we can skip the binary search as
1914 				 * the target key will be at slot 0.
1915 				 *
1916 				 * We can not unlock upper nodes when the key is
1917 				 * less than the first key, because we will need
1918 				 * to update the key at slot 0 of the parent node
1919 				 * and possibly of other upper nodes too.
1920 				 * If the key matches the first key, then we can
1921 				 * unlock all the upper nodes, using
1922 				 * btrfs_unlock_up_safe() instead of unlock_up()
1923 				 * as stated above.
1924 				 */
1925 				if (ret == 0)
1926 					btrfs_unlock_up_safe(path, 1);
1927 				/*
1928 				 * ret is already 0 or 1, matching the result of
1929 				 * a btrfs_bin_search() call, so there is no need
1930 				 * to adjust it.
1931 				 */
1932 				do_bin_search = false;
1933 				path->slots[0] = 0;
1934 			}
1935 		}
1936 	}
1937 
1938 	if (do_bin_search) {
1939 		ret = search_for_key_slot(leaf, search_low_slot, key,
1940 					  prev_cmp, &path->slots[0]);
1941 		if (ret < 0)
1942 			return ret;
1943 	}
1944 
1945 	if (ins_len > 0) {
1946 		/*
1947 		 * Item key already exists. In this case, if we are allowed to
1948 		 * insert the item (for example, in dir_item case, item key
1949 		 * collision is allowed), it will be merged with the original
1950 		 * item. Only the item size grows, no new btrfs item will be
1951 		 * added. If search_for_extension is not set, ins_len already
1952 		 * accounts the size btrfs_item, deduct it here so leaf space
1953 		 * check will be correct.
1954 		 */
1955 		if (ret == 0 && !path->search_for_extension) {
1956 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1957 			ins_len -= sizeof(struct btrfs_item);
1958 		}
1959 
1960 		ASSERT(leaf_free_space >= 0);
1961 
1962 		if (leaf_free_space < ins_len) {
1963 			int err;
1964 
1965 			err = split_leaf(trans, root, key, path, ins_len,
1966 					 (ret == 0));
1967 			ASSERT(err <= 0);
1968 			if (WARN_ON(err > 0))
1969 				err = -EUCLEAN;
1970 			if (err)
1971 				ret = err;
1972 		}
1973 	}
1974 
1975 	return ret;
1976 }
1977 
1978 /*
1979  * Look for a key in a tree and perform necessary modifications to preserve
1980  * tree invariants.
1981  *
1982  * @trans:	Handle of transaction, used when modifying the tree
1983  * @p:		Holds all btree nodes along the search path
1984  * @root:	The root node of the tree
1985  * @key:	The key we are looking for
1986  * @ins_len:	Indicates purpose of search:
1987  *              >0  for inserts it's size of item inserted (*)
1988  *              <0  for deletions
1989  *               0  for plain searches, not modifying the tree
1990  *
1991  *              (*) If size of item inserted doesn't include
1992  *              sizeof(struct btrfs_item), then p->search_for_extension must
1993  *              be set.
1994  * @cow:	boolean should CoW operations be performed. Must always be 1
1995  *		when modifying the tree.
1996  *
1997  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1998  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1999  *
2000  * If @key is found, 0 is returned and you can find the item in the leaf level
2001  * of the path (level 0)
2002  *
2003  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2004  * points to the slot where it should be inserted
2005  *
2006  * If an error is encountered while searching the tree a negative error number
2007  * is returned
2008  */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2009 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2010 		      const struct btrfs_key *key, struct btrfs_path *p,
2011 		      int ins_len, int cow)
2012 {
2013 	struct btrfs_fs_info *fs_info = root->fs_info;
2014 	struct extent_buffer *b;
2015 	int slot;
2016 	int ret;
2017 	int err;
2018 	int level;
2019 	int lowest_unlock = 1;
2020 	/* everything at write_lock_level or lower must be write locked */
2021 	int write_lock_level = 0;
2022 	u8 lowest_level = 0;
2023 	int min_write_lock_level;
2024 	int prev_cmp;
2025 
2026 	might_sleep();
2027 
2028 	lowest_level = p->lowest_level;
2029 	WARN_ON(lowest_level && ins_len > 0);
2030 	WARN_ON(p->nodes[0] != NULL);
2031 	BUG_ON(!cow && ins_len);
2032 
2033 	/*
2034 	 * For now only allow nowait for read only operations.  There's no
2035 	 * strict reason why we can't, we just only need it for reads so it's
2036 	 * only implemented for reads.
2037 	 */
2038 	ASSERT(!p->nowait || !cow);
2039 
2040 	if (ins_len < 0) {
2041 		lowest_unlock = 2;
2042 
2043 		/* when we are removing items, we might have to go up to level
2044 		 * two as we update tree pointers  Make sure we keep write
2045 		 * for those levels as well
2046 		 */
2047 		write_lock_level = 2;
2048 	} else if (ins_len > 0) {
2049 		/*
2050 		 * for inserting items, make sure we have a write lock on
2051 		 * level 1 so we can update keys
2052 		 */
2053 		write_lock_level = 1;
2054 	}
2055 
2056 	if (!cow)
2057 		write_lock_level = -1;
2058 
2059 	if (cow && (p->keep_locks || p->lowest_level))
2060 		write_lock_level = BTRFS_MAX_LEVEL;
2061 
2062 	min_write_lock_level = write_lock_level;
2063 
2064 	if (p->need_commit_sem) {
2065 		ASSERT(p->search_commit_root);
2066 		if (p->nowait) {
2067 			if (!down_read_trylock(&fs_info->commit_root_sem))
2068 				return -EAGAIN;
2069 		} else {
2070 			down_read(&fs_info->commit_root_sem);
2071 		}
2072 	}
2073 
2074 again:
2075 	prev_cmp = -1;
2076 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2077 	if (IS_ERR(b)) {
2078 		ret = PTR_ERR(b);
2079 		goto done;
2080 	}
2081 
2082 	while (b) {
2083 		int dec = 0;
2084 
2085 		level = btrfs_header_level(b);
2086 
2087 		if (cow) {
2088 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2089 
2090 			/*
2091 			 * if we don't really need to cow this block
2092 			 * then we don't want to set the path blocking,
2093 			 * so we test it here
2094 			 */
2095 			if (!should_cow_block(trans, root, b))
2096 				goto cow_done;
2097 
2098 			/*
2099 			 * must have write locks on this node and the
2100 			 * parent
2101 			 */
2102 			if (level > write_lock_level ||
2103 			    (level + 1 > write_lock_level &&
2104 			    level + 1 < BTRFS_MAX_LEVEL &&
2105 			    p->nodes[level + 1])) {
2106 				write_lock_level = level + 1;
2107 				btrfs_release_path(p);
2108 				goto again;
2109 			}
2110 
2111 			if (last_level)
2112 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2113 						      &b,
2114 						      BTRFS_NESTING_COW);
2115 			else
2116 				err = btrfs_cow_block(trans, root, b,
2117 						      p->nodes[level + 1],
2118 						      p->slots[level + 1], &b,
2119 						      BTRFS_NESTING_COW);
2120 			if (err) {
2121 				ret = err;
2122 				goto done;
2123 			}
2124 		}
2125 cow_done:
2126 		p->nodes[level] = b;
2127 
2128 		/*
2129 		 * we have a lock on b and as long as we aren't changing
2130 		 * the tree, there is no way to for the items in b to change.
2131 		 * It is safe to drop the lock on our parent before we
2132 		 * go through the expensive btree search on b.
2133 		 *
2134 		 * If we're inserting or deleting (ins_len != 0), then we might
2135 		 * be changing slot zero, which may require changing the parent.
2136 		 * So, we can't drop the lock until after we know which slot
2137 		 * we're operating on.
2138 		 */
2139 		if (!ins_len && !p->keep_locks) {
2140 			int u = level + 1;
2141 
2142 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2143 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2144 				p->locks[u] = 0;
2145 			}
2146 		}
2147 
2148 		if (level == 0) {
2149 			if (ins_len > 0)
2150 				ASSERT(write_lock_level >= 1);
2151 
2152 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2153 			if (!p->search_for_split)
2154 				unlock_up(p, level, lowest_unlock,
2155 					  min_write_lock_level, NULL);
2156 			goto done;
2157 		}
2158 
2159 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2160 		if (ret < 0)
2161 			goto done;
2162 		prev_cmp = ret;
2163 
2164 		if (ret && slot > 0) {
2165 			dec = 1;
2166 			slot--;
2167 		}
2168 		p->slots[level] = slot;
2169 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2170 					     &write_lock_level);
2171 		if (err == -EAGAIN)
2172 			goto again;
2173 		if (err) {
2174 			ret = err;
2175 			goto done;
2176 		}
2177 		b = p->nodes[level];
2178 		slot = p->slots[level];
2179 
2180 		/*
2181 		 * Slot 0 is special, if we change the key we have to update
2182 		 * the parent pointer which means we must have a write lock on
2183 		 * the parent
2184 		 */
2185 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2186 			write_lock_level = level + 1;
2187 			btrfs_release_path(p);
2188 			goto again;
2189 		}
2190 
2191 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2192 			  &write_lock_level);
2193 
2194 		if (level == lowest_level) {
2195 			if (dec)
2196 				p->slots[level]++;
2197 			goto done;
2198 		}
2199 
2200 		err = read_block_for_search(root, p, &b, level, slot, key);
2201 		if (err == -EAGAIN)
2202 			goto again;
2203 		if (err) {
2204 			ret = err;
2205 			goto done;
2206 		}
2207 
2208 		if (!p->skip_locking) {
2209 			level = btrfs_header_level(b);
2210 
2211 			btrfs_maybe_reset_lockdep_class(root, b);
2212 
2213 			if (level <= write_lock_level) {
2214 				btrfs_tree_lock(b);
2215 				p->locks[level] = BTRFS_WRITE_LOCK;
2216 			} else {
2217 				if (p->nowait) {
2218 					if (!btrfs_try_tree_read_lock(b)) {
2219 						free_extent_buffer(b);
2220 						ret = -EAGAIN;
2221 						goto done;
2222 					}
2223 				} else {
2224 					btrfs_tree_read_lock(b);
2225 				}
2226 				p->locks[level] = BTRFS_READ_LOCK;
2227 			}
2228 			p->nodes[level] = b;
2229 		}
2230 	}
2231 	ret = 1;
2232 done:
2233 	if (ret < 0 && !p->skip_release_on_error)
2234 		btrfs_release_path(p);
2235 
2236 	if (p->need_commit_sem) {
2237 		int ret2;
2238 
2239 		ret2 = finish_need_commit_sem_search(p);
2240 		up_read(&fs_info->commit_root_sem);
2241 		if (ret2)
2242 			ret = ret2;
2243 	}
2244 
2245 	return ret;
2246 }
2247 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2248 
2249 /*
2250  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2251  * current state of the tree together with the operations recorded in the tree
2252  * modification log to search for the key in a previous version of this tree, as
2253  * denoted by the time_seq parameter.
2254  *
2255  * Naturally, there is no support for insert, delete or cow operations.
2256  *
2257  * The resulting path and return value will be set up as if we called
2258  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2259  */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2260 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2261 			  struct btrfs_path *p, u64 time_seq)
2262 {
2263 	struct btrfs_fs_info *fs_info = root->fs_info;
2264 	struct extent_buffer *b;
2265 	int slot;
2266 	int ret;
2267 	int err;
2268 	int level;
2269 	int lowest_unlock = 1;
2270 	u8 lowest_level = 0;
2271 
2272 	lowest_level = p->lowest_level;
2273 	WARN_ON(p->nodes[0] != NULL);
2274 	ASSERT(!p->nowait);
2275 
2276 	if (p->search_commit_root) {
2277 		BUG_ON(time_seq);
2278 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2279 	}
2280 
2281 again:
2282 	b = btrfs_get_old_root(root, time_seq);
2283 	if (!b) {
2284 		ret = -EIO;
2285 		goto done;
2286 	}
2287 	level = btrfs_header_level(b);
2288 	p->locks[level] = BTRFS_READ_LOCK;
2289 
2290 	while (b) {
2291 		int dec = 0;
2292 
2293 		level = btrfs_header_level(b);
2294 		p->nodes[level] = b;
2295 
2296 		/*
2297 		 * we have a lock on b and as long as we aren't changing
2298 		 * the tree, there is no way to for the items in b to change.
2299 		 * It is safe to drop the lock on our parent before we
2300 		 * go through the expensive btree search on b.
2301 		 */
2302 		btrfs_unlock_up_safe(p, level + 1);
2303 
2304 		ret = btrfs_bin_search(b, 0, key, &slot);
2305 		if (ret < 0)
2306 			goto done;
2307 
2308 		if (level == 0) {
2309 			p->slots[level] = slot;
2310 			unlock_up(p, level, lowest_unlock, 0, NULL);
2311 			goto done;
2312 		}
2313 
2314 		if (ret && slot > 0) {
2315 			dec = 1;
2316 			slot--;
2317 		}
2318 		p->slots[level] = slot;
2319 		unlock_up(p, level, lowest_unlock, 0, NULL);
2320 
2321 		if (level == lowest_level) {
2322 			if (dec)
2323 				p->slots[level]++;
2324 			goto done;
2325 		}
2326 
2327 		err = read_block_for_search(root, p, &b, level, slot, key);
2328 		if (err == -EAGAIN)
2329 			goto again;
2330 		if (err) {
2331 			ret = err;
2332 			goto done;
2333 		}
2334 
2335 		level = btrfs_header_level(b);
2336 		btrfs_tree_read_lock(b);
2337 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2338 		if (!b) {
2339 			ret = -ENOMEM;
2340 			goto done;
2341 		}
2342 		p->locks[level] = BTRFS_READ_LOCK;
2343 		p->nodes[level] = b;
2344 	}
2345 	ret = 1;
2346 done:
2347 	if (ret < 0)
2348 		btrfs_release_path(p);
2349 
2350 	return ret;
2351 }
2352 
2353 /*
2354  * Search the tree again to find a leaf with smaller keys.
2355  * Returns 0 if it found something.
2356  * Returns 1 if there are no smaller keys.
2357  * Returns < 0 on error.
2358  *
2359  * This may release the path, and so you may lose any locks held at the
2360  * time you call it.
2361  */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)2362 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2363 {
2364 	struct btrfs_key key;
2365 	struct btrfs_key orig_key;
2366 	struct btrfs_disk_key found_key;
2367 	int ret;
2368 
2369 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2370 	orig_key = key;
2371 
2372 	if (key.offset > 0) {
2373 		key.offset--;
2374 	} else if (key.type > 0) {
2375 		key.type--;
2376 		key.offset = (u64)-1;
2377 	} else if (key.objectid > 0) {
2378 		key.objectid--;
2379 		key.type = (u8)-1;
2380 		key.offset = (u64)-1;
2381 	} else {
2382 		return 1;
2383 	}
2384 
2385 	btrfs_release_path(path);
2386 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2387 	if (ret <= 0)
2388 		return ret;
2389 
2390 	/*
2391 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2392 	 * before releasing the path and calling btrfs_search_slot(), we now may
2393 	 * be in a slot pointing to the same original key - this can happen if
2394 	 * after we released the path, one of more items were moved from a
2395 	 * sibling leaf into the front of the leaf we had due to an insertion
2396 	 * (see push_leaf_right()).
2397 	 * If we hit this case and our slot is > 0 and just decrement the slot
2398 	 * so that the caller does not process the same key again, which may or
2399 	 * may not break the caller, depending on its logic.
2400 	 */
2401 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2402 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2403 		ret = btrfs_comp_keys(&found_key, &orig_key);
2404 		if (ret == 0) {
2405 			if (path->slots[0] > 0) {
2406 				path->slots[0]--;
2407 				return 0;
2408 			}
2409 			/*
2410 			 * At slot 0, same key as before, it means orig_key is
2411 			 * the lowest, leftmost, key in the tree. We're done.
2412 			 */
2413 			return 1;
2414 		}
2415 	}
2416 
2417 	btrfs_item_key(path->nodes[0], &found_key, 0);
2418 	ret = btrfs_comp_keys(&found_key, &key);
2419 	/*
2420 	 * We might have had an item with the previous key in the tree right
2421 	 * before we released our path. And after we released our path, that
2422 	 * item might have been pushed to the first slot (0) of the leaf we
2423 	 * were holding due to a tree balance. Alternatively, an item with the
2424 	 * previous key can exist as the only element of a leaf (big fat item).
2425 	 * Therefore account for these 2 cases, so that our callers (like
2426 	 * btrfs_previous_item) don't miss an existing item with a key matching
2427 	 * the previous key we computed above.
2428 	 */
2429 	if (ret <= 0)
2430 		return 0;
2431 	return 1;
2432 }
2433 
2434 /*
2435  * helper to use instead of search slot if no exact match is needed but
2436  * instead the next or previous item should be returned.
2437  * When find_higher is true, the next higher item is returned, the next lower
2438  * otherwise.
2439  * When return_any and find_higher are both true, and no higher item is found,
2440  * return the next lower instead.
2441  * When return_any is true and find_higher is false, and no lower item is found,
2442  * return the next higher instead.
2443  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2444  * < 0 on error
2445  */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2446 int btrfs_search_slot_for_read(struct btrfs_root *root,
2447 			       const struct btrfs_key *key,
2448 			       struct btrfs_path *p, int find_higher,
2449 			       int return_any)
2450 {
2451 	int ret;
2452 	struct extent_buffer *leaf;
2453 
2454 again:
2455 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2456 	if (ret <= 0)
2457 		return ret;
2458 	/*
2459 	 * a return value of 1 means the path is at the position where the
2460 	 * item should be inserted. Normally this is the next bigger item,
2461 	 * but in case the previous item is the last in a leaf, path points
2462 	 * to the first free slot in the previous leaf, i.e. at an invalid
2463 	 * item.
2464 	 */
2465 	leaf = p->nodes[0];
2466 
2467 	if (find_higher) {
2468 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2469 			ret = btrfs_next_leaf(root, p);
2470 			if (ret <= 0)
2471 				return ret;
2472 			if (!return_any)
2473 				return 1;
2474 			/*
2475 			 * no higher item found, return the next
2476 			 * lower instead
2477 			 */
2478 			return_any = 0;
2479 			find_higher = 0;
2480 			btrfs_release_path(p);
2481 			goto again;
2482 		}
2483 	} else {
2484 		if (p->slots[0] == 0) {
2485 			ret = btrfs_prev_leaf(root, p);
2486 			if (ret < 0)
2487 				return ret;
2488 			if (!ret) {
2489 				leaf = p->nodes[0];
2490 				if (p->slots[0] == btrfs_header_nritems(leaf))
2491 					p->slots[0]--;
2492 				return 0;
2493 			}
2494 			if (!return_any)
2495 				return 1;
2496 			/*
2497 			 * no lower item found, return the next
2498 			 * higher instead
2499 			 */
2500 			return_any = 0;
2501 			find_higher = 1;
2502 			btrfs_release_path(p);
2503 			goto again;
2504 		} else {
2505 			--p->slots[0];
2506 		}
2507 	}
2508 	return 0;
2509 }
2510 
2511 /*
2512  * Execute search and call btrfs_previous_item to traverse backwards if the item
2513  * was not found.
2514  *
2515  * Return 0 if found, 1 if not found and < 0 if error.
2516  */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2517 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2518 			   struct btrfs_path *path)
2519 {
2520 	int ret;
2521 
2522 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2523 	if (ret > 0)
2524 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2525 
2526 	if (ret == 0)
2527 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2528 
2529 	return ret;
2530 }
2531 
2532 /*
2533  * Search for a valid slot for the given path.
2534  *
2535  * @root:	The root node of the tree.
2536  * @key:	Will contain a valid item if found.
2537  * @path:	The starting point to validate the slot.
2538  *
2539  * Return: 0  if the item is valid
2540  *         1  if not found
2541  *         <0 if error.
2542  */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2543 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2544 			      struct btrfs_path *path)
2545 {
2546 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2547 		int ret;
2548 
2549 		ret = btrfs_next_leaf(root, path);
2550 		if (ret)
2551 			return ret;
2552 	}
2553 
2554 	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2555 	return 0;
2556 }
2557 
2558 /*
2559  * adjust the pointers going up the tree, starting at level
2560  * making sure the right key of each node is points to 'key'.
2561  * This is used after shifting pointers to the left, so it stops
2562  * fixing up pointers when a given leaf/node is not in slot 0 of the
2563  * higher levels
2564  *
2565  */
fixup_low_keys(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_disk_key * key,int level)2566 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2567 			   const struct btrfs_path *path,
2568 			   const struct btrfs_disk_key *key, int level)
2569 {
2570 	int i;
2571 	struct extent_buffer *t;
2572 	int ret;
2573 
2574 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2575 		int tslot = path->slots[i];
2576 
2577 		if (!path->nodes[i])
2578 			break;
2579 		t = path->nodes[i];
2580 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2581 						    BTRFS_MOD_LOG_KEY_REPLACE);
2582 		BUG_ON(ret < 0);
2583 		btrfs_set_node_key(t, key, tslot);
2584 		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2585 		if (tslot != 0)
2586 			break;
2587 	}
2588 }
2589 
2590 /*
2591  * update item key.
2592  *
2593  * This function isn't completely safe. It's the caller's responsibility
2594  * that the new key won't break the order
2595  */
btrfs_set_item_key_safe(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_key * new_key)2596 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2597 			     const struct btrfs_path *path,
2598 			     const struct btrfs_key *new_key)
2599 {
2600 	struct btrfs_fs_info *fs_info = trans->fs_info;
2601 	struct btrfs_disk_key disk_key;
2602 	struct extent_buffer *eb;
2603 	int slot;
2604 
2605 	eb = path->nodes[0];
2606 	slot = path->slots[0];
2607 	if (slot > 0) {
2608 		btrfs_item_key(eb, &disk_key, slot - 1);
2609 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2610 			btrfs_print_leaf(eb);
2611 			btrfs_crit(fs_info,
2612 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2613 				   slot, btrfs_disk_key_objectid(&disk_key),
2614 				   btrfs_disk_key_type(&disk_key),
2615 				   btrfs_disk_key_offset(&disk_key),
2616 				   new_key->objectid, new_key->type,
2617 				   new_key->offset);
2618 			BUG();
2619 		}
2620 	}
2621 	if (slot < btrfs_header_nritems(eb) - 1) {
2622 		btrfs_item_key(eb, &disk_key, slot + 1);
2623 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2624 			btrfs_print_leaf(eb);
2625 			btrfs_crit(fs_info,
2626 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2627 				   slot, btrfs_disk_key_objectid(&disk_key),
2628 				   btrfs_disk_key_type(&disk_key),
2629 				   btrfs_disk_key_offset(&disk_key),
2630 				   new_key->objectid, new_key->type,
2631 				   new_key->offset);
2632 			BUG();
2633 		}
2634 	}
2635 
2636 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2637 	btrfs_set_item_key(eb, &disk_key, slot);
2638 	btrfs_mark_buffer_dirty(trans, eb);
2639 	if (slot == 0)
2640 		fixup_low_keys(trans, path, &disk_key, 1);
2641 }
2642 
2643 /*
2644  * Check key order of two sibling extent buffers.
2645  *
2646  * Return true if something is wrong.
2647  * Return false if everything is fine.
2648  *
2649  * Tree-checker only works inside one tree block, thus the following
2650  * corruption can not be detected by tree-checker:
2651  *
2652  * Leaf @left			| Leaf @right
2653  * --------------------------------------------------------------
2654  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2655  *
2656  * Key f6 in leaf @left itself is valid, but not valid when the next
2657  * key in leaf @right is 7.
2658  * This can only be checked at tree block merge time.
2659  * And since tree checker has ensured all key order in each tree block
2660  * is correct, we only need to bother the last key of @left and the first
2661  * key of @right.
2662  */
check_sibling_keys(const struct extent_buffer * left,const struct extent_buffer * right)2663 static bool check_sibling_keys(const struct extent_buffer *left,
2664 			       const struct extent_buffer *right)
2665 {
2666 	struct btrfs_key left_last;
2667 	struct btrfs_key right_first;
2668 	int level = btrfs_header_level(left);
2669 	int nr_left = btrfs_header_nritems(left);
2670 	int nr_right = btrfs_header_nritems(right);
2671 
2672 	/* No key to check in one of the tree blocks */
2673 	if (!nr_left || !nr_right)
2674 		return false;
2675 
2676 	if (level) {
2677 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2678 		btrfs_node_key_to_cpu(right, &right_first, 0);
2679 	} else {
2680 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2681 		btrfs_item_key_to_cpu(right, &right_first, 0);
2682 	}
2683 
2684 	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2685 		btrfs_crit(left->fs_info, "left extent buffer:");
2686 		btrfs_print_tree(left, false);
2687 		btrfs_crit(left->fs_info, "right extent buffer:");
2688 		btrfs_print_tree(right, false);
2689 		btrfs_crit(left->fs_info,
2690 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2691 			   left_last.objectid, left_last.type,
2692 			   left_last.offset, right_first.objectid,
2693 			   right_first.type, right_first.offset);
2694 		return true;
2695 	}
2696 	return false;
2697 }
2698 
2699 /*
2700  * try to push data from one node into the next node left in the
2701  * tree.
2702  *
2703  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2704  * error, and > 0 if there was no room in the left hand block.
2705  */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2706 static int push_node_left(struct btrfs_trans_handle *trans,
2707 			  struct extent_buffer *dst,
2708 			  struct extent_buffer *src, int empty)
2709 {
2710 	struct btrfs_fs_info *fs_info = trans->fs_info;
2711 	int push_items = 0;
2712 	int src_nritems;
2713 	int dst_nritems;
2714 	int ret = 0;
2715 
2716 	src_nritems = btrfs_header_nritems(src);
2717 	dst_nritems = btrfs_header_nritems(dst);
2718 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2719 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2720 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2721 
2722 	if (!empty && src_nritems <= 8)
2723 		return 1;
2724 
2725 	if (push_items <= 0)
2726 		return 1;
2727 
2728 	if (empty) {
2729 		push_items = min(src_nritems, push_items);
2730 		if (push_items < src_nritems) {
2731 			/* leave at least 8 pointers in the node if
2732 			 * we aren't going to empty it
2733 			 */
2734 			if (src_nritems - push_items < 8) {
2735 				if (push_items <= 8)
2736 					return 1;
2737 				push_items -= 8;
2738 			}
2739 		}
2740 	} else
2741 		push_items = min(src_nritems - 8, push_items);
2742 
2743 	/* dst is the left eb, src is the middle eb */
2744 	if (check_sibling_keys(dst, src)) {
2745 		ret = -EUCLEAN;
2746 		btrfs_abort_transaction(trans, ret);
2747 		return ret;
2748 	}
2749 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2750 	if (ret) {
2751 		btrfs_abort_transaction(trans, ret);
2752 		return ret;
2753 	}
2754 	copy_extent_buffer(dst, src,
2755 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2756 			   btrfs_node_key_ptr_offset(src, 0),
2757 			   push_items * sizeof(struct btrfs_key_ptr));
2758 
2759 	if (push_items < src_nritems) {
2760 		/*
2761 		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2762 		 * don't need to do an explicit tree mod log operation for it.
2763 		 */
2764 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2765 				      btrfs_node_key_ptr_offset(src, push_items),
2766 				      (src_nritems - push_items) *
2767 				      sizeof(struct btrfs_key_ptr));
2768 	}
2769 	btrfs_set_header_nritems(src, src_nritems - push_items);
2770 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2771 	btrfs_mark_buffer_dirty(trans, src);
2772 	btrfs_mark_buffer_dirty(trans, dst);
2773 
2774 	return ret;
2775 }
2776 
2777 /*
2778  * try to push data from one node into the next node right in the
2779  * tree.
2780  *
2781  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2782  * error, and > 0 if there was no room in the right hand block.
2783  *
2784  * this will  only push up to 1/2 the contents of the left node over
2785  */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2786 static int balance_node_right(struct btrfs_trans_handle *trans,
2787 			      struct extent_buffer *dst,
2788 			      struct extent_buffer *src)
2789 {
2790 	struct btrfs_fs_info *fs_info = trans->fs_info;
2791 	int push_items = 0;
2792 	int max_push;
2793 	int src_nritems;
2794 	int dst_nritems;
2795 	int ret = 0;
2796 
2797 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2798 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2799 
2800 	src_nritems = btrfs_header_nritems(src);
2801 	dst_nritems = btrfs_header_nritems(dst);
2802 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2803 	if (push_items <= 0)
2804 		return 1;
2805 
2806 	if (src_nritems < 4)
2807 		return 1;
2808 
2809 	max_push = src_nritems / 2 + 1;
2810 	/* don't try to empty the node */
2811 	if (max_push >= src_nritems)
2812 		return 1;
2813 
2814 	if (max_push < push_items)
2815 		push_items = max_push;
2816 
2817 	/* dst is the right eb, src is the middle eb */
2818 	if (check_sibling_keys(src, dst)) {
2819 		ret = -EUCLEAN;
2820 		btrfs_abort_transaction(trans, ret);
2821 		return ret;
2822 	}
2823 
2824 	/*
2825 	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2826 	 * need to do an explicit tree mod log operation for it.
2827 	 */
2828 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2829 				      btrfs_node_key_ptr_offset(dst, 0),
2830 				      (dst_nritems) *
2831 				      sizeof(struct btrfs_key_ptr));
2832 
2833 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2834 					 push_items);
2835 	if (ret) {
2836 		btrfs_abort_transaction(trans, ret);
2837 		return ret;
2838 	}
2839 	copy_extent_buffer(dst, src,
2840 			   btrfs_node_key_ptr_offset(dst, 0),
2841 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2842 			   push_items * sizeof(struct btrfs_key_ptr));
2843 
2844 	btrfs_set_header_nritems(src, src_nritems - push_items);
2845 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2846 
2847 	btrfs_mark_buffer_dirty(trans, src);
2848 	btrfs_mark_buffer_dirty(trans, dst);
2849 
2850 	return ret;
2851 }
2852 
2853 /*
2854  * helper function to insert a new root level in the tree.
2855  * A new node is allocated, and a single item is inserted to
2856  * point to the existing root
2857  *
2858  * returns zero on success or < 0 on failure.
2859  */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2860 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2861 			   struct btrfs_root *root,
2862 			   struct btrfs_path *path, int level)
2863 {
2864 	u64 lower_gen;
2865 	struct extent_buffer *lower;
2866 	struct extent_buffer *c;
2867 	struct extent_buffer *old;
2868 	struct btrfs_disk_key lower_key;
2869 	int ret;
2870 
2871 	BUG_ON(path->nodes[level]);
2872 	BUG_ON(path->nodes[level-1] != root->node);
2873 
2874 	lower = path->nodes[level-1];
2875 	if (level == 1)
2876 		btrfs_item_key(lower, &lower_key, 0);
2877 	else
2878 		btrfs_node_key(lower, &lower_key, 0);
2879 
2880 	c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2881 				   &lower_key, level, root->node->start, 0,
2882 				   0, BTRFS_NESTING_NEW_ROOT);
2883 	if (IS_ERR(c))
2884 		return PTR_ERR(c);
2885 
2886 	root_add_used_bytes(root);
2887 
2888 	btrfs_set_header_nritems(c, 1);
2889 	btrfs_set_node_key(c, &lower_key, 0);
2890 	btrfs_set_node_blockptr(c, 0, lower->start);
2891 	lower_gen = btrfs_header_generation(lower);
2892 	WARN_ON(lower_gen != trans->transid);
2893 
2894 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2895 
2896 	btrfs_mark_buffer_dirty(trans, c);
2897 
2898 	old = root->node;
2899 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2900 	if (ret < 0) {
2901 		int ret2;
2902 
2903 		ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2904 		if (ret2 < 0)
2905 			btrfs_abort_transaction(trans, ret2);
2906 		btrfs_tree_unlock(c);
2907 		free_extent_buffer(c);
2908 		return ret;
2909 	}
2910 	rcu_assign_pointer(root->node, c);
2911 
2912 	/* the super has an extra ref to root->node */
2913 	free_extent_buffer(old);
2914 
2915 	add_root_to_dirty_list(root);
2916 	atomic_inc(&c->refs);
2917 	path->nodes[level] = c;
2918 	path->locks[level] = BTRFS_WRITE_LOCK;
2919 	path->slots[level] = 0;
2920 	return 0;
2921 }
2922 
2923 /*
2924  * worker function to insert a single pointer in a node.
2925  * the node should have enough room for the pointer already
2926  *
2927  * slot and level indicate where you want the key to go, and
2928  * blocknr is the block the key points to.
2929  */
insert_ptr(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_disk_key * key,u64 bytenr,int slot,int level)2930 static int insert_ptr(struct btrfs_trans_handle *trans,
2931 		      const struct btrfs_path *path,
2932 		      const struct btrfs_disk_key *key, u64 bytenr,
2933 		      int slot, int level)
2934 {
2935 	struct extent_buffer *lower;
2936 	int nritems;
2937 	int ret;
2938 
2939 	BUG_ON(!path->nodes[level]);
2940 	btrfs_assert_tree_write_locked(path->nodes[level]);
2941 	lower = path->nodes[level];
2942 	nritems = btrfs_header_nritems(lower);
2943 	BUG_ON(slot > nritems);
2944 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2945 	if (slot != nritems) {
2946 		if (level) {
2947 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2948 					slot, nritems - slot);
2949 			if (ret < 0) {
2950 				btrfs_abort_transaction(trans, ret);
2951 				return ret;
2952 			}
2953 		}
2954 		memmove_extent_buffer(lower,
2955 			      btrfs_node_key_ptr_offset(lower, slot + 1),
2956 			      btrfs_node_key_ptr_offset(lower, slot),
2957 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2958 	}
2959 	if (level) {
2960 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2961 						    BTRFS_MOD_LOG_KEY_ADD);
2962 		if (ret < 0) {
2963 			btrfs_abort_transaction(trans, ret);
2964 			return ret;
2965 		}
2966 	}
2967 	btrfs_set_node_key(lower, key, slot);
2968 	btrfs_set_node_blockptr(lower, slot, bytenr);
2969 	WARN_ON(trans->transid == 0);
2970 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2971 	btrfs_set_header_nritems(lower, nritems + 1);
2972 	btrfs_mark_buffer_dirty(trans, lower);
2973 
2974 	return 0;
2975 }
2976 
2977 /*
2978  * split the node at the specified level in path in two.
2979  * The path is corrected to point to the appropriate node after the split
2980  *
2981  * Before splitting this tries to make some room in the node by pushing
2982  * left and right, if either one works, it returns right away.
2983  *
2984  * returns 0 on success and < 0 on failure
2985  */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2986 static noinline int split_node(struct btrfs_trans_handle *trans,
2987 			       struct btrfs_root *root,
2988 			       struct btrfs_path *path, int level)
2989 {
2990 	struct btrfs_fs_info *fs_info = root->fs_info;
2991 	struct extent_buffer *c;
2992 	struct extent_buffer *split;
2993 	struct btrfs_disk_key disk_key;
2994 	int mid;
2995 	int ret;
2996 	u32 c_nritems;
2997 
2998 	c = path->nodes[level];
2999 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3000 	if (c == root->node) {
3001 		/*
3002 		 * trying to split the root, lets make a new one
3003 		 *
3004 		 * tree mod log: We don't log_removal old root in
3005 		 * insert_new_root, because that root buffer will be kept as a
3006 		 * normal node. We are going to log removal of half of the
3007 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3008 		 * holding a tree lock on the buffer, which is why we cannot
3009 		 * race with other tree_mod_log users.
3010 		 */
3011 		ret = insert_new_root(trans, root, path, level + 1);
3012 		if (ret)
3013 			return ret;
3014 	} else {
3015 		ret = push_nodes_for_insert(trans, root, path, level);
3016 		c = path->nodes[level];
3017 		if (!ret && btrfs_header_nritems(c) <
3018 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3019 			return 0;
3020 		if (ret < 0)
3021 			return ret;
3022 	}
3023 
3024 	c_nritems = btrfs_header_nritems(c);
3025 	mid = (c_nritems + 1) / 2;
3026 	btrfs_node_key(c, &disk_key, mid);
3027 
3028 	split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3029 				       &disk_key, level, c->start, 0,
3030 				       0, BTRFS_NESTING_SPLIT);
3031 	if (IS_ERR(split))
3032 		return PTR_ERR(split);
3033 
3034 	root_add_used_bytes(root);
3035 	ASSERT(btrfs_header_level(c) == level);
3036 
3037 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3038 	if (ret) {
3039 		btrfs_tree_unlock(split);
3040 		free_extent_buffer(split);
3041 		btrfs_abort_transaction(trans, ret);
3042 		return ret;
3043 	}
3044 	copy_extent_buffer(split, c,
3045 			   btrfs_node_key_ptr_offset(split, 0),
3046 			   btrfs_node_key_ptr_offset(c, mid),
3047 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3048 	btrfs_set_header_nritems(split, c_nritems - mid);
3049 	btrfs_set_header_nritems(c, mid);
3050 
3051 	btrfs_mark_buffer_dirty(trans, c);
3052 	btrfs_mark_buffer_dirty(trans, split);
3053 
3054 	ret = insert_ptr(trans, path, &disk_key, split->start,
3055 			 path->slots[level + 1] + 1, level + 1);
3056 	if (ret < 0) {
3057 		btrfs_tree_unlock(split);
3058 		free_extent_buffer(split);
3059 		return ret;
3060 	}
3061 
3062 	if (path->slots[level] >= mid) {
3063 		path->slots[level] -= mid;
3064 		btrfs_tree_unlock(c);
3065 		free_extent_buffer(c);
3066 		path->nodes[level] = split;
3067 		path->slots[level + 1] += 1;
3068 	} else {
3069 		btrfs_tree_unlock(split);
3070 		free_extent_buffer(split);
3071 	}
3072 	return 0;
3073 }
3074 
3075 /*
3076  * how many bytes are required to store the items in a leaf.  start
3077  * and nr indicate which items in the leaf to check.  This totals up the
3078  * space used both by the item structs and the item data
3079  */
leaf_space_used(const struct extent_buffer * l,int start,int nr)3080 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3081 {
3082 	int data_len;
3083 	int nritems = btrfs_header_nritems(l);
3084 	int end = min(nritems, start + nr) - 1;
3085 
3086 	if (!nr)
3087 		return 0;
3088 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3089 	data_len = data_len - btrfs_item_offset(l, end);
3090 	data_len += sizeof(struct btrfs_item) * nr;
3091 	WARN_ON(data_len < 0);
3092 	return data_len;
3093 }
3094 
3095 /*
3096  * The space between the end of the leaf items and
3097  * the start of the leaf data.  IOW, how much room
3098  * the leaf has left for both items and data
3099  */
btrfs_leaf_free_space(const struct extent_buffer * leaf)3100 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3101 {
3102 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3103 	int nritems = btrfs_header_nritems(leaf);
3104 	int ret;
3105 
3106 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3107 	if (ret < 0) {
3108 		btrfs_crit(fs_info,
3109 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3110 			   ret,
3111 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3112 			   leaf_space_used(leaf, 0, nritems), nritems);
3113 	}
3114 	return ret;
3115 }
3116 
3117 /*
3118  * min slot controls the lowest index we're willing to push to the
3119  * right.  We'll push up to and including min_slot, but no lower
3120  */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3121 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3122 				      struct btrfs_path *path,
3123 				      int data_size, int empty,
3124 				      struct extent_buffer *right,
3125 				      int free_space, u32 left_nritems,
3126 				      u32 min_slot)
3127 {
3128 	struct btrfs_fs_info *fs_info = right->fs_info;
3129 	struct extent_buffer *left = path->nodes[0];
3130 	struct extent_buffer *upper = path->nodes[1];
3131 	struct btrfs_map_token token;
3132 	struct btrfs_disk_key disk_key;
3133 	int slot;
3134 	u32 i;
3135 	int push_space = 0;
3136 	int push_items = 0;
3137 	u32 nr;
3138 	u32 right_nritems;
3139 	u32 data_end;
3140 	u32 this_item_size;
3141 
3142 	if (empty)
3143 		nr = 0;
3144 	else
3145 		nr = max_t(u32, 1, min_slot);
3146 
3147 	if (path->slots[0] >= left_nritems)
3148 		push_space += data_size;
3149 
3150 	slot = path->slots[1];
3151 	i = left_nritems - 1;
3152 	while (i >= nr) {
3153 		if (!empty && push_items > 0) {
3154 			if (path->slots[0] > i)
3155 				break;
3156 			if (path->slots[0] == i) {
3157 				int space = btrfs_leaf_free_space(left);
3158 
3159 				if (space + push_space * 2 > free_space)
3160 					break;
3161 			}
3162 		}
3163 
3164 		if (path->slots[0] == i)
3165 			push_space += data_size;
3166 
3167 		this_item_size = btrfs_item_size(left, i);
3168 		if (this_item_size + sizeof(struct btrfs_item) +
3169 		    push_space > free_space)
3170 			break;
3171 
3172 		push_items++;
3173 		push_space += this_item_size + sizeof(struct btrfs_item);
3174 		if (i == 0)
3175 			break;
3176 		i--;
3177 	}
3178 
3179 	if (push_items == 0)
3180 		goto out_unlock;
3181 
3182 	WARN_ON(!empty && push_items == left_nritems);
3183 
3184 	/* push left to right */
3185 	right_nritems = btrfs_header_nritems(right);
3186 
3187 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3188 	push_space -= leaf_data_end(left);
3189 
3190 	/* make room in the right data area */
3191 	data_end = leaf_data_end(right);
3192 	memmove_leaf_data(right, data_end - push_space, data_end,
3193 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3194 
3195 	/* copy from the left data area */
3196 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3197 		       leaf_data_end(left), push_space);
3198 
3199 	memmove_leaf_items(right, push_items, 0, right_nritems);
3200 
3201 	/* copy the items from left to right */
3202 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3203 
3204 	/* update the item pointers */
3205 	btrfs_init_map_token(&token, right);
3206 	right_nritems += push_items;
3207 	btrfs_set_header_nritems(right, right_nritems);
3208 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3209 	for (i = 0; i < right_nritems; i++) {
3210 		push_space -= btrfs_token_item_size(&token, i);
3211 		btrfs_set_token_item_offset(&token, i, push_space);
3212 	}
3213 
3214 	left_nritems -= push_items;
3215 	btrfs_set_header_nritems(left, left_nritems);
3216 
3217 	if (left_nritems)
3218 		btrfs_mark_buffer_dirty(trans, left);
3219 	else
3220 		btrfs_clear_buffer_dirty(trans, left);
3221 
3222 	btrfs_mark_buffer_dirty(trans, right);
3223 
3224 	btrfs_item_key(right, &disk_key, 0);
3225 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3226 	btrfs_mark_buffer_dirty(trans, upper);
3227 
3228 	/* then fixup the leaf pointer in the path */
3229 	if (path->slots[0] >= left_nritems) {
3230 		path->slots[0] -= left_nritems;
3231 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3232 			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3233 		btrfs_tree_unlock(path->nodes[0]);
3234 		free_extent_buffer(path->nodes[0]);
3235 		path->nodes[0] = right;
3236 		path->slots[1] += 1;
3237 	} else {
3238 		btrfs_tree_unlock(right);
3239 		free_extent_buffer(right);
3240 	}
3241 	return 0;
3242 
3243 out_unlock:
3244 	btrfs_tree_unlock(right);
3245 	free_extent_buffer(right);
3246 	return 1;
3247 }
3248 
3249 /*
3250  * push some data in the path leaf to the right, trying to free up at
3251  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3252  *
3253  * returns 1 if the push failed because the other node didn't have enough
3254  * room, 0 if everything worked out and < 0 if there were major errors.
3255  *
3256  * this will push starting from min_slot to the end of the leaf.  It won't
3257  * push any slot lower than min_slot
3258  */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3259 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3260 			   *root, struct btrfs_path *path,
3261 			   int min_data_size, int data_size,
3262 			   int empty, u32 min_slot)
3263 {
3264 	struct extent_buffer *left = path->nodes[0];
3265 	struct extent_buffer *right;
3266 	struct extent_buffer *upper;
3267 	int slot;
3268 	int free_space;
3269 	u32 left_nritems;
3270 	int ret;
3271 
3272 	if (!path->nodes[1])
3273 		return 1;
3274 
3275 	slot = path->slots[1];
3276 	upper = path->nodes[1];
3277 	if (slot >= btrfs_header_nritems(upper) - 1)
3278 		return 1;
3279 
3280 	btrfs_assert_tree_write_locked(path->nodes[1]);
3281 
3282 	right = btrfs_read_node_slot(upper, slot + 1);
3283 	if (IS_ERR(right))
3284 		return PTR_ERR(right);
3285 
3286 	btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3287 
3288 	free_space = btrfs_leaf_free_space(right);
3289 	if (free_space < data_size)
3290 		goto out_unlock;
3291 
3292 	ret = btrfs_cow_block(trans, root, right, upper,
3293 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3294 	if (ret)
3295 		goto out_unlock;
3296 
3297 	left_nritems = btrfs_header_nritems(left);
3298 	if (left_nritems == 0)
3299 		goto out_unlock;
3300 
3301 	if (check_sibling_keys(left, right)) {
3302 		ret = -EUCLEAN;
3303 		btrfs_abort_transaction(trans, ret);
3304 		btrfs_tree_unlock(right);
3305 		free_extent_buffer(right);
3306 		return ret;
3307 	}
3308 	if (path->slots[0] == left_nritems && !empty) {
3309 		/* Key greater than all keys in the leaf, right neighbor has
3310 		 * enough room for it and we're not emptying our leaf to delete
3311 		 * it, therefore use right neighbor to insert the new item and
3312 		 * no need to touch/dirty our left leaf. */
3313 		btrfs_tree_unlock(left);
3314 		free_extent_buffer(left);
3315 		path->nodes[0] = right;
3316 		path->slots[0] = 0;
3317 		path->slots[1]++;
3318 		return 0;
3319 	}
3320 
3321 	return __push_leaf_right(trans, path, min_data_size, empty, right,
3322 				 free_space, left_nritems, min_slot);
3323 out_unlock:
3324 	btrfs_tree_unlock(right);
3325 	free_extent_buffer(right);
3326 	return 1;
3327 }
3328 
3329 /*
3330  * push some data in the path leaf to the left, trying to free up at
3331  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3332  *
3333  * max_slot can put a limit on how far into the leaf we'll push items.  The
3334  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3335  * items
3336  */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3337 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3338 				     struct btrfs_path *path, int data_size,
3339 				     int empty, struct extent_buffer *left,
3340 				     int free_space, u32 right_nritems,
3341 				     u32 max_slot)
3342 {
3343 	struct btrfs_fs_info *fs_info = left->fs_info;
3344 	struct btrfs_disk_key disk_key;
3345 	struct extent_buffer *right = path->nodes[0];
3346 	int i;
3347 	int push_space = 0;
3348 	int push_items = 0;
3349 	u32 old_left_nritems;
3350 	u32 nr;
3351 	int ret = 0;
3352 	u32 this_item_size;
3353 	u32 old_left_item_size;
3354 	struct btrfs_map_token token;
3355 
3356 	if (empty)
3357 		nr = min(right_nritems, max_slot);
3358 	else
3359 		nr = min(right_nritems - 1, max_slot);
3360 
3361 	for (i = 0; i < nr; i++) {
3362 		if (!empty && push_items > 0) {
3363 			if (path->slots[0] < i)
3364 				break;
3365 			if (path->slots[0] == i) {
3366 				int space = btrfs_leaf_free_space(right);
3367 
3368 				if (space + push_space * 2 > free_space)
3369 					break;
3370 			}
3371 		}
3372 
3373 		if (path->slots[0] == i)
3374 			push_space += data_size;
3375 
3376 		this_item_size = btrfs_item_size(right, i);
3377 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3378 		    free_space)
3379 			break;
3380 
3381 		push_items++;
3382 		push_space += this_item_size + sizeof(struct btrfs_item);
3383 	}
3384 
3385 	if (push_items == 0) {
3386 		ret = 1;
3387 		goto out;
3388 	}
3389 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3390 
3391 	/* push data from right to left */
3392 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3393 
3394 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3395 		     btrfs_item_offset(right, push_items - 1);
3396 
3397 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3398 		       btrfs_item_offset(right, push_items - 1), push_space);
3399 	old_left_nritems = btrfs_header_nritems(left);
3400 	BUG_ON(old_left_nritems <= 0);
3401 
3402 	btrfs_init_map_token(&token, left);
3403 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3404 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3405 		u32 ioff;
3406 
3407 		ioff = btrfs_token_item_offset(&token, i);
3408 		btrfs_set_token_item_offset(&token, i,
3409 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3410 	}
3411 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3412 
3413 	/* fixup right node */
3414 	if (push_items > right_nritems)
3415 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3416 		       right_nritems);
3417 
3418 	if (push_items < right_nritems) {
3419 		push_space = btrfs_item_offset(right, push_items - 1) -
3420 						  leaf_data_end(right);
3421 		memmove_leaf_data(right,
3422 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3423 				  leaf_data_end(right), push_space);
3424 
3425 		memmove_leaf_items(right, 0, push_items,
3426 				   btrfs_header_nritems(right) - push_items);
3427 	}
3428 
3429 	btrfs_init_map_token(&token, right);
3430 	right_nritems -= push_items;
3431 	btrfs_set_header_nritems(right, right_nritems);
3432 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3433 	for (i = 0; i < right_nritems; i++) {
3434 		push_space = push_space - btrfs_token_item_size(&token, i);
3435 		btrfs_set_token_item_offset(&token, i, push_space);
3436 	}
3437 
3438 	btrfs_mark_buffer_dirty(trans, left);
3439 	if (right_nritems)
3440 		btrfs_mark_buffer_dirty(trans, right);
3441 	else
3442 		btrfs_clear_buffer_dirty(trans, right);
3443 
3444 	btrfs_item_key(right, &disk_key, 0);
3445 	fixup_low_keys(trans, path, &disk_key, 1);
3446 
3447 	/* then fixup the leaf pointer in the path */
3448 	if (path->slots[0] < push_items) {
3449 		path->slots[0] += old_left_nritems;
3450 		btrfs_tree_unlock(path->nodes[0]);
3451 		free_extent_buffer(path->nodes[0]);
3452 		path->nodes[0] = left;
3453 		path->slots[1] -= 1;
3454 	} else {
3455 		btrfs_tree_unlock(left);
3456 		free_extent_buffer(left);
3457 		path->slots[0] -= push_items;
3458 	}
3459 	BUG_ON(path->slots[0] < 0);
3460 	return ret;
3461 out:
3462 	btrfs_tree_unlock(left);
3463 	free_extent_buffer(left);
3464 	return ret;
3465 }
3466 
3467 /*
3468  * push some data in the path leaf to the left, trying to free up at
3469  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3470  *
3471  * max_slot can put a limit on how far into the leaf we'll push items.  The
3472  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3473  * items
3474  */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3475 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3476 			  *root, struct btrfs_path *path, int min_data_size,
3477 			  int data_size, int empty, u32 max_slot)
3478 {
3479 	struct extent_buffer *right = path->nodes[0];
3480 	struct extent_buffer *left;
3481 	int slot;
3482 	int free_space;
3483 	u32 right_nritems;
3484 	int ret = 0;
3485 
3486 	slot = path->slots[1];
3487 	if (slot == 0)
3488 		return 1;
3489 	if (!path->nodes[1])
3490 		return 1;
3491 
3492 	right_nritems = btrfs_header_nritems(right);
3493 	if (right_nritems == 0)
3494 		return 1;
3495 
3496 	btrfs_assert_tree_write_locked(path->nodes[1]);
3497 
3498 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3499 	if (IS_ERR(left))
3500 		return PTR_ERR(left);
3501 
3502 	btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3503 
3504 	free_space = btrfs_leaf_free_space(left);
3505 	if (free_space < data_size) {
3506 		ret = 1;
3507 		goto out;
3508 	}
3509 
3510 	ret = btrfs_cow_block(trans, root, left,
3511 			      path->nodes[1], slot - 1, &left,
3512 			      BTRFS_NESTING_LEFT_COW);
3513 	if (ret) {
3514 		/* we hit -ENOSPC, but it isn't fatal here */
3515 		if (ret == -ENOSPC)
3516 			ret = 1;
3517 		goto out;
3518 	}
3519 
3520 	if (check_sibling_keys(left, right)) {
3521 		ret = -EUCLEAN;
3522 		btrfs_abort_transaction(trans, ret);
3523 		goto out;
3524 	}
3525 	return __push_leaf_left(trans, path, min_data_size, empty, left,
3526 				free_space, right_nritems, max_slot);
3527 out:
3528 	btrfs_tree_unlock(left);
3529 	free_extent_buffer(left);
3530 	return ret;
3531 }
3532 
3533 /*
3534  * split the path's leaf in two, making sure there is at least data_size
3535  * available for the resulting leaf level of the path.
3536  */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3537 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3538 				   struct btrfs_path *path,
3539 				   struct extent_buffer *l,
3540 				   struct extent_buffer *right,
3541 				   int slot, int mid, int nritems)
3542 {
3543 	struct btrfs_fs_info *fs_info = trans->fs_info;
3544 	int data_copy_size;
3545 	int rt_data_off;
3546 	int i;
3547 	int ret;
3548 	struct btrfs_disk_key disk_key;
3549 	struct btrfs_map_token token;
3550 
3551 	nritems = nritems - mid;
3552 	btrfs_set_header_nritems(right, nritems);
3553 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3554 
3555 	copy_leaf_items(right, l, 0, mid, nritems);
3556 
3557 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3558 		       leaf_data_end(l), data_copy_size);
3559 
3560 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3561 
3562 	btrfs_init_map_token(&token, right);
3563 	for (i = 0; i < nritems; i++) {
3564 		u32 ioff;
3565 
3566 		ioff = btrfs_token_item_offset(&token, i);
3567 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3568 	}
3569 
3570 	btrfs_set_header_nritems(l, mid);
3571 	btrfs_item_key(right, &disk_key, 0);
3572 	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3573 	if (ret < 0)
3574 		return ret;
3575 
3576 	btrfs_mark_buffer_dirty(trans, right);
3577 	btrfs_mark_buffer_dirty(trans, l);
3578 	BUG_ON(path->slots[0] != slot);
3579 
3580 	if (mid <= slot) {
3581 		btrfs_tree_unlock(path->nodes[0]);
3582 		free_extent_buffer(path->nodes[0]);
3583 		path->nodes[0] = right;
3584 		path->slots[0] -= mid;
3585 		path->slots[1] += 1;
3586 	} else {
3587 		btrfs_tree_unlock(right);
3588 		free_extent_buffer(right);
3589 	}
3590 
3591 	BUG_ON(path->slots[0] < 0);
3592 
3593 	return 0;
3594 }
3595 
3596 /*
3597  * double splits happen when we need to insert a big item in the middle
3598  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3599  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3600  *          A                 B                 C
3601  *
3602  * We avoid this by trying to push the items on either side of our target
3603  * into the adjacent leaves.  If all goes well we can avoid the double split
3604  * completely.
3605  */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3606 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3607 					  struct btrfs_root *root,
3608 					  struct btrfs_path *path,
3609 					  int data_size)
3610 {
3611 	int ret;
3612 	int progress = 0;
3613 	int slot;
3614 	u32 nritems;
3615 	int space_needed = data_size;
3616 
3617 	slot = path->slots[0];
3618 	if (slot < btrfs_header_nritems(path->nodes[0]))
3619 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3620 
3621 	/*
3622 	 * try to push all the items after our slot into the
3623 	 * right leaf
3624 	 */
3625 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3626 	if (ret < 0)
3627 		return ret;
3628 
3629 	if (ret == 0)
3630 		progress++;
3631 
3632 	nritems = btrfs_header_nritems(path->nodes[0]);
3633 	/*
3634 	 * our goal is to get our slot at the start or end of a leaf.  If
3635 	 * we've done so we're done
3636 	 */
3637 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3638 		return 0;
3639 
3640 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3641 		return 0;
3642 
3643 	/* try to push all the items before our slot into the next leaf */
3644 	slot = path->slots[0];
3645 	space_needed = data_size;
3646 	if (slot > 0)
3647 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3648 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3649 	if (ret < 0)
3650 		return ret;
3651 
3652 	if (ret == 0)
3653 		progress++;
3654 
3655 	if (progress)
3656 		return 0;
3657 	return 1;
3658 }
3659 
3660 /*
3661  * split the path's leaf in two, making sure there is at least data_size
3662  * available for the resulting leaf level of the path.
3663  *
3664  * returns 0 if all went well and < 0 on failure.
3665  */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3666 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3667 			       struct btrfs_root *root,
3668 			       const struct btrfs_key *ins_key,
3669 			       struct btrfs_path *path, int data_size,
3670 			       int extend)
3671 {
3672 	struct btrfs_disk_key disk_key;
3673 	struct extent_buffer *l;
3674 	u32 nritems;
3675 	int mid;
3676 	int slot;
3677 	struct extent_buffer *right;
3678 	struct btrfs_fs_info *fs_info = root->fs_info;
3679 	int ret = 0;
3680 	int wret;
3681 	int split;
3682 	int num_doubles = 0;
3683 	int tried_avoid_double = 0;
3684 
3685 	l = path->nodes[0];
3686 	slot = path->slots[0];
3687 	if (extend && data_size + btrfs_item_size(l, slot) +
3688 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3689 		return -EOVERFLOW;
3690 
3691 	/* first try to make some room by pushing left and right */
3692 	if (data_size && path->nodes[1]) {
3693 		int space_needed = data_size;
3694 
3695 		if (slot < btrfs_header_nritems(l))
3696 			space_needed -= btrfs_leaf_free_space(l);
3697 
3698 		wret = push_leaf_right(trans, root, path, space_needed,
3699 				       space_needed, 0, 0);
3700 		if (wret < 0)
3701 			return wret;
3702 		if (wret) {
3703 			space_needed = data_size;
3704 			if (slot > 0)
3705 				space_needed -= btrfs_leaf_free_space(l);
3706 			wret = push_leaf_left(trans, root, path, space_needed,
3707 					      space_needed, 0, (u32)-1);
3708 			if (wret < 0)
3709 				return wret;
3710 		}
3711 		l = path->nodes[0];
3712 
3713 		/* did the pushes work? */
3714 		if (btrfs_leaf_free_space(l) >= data_size)
3715 			return 0;
3716 	}
3717 
3718 	if (!path->nodes[1]) {
3719 		ret = insert_new_root(trans, root, path, 1);
3720 		if (ret)
3721 			return ret;
3722 	}
3723 again:
3724 	split = 1;
3725 	l = path->nodes[0];
3726 	slot = path->slots[0];
3727 	nritems = btrfs_header_nritems(l);
3728 	mid = (nritems + 1) / 2;
3729 
3730 	if (mid <= slot) {
3731 		if (nritems == 1 ||
3732 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3733 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3734 			if (slot >= nritems) {
3735 				split = 0;
3736 			} else {
3737 				mid = slot;
3738 				if (mid != nritems &&
3739 				    leaf_space_used(l, mid, nritems - mid) +
3740 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3741 					if (data_size && !tried_avoid_double)
3742 						goto push_for_double;
3743 					split = 2;
3744 				}
3745 			}
3746 		}
3747 	} else {
3748 		if (leaf_space_used(l, 0, mid) + data_size >
3749 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3750 			if (!extend && data_size && slot == 0) {
3751 				split = 0;
3752 			} else if ((extend || !data_size) && slot == 0) {
3753 				mid = 1;
3754 			} else {
3755 				mid = slot;
3756 				if (mid != nritems &&
3757 				    leaf_space_used(l, mid, nritems - mid) +
3758 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3759 					if (data_size && !tried_avoid_double)
3760 						goto push_for_double;
3761 					split = 2;
3762 				}
3763 			}
3764 		}
3765 	}
3766 
3767 	if (split == 0)
3768 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3769 	else
3770 		btrfs_item_key(l, &disk_key, mid);
3771 
3772 	/*
3773 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3774 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3775 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3776 	 * out.  In the future we could add a
3777 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3778 	 * use BTRFS_NESTING_NEW_ROOT.
3779 	 */
3780 	right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3781 				       &disk_key, 0, l->start, 0, 0,
3782 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3783 				       BTRFS_NESTING_SPLIT);
3784 	if (IS_ERR(right))
3785 		return PTR_ERR(right);
3786 
3787 	root_add_used_bytes(root);
3788 
3789 	if (split == 0) {
3790 		if (mid <= slot) {
3791 			btrfs_set_header_nritems(right, 0);
3792 			ret = insert_ptr(trans, path, &disk_key,
3793 					 right->start, path->slots[1] + 1, 1);
3794 			if (ret < 0) {
3795 				btrfs_tree_unlock(right);
3796 				free_extent_buffer(right);
3797 				return ret;
3798 			}
3799 			btrfs_tree_unlock(path->nodes[0]);
3800 			free_extent_buffer(path->nodes[0]);
3801 			path->nodes[0] = right;
3802 			path->slots[0] = 0;
3803 			path->slots[1] += 1;
3804 		} else {
3805 			btrfs_set_header_nritems(right, 0);
3806 			ret = insert_ptr(trans, path, &disk_key,
3807 					 right->start, path->slots[1], 1);
3808 			if (ret < 0) {
3809 				btrfs_tree_unlock(right);
3810 				free_extent_buffer(right);
3811 				return ret;
3812 			}
3813 			btrfs_tree_unlock(path->nodes[0]);
3814 			free_extent_buffer(path->nodes[0]);
3815 			path->nodes[0] = right;
3816 			path->slots[0] = 0;
3817 			if (path->slots[1] == 0)
3818 				fixup_low_keys(trans, path, &disk_key, 1);
3819 		}
3820 		/*
3821 		 * We create a new leaf 'right' for the required ins_len and
3822 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3823 		 * the content of ins_len to 'right'.
3824 		 */
3825 		return ret;
3826 	}
3827 
3828 	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3829 	if (ret < 0) {
3830 		btrfs_tree_unlock(right);
3831 		free_extent_buffer(right);
3832 		return ret;
3833 	}
3834 
3835 	if (split == 2) {
3836 		BUG_ON(num_doubles != 0);
3837 		num_doubles++;
3838 		goto again;
3839 	}
3840 
3841 	return 0;
3842 
3843 push_for_double:
3844 	push_for_double_split(trans, root, path, data_size);
3845 	tried_avoid_double = 1;
3846 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3847 		return 0;
3848 	goto again;
3849 }
3850 
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3851 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3852 					 struct btrfs_root *root,
3853 					 struct btrfs_path *path, int ins_len)
3854 {
3855 	struct btrfs_key key;
3856 	struct extent_buffer *leaf;
3857 	struct btrfs_file_extent_item *fi;
3858 	u64 extent_len = 0;
3859 	u32 item_size;
3860 	int ret;
3861 
3862 	leaf = path->nodes[0];
3863 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864 
3865 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3866 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3867 
3868 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3869 		return 0;
3870 
3871 	item_size = btrfs_item_size(leaf, path->slots[0]);
3872 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3873 		fi = btrfs_item_ptr(leaf, path->slots[0],
3874 				    struct btrfs_file_extent_item);
3875 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3876 	}
3877 	btrfs_release_path(path);
3878 
3879 	path->keep_locks = 1;
3880 	path->search_for_split = 1;
3881 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3882 	path->search_for_split = 0;
3883 	if (ret > 0)
3884 		ret = -EAGAIN;
3885 	if (ret < 0)
3886 		goto err;
3887 
3888 	ret = -EAGAIN;
3889 	leaf = path->nodes[0];
3890 	/* if our item isn't there, return now */
3891 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3892 		goto err;
3893 
3894 	/* the leaf has  changed, it now has room.  return now */
3895 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3896 		goto err;
3897 
3898 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3899 		fi = btrfs_item_ptr(leaf, path->slots[0],
3900 				    struct btrfs_file_extent_item);
3901 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3902 			goto err;
3903 	}
3904 
3905 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3906 	if (ret)
3907 		goto err;
3908 
3909 	path->keep_locks = 0;
3910 	btrfs_unlock_up_safe(path, 1);
3911 	return 0;
3912 err:
3913 	path->keep_locks = 0;
3914 	return ret;
3915 }
3916 
split_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3917 static noinline int split_item(struct btrfs_trans_handle *trans,
3918 			       struct btrfs_path *path,
3919 			       const struct btrfs_key *new_key,
3920 			       unsigned long split_offset)
3921 {
3922 	struct extent_buffer *leaf;
3923 	int orig_slot, slot;
3924 	char *buf;
3925 	u32 nritems;
3926 	u32 item_size;
3927 	u32 orig_offset;
3928 	struct btrfs_disk_key disk_key;
3929 
3930 	leaf = path->nodes[0];
3931 	/*
3932 	 * Shouldn't happen because the caller must have previously called
3933 	 * setup_leaf_for_split() to make room for the new item in the leaf.
3934 	 */
3935 	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3936 		return -ENOSPC;
3937 
3938 	orig_slot = path->slots[0];
3939 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3940 	item_size = btrfs_item_size(leaf, path->slots[0]);
3941 
3942 	buf = kmalloc(item_size, GFP_NOFS);
3943 	if (!buf)
3944 		return -ENOMEM;
3945 
3946 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3947 			    path->slots[0]), item_size);
3948 
3949 	slot = path->slots[0] + 1;
3950 	nritems = btrfs_header_nritems(leaf);
3951 	if (slot != nritems) {
3952 		/* shift the items */
3953 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3954 	}
3955 
3956 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3957 	btrfs_set_item_key(leaf, &disk_key, slot);
3958 
3959 	btrfs_set_item_offset(leaf, slot, orig_offset);
3960 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3961 
3962 	btrfs_set_item_offset(leaf, orig_slot,
3963 				 orig_offset + item_size - split_offset);
3964 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3965 
3966 	btrfs_set_header_nritems(leaf, nritems + 1);
3967 
3968 	/* write the data for the start of the original item */
3969 	write_extent_buffer(leaf, buf,
3970 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3971 			    split_offset);
3972 
3973 	/* write the data for the new item */
3974 	write_extent_buffer(leaf, buf + split_offset,
3975 			    btrfs_item_ptr_offset(leaf, slot),
3976 			    item_size - split_offset);
3977 	btrfs_mark_buffer_dirty(trans, leaf);
3978 
3979 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3980 	kfree(buf);
3981 	return 0;
3982 }
3983 
3984 /*
3985  * This function splits a single item into two items,
3986  * giving 'new_key' to the new item and splitting the
3987  * old one at split_offset (from the start of the item).
3988  *
3989  * The path may be released by this operation.  After
3990  * the split, the path is pointing to the old item.  The
3991  * new item is going to be in the same node as the old one.
3992  *
3993  * Note, the item being split must be smaller enough to live alone on
3994  * a tree block with room for one extra struct btrfs_item
3995  *
3996  * This allows us to split the item in place, keeping a lock on the
3997  * leaf the entire time.
3998  */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3999 int btrfs_split_item(struct btrfs_trans_handle *trans,
4000 		     struct btrfs_root *root,
4001 		     struct btrfs_path *path,
4002 		     const struct btrfs_key *new_key,
4003 		     unsigned long split_offset)
4004 {
4005 	int ret;
4006 	ret = setup_leaf_for_split(trans, root, path,
4007 				   sizeof(struct btrfs_item));
4008 	if (ret)
4009 		return ret;
4010 
4011 	ret = split_item(trans, path, new_key, split_offset);
4012 	return ret;
4013 }
4014 
4015 /*
4016  * make the item pointed to by the path smaller.  new_size indicates
4017  * how small to make it, and from_end tells us if we just chop bytes
4018  * off the end of the item or if we shift the item to chop bytes off
4019  * the front.
4020  */
btrfs_truncate_item(struct btrfs_trans_handle * trans,const struct btrfs_path * path,u32 new_size,int from_end)4021 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4022 			 const struct btrfs_path *path, u32 new_size, int from_end)
4023 {
4024 	int slot;
4025 	struct extent_buffer *leaf;
4026 	u32 nritems;
4027 	unsigned int data_end;
4028 	unsigned int old_data_start;
4029 	unsigned int old_size;
4030 	unsigned int size_diff;
4031 	int i;
4032 	struct btrfs_map_token token;
4033 
4034 	leaf = path->nodes[0];
4035 	slot = path->slots[0];
4036 
4037 	old_size = btrfs_item_size(leaf, slot);
4038 	if (old_size == new_size)
4039 		return;
4040 
4041 	nritems = btrfs_header_nritems(leaf);
4042 	data_end = leaf_data_end(leaf);
4043 
4044 	old_data_start = btrfs_item_offset(leaf, slot);
4045 
4046 	size_diff = old_size - new_size;
4047 
4048 	BUG_ON(slot < 0);
4049 	BUG_ON(slot >= nritems);
4050 
4051 	/*
4052 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4053 	 */
4054 	/* first correct the data pointers */
4055 	btrfs_init_map_token(&token, leaf);
4056 	for (i = slot; i < nritems; i++) {
4057 		u32 ioff;
4058 
4059 		ioff = btrfs_token_item_offset(&token, i);
4060 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4061 	}
4062 
4063 	/* shift the data */
4064 	if (from_end) {
4065 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4066 				  old_data_start + new_size - data_end);
4067 	} else {
4068 		struct btrfs_disk_key disk_key;
4069 		u64 offset;
4070 
4071 		btrfs_item_key(leaf, &disk_key, slot);
4072 
4073 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4074 			unsigned long ptr;
4075 			struct btrfs_file_extent_item *fi;
4076 
4077 			fi = btrfs_item_ptr(leaf, slot,
4078 					    struct btrfs_file_extent_item);
4079 			fi = (struct btrfs_file_extent_item *)(
4080 			     (unsigned long)fi - size_diff);
4081 
4082 			if (btrfs_file_extent_type(leaf, fi) ==
4083 			    BTRFS_FILE_EXTENT_INLINE) {
4084 				ptr = btrfs_item_ptr_offset(leaf, slot);
4085 				memmove_extent_buffer(leaf, ptr,
4086 				      (unsigned long)fi,
4087 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4088 			}
4089 		}
4090 
4091 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4092 				  old_data_start - data_end);
4093 
4094 		offset = btrfs_disk_key_offset(&disk_key);
4095 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4096 		btrfs_set_item_key(leaf, &disk_key, slot);
4097 		if (slot == 0)
4098 			fixup_low_keys(trans, path, &disk_key, 1);
4099 	}
4100 
4101 	btrfs_set_item_size(leaf, slot, new_size);
4102 	btrfs_mark_buffer_dirty(trans, leaf);
4103 
4104 	if (btrfs_leaf_free_space(leaf) < 0) {
4105 		btrfs_print_leaf(leaf);
4106 		BUG();
4107 	}
4108 }
4109 
4110 /*
4111  * make the item pointed to by the path bigger, data_size is the added size.
4112  */
btrfs_extend_item(struct btrfs_trans_handle * trans,const struct btrfs_path * path,u32 data_size)4113 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4114 		       const struct btrfs_path *path, u32 data_size)
4115 {
4116 	int slot;
4117 	struct extent_buffer *leaf;
4118 	u32 nritems;
4119 	unsigned int data_end;
4120 	unsigned int old_data;
4121 	unsigned int old_size;
4122 	int i;
4123 	struct btrfs_map_token token;
4124 
4125 	leaf = path->nodes[0];
4126 
4127 	nritems = btrfs_header_nritems(leaf);
4128 	data_end = leaf_data_end(leaf);
4129 
4130 	if (btrfs_leaf_free_space(leaf) < data_size) {
4131 		btrfs_print_leaf(leaf);
4132 		BUG();
4133 	}
4134 	slot = path->slots[0];
4135 	old_data = btrfs_item_data_end(leaf, slot);
4136 
4137 	BUG_ON(slot < 0);
4138 	if (slot >= nritems) {
4139 		btrfs_print_leaf(leaf);
4140 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4141 			   slot, nritems);
4142 		BUG();
4143 	}
4144 
4145 	/*
4146 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4147 	 */
4148 	/* first correct the data pointers */
4149 	btrfs_init_map_token(&token, leaf);
4150 	for (i = slot; i < nritems; i++) {
4151 		u32 ioff;
4152 
4153 		ioff = btrfs_token_item_offset(&token, i);
4154 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4155 	}
4156 
4157 	/* shift the data */
4158 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4159 			  old_data - data_end);
4160 
4161 	data_end = old_data;
4162 	old_size = btrfs_item_size(leaf, slot);
4163 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4164 	btrfs_mark_buffer_dirty(trans, leaf);
4165 
4166 	if (btrfs_leaf_free_space(leaf) < 0) {
4167 		btrfs_print_leaf(leaf);
4168 		BUG();
4169 	}
4170 }
4171 
4172 /*
4173  * Make space in the node before inserting one or more items.
4174  *
4175  * @trans:	transaction handle
4176  * @root:	root we are inserting items to
4177  * @path:	points to the leaf/slot where we are going to insert new items
4178  * @batch:      information about the batch of items to insert
4179  *
4180  * Main purpose is to save stack depth by doing the bulk of the work in a
4181  * function that doesn't call btrfs_search_slot
4182  */
setup_items_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4183 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4184 				   struct btrfs_root *root, struct btrfs_path *path,
4185 				   const struct btrfs_item_batch *batch)
4186 {
4187 	struct btrfs_fs_info *fs_info = root->fs_info;
4188 	int i;
4189 	u32 nritems;
4190 	unsigned int data_end;
4191 	struct btrfs_disk_key disk_key;
4192 	struct extent_buffer *leaf;
4193 	int slot;
4194 	struct btrfs_map_token token;
4195 	u32 total_size;
4196 
4197 	/*
4198 	 * Before anything else, update keys in the parent and other ancestors
4199 	 * if needed, then release the write locks on them, so that other tasks
4200 	 * can use them while we modify the leaf.
4201 	 */
4202 	if (path->slots[0] == 0) {
4203 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4204 		fixup_low_keys(trans, path, &disk_key, 1);
4205 	}
4206 	btrfs_unlock_up_safe(path, 1);
4207 
4208 	leaf = path->nodes[0];
4209 	slot = path->slots[0];
4210 
4211 	nritems = btrfs_header_nritems(leaf);
4212 	data_end = leaf_data_end(leaf);
4213 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4214 
4215 	if (btrfs_leaf_free_space(leaf) < total_size) {
4216 		btrfs_print_leaf(leaf);
4217 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4218 			   total_size, btrfs_leaf_free_space(leaf));
4219 		BUG();
4220 	}
4221 
4222 	btrfs_init_map_token(&token, leaf);
4223 	if (slot != nritems) {
4224 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4225 
4226 		if (old_data < data_end) {
4227 			btrfs_print_leaf(leaf);
4228 			btrfs_crit(fs_info,
4229 		"item at slot %d with data offset %u beyond data end of leaf %u",
4230 				   slot, old_data, data_end);
4231 			BUG();
4232 		}
4233 		/*
4234 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4235 		 */
4236 		/* first correct the data pointers */
4237 		for (i = slot; i < nritems; i++) {
4238 			u32 ioff;
4239 
4240 			ioff = btrfs_token_item_offset(&token, i);
4241 			btrfs_set_token_item_offset(&token, i,
4242 						       ioff - batch->total_data_size);
4243 		}
4244 		/* shift the items */
4245 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4246 
4247 		/* shift the data */
4248 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4249 				  data_end, old_data - data_end);
4250 		data_end = old_data;
4251 	}
4252 
4253 	/* setup the item for the new data */
4254 	for (i = 0; i < batch->nr; i++) {
4255 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4256 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4257 		data_end -= batch->data_sizes[i];
4258 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4259 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4260 	}
4261 
4262 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4263 	btrfs_mark_buffer_dirty(trans, leaf);
4264 
4265 	if (btrfs_leaf_free_space(leaf) < 0) {
4266 		btrfs_print_leaf(leaf);
4267 		BUG();
4268 	}
4269 }
4270 
4271 /*
4272  * Insert a new item into a leaf.
4273  *
4274  * @trans:     Transaction handle.
4275  * @root:      The root of the btree.
4276  * @path:      A path pointing to the target leaf and slot.
4277  * @key:       The key of the new item.
4278  * @data_size: The size of the data associated with the new key.
4279  */
btrfs_setup_item_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4280 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4281 				 struct btrfs_root *root,
4282 				 struct btrfs_path *path,
4283 				 const struct btrfs_key *key,
4284 				 u32 data_size)
4285 {
4286 	struct btrfs_item_batch batch;
4287 
4288 	batch.keys = key;
4289 	batch.data_sizes = &data_size;
4290 	batch.total_data_size = data_size;
4291 	batch.nr = 1;
4292 
4293 	setup_items_for_insert(trans, root, path, &batch);
4294 }
4295 
4296 /*
4297  * Given a key and some data, insert items into the tree.
4298  * This does all the path init required, making room in the tree if needed.
4299  *
4300  * Returns: 0        on success
4301  *          -EEXIST  if the first key already exists
4302  *          < 0      on other errors
4303  */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4304 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4305 			    struct btrfs_root *root,
4306 			    struct btrfs_path *path,
4307 			    const struct btrfs_item_batch *batch)
4308 {
4309 	int ret = 0;
4310 	int slot;
4311 	u32 total_size;
4312 
4313 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4314 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4315 	if (ret == 0)
4316 		return -EEXIST;
4317 	if (ret < 0)
4318 		return ret;
4319 
4320 	slot = path->slots[0];
4321 	BUG_ON(slot < 0);
4322 
4323 	setup_items_for_insert(trans, root, path, batch);
4324 	return 0;
4325 }
4326 
4327 /*
4328  * Given a key and some data, insert an item into the tree.
4329  * This does all the path init required, making room in the tree if needed.
4330  */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4331 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4332 		      const struct btrfs_key *cpu_key, void *data,
4333 		      u32 data_size)
4334 {
4335 	int ret = 0;
4336 	struct btrfs_path *path;
4337 	struct extent_buffer *leaf;
4338 	unsigned long ptr;
4339 
4340 	path = btrfs_alloc_path();
4341 	if (!path)
4342 		return -ENOMEM;
4343 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4344 	if (!ret) {
4345 		leaf = path->nodes[0];
4346 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4347 		write_extent_buffer(leaf, data, ptr, data_size);
4348 		btrfs_mark_buffer_dirty(trans, leaf);
4349 	}
4350 	btrfs_free_path(path);
4351 	return ret;
4352 }
4353 
4354 /*
4355  * This function duplicates an item, giving 'new_key' to the new item.
4356  * It guarantees both items live in the same tree leaf and the new item is
4357  * contiguous with the original item.
4358  *
4359  * This allows us to split a file extent in place, keeping a lock on the leaf
4360  * the entire time.
4361  */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4362 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4363 			 struct btrfs_root *root,
4364 			 struct btrfs_path *path,
4365 			 const struct btrfs_key *new_key)
4366 {
4367 	struct extent_buffer *leaf;
4368 	int ret;
4369 	u32 item_size;
4370 
4371 	leaf = path->nodes[0];
4372 	item_size = btrfs_item_size(leaf, path->slots[0]);
4373 	ret = setup_leaf_for_split(trans, root, path,
4374 				   item_size + sizeof(struct btrfs_item));
4375 	if (ret)
4376 		return ret;
4377 
4378 	path->slots[0]++;
4379 	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4380 	leaf = path->nodes[0];
4381 	memcpy_extent_buffer(leaf,
4382 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4383 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4384 			     item_size);
4385 	return 0;
4386 }
4387 
4388 /*
4389  * delete the pointer from a given node.
4390  *
4391  * the tree should have been previously balanced so the deletion does not
4392  * empty a node.
4393  *
4394  * This is exported for use inside btrfs-progs, don't un-export it.
4395  */
btrfs_del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4396 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4397 		  struct btrfs_path *path, int level, int slot)
4398 {
4399 	struct extent_buffer *parent = path->nodes[level];
4400 	u32 nritems;
4401 	int ret;
4402 
4403 	nritems = btrfs_header_nritems(parent);
4404 	if (slot != nritems - 1) {
4405 		if (level) {
4406 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4407 					slot + 1, nritems - slot - 1);
4408 			if (ret < 0) {
4409 				btrfs_abort_transaction(trans, ret);
4410 				return ret;
4411 			}
4412 		}
4413 		memmove_extent_buffer(parent,
4414 			      btrfs_node_key_ptr_offset(parent, slot),
4415 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4416 			      sizeof(struct btrfs_key_ptr) *
4417 			      (nritems - slot - 1));
4418 	} else if (level) {
4419 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4420 						    BTRFS_MOD_LOG_KEY_REMOVE);
4421 		if (ret < 0) {
4422 			btrfs_abort_transaction(trans, ret);
4423 			return ret;
4424 		}
4425 	}
4426 
4427 	nritems--;
4428 	btrfs_set_header_nritems(parent, nritems);
4429 	if (nritems == 0 && parent == root->node) {
4430 		BUG_ON(btrfs_header_level(root->node) != 1);
4431 		/* just turn the root into a leaf and break */
4432 		btrfs_set_header_level(root->node, 0);
4433 	} else if (slot == 0) {
4434 		struct btrfs_disk_key disk_key;
4435 
4436 		btrfs_node_key(parent, &disk_key, 0);
4437 		fixup_low_keys(trans, path, &disk_key, level + 1);
4438 	}
4439 	btrfs_mark_buffer_dirty(trans, parent);
4440 	return 0;
4441 }
4442 
4443 /*
4444  * a helper function to delete the leaf pointed to by path->slots[1] and
4445  * path->nodes[1].
4446  *
4447  * This deletes the pointer in path->nodes[1] and frees the leaf
4448  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4449  *
4450  * The path must have already been setup for deleting the leaf, including
4451  * all the proper balancing.  path->nodes[1] must be locked.
4452  */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4453 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4454 				   struct btrfs_root *root,
4455 				   struct btrfs_path *path,
4456 				   struct extent_buffer *leaf)
4457 {
4458 	int ret;
4459 
4460 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4461 	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4462 	if (ret < 0)
4463 		return ret;
4464 
4465 	/*
4466 	 * btrfs_free_extent is expensive, we want to make sure we
4467 	 * aren't holding any locks when we call it
4468 	 */
4469 	btrfs_unlock_up_safe(path, 0);
4470 
4471 	root_sub_used_bytes(root);
4472 
4473 	atomic_inc(&leaf->refs);
4474 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4475 	free_extent_buffer_stale(leaf);
4476 	if (ret < 0)
4477 		btrfs_abort_transaction(trans, ret);
4478 
4479 	return ret;
4480 }
4481 /*
4482  * delete the item at the leaf level in path.  If that empties
4483  * the leaf, remove it from the tree
4484  */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4485 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4486 		    struct btrfs_path *path, int slot, int nr)
4487 {
4488 	struct btrfs_fs_info *fs_info = root->fs_info;
4489 	struct extent_buffer *leaf;
4490 	int ret = 0;
4491 	int wret;
4492 	u32 nritems;
4493 
4494 	leaf = path->nodes[0];
4495 	nritems = btrfs_header_nritems(leaf);
4496 
4497 	if (slot + nr != nritems) {
4498 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4499 		const int data_end = leaf_data_end(leaf);
4500 		struct btrfs_map_token token;
4501 		u32 dsize = 0;
4502 		int i;
4503 
4504 		for (i = 0; i < nr; i++)
4505 			dsize += btrfs_item_size(leaf, slot + i);
4506 
4507 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4508 				  last_off - data_end);
4509 
4510 		btrfs_init_map_token(&token, leaf);
4511 		for (i = slot + nr; i < nritems; i++) {
4512 			u32 ioff;
4513 
4514 			ioff = btrfs_token_item_offset(&token, i);
4515 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4516 		}
4517 
4518 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4519 	}
4520 	btrfs_set_header_nritems(leaf, nritems - nr);
4521 	nritems -= nr;
4522 
4523 	/* delete the leaf if we've emptied it */
4524 	if (nritems == 0) {
4525 		if (leaf == root->node) {
4526 			btrfs_set_header_level(leaf, 0);
4527 		} else {
4528 			btrfs_clear_buffer_dirty(trans, leaf);
4529 			ret = btrfs_del_leaf(trans, root, path, leaf);
4530 			if (ret < 0)
4531 				return ret;
4532 		}
4533 	} else {
4534 		int used = leaf_space_used(leaf, 0, nritems);
4535 		if (slot == 0) {
4536 			struct btrfs_disk_key disk_key;
4537 
4538 			btrfs_item_key(leaf, &disk_key, 0);
4539 			fixup_low_keys(trans, path, &disk_key, 1);
4540 		}
4541 
4542 		/*
4543 		 * Try to delete the leaf if it is mostly empty. We do this by
4544 		 * trying to move all its items into its left and right neighbours.
4545 		 * If we can't move all the items, then we don't delete it - it's
4546 		 * not ideal, but future insertions might fill the leaf with more
4547 		 * items, or items from other leaves might be moved later into our
4548 		 * leaf due to deletions on those leaves.
4549 		 */
4550 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4551 			u32 min_push_space;
4552 
4553 			/* push_leaf_left fixes the path.
4554 			 * make sure the path still points to our leaf
4555 			 * for possible call to btrfs_del_ptr below
4556 			 */
4557 			slot = path->slots[1];
4558 			atomic_inc(&leaf->refs);
4559 			/*
4560 			 * We want to be able to at least push one item to the
4561 			 * left neighbour leaf, and that's the first item.
4562 			 */
4563 			min_push_space = sizeof(struct btrfs_item) +
4564 				btrfs_item_size(leaf, 0);
4565 			wret = push_leaf_left(trans, root, path, 0,
4566 					      min_push_space, 1, (u32)-1);
4567 			if (wret < 0 && wret != -ENOSPC)
4568 				ret = wret;
4569 
4570 			if (path->nodes[0] == leaf &&
4571 			    btrfs_header_nritems(leaf)) {
4572 				/*
4573 				 * If we were not able to push all items from our
4574 				 * leaf to its left neighbour, then attempt to
4575 				 * either push all the remaining items to the
4576 				 * right neighbour or none. There's no advantage
4577 				 * in pushing only some items, instead of all, as
4578 				 * it's pointless to end up with a leaf having
4579 				 * too few items while the neighbours can be full
4580 				 * or nearly full.
4581 				 */
4582 				nritems = btrfs_header_nritems(leaf);
4583 				min_push_space = leaf_space_used(leaf, 0, nritems);
4584 				wret = push_leaf_right(trans, root, path, 0,
4585 						       min_push_space, 1, 0);
4586 				if (wret < 0 && wret != -ENOSPC)
4587 					ret = wret;
4588 			}
4589 
4590 			if (btrfs_header_nritems(leaf) == 0) {
4591 				path->slots[1] = slot;
4592 				ret = btrfs_del_leaf(trans, root, path, leaf);
4593 				if (ret < 0)
4594 					return ret;
4595 				free_extent_buffer(leaf);
4596 				ret = 0;
4597 			} else {
4598 				/* if we're still in the path, make sure
4599 				 * we're dirty.  Otherwise, one of the
4600 				 * push_leaf functions must have already
4601 				 * dirtied this buffer
4602 				 */
4603 				if (path->nodes[0] == leaf)
4604 					btrfs_mark_buffer_dirty(trans, leaf);
4605 				free_extent_buffer(leaf);
4606 			}
4607 		} else {
4608 			btrfs_mark_buffer_dirty(trans, leaf);
4609 		}
4610 	}
4611 	return ret;
4612 }
4613 
4614 /*
4615  * A helper function to walk down the tree starting at min_key, and looking
4616  * for nodes or leaves that are have a minimum transaction id.
4617  * This is used by the btree defrag code, and tree logging
4618  *
4619  * This does not cow, but it does stuff the starting key it finds back
4620  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4621  * key and get a writable path.
4622  *
4623  * This honors path->lowest_level to prevent descent past a given level
4624  * of the tree.
4625  *
4626  * min_trans indicates the oldest transaction that you are interested
4627  * in walking through.  Any nodes or leaves older than min_trans are
4628  * skipped over (without reading them).
4629  *
4630  * returns zero if something useful was found, < 0 on error and 1 if there
4631  * was nothing in the tree that matched the search criteria.
4632  */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4633 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4634 			 struct btrfs_path *path,
4635 			 u64 min_trans)
4636 {
4637 	struct extent_buffer *cur;
4638 	struct btrfs_key found_key;
4639 	int slot;
4640 	int sret;
4641 	u32 nritems;
4642 	int level;
4643 	int ret = 1;
4644 	int keep_locks = path->keep_locks;
4645 
4646 	ASSERT(!path->nowait);
4647 	path->keep_locks = 1;
4648 again:
4649 	cur = btrfs_read_lock_root_node(root);
4650 	level = btrfs_header_level(cur);
4651 	WARN_ON(path->nodes[level]);
4652 	path->nodes[level] = cur;
4653 	path->locks[level] = BTRFS_READ_LOCK;
4654 
4655 	if (btrfs_header_generation(cur) < min_trans) {
4656 		ret = 1;
4657 		goto out;
4658 	}
4659 	while (1) {
4660 		nritems = btrfs_header_nritems(cur);
4661 		level = btrfs_header_level(cur);
4662 		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4663 		if (sret < 0) {
4664 			ret = sret;
4665 			goto out;
4666 		}
4667 
4668 		/* at the lowest level, we're done, setup the path and exit */
4669 		if (level == path->lowest_level) {
4670 			if (slot >= nritems)
4671 				goto find_next_key;
4672 			ret = 0;
4673 			path->slots[level] = slot;
4674 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4675 			goto out;
4676 		}
4677 		if (sret && slot > 0)
4678 			slot--;
4679 		/*
4680 		 * check this node pointer against the min_trans parameters.
4681 		 * If it is too old, skip to the next one.
4682 		 */
4683 		while (slot < nritems) {
4684 			u64 gen;
4685 
4686 			gen = btrfs_node_ptr_generation(cur, slot);
4687 			if (gen < min_trans) {
4688 				slot++;
4689 				continue;
4690 			}
4691 			break;
4692 		}
4693 find_next_key:
4694 		/*
4695 		 * we didn't find a candidate key in this node, walk forward
4696 		 * and find another one
4697 		 */
4698 		if (slot >= nritems) {
4699 			path->slots[level] = slot;
4700 			sret = btrfs_find_next_key(root, path, min_key, level,
4701 						  min_trans);
4702 			if (sret == 0) {
4703 				btrfs_release_path(path);
4704 				goto again;
4705 			} else {
4706 				goto out;
4707 			}
4708 		}
4709 		/* save our key for returning back */
4710 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4711 		path->slots[level] = slot;
4712 		if (level == path->lowest_level) {
4713 			ret = 0;
4714 			goto out;
4715 		}
4716 		cur = btrfs_read_node_slot(cur, slot);
4717 		if (IS_ERR(cur)) {
4718 			ret = PTR_ERR(cur);
4719 			goto out;
4720 		}
4721 
4722 		btrfs_tree_read_lock(cur);
4723 
4724 		path->locks[level - 1] = BTRFS_READ_LOCK;
4725 		path->nodes[level - 1] = cur;
4726 		unlock_up(path, level, 1, 0, NULL);
4727 	}
4728 out:
4729 	path->keep_locks = keep_locks;
4730 	if (ret == 0) {
4731 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4732 		memcpy(min_key, &found_key, sizeof(found_key));
4733 	}
4734 	return ret;
4735 }
4736 
4737 /*
4738  * this is similar to btrfs_next_leaf, but does not try to preserve
4739  * and fixup the path.  It looks for and returns the next key in the
4740  * tree based on the current path and the min_trans parameters.
4741  *
4742  * 0 is returned if another key is found, < 0 if there are any errors
4743  * and 1 is returned if there are no higher keys in the tree
4744  *
4745  * path->keep_locks should be set to 1 on the search made before
4746  * calling this function.
4747  */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4748 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4749 			struct btrfs_key *key, int level, u64 min_trans)
4750 {
4751 	int slot;
4752 	struct extent_buffer *c;
4753 
4754 	WARN_ON(!path->keep_locks && !path->skip_locking);
4755 	while (level < BTRFS_MAX_LEVEL) {
4756 		if (!path->nodes[level])
4757 			return 1;
4758 
4759 		slot = path->slots[level] + 1;
4760 		c = path->nodes[level];
4761 next:
4762 		if (slot >= btrfs_header_nritems(c)) {
4763 			int ret;
4764 			int orig_lowest;
4765 			struct btrfs_key cur_key;
4766 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4767 			    !path->nodes[level + 1])
4768 				return 1;
4769 
4770 			if (path->locks[level + 1] || path->skip_locking) {
4771 				level++;
4772 				continue;
4773 			}
4774 
4775 			slot = btrfs_header_nritems(c) - 1;
4776 			if (level == 0)
4777 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4778 			else
4779 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4780 
4781 			orig_lowest = path->lowest_level;
4782 			btrfs_release_path(path);
4783 			path->lowest_level = level;
4784 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4785 						0, 0);
4786 			path->lowest_level = orig_lowest;
4787 			if (ret < 0)
4788 				return ret;
4789 
4790 			c = path->nodes[level];
4791 			slot = path->slots[level];
4792 			if (ret == 0)
4793 				slot++;
4794 			goto next;
4795 		}
4796 
4797 		if (level == 0)
4798 			btrfs_item_key_to_cpu(c, key, slot);
4799 		else {
4800 			u64 gen = btrfs_node_ptr_generation(c, slot);
4801 
4802 			if (gen < min_trans) {
4803 				slot++;
4804 				goto next;
4805 			}
4806 			btrfs_node_key_to_cpu(c, key, slot);
4807 		}
4808 		return 0;
4809 	}
4810 	return 1;
4811 }
4812 
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4813 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4814 			u64 time_seq)
4815 {
4816 	int slot;
4817 	int level;
4818 	struct extent_buffer *c;
4819 	struct extent_buffer *next;
4820 	struct btrfs_fs_info *fs_info = root->fs_info;
4821 	struct btrfs_key key;
4822 	bool need_commit_sem = false;
4823 	u32 nritems;
4824 	int ret;
4825 	int i;
4826 
4827 	/*
4828 	 * The nowait semantics are used only for write paths, where we don't
4829 	 * use the tree mod log and sequence numbers.
4830 	 */
4831 	if (time_seq)
4832 		ASSERT(!path->nowait);
4833 
4834 	nritems = btrfs_header_nritems(path->nodes[0]);
4835 	if (nritems == 0)
4836 		return 1;
4837 
4838 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4839 again:
4840 	level = 1;
4841 	next = NULL;
4842 	btrfs_release_path(path);
4843 
4844 	path->keep_locks = 1;
4845 
4846 	if (time_seq) {
4847 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4848 	} else {
4849 		if (path->need_commit_sem) {
4850 			path->need_commit_sem = 0;
4851 			need_commit_sem = true;
4852 			if (path->nowait) {
4853 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4854 					ret = -EAGAIN;
4855 					goto done;
4856 				}
4857 			} else {
4858 				down_read(&fs_info->commit_root_sem);
4859 			}
4860 		}
4861 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4862 	}
4863 	path->keep_locks = 0;
4864 
4865 	if (ret < 0)
4866 		goto done;
4867 
4868 	nritems = btrfs_header_nritems(path->nodes[0]);
4869 	/*
4870 	 * by releasing the path above we dropped all our locks.  A balance
4871 	 * could have added more items next to the key that used to be
4872 	 * at the very end of the block.  So, check again here and
4873 	 * advance the path if there are now more items available.
4874 	 */
4875 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4876 		if (ret == 0)
4877 			path->slots[0]++;
4878 		ret = 0;
4879 		goto done;
4880 	}
4881 	/*
4882 	 * So the above check misses one case:
4883 	 * - after releasing the path above, someone has removed the item that
4884 	 *   used to be at the very end of the block, and balance between leafs
4885 	 *   gets another one with bigger key.offset to replace it.
4886 	 *
4887 	 * This one should be returned as well, or we can get leaf corruption
4888 	 * later(esp. in __btrfs_drop_extents()).
4889 	 *
4890 	 * And a bit more explanation about this check,
4891 	 * with ret > 0, the key isn't found, the path points to the slot
4892 	 * where it should be inserted, so the path->slots[0] item must be the
4893 	 * bigger one.
4894 	 */
4895 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4896 		ret = 0;
4897 		goto done;
4898 	}
4899 
4900 	while (level < BTRFS_MAX_LEVEL) {
4901 		if (!path->nodes[level]) {
4902 			ret = 1;
4903 			goto done;
4904 		}
4905 
4906 		slot = path->slots[level] + 1;
4907 		c = path->nodes[level];
4908 		if (slot >= btrfs_header_nritems(c)) {
4909 			level++;
4910 			if (level == BTRFS_MAX_LEVEL) {
4911 				ret = 1;
4912 				goto done;
4913 			}
4914 			continue;
4915 		}
4916 
4917 
4918 		/*
4919 		 * Our current level is where we're going to start from, and to
4920 		 * make sure lockdep doesn't complain we need to drop our locks
4921 		 * and nodes from 0 to our current level.
4922 		 */
4923 		for (i = 0; i < level; i++) {
4924 			if (path->locks[level]) {
4925 				btrfs_tree_read_unlock(path->nodes[i]);
4926 				path->locks[i] = 0;
4927 			}
4928 			free_extent_buffer(path->nodes[i]);
4929 			path->nodes[i] = NULL;
4930 		}
4931 
4932 		next = c;
4933 		ret = read_block_for_search(root, path, &next, level,
4934 					    slot, &key);
4935 		if (ret == -EAGAIN && !path->nowait)
4936 			goto again;
4937 
4938 		if (ret < 0) {
4939 			btrfs_release_path(path);
4940 			goto done;
4941 		}
4942 
4943 		if (!path->skip_locking) {
4944 			ret = btrfs_try_tree_read_lock(next);
4945 			if (!ret && path->nowait) {
4946 				ret = -EAGAIN;
4947 				goto done;
4948 			}
4949 			if (!ret && time_seq) {
4950 				/*
4951 				 * If we don't get the lock, we may be racing
4952 				 * with push_leaf_left, holding that lock while
4953 				 * itself waiting for the leaf we've currently
4954 				 * locked. To solve this situation, we give up
4955 				 * on our lock and cycle.
4956 				 */
4957 				free_extent_buffer(next);
4958 				btrfs_release_path(path);
4959 				cond_resched();
4960 				goto again;
4961 			}
4962 			if (!ret)
4963 				btrfs_tree_read_lock(next);
4964 		}
4965 		break;
4966 	}
4967 	path->slots[level] = slot;
4968 	while (1) {
4969 		level--;
4970 		path->nodes[level] = next;
4971 		path->slots[level] = 0;
4972 		if (!path->skip_locking)
4973 			path->locks[level] = BTRFS_READ_LOCK;
4974 		if (!level)
4975 			break;
4976 
4977 		ret = read_block_for_search(root, path, &next, level,
4978 					    0, &key);
4979 		if (ret == -EAGAIN && !path->nowait)
4980 			goto again;
4981 
4982 		if (ret < 0) {
4983 			btrfs_release_path(path);
4984 			goto done;
4985 		}
4986 
4987 		if (!path->skip_locking) {
4988 			if (path->nowait) {
4989 				if (!btrfs_try_tree_read_lock(next)) {
4990 					ret = -EAGAIN;
4991 					goto done;
4992 				}
4993 			} else {
4994 				btrfs_tree_read_lock(next);
4995 			}
4996 		}
4997 	}
4998 	ret = 0;
4999 done:
5000 	unlock_up(path, 0, 1, 0, NULL);
5001 	if (need_commit_sem) {
5002 		int ret2;
5003 
5004 		path->need_commit_sem = 1;
5005 		ret2 = finish_need_commit_sem_search(path);
5006 		up_read(&fs_info->commit_root_sem);
5007 		if (ret2)
5008 			ret = ret2;
5009 	}
5010 
5011 	return ret;
5012 }
5013 
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5014 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5015 {
5016 	path->slots[0]++;
5017 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5018 		return btrfs_next_old_leaf(root, path, time_seq);
5019 	return 0;
5020 }
5021 
5022 /*
5023  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5024  * searching until it gets past min_objectid or finds an item of 'type'
5025  *
5026  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5027  */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5028 int btrfs_previous_item(struct btrfs_root *root,
5029 			struct btrfs_path *path, u64 min_objectid,
5030 			int type)
5031 {
5032 	struct btrfs_key found_key;
5033 	struct extent_buffer *leaf;
5034 	u32 nritems;
5035 	int ret;
5036 
5037 	while (1) {
5038 		if (path->slots[0] == 0) {
5039 			ret = btrfs_prev_leaf(root, path);
5040 			if (ret != 0)
5041 				return ret;
5042 		} else {
5043 			path->slots[0]--;
5044 		}
5045 		leaf = path->nodes[0];
5046 		nritems = btrfs_header_nritems(leaf);
5047 		if (nritems == 0)
5048 			return 1;
5049 		if (path->slots[0] == nritems)
5050 			path->slots[0]--;
5051 
5052 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5053 		if (found_key.objectid < min_objectid)
5054 			break;
5055 		if (found_key.type == type)
5056 			return 0;
5057 		if (found_key.objectid == min_objectid &&
5058 		    found_key.type < type)
5059 			break;
5060 	}
5061 	return 1;
5062 }
5063 
5064 /*
5065  * search in extent tree to find a previous Metadata/Data extent item with
5066  * min objecitd.
5067  *
5068  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5069  */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5070 int btrfs_previous_extent_item(struct btrfs_root *root,
5071 			struct btrfs_path *path, u64 min_objectid)
5072 {
5073 	struct btrfs_key found_key;
5074 	struct extent_buffer *leaf;
5075 	u32 nritems;
5076 	int ret;
5077 
5078 	while (1) {
5079 		if (path->slots[0] == 0) {
5080 			ret = btrfs_prev_leaf(root, path);
5081 			if (ret != 0)
5082 				return ret;
5083 		} else {
5084 			path->slots[0]--;
5085 		}
5086 		leaf = path->nodes[0];
5087 		nritems = btrfs_header_nritems(leaf);
5088 		if (nritems == 0)
5089 			return 1;
5090 		if (path->slots[0] == nritems)
5091 			path->slots[0]--;
5092 
5093 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5094 		if (found_key.objectid < min_objectid)
5095 			break;
5096 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5097 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5098 			return 0;
5099 		if (found_key.objectid == min_objectid &&
5100 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5101 			break;
5102 	}
5103 	return 1;
5104 }
5105 
btrfs_ctree_init(void)5106 int __init btrfs_ctree_init(void)
5107 {
5108 	btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5109 	if (!btrfs_path_cachep)
5110 		return -ENOMEM;
5111 	return 0;
5112 }
5113 
btrfs_ctree_exit(void)5114 void __cold btrfs_ctree_exit(void)
5115 {
5116 	kmem_cache_destroy(btrfs_path_cachep);
5117 }
5118