1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *	Adaptec AAC series RAID controller driver
4   *	(c) Copyright 2001 Red Hat Inc.
5   *
6   * based on the old aacraid driver that is..
7   * Adaptec aacraid device driver for Linux.
8   *
9   * Copyright (c) 2000-2010 Adaptec, Inc.
10   *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11   *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12   *
13   * Module Name:
14   *  commsup.c
15   *
16   * Abstract: Contain all routines that are required for FSA host/adapter
17   *    communication.
18   */
19  
20  #include <linux/kernel.h>
21  #include <linux/init.h>
22  #include <linux/crash_dump.h>
23  #include <linux/types.h>
24  #include <linux/sched.h>
25  #include <linux/pci.h>
26  #include <linux/spinlock.h>
27  #include <linux/slab.h>
28  #include <linux/completion.h>
29  #include <linux/blkdev.h>
30  #include <linux/delay.h>
31  #include <linux/kthread.h>
32  #include <linux/interrupt.h>
33  #include <linux/bcd.h>
34  #include <scsi/scsi.h>
35  #include <scsi/scsi_host.h>
36  #include <scsi/scsi_device.h>
37  #include <scsi/scsi_cmnd.h>
38  
39  #include "aacraid.h"
40  
41  /**
42   *	fib_map_alloc		-	allocate the fib objects
43   *	@dev: Adapter to allocate for
44   *
45   *	Allocate and map the shared PCI space for the FIB blocks used to
46   *	talk to the Adaptec firmware.
47   */
48  
fib_map_alloc(struct aac_dev * dev)49  static int fib_map_alloc(struct aac_dev *dev)
50  {
51  	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52  		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53  	else
54  		dev->max_cmd_size = dev->max_fib_size;
55  	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56  		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57  	} else {
58  		dev->max_cmd_size = dev->max_fib_size;
59  	}
60  
61  	dprintk((KERN_INFO
62  	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63  	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64  	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65  	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66  		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67  		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68  		&dev->hw_fib_pa, GFP_KERNEL);
69  	if (dev->hw_fib_va == NULL)
70  		return -ENOMEM;
71  	return 0;
72  }
73  
74  /**
75   *	aac_fib_map_free		-	free the fib objects
76   *	@dev: Adapter to free
77   *
78   *	Free the PCI mappings and the memory allocated for FIB blocks
79   *	on this adapter.
80   */
81  
aac_fib_map_free(struct aac_dev * dev)82  void aac_fib_map_free(struct aac_dev *dev)
83  {
84  	size_t alloc_size;
85  	size_t fib_size;
86  	int num_fibs;
87  
88  	if(!dev->hw_fib_va || !dev->max_cmd_size)
89  		return;
90  
91  	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92  	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93  	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
94  
95  	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96  			  dev->hw_fib_pa);
97  
98  	dev->hw_fib_va = NULL;
99  	dev->hw_fib_pa = 0;
100  }
101  
aac_fib_vector_assign(struct aac_dev * dev)102  void aac_fib_vector_assign(struct aac_dev *dev)
103  {
104  	u32 i = 0;
105  	u32 vector = 1;
106  	struct fib *fibptr = NULL;
107  
108  	for (i = 0, fibptr = &dev->fibs[i];
109  		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110  		i++, fibptr++) {
111  		if ((dev->max_msix == 1) ||
112  		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113  			- dev->vector_cap))) {
114  			fibptr->vector_no = 0;
115  		} else {
116  			fibptr->vector_no = vector;
117  			vector++;
118  			if (vector == dev->max_msix)
119  				vector = 1;
120  		}
121  	}
122  }
123  
124  /**
125   *	aac_fib_setup	-	setup the fibs
126   *	@dev: Adapter to set up
127   *
128   *	Allocate the PCI space for the fibs, map it and then initialise the
129   *	fib area, the unmapped fib data and also the free list
130   */
131  
aac_fib_setup(struct aac_dev * dev)132  int aac_fib_setup(struct aac_dev * dev)
133  {
134  	struct fib *fibptr;
135  	struct hw_fib *hw_fib;
136  	dma_addr_t hw_fib_pa;
137  	int i;
138  	u32 max_cmds;
139  
140  	while (((i = fib_map_alloc(dev)) == -ENOMEM)
141  	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142  		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143  		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144  		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145  			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
146  	}
147  	if (i<0)
148  		return -ENOMEM;
149  
150  	memset(dev->hw_fib_va, 0,
151  		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152  		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
153  
154  	/* 32 byte alignment for PMC */
155  	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156  	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157  					(hw_fib_pa - dev->hw_fib_pa));
158  
159  	/* add Xport header */
160  	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161  		sizeof(struct aac_fib_xporthdr));
162  	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
163  
164  	/*
165  	 *	Initialise the fibs
166  	 */
167  	for (i = 0, fibptr = &dev->fibs[i];
168  		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169  		i++, fibptr++)
170  	{
171  		fibptr->flags = 0;
172  		fibptr->size = sizeof(struct fib);
173  		fibptr->dev = dev;
174  		fibptr->hw_fib_va = hw_fib;
175  		fibptr->data = (void *) fibptr->hw_fib_va->data;
176  		fibptr->next = fibptr+1;	/* Forward chain the fibs */
177  		init_completion(&fibptr->event_wait);
178  		spin_lock_init(&fibptr->event_lock);
179  		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180  		hw_fib->header.SenderSize =
181  			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
182  		fibptr->hw_fib_pa = hw_fib_pa;
183  		fibptr->hw_sgl_pa = hw_fib_pa +
184  			offsetof(struct aac_hba_cmd_req, sge[2]);
185  		/*
186  		 * one element is for the ptr to the separate sg list,
187  		 * second element for 32 byte alignment
188  		 */
189  		fibptr->hw_error_pa = hw_fib_pa +
190  			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
191  
192  		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193  			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194  		hw_fib_pa = hw_fib_pa +
195  			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
196  	}
197  
198  	/*
199  	 *Assign vector numbers to fibs
200  	 */
201  	aac_fib_vector_assign(dev);
202  
203  	/*
204  	 *	Add the fib chain to the free list
205  	 */
206  	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
207  	/*
208  	*	Set 8 fibs aside for management tools
209  	*/
210  	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211  	return 0;
212  }
213  
214  /**
215   *	aac_fib_alloc_tag-allocate a fib using tags
216   *	@dev: Adapter to allocate the fib for
217   *	@scmd: SCSI command
218   *
219   *	Allocate a fib from the adapter fib pool using tags
220   *	from the blk layer.
221   */
222  
aac_fib_alloc_tag(struct aac_dev * dev,struct scsi_cmnd * scmd)223  struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
224  {
225  	struct fib *fibptr;
226  
227  	fibptr = &dev->fibs[scsi_cmd_to_rq(scmd)->tag];
228  	/*
229  	 *	Null out fields that depend on being zero at the start of
230  	 *	each I/O
231  	 */
232  	fibptr->hw_fib_va->header.XferState = 0;
233  	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
234  	fibptr->callback_data = NULL;
235  	fibptr->callback = NULL;
236  	fibptr->flags = 0;
237  
238  	return fibptr;
239  }
240  
241  /**
242   *	aac_fib_alloc	-	allocate a fib
243   *	@dev: Adapter to allocate the fib for
244   *
245   *	Allocate a fib from the adapter fib pool. If the pool is empty we
246   *	return NULL.
247   */
248  
aac_fib_alloc(struct aac_dev * dev)249  struct fib *aac_fib_alloc(struct aac_dev *dev)
250  {
251  	struct fib * fibptr;
252  	unsigned long flags;
253  	spin_lock_irqsave(&dev->fib_lock, flags);
254  	fibptr = dev->free_fib;
255  	if(!fibptr){
256  		spin_unlock_irqrestore(&dev->fib_lock, flags);
257  		return fibptr;
258  	}
259  	dev->free_fib = fibptr->next;
260  	spin_unlock_irqrestore(&dev->fib_lock, flags);
261  	/*
262  	 *	Set the proper node type code and node byte size
263  	 */
264  	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
265  	fibptr->size = sizeof(struct fib);
266  	/*
267  	 *	Null out fields that depend on being zero at the start of
268  	 *	each I/O
269  	 */
270  	fibptr->hw_fib_va->header.XferState = 0;
271  	fibptr->flags = 0;
272  	fibptr->callback = NULL;
273  	fibptr->callback_data = NULL;
274  
275  	return fibptr;
276  }
277  
278  /**
279   *	aac_fib_free	-	free a fib
280   *	@fibptr: fib to free up
281   *
282   *	Frees up a fib and places it on the appropriate queue
283   */
284  
aac_fib_free(struct fib * fibptr)285  void aac_fib_free(struct fib *fibptr)
286  {
287  	unsigned long flags;
288  
289  	if (fibptr->done == 2)
290  		return;
291  
292  	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
293  	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
294  		aac_config.fib_timeouts++;
295  	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
296  		fibptr->hw_fib_va->header.XferState != 0) {
297  		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
298  			 (void*)fibptr,
299  			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
300  	}
301  	fibptr->next = fibptr->dev->free_fib;
302  	fibptr->dev->free_fib = fibptr;
303  	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
304  }
305  
306  /**
307   *	aac_fib_init	-	initialise a fib
308   *	@fibptr: The fib to initialize
309   *
310   *	Set up the generic fib fields ready for use
311   */
312  
aac_fib_init(struct fib * fibptr)313  void aac_fib_init(struct fib *fibptr)
314  {
315  	struct hw_fib *hw_fib = fibptr->hw_fib_va;
316  
317  	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
318  	hw_fib->header.StructType = FIB_MAGIC;
319  	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
320  	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
321  	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
322  	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
323  }
324  
325  /**
326   *	fib_dealloc		-	deallocate a fib
327   *	@fibptr: fib to deallocate
328   *
329   *	Will deallocate and return to the free pool the FIB pointed to by the
330   *	caller.
331   */
332  
fib_dealloc(struct fib * fibptr)333  static void fib_dealloc(struct fib * fibptr)
334  {
335  	struct hw_fib *hw_fib = fibptr->hw_fib_va;
336  	hw_fib->header.XferState = 0;
337  }
338  
339  /*
340   *	Commuication primitives define and support the queuing method we use to
341   *	support host to adapter commuication. All queue accesses happen through
342   *	these routines and are the only routines which have a knowledge of the
343   *	 how these queues are implemented.
344   */
345  
346  /**
347   *	aac_get_entry		-	get a queue entry
348   *	@dev: Adapter
349   *	@qid: Queue Number
350   *	@entry: Entry return
351   *	@index: Index return
352   *	@nonotify: notification control
353   *
354   *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
355   *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
356   *	returned.
357   */
358  
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)359  static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
360  {
361  	struct aac_queue * q;
362  	unsigned long idx;
363  
364  	/*
365  	 *	All of the queues wrap when they reach the end, so we check
366  	 *	to see if they have reached the end and if they have we just
367  	 *	set the index back to zero. This is a wrap. You could or off
368  	 *	the high bits in all updates but this is a bit faster I think.
369  	 */
370  
371  	q = &dev->queues->queue[qid];
372  
373  	idx = *index = le32_to_cpu(*(q->headers.producer));
374  	/* Interrupt Moderation, only interrupt for first two entries */
375  	if (idx != le32_to_cpu(*(q->headers.consumer))) {
376  		if (--idx == 0) {
377  			if (qid == AdapNormCmdQueue)
378  				idx = ADAP_NORM_CMD_ENTRIES;
379  			else
380  				idx = ADAP_NORM_RESP_ENTRIES;
381  		}
382  		if (idx != le32_to_cpu(*(q->headers.consumer)))
383  			*nonotify = 1;
384  	}
385  
386  	if (qid == AdapNormCmdQueue) {
387  		if (*index >= ADAP_NORM_CMD_ENTRIES)
388  			*index = 0; /* Wrap to front of the Producer Queue. */
389  	} else {
390  		if (*index >= ADAP_NORM_RESP_ENTRIES)
391  			*index = 0; /* Wrap to front of the Producer Queue. */
392  	}
393  
394  	/* Queue is full */
395  	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
396  		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
397  				qid, atomic_read(&q->numpending));
398  		return 0;
399  	} else {
400  		*entry = q->base + *index;
401  		return 1;
402  	}
403  }
404  
405  /**
406   *	aac_queue_get		-	get the next free QE
407   *	@dev: Adapter
408   *	@index: Returned index
409   *	@qid: Queue number
410   *	@hw_fib: Fib to associate with the queue entry
411   *	@wait: Wait if queue full
412   *	@fibptr: Driver fib object to go with fib
413   *	@nonotify: Don't notify the adapter
414   *
415   *	Gets the next free QE off the requested priorty adapter command
416   *	queue and associates the Fib with the QE. The QE represented by
417   *	index is ready to insert on the queue when this routine returns
418   *	success.
419   */
420  
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)421  int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
422  {
423  	struct aac_entry * entry = NULL;
424  	int map = 0;
425  
426  	if (qid == AdapNormCmdQueue) {
427  		/*  if no entries wait for some if caller wants to */
428  		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
429  			printk(KERN_ERR "GetEntries failed\n");
430  		}
431  		/*
432  		 *	Setup queue entry with a command, status and fib mapped
433  		 */
434  		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
435  		map = 1;
436  	} else {
437  		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
438  			/* if no entries wait for some if caller wants to */
439  		}
440  		/*
441  		 *	Setup queue entry with command, status and fib mapped
442  		 */
443  		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
444  		entry->addr = hw_fib->header.SenderFibAddress;
445  			/* Restore adapters pointer to the FIB */
446  		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
447  		map = 0;
448  	}
449  	/*
450  	 *	If MapFib is true than we need to map the Fib and put pointers
451  	 *	in the queue entry.
452  	 */
453  	if (map)
454  		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
455  	return 0;
456  }
457  
458  /*
459   *	Define the highest level of host to adapter communication routines.
460   *	These routines will support host to adapter FS commuication. These
461   *	routines have no knowledge of the commuication method used. This level
462   *	sends and receives FIBs. This level has no knowledge of how these FIBs
463   *	get passed back and forth.
464   */
465  
466  /**
467   *	aac_fib_send	-	send a fib to the adapter
468   *	@command: Command to send
469   *	@fibptr: The fib
470   *	@size: Size of fib data area
471   *	@priority: Priority of Fib
472   *	@wait: Async/sync select
473   *	@reply: True if a reply is wanted
474   *	@callback: Called with reply
475   *	@callback_data: Passed to callback
476   *
477   *	Sends the requested FIB to the adapter and optionally will wait for a
478   *	response FIB. If the caller does not wish to wait for a response than
479   *	an event to wait on must be supplied. This event will be set when a
480   *	response FIB is received from the adapter.
481   */
482  
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)483  int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
484  		int priority, int wait, int reply, fib_callback callback,
485  		void *callback_data)
486  {
487  	struct aac_dev * dev = fibptr->dev;
488  	struct hw_fib * hw_fib = fibptr->hw_fib_va;
489  	unsigned long flags = 0;
490  	unsigned long mflags = 0;
491  	unsigned long sflags = 0;
492  
493  	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
494  		return -EBUSY;
495  
496  	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
497  		return -EINVAL;
498  
499  	/*
500  	 *	There are 5 cases with the wait and response requested flags.
501  	 *	The only invalid cases are if the caller requests to wait and
502  	 *	does not request a response and if the caller does not want a
503  	 *	response and the Fib is not allocated from pool. If a response
504  	 *	is not requested the Fib will just be deallocaed by the DPC
505  	 *	routine when the response comes back from the adapter. No
506  	 *	further processing will be done besides deleting the Fib. We
507  	 *	will have a debug mode where the adapter can notify the host
508  	 *	it had a problem and the host can log that fact.
509  	 */
510  	fibptr->flags = 0;
511  	if (wait && !reply) {
512  		return -EINVAL;
513  	} else if (!wait && reply) {
514  		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
515  		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
516  	} else if (!wait && !reply) {
517  		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
518  		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
519  	} else if (wait && reply) {
520  		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
521  		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
522  	}
523  	/*
524  	 *	Map the fib into 32bits by using the fib number
525  	 */
526  
527  	hw_fib->header.SenderFibAddress =
528  		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
529  
530  	/* use the same shifted value for handle to be compatible
531  	 * with the new native hba command handle
532  	 */
533  	hw_fib->header.Handle =
534  		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
535  
536  	/*
537  	 *	Set FIB state to indicate where it came from and if we want a
538  	 *	response from the adapter. Also load the command from the
539  	 *	caller.
540  	 *
541  	 *	Map the hw fib pointer as a 32bit value
542  	 */
543  	hw_fib->header.Command = cpu_to_le16(command);
544  	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
545  	/*
546  	 *	Set the size of the Fib we want to send to the adapter
547  	 */
548  	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
549  	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
550  		return -EMSGSIZE;
551  	}
552  	/*
553  	 *	Get a queue entry connect the FIB to it and send an notify
554  	 *	the adapter a command is ready.
555  	 */
556  	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
557  
558  	/*
559  	 *	Fill in the Callback and CallbackContext if we are not
560  	 *	going to wait.
561  	 */
562  	if (!wait) {
563  		fibptr->callback = callback;
564  		fibptr->callback_data = callback_data;
565  		fibptr->flags = FIB_CONTEXT_FLAG;
566  	}
567  
568  	fibptr->done = 0;
569  
570  	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
571  
572  	dprintk((KERN_DEBUG "Fib contents:.\n"));
573  	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
574  	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
575  	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
576  	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
577  	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
578  	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
579  
580  	if (!dev->queues)
581  		return -EBUSY;
582  
583  	if (wait) {
584  
585  		spin_lock_irqsave(&dev->manage_lock, mflags);
586  		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
587  			printk(KERN_INFO "No management Fibs Available:%d\n",
588  						dev->management_fib_count);
589  			spin_unlock_irqrestore(&dev->manage_lock, mflags);
590  			return -EBUSY;
591  		}
592  		dev->management_fib_count++;
593  		spin_unlock_irqrestore(&dev->manage_lock, mflags);
594  		spin_lock_irqsave(&fibptr->event_lock, flags);
595  	}
596  
597  	if (dev->sync_mode) {
598  		if (wait)
599  			spin_unlock_irqrestore(&fibptr->event_lock, flags);
600  		spin_lock_irqsave(&dev->sync_lock, sflags);
601  		if (dev->sync_fib) {
602  			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
603  			spin_unlock_irqrestore(&dev->sync_lock, sflags);
604  		} else {
605  			dev->sync_fib = fibptr;
606  			spin_unlock_irqrestore(&dev->sync_lock, sflags);
607  			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
608  				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
609  				NULL, NULL, NULL, NULL, NULL);
610  		}
611  		if (wait) {
612  			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
613  			if (wait_for_completion_interruptible(&fibptr->event_wait)) {
614  				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
615  				return -EFAULT;
616  			}
617  			return 0;
618  		}
619  		return -EINPROGRESS;
620  	}
621  
622  	if (aac_adapter_deliver(fibptr) != 0) {
623  		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
624  		if (wait) {
625  			spin_unlock_irqrestore(&fibptr->event_lock, flags);
626  			spin_lock_irqsave(&dev->manage_lock, mflags);
627  			dev->management_fib_count--;
628  			spin_unlock_irqrestore(&dev->manage_lock, mflags);
629  		}
630  		return -EBUSY;
631  	}
632  
633  
634  	/*
635  	 *	If the caller wanted us to wait for response wait now.
636  	 */
637  
638  	if (wait) {
639  		spin_unlock_irqrestore(&fibptr->event_lock, flags);
640  		/* Only set for first known interruptable command */
641  		if (wait < 0) {
642  			/*
643  			 * *VERY* Dangerous to time out a command, the
644  			 * assumption is made that we have no hope of
645  			 * functioning because an interrupt routing or other
646  			 * hardware failure has occurred.
647  			 */
648  			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
649  			while (!try_wait_for_completion(&fibptr->event_wait)) {
650  				int blink;
651  				if (time_is_before_eq_jiffies(timeout)) {
652  					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
653  					atomic_dec(&q->numpending);
654  					if (wait == -1) {
655  	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
656  						  "Usually a result of a PCI interrupt routing problem;\n"
657  						  "update mother board BIOS or consider utilizing one of\n"
658  						  "the SAFE mode kernel options (acpi, apic etc)\n");
659  					}
660  					return -ETIMEDOUT;
661  				}
662  
663  				if (unlikely(aac_pci_offline(dev)))
664  					return -EFAULT;
665  
666  				if ((blink = aac_adapter_check_health(dev)) > 0) {
667  					if (wait == -1) {
668  	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
669  						  "Usually a result of a serious unrecoverable hardware problem\n",
670  						  blink);
671  					}
672  					return -EFAULT;
673  				}
674  				/*
675  				 * Allow other processes / CPUS to use core
676  				 */
677  				schedule();
678  			}
679  		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
680  			/* Do nothing ... satisfy
681  			 * wait_for_completion_interruptible must_check */
682  		}
683  
684  		spin_lock_irqsave(&fibptr->event_lock, flags);
685  		if (fibptr->done == 0) {
686  			fibptr->done = 2; /* Tell interrupt we aborted */
687  			spin_unlock_irqrestore(&fibptr->event_lock, flags);
688  			return -ERESTARTSYS;
689  		}
690  		spin_unlock_irqrestore(&fibptr->event_lock, flags);
691  		BUG_ON(fibptr->done == 0);
692  
693  		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
694  			return -ETIMEDOUT;
695  		return 0;
696  	}
697  	/*
698  	 *	If the user does not want a response than return success otherwise
699  	 *	return pending
700  	 */
701  	if (reply)
702  		return -EINPROGRESS;
703  	else
704  		return 0;
705  }
706  
aac_hba_send(u8 command,struct fib * fibptr,fib_callback callback,void * callback_data)707  int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
708  		void *callback_data)
709  {
710  	struct aac_dev *dev = fibptr->dev;
711  	int wait;
712  	unsigned long flags = 0;
713  	unsigned long mflags = 0;
714  	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
715  			fibptr->hw_fib_va;
716  
717  	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
718  	if (callback) {
719  		wait = 0;
720  		fibptr->callback = callback;
721  		fibptr->callback_data = callback_data;
722  	} else
723  		wait = 1;
724  
725  
726  	hbacmd->iu_type = command;
727  
728  	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
729  		/* bit1 of request_id must be 0 */
730  		hbacmd->request_id =
731  			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
732  		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
733  	} else
734  		return -EINVAL;
735  
736  
737  	if (wait) {
738  		spin_lock_irqsave(&dev->manage_lock, mflags);
739  		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
740  			spin_unlock_irqrestore(&dev->manage_lock, mflags);
741  			return -EBUSY;
742  		}
743  		dev->management_fib_count++;
744  		spin_unlock_irqrestore(&dev->manage_lock, mflags);
745  		spin_lock_irqsave(&fibptr->event_lock, flags);
746  	}
747  
748  	if (aac_adapter_deliver(fibptr) != 0) {
749  		if (wait) {
750  			spin_unlock_irqrestore(&fibptr->event_lock, flags);
751  			spin_lock_irqsave(&dev->manage_lock, mflags);
752  			dev->management_fib_count--;
753  			spin_unlock_irqrestore(&dev->manage_lock, mflags);
754  		}
755  		return -EBUSY;
756  	}
757  	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
758  
759  	if (wait) {
760  
761  		spin_unlock_irqrestore(&fibptr->event_lock, flags);
762  
763  		if (unlikely(aac_pci_offline(dev)))
764  			return -EFAULT;
765  
766  		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
767  		if (wait_for_completion_interruptible(&fibptr->event_wait))
768  			fibptr->done = 2;
769  		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
770  
771  		spin_lock_irqsave(&fibptr->event_lock, flags);
772  		if ((fibptr->done == 0) || (fibptr->done == 2)) {
773  			fibptr->done = 2; /* Tell interrupt we aborted */
774  			spin_unlock_irqrestore(&fibptr->event_lock, flags);
775  			return -ERESTARTSYS;
776  		}
777  		spin_unlock_irqrestore(&fibptr->event_lock, flags);
778  		WARN_ON(fibptr->done == 0);
779  
780  		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
781  			return -ETIMEDOUT;
782  
783  		return 0;
784  	}
785  
786  	return -EINPROGRESS;
787  }
788  
789  /**
790   *	aac_consumer_get	-	get the top of the queue
791   *	@dev: Adapter
792   *	@q: Queue
793   *	@entry: Return entry
794   *
795   *	Will return a pointer to the entry on the top of the queue requested that
796   *	we are a consumer of, and return the address of the queue entry. It does
797   *	not change the state of the queue.
798   */
799  
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)800  int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
801  {
802  	u32 index;
803  	int status;
804  	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
805  		status = 0;
806  	} else {
807  		/*
808  		 *	The consumer index must be wrapped if we have reached
809  		 *	the end of the queue, else we just use the entry
810  		 *	pointed to by the header index
811  		 */
812  		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
813  			index = 0;
814  		else
815  			index = le32_to_cpu(*q->headers.consumer);
816  		*entry = q->base + index;
817  		status = 1;
818  	}
819  	return(status);
820  }
821  
822  /**
823   *	aac_consumer_free	-	free consumer entry
824   *	@dev: Adapter
825   *	@q: Queue
826   *	@qid: Queue ident
827   *
828   *	Frees up the current top of the queue we are a consumer of. If the
829   *	queue was full notify the producer that the queue is no longer full.
830   */
831  
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)832  void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
833  {
834  	int wasfull = 0;
835  	u32 notify;
836  
837  	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
838  		wasfull = 1;
839  
840  	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
841  		*q->headers.consumer = cpu_to_le32(1);
842  	else
843  		le32_add_cpu(q->headers.consumer, 1);
844  
845  	if (wasfull) {
846  		switch (qid) {
847  
848  		case HostNormCmdQueue:
849  			notify = HostNormCmdNotFull;
850  			break;
851  		case HostNormRespQueue:
852  			notify = HostNormRespNotFull;
853  			break;
854  		default:
855  			BUG();
856  			return;
857  		}
858  		aac_adapter_notify(dev, notify);
859  	}
860  }
861  
862  /**
863   *	aac_fib_adapter_complete	-	complete adapter issued fib
864   *	@fibptr: fib to complete
865   *	@size: size of fib
866   *
867   *	Will do all necessary work to complete a FIB that was sent from
868   *	the adapter.
869   */
870  
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)871  int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
872  {
873  	struct hw_fib * hw_fib = fibptr->hw_fib_va;
874  	struct aac_dev * dev = fibptr->dev;
875  	struct aac_queue * q;
876  	unsigned long nointr = 0;
877  	unsigned long qflags;
878  
879  	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
880  		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
881  		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
882  		kfree(hw_fib);
883  		return 0;
884  	}
885  
886  	if (hw_fib->header.XferState == 0) {
887  		if (dev->comm_interface == AAC_COMM_MESSAGE)
888  			kfree(hw_fib);
889  		return 0;
890  	}
891  	/*
892  	 *	If we plan to do anything check the structure type first.
893  	 */
894  	if (hw_fib->header.StructType != FIB_MAGIC &&
895  	    hw_fib->header.StructType != FIB_MAGIC2 &&
896  	    hw_fib->header.StructType != FIB_MAGIC2_64) {
897  		if (dev->comm_interface == AAC_COMM_MESSAGE)
898  			kfree(hw_fib);
899  		return -EINVAL;
900  	}
901  	/*
902  	 *	This block handles the case where the adapter had sent us a
903  	 *	command and we have finished processing the command. We
904  	 *	call completeFib when we are done processing the command
905  	 *	and want to send a response back to the adapter. This will
906  	 *	send the completed cdb to the adapter.
907  	 */
908  	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
909  		if (dev->comm_interface == AAC_COMM_MESSAGE) {
910  			kfree (hw_fib);
911  		} else {
912  			u32 index;
913  			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
914  			if (size) {
915  				size += sizeof(struct aac_fibhdr);
916  				if (size > le16_to_cpu(hw_fib->header.SenderSize))
917  					return -EMSGSIZE;
918  				hw_fib->header.Size = cpu_to_le16(size);
919  			}
920  			q = &dev->queues->queue[AdapNormRespQueue];
921  			spin_lock_irqsave(q->lock, qflags);
922  			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
923  			*(q->headers.producer) = cpu_to_le32(index + 1);
924  			spin_unlock_irqrestore(q->lock, qflags);
925  			if (!(nointr & (int)aac_config.irq_mod))
926  				aac_adapter_notify(dev, AdapNormRespQueue);
927  		}
928  	} else {
929  		printk(KERN_WARNING "aac_fib_adapter_complete: "
930  			"Unknown xferstate detected.\n");
931  		BUG();
932  	}
933  	return 0;
934  }
935  
936  /**
937   *	aac_fib_complete	-	fib completion handler
938   *	@fibptr: FIB to complete
939   *
940   *	Will do all necessary work to complete a FIB.
941   */
942  
aac_fib_complete(struct fib * fibptr)943  int aac_fib_complete(struct fib *fibptr)
944  {
945  	struct hw_fib * hw_fib = fibptr->hw_fib_va;
946  
947  	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
948  		fib_dealloc(fibptr);
949  		return 0;
950  	}
951  
952  	/*
953  	 *	Check for a fib which has already been completed or with a
954  	 *	status wait timeout
955  	 */
956  
957  	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
958  		return 0;
959  	/*
960  	 *	If we plan to do anything check the structure type first.
961  	 */
962  
963  	if (hw_fib->header.StructType != FIB_MAGIC &&
964  	    hw_fib->header.StructType != FIB_MAGIC2 &&
965  	    hw_fib->header.StructType != FIB_MAGIC2_64)
966  		return -EINVAL;
967  	/*
968  	 *	This block completes a cdb which orginated on the host and we
969  	 *	just need to deallocate the cdb or reinit it. At this point the
970  	 *	command is complete that we had sent to the adapter and this
971  	 *	cdb could be reused.
972  	 */
973  
974  	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
975  		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
976  	{
977  		fib_dealloc(fibptr);
978  	}
979  	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
980  	{
981  		/*
982  		 *	This handles the case when the host has aborted the I/O
983  		 *	to the adapter because the adapter is not responding
984  		 */
985  		fib_dealloc(fibptr);
986  	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
987  		fib_dealloc(fibptr);
988  	} else {
989  		BUG();
990  	}
991  	return 0;
992  }
993  
994  /**
995   *	aac_printf	-	handle printf from firmware
996   *	@dev: Adapter
997   *	@val: Message info
998   *
999   *	Print a message passed to us by the controller firmware on the
1000   *	Adaptec board
1001   */
1002  
aac_printf(struct aac_dev * dev,u32 val)1003  void aac_printf(struct aac_dev *dev, u32 val)
1004  {
1005  	char *cp = dev->printfbuf;
1006  	if (dev->printf_enabled)
1007  	{
1008  		int length = val & 0xffff;
1009  		int level = (val >> 16) & 0xffff;
1010  
1011  		/*
1012  		 *	The size of the printfbuf is set in port.c
1013  		 *	There is no variable or define for it
1014  		 */
1015  		if (length > 255)
1016  			length = 255;
1017  		if (cp[length] != 0)
1018  			cp[length] = 0;
1019  		if (level == LOG_AAC_HIGH_ERROR)
1020  			printk(KERN_WARNING "%s:%s", dev->name, cp);
1021  		else
1022  			printk(KERN_INFO "%s:%s", dev->name, cp);
1023  	}
1024  	memset(cp, 0, 256);
1025  }
1026  
aac_aif_data(struct aac_aifcmd * aifcmd,uint32_t index)1027  static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1028  {
1029  	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1030  }
1031  
1032  
aac_handle_aif_bu(struct aac_dev * dev,struct aac_aifcmd * aifcmd)1033  static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1034  {
1035  	switch (aac_aif_data(aifcmd, 1)) {
1036  	case AifBuCacheDataLoss:
1037  		if (aac_aif_data(aifcmd, 2))
1038  			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1039  			aac_aif_data(aifcmd, 2));
1040  		else
1041  			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1042  		break;
1043  	case AifBuCacheDataRecover:
1044  		if (aac_aif_data(aifcmd, 2))
1045  			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1046  			aac_aif_data(aifcmd, 2));
1047  		else
1048  			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1049  		break;
1050  	}
1051  }
1052  
1053  #define AIF_SNIFF_TIMEOUT	(500*HZ)
1054  /**
1055   *	aac_handle_aif		-	Handle a message from the firmware
1056   *	@dev: Which adapter this fib is from
1057   *	@fibptr: Pointer to fibptr from adapter
1058   *
1059   *	This routine handles a driver notify fib from the adapter and
1060   *	dispatches it to the appropriate routine for handling.
1061   */
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)1062  static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1063  {
1064  	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1065  	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1066  	u32 channel, id, lun, container;
1067  	struct scsi_device *device;
1068  	enum {
1069  		NOTHING,
1070  		DELETE,
1071  		ADD,
1072  		CHANGE
1073  	} device_config_needed = NOTHING;
1074  
1075  	/* Sniff for container changes */
1076  
1077  	if (!dev || !dev->fsa_dev)
1078  		return;
1079  	container = channel = id = lun = (u32)-1;
1080  
1081  	/*
1082  	 *	We have set this up to try and minimize the number of
1083  	 * re-configures that take place. As a result of this when
1084  	 * certain AIF's come in we will set a flag waiting for another
1085  	 * type of AIF before setting the re-config flag.
1086  	 */
1087  	switch (le32_to_cpu(aifcmd->command)) {
1088  	case AifCmdDriverNotify:
1089  		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1090  		case AifRawDeviceRemove:
1091  			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1092  			if ((container >> 28)) {
1093  				container = (u32)-1;
1094  				break;
1095  			}
1096  			channel = (container >> 24) & 0xF;
1097  			if (channel >= dev->maximum_num_channels) {
1098  				container = (u32)-1;
1099  				break;
1100  			}
1101  			id = container & 0xFFFF;
1102  			if (id >= dev->maximum_num_physicals) {
1103  				container = (u32)-1;
1104  				break;
1105  			}
1106  			lun = (container >> 16) & 0xFF;
1107  			container = (u32)-1;
1108  			channel = aac_phys_to_logical(channel);
1109  			device_config_needed = DELETE;
1110  			break;
1111  
1112  		/*
1113  		 *	Morph or Expand complete
1114  		 */
1115  		case AifDenMorphComplete:
1116  		case AifDenVolumeExtendComplete:
1117  			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1118  			if (container >= dev->maximum_num_containers)
1119  				break;
1120  
1121  			/*
1122  			 *	Find the scsi_device associated with the SCSI
1123  			 * address. Make sure we have the right array, and if
1124  			 * so set the flag to initiate a new re-config once we
1125  			 * see an AifEnConfigChange AIF come through.
1126  			 */
1127  
1128  			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1129  				device = scsi_device_lookup(dev->scsi_host_ptr,
1130  					CONTAINER_TO_CHANNEL(container),
1131  					CONTAINER_TO_ID(container),
1132  					CONTAINER_TO_LUN(container));
1133  				if (device) {
1134  					dev->fsa_dev[container].config_needed = CHANGE;
1135  					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1136  					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1137  					scsi_device_put(device);
1138  				}
1139  			}
1140  		}
1141  
1142  		/*
1143  		 *	If we are waiting on something and this happens to be
1144  		 * that thing then set the re-configure flag.
1145  		 */
1146  		if (container != (u32)-1) {
1147  			if (container >= dev->maximum_num_containers)
1148  				break;
1149  			if ((dev->fsa_dev[container].config_waiting_on ==
1150  			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151  			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152  				dev->fsa_dev[container].config_waiting_on = 0;
1153  		} else for (container = 0;
1154  		    container < dev->maximum_num_containers; ++container) {
1155  			if ((dev->fsa_dev[container].config_waiting_on ==
1156  			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1157  			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1158  				dev->fsa_dev[container].config_waiting_on = 0;
1159  		}
1160  		break;
1161  
1162  	case AifCmdEventNotify:
1163  		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1164  		case AifEnBatteryEvent:
1165  			dev->cache_protected =
1166  				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1167  			break;
1168  		/*
1169  		 *	Add an Array.
1170  		 */
1171  		case AifEnAddContainer:
1172  			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1173  			if (container >= dev->maximum_num_containers)
1174  				break;
1175  			dev->fsa_dev[container].config_needed = ADD;
1176  			dev->fsa_dev[container].config_waiting_on =
1177  				AifEnConfigChange;
1178  			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179  			break;
1180  
1181  		/*
1182  		 *	Delete an Array.
1183  		 */
1184  		case AifEnDeleteContainer:
1185  			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186  			if (container >= dev->maximum_num_containers)
1187  				break;
1188  			dev->fsa_dev[container].config_needed = DELETE;
1189  			dev->fsa_dev[container].config_waiting_on =
1190  				AifEnConfigChange;
1191  			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192  			break;
1193  
1194  		/*
1195  		 *	Container change detected. If we currently are not
1196  		 * waiting on something else, setup to wait on a Config Change.
1197  		 */
1198  		case AifEnContainerChange:
1199  			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200  			if (container >= dev->maximum_num_containers)
1201  				break;
1202  			if (dev->fsa_dev[container].config_waiting_on &&
1203  			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1204  				break;
1205  			dev->fsa_dev[container].config_needed = CHANGE;
1206  			dev->fsa_dev[container].config_waiting_on =
1207  				AifEnConfigChange;
1208  			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1209  			break;
1210  
1211  		case AifEnConfigChange:
1212  			break;
1213  
1214  		case AifEnAddJBOD:
1215  		case AifEnDeleteJBOD:
1216  			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1217  			if ((container >> 28)) {
1218  				container = (u32)-1;
1219  				break;
1220  			}
1221  			channel = (container >> 24) & 0xF;
1222  			if (channel >= dev->maximum_num_channels) {
1223  				container = (u32)-1;
1224  				break;
1225  			}
1226  			id = container & 0xFFFF;
1227  			if (id >= dev->maximum_num_physicals) {
1228  				container = (u32)-1;
1229  				break;
1230  			}
1231  			lun = (container >> 16) & 0xFF;
1232  			container = (u32)-1;
1233  			channel = aac_phys_to_logical(channel);
1234  			device_config_needed =
1235  			  (((__le32 *)aifcmd->data)[0] ==
1236  			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1237  			if (device_config_needed == ADD) {
1238  				device = scsi_device_lookup(dev->scsi_host_ptr,
1239  					channel,
1240  					id,
1241  					lun);
1242  				if (device) {
1243  					scsi_remove_device(device);
1244  					scsi_device_put(device);
1245  				}
1246  			}
1247  			break;
1248  
1249  		case AifEnEnclosureManagement:
1250  			/*
1251  			 * If in JBOD mode, automatic exposure of new
1252  			 * physical target to be suppressed until configured.
1253  			 */
1254  			if (dev->jbod)
1255  				break;
1256  			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1257  			case EM_DRIVE_INSERTION:
1258  			case EM_DRIVE_REMOVAL:
1259  			case EM_SES_DRIVE_INSERTION:
1260  			case EM_SES_DRIVE_REMOVAL:
1261  				container = le32_to_cpu(
1262  					((__le32 *)aifcmd->data)[2]);
1263  				if ((container >> 28)) {
1264  					container = (u32)-1;
1265  					break;
1266  				}
1267  				channel = (container >> 24) & 0xF;
1268  				if (channel >= dev->maximum_num_channels) {
1269  					container = (u32)-1;
1270  					break;
1271  				}
1272  				id = container & 0xFFFF;
1273  				lun = (container >> 16) & 0xFF;
1274  				container = (u32)-1;
1275  				if (id >= dev->maximum_num_physicals) {
1276  					/* legacy dev_t ? */
1277  					if ((0x2000 <= id) || lun || channel ||
1278  					  ((channel = (id >> 7) & 0x3F) >=
1279  					  dev->maximum_num_channels))
1280  						break;
1281  					lun = (id >> 4) & 7;
1282  					id &= 0xF;
1283  				}
1284  				channel = aac_phys_to_logical(channel);
1285  				device_config_needed =
1286  				  ((((__le32 *)aifcmd->data)[3]
1287  				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1288  				    (((__le32 *)aifcmd->data)[3]
1289  				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1290  				  ADD : DELETE;
1291  				break;
1292  			}
1293  			break;
1294  		case AifBuManagerEvent:
1295  			aac_handle_aif_bu(dev, aifcmd);
1296  			break;
1297  		}
1298  
1299  		/*
1300  		 *	If we are waiting on something and this happens to be
1301  		 * that thing then set the re-configure flag.
1302  		 */
1303  		if (container != (u32)-1) {
1304  			if (container >= dev->maximum_num_containers)
1305  				break;
1306  			if ((dev->fsa_dev[container].config_waiting_on ==
1307  			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1308  			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1309  				dev->fsa_dev[container].config_waiting_on = 0;
1310  		} else for (container = 0;
1311  		    container < dev->maximum_num_containers; ++container) {
1312  			if ((dev->fsa_dev[container].config_waiting_on ==
1313  			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1314  			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1315  				dev->fsa_dev[container].config_waiting_on = 0;
1316  		}
1317  		break;
1318  
1319  	case AifCmdJobProgress:
1320  		/*
1321  		 *	These are job progress AIF's. When a Clear is being
1322  		 * done on a container it is initially created then hidden from
1323  		 * the OS. When the clear completes we don't get a config
1324  		 * change so we monitor the job status complete on a clear then
1325  		 * wait for a container change.
1326  		 */
1327  
1328  		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1329  		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1330  		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1331  			for (container = 0;
1332  			    container < dev->maximum_num_containers;
1333  			    ++container) {
1334  				/*
1335  				 * Stomp on all config sequencing for all
1336  				 * containers?
1337  				 */
1338  				dev->fsa_dev[container].config_waiting_on =
1339  					AifEnContainerChange;
1340  				dev->fsa_dev[container].config_needed = ADD;
1341  				dev->fsa_dev[container].config_waiting_stamp =
1342  					jiffies;
1343  			}
1344  		}
1345  		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1346  		    ((__le32 *)aifcmd->data)[6] == 0 &&
1347  		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1348  			for (container = 0;
1349  			    container < dev->maximum_num_containers;
1350  			    ++container) {
1351  				/*
1352  				 * Stomp on all config sequencing for all
1353  				 * containers?
1354  				 */
1355  				dev->fsa_dev[container].config_waiting_on =
1356  					AifEnContainerChange;
1357  				dev->fsa_dev[container].config_needed = DELETE;
1358  				dev->fsa_dev[container].config_waiting_stamp =
1359  					jiffies;
1360  			}
1361  		}
1362  		break;
1363  	}
1364  
1365  	container = 0;
1366  retry_next:
1367  	if (device_config_needed == NOTHING) {
1368  		for (; container < dev->maximum_num_containers; ++container) {
1369  			if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1370  			    (dev->fsa_dev[container].config_needed != NOTHING) &&
1371  			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1372  				device_config_needed =
1373  					dev->fsa_dev[container].config_needed;
1374  				dev->fsa_dev[container].config_needed = NOTHING;
1375  				channel = CONTAINER_TO_CHANNEL(container);
1376  				id = CONTAINER_TO_ID(container);
1377  				lun = CONTAINER_TO_LUN(container);
1378  				break;
1379  			}
1380  		}
1381  	}
1382  	if (device_config_needed == NOTHING)
1383  		return;
1384  
1385  	/*
1386  	 *	If we decided that a re-configuration needs to be done,
1387  	 * schedule it here on the way out the door, please close the door
1388  	 * behind you.
1389  	 */
1390  
1391  	/*
1392  	 *	Find the scsi_device associated with the SCSI address,
1393  	 * and mark it as changed, invalidating the cache. This deals
1394  	 * with changes to existing device IDs.
1395  	 */
1396  
1397  	if (!dev || !dev->scsi_host_ptr)
1398  		return;
1399  	/*
1400  	 * force reload of disk info via aac_probe_container
1401  	 */
1402  	if ((channel == CONTAINER_CHANNEL) &&
1403  	  (device_config_needed != NOTHING)) {
1404  		if (dev->fsa_dev[container].valid == 1)
1405  			dev->fsa_dev[container].valid = 2;
1406  		aac_probe_container(dev, container);
1407  	}
1408  	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1409  	if (device) {
1410  		switch (device_config_needed) {
1411  		case DELETE:
1412  #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1413  			scsi_remove_device(device);
1414  #else
1415  			if (scsi_device_online(device)) {
1416  				scsi_device_set_state(device, SDEV_OFFLINE);
1417  				sdev_printk(KERN_INFO, device,
1418  					"Device offlined - %s\n",
1419  					(channel == CONTAINER_CHANNEL) ?
1420  						"array deleted" :
1421  						"enclosure services event");
1422  			}
1423  #endif
1424  			break;
1425  		case ADD:
1426  			if (!scsi_device_online(device)) {
1427  				sdev_printk(KERN_INFO, device,
1428  					"Device online - %s\n",
1429  					(channel == CONTAINER_CHANNEL) ?
1430  						"array created" :
1431  						"enclosure services event");
1432  				scsi_device_set_state(device, SDEV_RUNNING);
1433  			}
1434  			fallthrough;
1435  		case CHANGE:
1436  			if ((channel == CONTAINER_CHANNEL)
1437  			 && (!dev->fsa_dev[container].valid)) {
1438  #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1439  				scsi_remove_device(device);
1440  #else
1441  				if (!scsi_device_online(device))
1442  					break;
1443  				scsi_device_set_state(device, SDEV_OFFLINE);
1444  				sdev_printk(KERN_INFO, device,
1445  					"Device offlined - %s\n",
1446  					"array failed");
1447  #endif
1448  				break;
1449  			}
1450  			scsi_rescan_device(device);
1451  			break;
1452  
1453  		default:
1454  			break;
1455  		}
1456  		scsi_device_put(device);
1457  		device_config_needed = NOTHING;
1458  	}
1459  	if (device_config_needed == ADD)
1460  		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1461  	if (channel == CONTAINER_CHANNEL) {
1462  		container++;
1463  		device_config_needed = NOTHING;
1464  		goto retry_next;
1465  	}
1466  }
1467  
aac_schedule_bus_scan(struct aac_dev * aac)1468  static void aac_schedule_bus_scan(struct aac_dev *aac)
1469  {
1470  	if (aac->sa_firmware)
1471  		aac_schedule_safw_scan_worker(aac);
1472  	else
1473  		aac_schedule_src_reinit_aif_worker(aac);
1474  }
1475  
_aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1476  static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1477  {
1478  	int index, quirks;
1479  	int retval;
1480  	struct Scsi_Host *host = aac->scsi_host_ptr;
1481  	int jafo = 0;
1482  	int bled;
1483  	u64 dmamask;
1484  	int num_of_fibs = 0;
1485  
1486  	/*
1487  	 * Assumptions:
1488  	 *	- host is locked, unless called by the aacraid thread.
1489  	 *	  (a matter of convenience, due to legacy issues surrounding
1490  	 *	  eh_host_adapter_reset).
1491  	 *	- in_reset is asserted, so no new i/o is getting to the
1492  	 *	  card.
1493  	 *	- The card is dead, or will be very shortly ;-/ so no new
1494  	 *	  commands are completing in the interrupt service.
1495  	 */
1496  	aac_adapter_disable_int(aac);
1497  	if (aac->thread && aac->thread->pid != current->pid) {
1498  		spin_unlock_irq(host->host_lock);
1499  		kthread_stop(aac->thread);
1500  		aac->thread = NULL;
1501  		jafo = 1;
1502  	}
1503  
1504  	/*
1505  	 *	If a positive health, means in a known DEAD PANIC
1506  	 * state and the adapter could be reset to `try again'.
1507  	 */
1508  	bled = forced ? 0 : aac_adapter_check_health(aac);
1509  	retval = aac_adapter_restart(aac, bled, reset_type);
1510  
1511  	if (retval)
1512  		goto out;
1513  
1514  	/*
1515  	 *	Loop through the fibs, close the synchronous FIBS
1516  	 */
1517  	retval = 1;
1518  	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1519  	for (index = 0; index <  num_of_fibs; index++) {
1520  
1521  		struct fib *fib = &aac->fibs[index];
1522  		__le32 XferState = fib->hw_fib_va->header.XferState;
1523  		bool is_response_expected = false;
1524  
1525  		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1526  		   (XferState & cpu_to_le32(ResponseExpected)))
1527  			is_response_expected = true;
1528  
1529  		if (is_response_expected
1530  		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1531  			unsigned long flagv;
1532  			spin_lock_irqsave(&fib->event_lock, flagv);
1533  			complete(&fib->event_wait);
1534  			spin_unlock_irqrestore(&fib->event_lock, flagv);
1535  			schedule();
1536  			retval = 0;
1537  		}
1538  	}
1539  	/* Give some extra time for ioctls to complete. */
1540  	if (retval == 0)
1541  		ssleep(2);
1542  	index = aac->cardtype;
1543  
1544  	/*
1545  	 * Re-initialize the adapter, first free resources, then carefully
1546  	 * apply the initialization sequence to come back again. Only risk
1547  	 * is a change in Firmware dropping cache, it is assumed the caller
1548  	 * will ensure that i/o is queisced and the card is flushed in that
1549  	 * case.
1550  	 */
1551  	aac_free_irq(aac);
1552  	aac_fib_map_free(aac);
1553  	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1554  			  aac->comm_phys);
1555  	aac_adapter_ioremap(aac, 0);
1556  	aac->comm_addr = NULL;
1557  	aac->comm_phys = 0;
1558  	kfree(aac->queues);
1559  	aac->queues = NULL;
1560  	kfree(aac->fsa_dev);
1561  	aac->fsa_dev = NULL;
1562  
1563  	dmamask = DMA_BIT_MASK(32);
1564  	quirks = aac_get_driver_ident(index)->quirks;
1565  	if (quirks & AAC_QUIRK_31BIT)
1566  		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1567  	else if (!(quirks & AAC_QUIRK_SRC))
1568  		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1569  	else
1570  		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1571  
1572  	if (quirks & AAC_QUIRK_31BIT && !retval) {
1573  		dmamask = DMA_BIT_MASK(31);
1574  		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1575  	}
1576  
1577  	if (retval)
1578  		goto out;
1579  
1580  	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1581  		goto out;
1582  
1583  	if (jafo) {
1584  		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1585  					  aac->name);
1586  		if (IS_ERR(aac->thread)) {
1587  			retval = PTR_ERR(aac->thread);
1588  			aac->thread = NULL;
1589  			goto out;
1590  		}
1591  	}
1592  	(void)aac_get_adapter_info(aac);
1593  	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1594  		host->sg_tablesize = 34;
1595  		host->max_sectors = (host->sg_tablesize * 8) + 112;
1596  	}
1597  	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1598  		host->sg_tablesize = 17;
1599  		host->max_sectors = (host->sg_tablesize * 8) + 112;
1600  	}
1601  	aac_get_config_status(aac, 1);
1602  	aac_get_containers(aac);
1603  	/*
1604  	 * This is where the assumption that the Adapter is quiesced
1605  	 * is important.
1606  	 */
1607  	scsi_host_complete_all_commands(host, DID_RESET);
1608  
1609  	retval = 0;
1610  out:
1611  	aac->in_reset = 0;
1612  
1613  	/*
1614  	 * Issue bus rescan to catch any configuration that might have
1615  	 * occurred
1616  	 */
1617  	if (!retval && !is_kdump_kernel()) {
1618  		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1619  		aac_schedule_bus_scan(aac);
1620  	}
1621  
1622  	if (jafo) {
1623  		spin_lock_irq(host->host_lock);
1624  	}
1625  	return retval;
1626  }
1627  
aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1628  int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1629  {
1630  	unsigned long flagv = 0;
1631  	int retval, unblock_retval;
1632  	struct Scsi_Host *host = aac->scsi_host_ptr;
1633  	int bled;
1634  
1635  	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1636  		return -EBUSY;
1637  
1638  	if (aac->in_reset) {
1639  		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1640  		return -EBUSY;
1641  	}
1642  	aac->in_reset = 1;
1643  	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1644  
1645  	/*
1646  	 * Wait for all commands to complete to this specific
1647  	 * target (block maximum 60 seconds). Although not necessary,
1648  	 * it does make us a good storage citizen.
1649  	 */
1650  	scsi_host_block(host);
1651  
1652  	/* Quiesce build, flush cache, write through mode */
1653  	if (forced < 2)
1654  		aac_send_shutdown(aac);
1655  	spin_lock_irqsave(host->host_lock, flagv);
1656  	bled = forced ? forced :
1657  			(aac_check_reset != 0 && aac_check_reset != 1);
1658  	retval = _aac_reset_adapter(aac, bled, reset_type);
1659  	spin_unlock_irqrestore(host->host_lock, flagv);
1660  
1661  	unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1662  	if (!retval)
1663  		retval = unblock_retval;
1664  	if ((forced < 2) && (retval == -ENODEV)) {
1665  		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1666  		struct fib * fibctx = aac_fib_alloc(aac);
1667  		if (fibctx) {
1668  			struct aac_pause *cmd;
1669  			int status;
1670  
1671  			aac_fib_init(fibctx);
1672  
1673  			cmd = (struct aac_pause *) fib_data(fibctx);
1674  
1675  			cmd->command = cpu_to_le32(VM_ContainerConfig);
1676  			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1677  			cmd->timeout = cpu_to_le32(1);
1678  			cmd->min = cpu_to_le32(1);
1679  			cmd->noRescan = cpu_to_le32(1);
1680  			cmd->count = cpu_to_le32(0);
1681  
1682  			status = aac_fib_send(ContainerCommand,
1683  			  fibctx,
1684  			  sizeof(struct aac_pause),
1685  			  FsaNormal,
1686  			  -2 /* Timeout silently */, 1,
1687  			  NULL, NULL);
1688  
1689  			if (status >= 0)
1690  				aac_fib_complete(fibctx);
1691  			/* FIB should be freed only after getting
1692  			 * the response from the F/W */
1693  			if (status != -ERESTARTSYS)
1694  				aac_fib_free(fibctx);
1695  		}
1696  	}
1697  
1698  	return retval;
1699  }
1700  
aac_check_health(struct aac_dev * aac)1701  int aac_check_health(struct aac_dev * aac)
1702  {
1703  	int BlinkLED;
1704  	unsigned long time_now, flagv = 0;
1705  	struct list_head * entry;
1706  
1707  	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1708  	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1709  		return 0;
1710  
1711  	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1712  		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1713  		return 0; /* OK */
1714  	}
1715  
1716  	aac->in_reset = 1;
1717  
1718  	/* Fake up an AIF:
1719  	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1720  	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1721  	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1722  	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1723  	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1724  	 *	aac.aifcmd.data[3] = BlinkLED
1725  	 */
1726  
1727  	time_now = jiffies/HZ;
1728  	entry = aac->fib_list.next;
1729  
1730  	/*
1731  	 * For each Context that is on the
1732  	 * fibctxList, make a copy of the
1733  	 * fib, and then set the event to wake up the
1734  	 * thread that is waiting for it.
1735  	 */
1736  	while (entry != &aac->fib_list) {
1737  		/*
1738  		 * Extract the fibctx
1739  		 */
1740  		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1741  		struct hw_fib * hw_fib;
1742  		struct fib * fib;
1743  		/*
1744  		 * Check if the queue is getting
1745  		 * backlogged
1746  		 */
1747  		if (fibctx->count > 20) {
1748  			/*
1749  			 * It's *not* jiffies folks,
1750  			 * but jiffies / HZ, so do not
1751  			 * panic ...
1752  			 */
1753  			u32 time_last = fibctx->jiffies;
1754  			/*
1755  			 * Has it been > 2 minutes
1756  			 * since the last read off
1757  			 * the queue?
1758  			 */
1759  			if ((time_now - time_last) > aif_timeout) {
1760  				entry = entry->next;
1761  				aac_close_fib_context(aac, fibctx);
1762  				continue;
1763  			}
1764  		}
1765  		/*
1766  		 * Warning: no sleep allowed while
1767  		 * holding spinlock
1768  		 */
1769  		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1770  		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1771  		if (fib && hw_fib) {
1772  			struct aac_aifcmd * aif;
1773  
1774  			fib->hw_fib_va = hw_fib;
1775  			fib->dev = aac;
1776  			aac_fib_init(fib);
1777  			fib->type = FSAFS_NTC_FIB_CONTEXT;
1778  			fib->size = sizeof (struct fib);
1779  			fib->data = hw_fib->data;
1780  			aif = (struct aac_aifcmd *)hw_fib->data;
1781  			aif->command = cpu_to_le32(AifCmdEventNotify);
1782  			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1783  			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1784  			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1785  			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1786  			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1787  
1788  			/*
1789  			 * Put the FIB onto the
1790  			 * fibctx's fibs
1791  			 */
1792  			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1793  			fibctx->count++;
1794  			/*
1795  			 * Set the event to wake up the
1796  			 * thread that will waiting.
1797  			 */
1798  			complete(&fibctx->completion);
1799  		} else {
1800  			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1801  			kfree(fib);
1802  			kfree(hw_fib);
1803  		}
1804  		entry = entry->next;
1805  	}
1806  
1807  	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1808  
1809  	if (BlinkLED < 0) {
1810  		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1811  				aac->name, BlinkLED);
1812  		goto out;
1813  	}
1814  
1815  	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1816  
1817  out:
1818  	aac->in_reset = 0;
1819  	return BlinkLED;
1820  }
1821  
is_safw_raid_volume(struct aac_dev * aac,int bus,int target)1822  static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1823  {
1824  	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1825  }
1826  
aac_lookup_safw_scsi_device(struct aac_dev * dev,int bus,int target)1827  static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1828  								int bus,
1829  								int target)
1830  {
1831  	if (bus != CONTAINER_CHANNEL)
1832  		bus = aac_phys_to_logical(bus);
1833  
1834  	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1835  }
1836  
aac_add_safw_device(struct aac_dev * dev,int bus,int target)1837  static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1838  {
1839  	if (bus != CONTAINER_CHANNEL)
1840  		bus = aac_phys_to_logical(bus);
1841  
1842  	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1843  }
1844  
aac_put_safw_scsi_device(struct scsi_device * sdev)1845  static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1846  {
1847  	if (sdev)
1848  		scsi_device_put(sdev);
1849  }
1850  
aac_remove_safw_device(struct aac_dev * dev,int bus,int target)1851  static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1852  {
1853  	struct scsi_device *sdev;
1854  
1855  	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1856  	scsi_remove_device(sdev);
1857  	aac_put_safw_scsi_device(sdev);
1858  }
1859  
aac_is_safw_scan_count_equal(struct aac_dev * dev,int bus,int target)1860  static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1861  	int bus, int target)
1862  {
1863  	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1864  }
1865  
aac_is_safw_target_valid(struct aac_dev * dev,int bus,int target)1866  static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1867  {
1868  	if (is_safw_raid_volume(dev, bus, target))
1869  		return dev->fsa_dev[target].valid;
1870  	else
1871  		return aac_is_safw_scan_count_equal(dev, bus, target);
1872  }
1873  
aac_is_safw_device_exposed(struct aac_dev * dev,int bus,int target)1874  static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1875  {
1876  	int is_exposed = 0;
1877  	struct scsi_device *sdev;
1878  
1879  	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1880  	if (sdev)
1881  		is_exposed = 1;
1882  	aac_put_safw_scsi_device(sdev);
1883  
1884  	return is_exposed;
1885  }
1886  
aac_update_safw_host_devices(struct aac_dev * dev)1887  static int aac_update_safw_host_devices(struct aac_dev *dev)
1888  {
1889  	int i;
1890  	int bus;
1891  	int target;
1892  	int is_exposed = 0;
1893  	int rcode = 0;
1894  
1895  	rcode = aac_setup_safw_adapter(dev);
1896  	if (unlikely(rcode < 0)) {
1897  		goto out;
1898  	}
1899  
1900  	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1901  
1902  		bus = get_bus_number(i);
1903  		target = get_target_number(i);
1904  
1905  		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1906  
1907  		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1908  			aac_add_safw_device(dev, bus, target);
1909  		else if (!aac_is_safw_target_valid(dev, bus, target) &&
1910  								is_exposed)
1911  			aac_remove_safw_device(dev, bus, target);
1912  	}
1913  out:
1914  	return rcode;
1915  }
1916  
aac_scan_safw_host(struct aac_dev * dev)1917  static int aac_scan_safw_host(struct aac_dev *dev)
1918  {
1919  	int rcode = 0;
1920  
1921  	rcode = aac_update_safw_host_devices(dev);
1922  	if (rcode)
1923  		aac_schedule_safw_scan_worker(dev);
1924  
1925  	return rcode;
1926  }
1927  
aac_scan_host(struct aac_dev * dev)1928  int aac_scan_host(struct aac_dev *dev)
1929  {
1930  	int rcode = 0;
1931  
1932  	mutex_lock(&dev->scan_mutex);
1933  	if (dev->sa_firmware)
1934  		rcode = aac_scan_safw_host(dev);
1935  	else
1936  		scsi_scan_host(dev->scsi_host_ptr);
1937  	mutex_unlock(&dev->scan_mutex);
1938  
1939  	return rcode;
1940  }
1941  
aac_src_reinit_aif_worker(struct work_struct * work)1942  void aac_src_reinit_aif_worker(struct work_struct *work)
1943  {
1944  	struct aac_dev *dev = container_of(to_delayed_work(work),
1945  				struct aac_dev, src_reinit_aif_worker);
1946  
1947  	wait_event(dev->scsi_host_ptr->host_wait,
1948  			!scsi_host_in_recovery(dev->scsi_host_ptr));
1949  	aac_reinit_aif(dev, dev->cardtype);
1950  }
1951  
1952  /**
1953   *	aac_handle_sa_aif -	Handle a message from the firmware
1954   *	@dev: Which adapter this fib is from
1955   *	@fibptr: Pointer to fibptr from adapter
1956   *
1957   *	This routine handles a driver notify fib from the adapter and
1958   *	dispatches it to the appropriate routine for handling.
1959   */
aac_handle_sa_aif(struct aac_dev * dev,struct fib * fibptr)1960  static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1961  {
1962  	int i;
1963  	u32 events = 0;
1964  
1965  	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1966  		events = SA_AIF_HOTPLUG;
1967  	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1968  		events = SA_AIF_HARDWARE;
1969  	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1970  		events = SA_AIF_PDEV_CHANGE;
1971  	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1972  		events = SA_AIF_LDEV_CHANGE;
1973  	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1974  		events = SA_AIF_BPSTAT_CHANGE;
1975  	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1976  		events = SA_AIF_BPCFG_CHANGE;
1977  
1978  	switch (events) {
1979  	case SA_AIF_HOTPLUG:
1980  	case SA_AIF_HARDWARE:
1981  	case SA_AIF_PDEV_CHANGE:
1982  	case SA_AIF_LDEV_CHANGE:
1983  	case SA_AIF_BPCFG_CHANGE:
1984  
1985  		aac_scan_host(dev);
1986  
1987  		break;
1988  
1989  	case SA_AIF_BPSTAT_CHANGE:
1990  		/* currently do nothing */
1991  		break;
1992  	}
1993  
1994  	for (i = 1; i <= 10; ++i) {
1995  		events = src_readl(dev, MUnit.IDR);
1996  		if (events & (1<<23)) {
1997  			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1998  				i, 10);
1999  			ssleep(1);
2000  		}
2001  	}
2002  }
2003  
get_fib_count(struct aac_dev * dev)2004  static int get_fib_count(struct aac_dev *dev)
2005  {
2006  	unsigned int num = 0;
2007  	struct list_head *entry;
2008  	unsigned long flagv;
2009  
2010  	/*
2011  	 * Warning: no sleep allowed while
2012  	 * holding spinlock. We take the estimate
2013  	 * and pre-allocate a set of fibs outside the
2014  	 * lock.
2015  	 */
2016  	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2017  			/ sizeof(struct hw_fib); /* some extra */
2018  	spin_lock_irqsave(&dev->fib_lock, flagv);
2019  	entry = dev->fib_list.next;
2020  	while (entry != &dev->fib_list) {
2021  		entry = entry->next;
2022  		++num;
2023  	}
2024  	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2025  
2026  	return num;
2027  }
2028  
fillup_pools(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,unsigned int num)2029  static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2030  						struct fib **fib_pool,
2031  						unsigned int num)
2032  {
2033  	struct hw_fib **hw_fib_p;
2034  	struct fib **fib_p;
2035  
2036  	hw_fib_p = hw_fib_pool;
2037  	fib_p = fib_pool;
2038  	while (hw_fib_p < &hw_fib_pool[num]) {
2039  		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2040  		if (!(*(hw_fib_p++))) {
2041  			--hw_fib_p;
2042  			break;
2043  		}
2044  
2045  		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2046  		if (!(*(fib_p++))) {
2047  			kfree(*(--hw_fib_p));
2048  			break;
2049  		}
2050  	}
2051  
2052  	/*
2053  	 * Get the actual number of allocated fibs
2054  	 */
2055  	num = hw_fib_p - hw_fib_pool;
2056  	return num;
2057  }
2058  
wakeup_fibctx_threads(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,struct fib * fib,struct hw_fib * hw_fib,unsigned int num)2059  static void wakeup_fibctx_threads(struct aac_dev *dev,
2060  						struct hw_fib **hw_fib_pool,
2061  						struct fib **fib_pool,
2062  						struct fib *fib,
2063  						struct hw_fib *hw_fib,
2064  						unsigned int num)
2065  {
2066  	unsigned long flagv;
2067  	struct list_head *entry;
2068  	struct hw_fib **hw_fib_p;
2069  	struct fib **fib_p;
2070  	u32 time_now, time_last;
2071  	struct hw_fib *hw_newfib;
2072  	struct fib *newfib;
2073  	struct aac_fib_context *fibctx;
2074  
2075  	time_now = jiffies/HZ;
2076  	spin_lock_irqsave(&dev->fib_lock, flagv);
2077  	entry = dev->fib_list.next;
2078  	/*
2079  	 * For each Context that is on the
2080  	 * fibctxList, make a copy of the
2081  	 * fib, and then set the event to wake up the
2082  	 * thread that is waiting for it.
2083  	 */
2084  
2085  	hw_fib_p = hw_fib_pool;
2086  	fib_p = fib_pool;
2087  	while (entry != &dev->fib_list) {
2088  		/*
2089  		 * Extract the fibctx
2090  		 */
2091  		fibctx = list_entry(entry, struct aac_fib_context,
2092  				next);
2093  		/*
2094  		 * Check if the queue is getting
2095  		 * backlogged
2096  		 */
2097  		if (fibctx->count > 20) {
2098  			/*
2099  			 * It's *not* jiffies folks,
2100  			 * but jiffies / HZ so do not
2101  			 * panic ...
2102  			 */
2103  			time_last = fibctx->jiffies;
2104  			/*
2105  			 * Has it been > 2 minutes
2106  			 * since the last read off
2107  			 * the queue?
2108  			 */
2109  			if ((time_now - time_last) > aif_timeout) {
2110  				entry = entry->next;
2111  				aac_close_fib_context(dev, fibctx);
2112  				continue;
2113  			}
2114  		}
2115  		/*
2116  		 * Warning: no sleep allowed while
2117  		 * holding spinlock
2118  		 */
2119  		if (hw_fib_p >= &hw_fib_pool[num]) {
2120  			pr_warn("aifd: didn't allocate NewFib\n");
2121  			entry = entry->next;
2122  			continue;
2123  		}
2124  
2125  		hw_newfib = *hw_fib_p;
2126  		*(hw_fib_p++) = NULL;
2127  		newfib = *fib_p;
2128  		*(fib_p++) = NULL;
2129  		/*
2130  		 * Make the copy of the FIB
2131  		 */
2132  		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2133  		memcpy(newfib, fib, sizeof(struct fib));
2134  		newfib->hw_fib_va = hw_newfib;
2135  		/*
2136  		 * Put the FIB onto the
2137  		 * fibctx's fibs
2138  		 */
2139  		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2140  		fibctx->count++;
2141  		/*
2142  		 * Set the event to wake up the
2143  		 * thread that is waiting.
2144  		 */
2145  		complete(&fibctx->completion);
2146  
2147  		entry = entry->next;
2148  	}
2149  	/*
2150  	 *	Set the status of this FIB
2151  	 */
2152  	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2153  	aac_fib_adapter_complete(fib, sizeof(u32));
2154  	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2155  
2156  }
2157  
aac_process_events(struct aac_dev * dev)2158  static void aac_process_events(struct aac_dev *dev)
2159  {
2160  	struct hw_fib *hw_fib;
2161  	struct fib *fib;
2162  	unsigned long flags;
2163  	spinlock_t *t_lock;
2164  
2165  	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2166  	spin_lock_irqsave(t_lock, flags);
2167  
2168  	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2169  		struct list_head *entry;
2170  		struct aac_aifcmd *aifcmd;
2171  		unsigned int  num;
2172  		struct hw_fib **hw_fib_pool, **hw_fib_p;
2173  		struct fib **fib_pool, **fib_p;
2174  
2175  		set_current_state(TASK_RUNNING);
2176  
2177  		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2178  		list_del(entry);
2179  
2180  		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2181  		spin_unlock_irqrestore(t_lock, flags);
2182  
2183  		fib = list_entry(entry, struct fib, fiblink);
2184  		hw_fib = fib->hw_fib_va;
2185  		if (dev->sa_firmware) {
2186  			/* Thor AIF */
2187  			aac_handle_sa_aif(dev, fib);
2188  			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2189  			goto free_fib;
2190  		}
2191  		/*
2192  		 *	We will process the FIB here or pass it to a
2193  		 *	worker thread that is TBD. We Really can't
2194  		 *	do anything at this point since we don't have
2195  		 *	anything defined for this thread to do.
2196  		 */
2197  		memset(fib, 0, sizeof(struct fib));
2198  		fib->type = FSAFS_NTC_FIB_CONTEXT;
2199  		fib->size = sizeof(struct fib);
2200  		fib->hw_fib_va = hw_fib;
2201  		fib->data = hw_fib->data;
2202  		fib->dev = dev;
2203  		/*
2204  		 *	We only handle AifRequest fibs from the adapter.
2205  		 */
2206  
2207  		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2208  		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2209  			/* Handle Driver Notify Events */
2210  			aac_handle_aif(dev, fib);
2211  			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2212  			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2213  			goto free_fib;
2214  		}
2215  		/*
2216  		 * The u32 here is important and intended. We are using
2217  		 * 32bit wrapping time to fit the adapter field
2218  		 */
2219  
2220  		/* Sniff events */
2221  		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2222  		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2223  			aac_handle_aif(dev, fib);
2224  		}
2225  
2226  		/*
2227  		 * get number of fibs to process
2228  		 */
2229  		num = get_fib_count(dev);
2230  		if (!num)
2231  			goto free_fib;
2232  
2233  		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2234  						GFP_KERNEL);
2235  		if (!hw_fib_pool)
2236  			goto free_fib;
2237  
2238  		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2239  		if (!fib_pool)
2240  			goto free_hw_fib_pool;
2241  
2242  		/*
2243  		 * Fill up fib pointer pools with actual fibs
2244  		 * and hw_fibs
2245  		 */
2246  		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2247  		if (!num)
2248  			goto free_mem;
2249  
2250  		/*
2251  		 * wakeup the thread that is waiting for
2252  		 * the response from fw (ioctl)
2253  		 */
2254  		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2255  							    fib, hw_fib, num);
2256  
2257  free_mem:
2258  		/* Free up the remaining resources */
2259  		hw_fib_p = hw_fib_pool;
2260  		fib_p = fib_pool;
2261  		while (hw_fib_p < &hw_fib_pool[num]) {
2262  			kfree(*hw_fib_p);
2263  			kfree(*fib_p);
2264  			++fib_p;
2265  			++hw_fib_p;
2266  		}
2267  		kfree(fib_pool);
2268  free_hw_fib_pool:
2269  		kfree(hw_fib_pool);
2270  free_fib:
2271  		kfree(fib);
2272  		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2273  		spin_lock_irqsave(t_lock, flags);
2274  	}
2275  	/*
2276  	 *	There are no more AIF's
2277  	 */
2278  	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2279  	spin_unlock_irqrestore(t_lock, flags);
2280  }
2281  
aac_send_wellness_command(struct aac_dev * dev,char * wellness_str,u32 datasize)2282  static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2283  							u32 datasize)
2284  {
2285  	struct aac_srb *srbcmd;
2286  	struct sgmap64 *sg64;
2287  	dma_addr_t addr;
2288  	char *dma_buf;
2289  	struct fib *fibptr;
2290  	int ret = -ENOMEM;
2291  	u32 vbus, vid;
2292  
2293  	fibptr = aac_fib_alloc(dev);
2294  	if (!fibptr)
2295  		goto out;
2296  
2297  	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2298  				     GFP_KERNEL);
2299  	if (!dma_buf)
2300  		goto fib_free_out;
2301  
2302  	aac_fib_init(fibptr);
2303  
2304  	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2305  	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2306  
2307  	srbcmd = (struct aac_srb *)fib_data(fibptr);
2308  
2309  	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2310  	srbcmd->channel = cpu_to_le32(vbus);
2311  	srbcmd->id = cpu_to_le32(vid);
2312  	srbcmd->lun = 0;
2313  	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2314  	srbcmd->timeout = cpu_to_le32(10);
2315  	srbcmd->retry_limit = 0;
2316  	srbcmd->cdb_size = cpu_to_le32(12);
2317  	srbcmd->count = cpu_to_le32(datasize);
2318  
2319  	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2320  	srbcmd->cdb[0] = BMIC_OUT;
2321  	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2322  	memcpy(dma_buf, (char *)wellness_str, datasize);
2323  
2324  	sg64 = (struct sgmap64 *)&srbcmd->sg;
2325  	sg64->count = cpu_to_le32(1);
2326  	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2327  	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2328  	sg64->sg[0].count = cpu_to_le32(datasize);
2329  
2330  	ret = aac_fib_send(ScsiPortCommand64, fibptr,
2331  			   sizeof(struct aac_srb) + sizeof(struct sgentry),
2332  			   FsaNormal, 1, 1, NULL, NULL);
2333  
2334  	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2335  
2336  	/*
2337  	 * Do not set XferState to zero unless
2338  	 * receives a response from F/W
2339  	 */
2340  	if (ret >= 0)
2341  		aac_fib_complete(fibptr);
2342  
2343  	/*
2344  	 * FIB should be freed only after
2345  	 * getting the response from the F/W
2346  	 */
2347  	if (ret != -ERESTARTSYS)
2348  		goto fib_free_out;
2349  
2350  out:
2351  	return ret;
2352  fib_free_out:
2353  	aac_fib_free(fibptr);
2354  	goto out;
2355  }
2356  
aac_send_safw_hostttime(struct aac_dev * dev,struct timespec64 * now)2357  static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2358  {
2359  	struct tm cur_tm;
2360  	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2361  	u32 datasize = sizeof(wellness_str);
2362  	time64_t local_time;
2363  	int ret = -ENODEV;
2364  
2365  	if (!dev->sa_firmware)
2366  		goto out;
2367  
2368  	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2369  	time64_to_tm(local_time, 0, &cur_tm);
2370  	cur_tm.tm_mon += 1;
2371  	cur_tm.tm_year += 1900;
2372  	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2373  	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2374  	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2375  	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2376  	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2377  	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2378  	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2379  
2380  	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2381  
2382  out:
2383  	return ret;
2384  }
2385  
aac_send_hosttime(struct aac_dev * dev,struct timespec64 * now)2386  static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2387  {
2388  	int ret = -ENOMEM;
2389  	struct fib *fibptr;
2390  	__le32 *info;
2391  
2392  	fibptr = aac_fib_alloc(dev);
2393  	if (!fibptr)
2394  		goto out;
2395  
2396  	aac_fib_init(fibptr);
2397  	info = (__le32 *)fib_data(fibptr);
2398  	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2399  	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2400  					1, 1, NULL, NULL);
2401  
2402  	/*
2403  	 * Do not set XferState to zero unless
2404  	 * receives a response from F/W
2405  	 */
2406  	if (ret >= 0)
2407  		aac_fib_complete(fibptr);
2408  
2409  	/*
2410  	 * FIB should be freed only after
2411  	 * getting the response from the F/W
2412  	 */
2413  	if (ret != -ERESTARTSYS)
2414  		aac_fib_free(fibptr);
2415  
2416  out:
2417  	return ret;
2418  }
2419  
2420  /**
2421   *	aac_command_thread	-	command processing thread
2422   *	@data: Adapter to monitor
2423   *
2424   *	Waits on the commandready event in it's queue. When the event gets set
2425   *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2426   *	until the queue is empty. When the queue is empty it will wait for
2427   *	more FIBs.
2428   */
2429  
aac_command_thread(void * data)2430  int aac_command_thread(void *data)
2431  {
2432  	struct aac_dev *dev = data;
2433  	DECLARE_WAITQUEUE(wait, current);
2434  	unsigned long next_jiffies = jiffies + HZ;
2435  	unsigned long next_check_jiffies = next_jiffies;
2436  	long difference = HZ;
2437  
2438  	/*
2439  	 *	We can only have one thread per adapter for AIF's.
2440  	 */
2441  	if (dev->aif_thread)
2442  		return -EINVAL;
2443  
2444  	/*
2445  	 *	Let the DPC know it has a place to send the AIF's to.
2446  	 */
2447  	dev->aif_thread = 1;
2448  	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2449  	set_current_state(TASK_INTERRUPTIBLE);
2450  	dprintk ((KERN_INFO "aac_command_thread start\n"));
2451  	while (1) {
2452  
2453  		aac_process_events(dev);
2454  
2455  		/*
2456  		 *	Background activity
2457  		 */
2458  		if ((time_before(next_check_jiffies,next_jiffies))
2459  		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2460  			next_check_jiffies = next_jiffies;
2461  			if (aac_adapter_check_health(dev) == 0) {
2462  				difference = ((long)(unsigned)check_interval)
2463  					   * HZ;
2464  				next_check_jiffies = jiffies + difference;
2465  			} else if (!dev->queues)
2466  				break;
2467  		}
2468  		if (!time_before(next_check_jiffies,next_jiffies)
2469  		 && ((difference = next_jiffies - jiffies) <= 0)) {
2470  			struct timespec64 now;
2471  			int ret;
2472  
2473  			/* Don't even try to talk to adapter if its sick */
2474  			ret = aac_adapter_check_health(dev);
2475  			if (ret || !dev->queues)
2476  				break;
2477  			next_check_jiffies = jiffies
2478  					   + ((long)(unsigned)check_interval)
2479  					   * HZ;
2480  			ktime_get_real_ts64(&now);
2481  
2482  			/* Synchronize our watches */
2483  			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2484  			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2485  				difference = HZ + HZ / 2 -
2486  					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2487  			else {
2488  				if (now.tv_nsec > NSEC_PER_SEC / 2)
2489  					++now.tv_sec;
2490  
2491  				if (dev->sa_firmware)
2492  					ret =
2493  					aac_send_safw_hostttime(dev, &now);
2494  				else
2495  					ret = aac_send_hosttime(dev, &now);
2496  
2497  				difference = (long)(unsigned)update_interval*HZ;
2498  			}
2499  			next_jiffies = jiffies + difference;
2500  			if (time_before(next_check_jiffies,next_jiffies))
2501  				difference = next_check_jiffies - jiffies;
2502  		}
2503  		if (difference <= 0)
2504  			difference = 1;
2505  		set_current_state(TASK_INTERRUPTIBLE);
2506  
2507  		if (kthread_should_stop())
2508  			break;
2509  
2510  		/*
2511  		 * we probably want usleep_range() here instead of the
2512  		 * jiffies computation
2513  		 */
2514  		schedule_timeout(difference);
2515  
2516  		if (kthread_should_stop())
2517  			break;
2518  	}
2519  	if (dev->queues)
2520  		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2521  	dev->aif_thread = 0;
2522  	return 0;
2523  }
2524  
aac_acquire_irq(struct aac_dev * dev)2525  int aac_acquire_irq(struct aac_dev *dev)
2526  {
2527  	int i;
2528  	int j;
2529  	int ret = 0;
2530  
2531  	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2532  		for (i = 0; i < dev->max_msix; i++) {
2533  			dev->aac_msix[i].vector_no = i;
2534  			dev->aac_msix[i].dev = dev;
2535  			if (request_irq(pci_irq_vector(dev->pdev, i),
2536  					dev->a_ops.adapter_intr,
2537  					0, "aacraid", &(dev->aac_msix[i]))) {
2538  				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2539  						dev->name, dev->id, i);
2540  				for (j = 0 ; j < i ; j++)
2541  					free_irq(pci_irq_vector(dev->pdev, j),
2542  						 &(dev->aac_msix[j]));
2543  				pci_disable_msix(dev->pdev);
2544  				ret = -1;
2545  			}
2546  		}
2547  	} else {
2548  		dev->aac_msix[0].vector_no = 0;
2549  		dev->aac_msix[0].dev = dev;
2550  
2551  		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2552  			IRQF_SHARED, "aacraid",
2553  			&(dev->aac_msix[0])) < 0) {
2554  			if (dev->msi)
2555  				pci_disable_msi(dev->pdev);
2556  			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2557  					dev->name, dev->id);
2558  			ret = -1;
2559  		}
2560  	}
2561  	return ret;
2562  }
2563  
aac_free_irq(struct aac_dev * dev)2564  void aac_free_irq(struct aac_dev *dev)
2565  {
2566  	int i;
2567  
2568  	if (aac_is_src(dev)) {
2569  		if (dev->max_msix > 1) {
2570  			for (i = 0; i < dev->max_msix; i++)
2571  				free_irq(pci_irq_vector(dev->pdev, i),
2572  					 &(dev->aac_msix[i]));
2573  		} else {
2574  			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2575  		}
2576  	} else {
2577  		free_irq(dev->pdev->irq, dev);
2578  	}
2579  	if (dev->msi)
2580  		pci_disable_msi(dev->pdev);
2581  	else if (dev->max_msix > 1)
2582  		pci_disable_msix(dev->pdev);
2583  }
2584