1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright 2002 Andi Kleen, SuSE Labs.
4   * Thanks to Ben LaHaise for precious feedback.
5   */
6  #include <linux/highmem.h>
7  #include <linux/memblock.h>
8  #include <linux/sched.h>
9  #include <linux/mm.h>
10  #include <linux/interrupt.h>
11  #include <linux/seq_file.h>
12  #include <linux/proc_fs.h>
13  #include <linux/debugfs.h>
14  #include <linux/pfn.h>
15  #include <linux/percpu.h>
16  #include <linux/gfp.h>
17  #include <linux/pci.h>
18  #include <linux/vmalloc.h>
19  #include <linux/libnvdimm.h>
20  #include <linux/vmstat.h>
21  #include <linux/kernel.h>
22  #include <linux/cc_platform.h>
23  #include <linux/set_memory.h>
24  #include <linux/memregion.h>
25  
26  #include <asm/e820/api.h>
27  #include <asm/processor.h>
28  #include <asm/tlbflush.h>
29  #include <asm/sections.h>
30  #include <asm/setup.h>
31  #include <linux/uaccess.h>
32  #include <asm/pgalloc.h>
33  #include <asm/proto.h>
34  #include <asm/memtype.h>
35  #include <asm/hyperv-tlfs.h>
36  #include <asm/mshyperv.h>
37  
38  #include "../mm_internal.h"
39  
40  /*
41   * The current flushing context - we pass it instead of 5 arguments:
42   */
43  struct cpa_data {
44  	unsigned long	*vaddr;
45  	pgd_t		*pgd;
46  	pgprot_t	mask_set;
47  	pgprot_t	mask_clr;
48  	unsigned long	numpages;
49  	unsigned long	curpage;
50  	unsigned long	pfn;
51  	unsigned int	flags;
52  	unsigned int	force_split		: 1,
53  			force_static_prot	: 1,
54  			force_flush_all		: 1;
55  	struct page	**pages;
56  };
57  
58  enum cpa_warn {
59  	CPA_CONFLICT,
60  	CPA_PROTECT,
61  	CPA_DETECT,
62  };
63  
64  static const int cpa_warn_level = CPA_PROTECT;
65  
66  /*
67   * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
68   * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
69   * entries change the page attribute in parallel to some other cpu
70   * splitting a large page entry along with changing the attribute.
71   */
72  static DEFINE_SPINLOCK(cpa_lock);
73  
74  #define CPA_FLUSHTLB 1
75  #define CPA_ARRAY 2
76  #define CPA_PAGES_ARRAY 4
77  #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
78  
cachemode2pgprot(enum page_cache_mode pcm)79  static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
80  {
81  	return __pgprot(cachemode2protval(pcm));
82  }
83  
84  #ifdef CONFIG_PROC_FS
85  static unsigned long direct_pages_count[PG_LEVEL_NUM];
86  
update_page_count(int level,unsigned long pages)87  void update_page_count(int level, unsigned long pages)
88  {
89  	/* Protect against CPA */
90  	spin_lock(&pgd_lock);
91  	direct_pages_count[level] += pages;
92  	spin_unlock(&pgd_lock);
93  }
94  
split_page_count(int level)95  static void split_page_count(int level)
96  {
97  	if (direct_pages_count[level] == 0)
98  		return;
99  
100  	direct_pages_count[level]--;
101  	if (system_state == SYSTEM_RUNNING) {
102  		if (level == PG_LEVEL_2M)
103  			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
104  		else if (level == PG_LEVEL_1G)
105  			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
106  	}
107  	direct_pages_count[level - 1] += PTRS_PER_PTE;
108  }
109  
arch_report_meminfo(struct seq_file * m)110  void arch_report_meminfo(struct seq_file *m)
111  {
112  	seq_printf(m, "DirectMap4k:    %8lu kB\n",
113  			direct_pages_count[PG_LEVEL_4K] << 2);
114  #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115  	seq_printf(m, "DirectMap2M:    %8lu kB\n",
116  			direct_pages_count[PG_LEVEL_2M] << 11);
117  #else
118  	seq_printf(m, "DirectMap4M:    %8lu kB\n",
119  			direct_pages_count[PG_LEVEL_2M] << 12);
120  #endif
121  	if (direct_gbpages)
122  		seq_printf(m, "DirectMap1G:    %8lu kB\n",
123  			direct_pages_count[PG_LEVEL_1G] << 20);
124  }
125  #else
split_page_count(int level)126  static inline void split_page_count(int level) { }
127  #endif
128  
129  #ifdef CONFIG_X86_CPA_STATISTICS
130  
131  static unsigned long cpa_1g_checked;
132  static unsigned long cpa_1g_sameprot;
133  static unsigned long cpa_1g_preserved;
134  static unsigned long cpa_2m_checked;
135  static unsigned long cpa_2m_sameprot;
136  static unsigned long cpa_2m_preserved;
137  static unsigned long cpa_4k_install;
138  
cpa_inc_1g_checked(void)139  static inline void cpa_inc_1g_checked(void)
140  {
141  	cpa_1g_checked++;
142  }
143  
cpa_inc_2m_checked(void)144  static inline void cpa_inc_2m_checked(void)
145  {
146  	cpa_2m_checked++;
147  }
148  
cpa_inc_4k_install(void)149  static inline void cpa_inc_4k_install(void)
150  {
151  	data_race(cpa_4k_install++);
152  }
153  
cpa_inc_lp_sameprot(int level)154  static inline void cpa_inc_lp_sameprot(int level)
155  {
156  	if (level == PG_LEVEL_1G)
157  		cpa_1g_sameprot++;
158  	else
159  		cpa_2m_sameprot++;
160  }
161  
cpa_inc_lp_preserved(int level)162  static inline void cpa_inc_lp_preserved(int level)
163  {
164  	if (level == PG_LEVEL_1G)
165  		cpa_1g_preserved++;
166  	else
167  		cpa_2m_preserved++;
168  }
169  
cpastats_show(struct seq_file * m,void * p)170  static int cpastats_show(struct seq_file *m, void *p)
171  {
172  	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
173  	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
174  	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
175  	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
176  	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
177  	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
178  	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
179  	return 0;
180  }
181  
cpastats_open(struct inode * inode,struct file * file)182  static int cpastats_open(struct inode *inode, struct file *file)
183  {
184  	return single_open(file, cpastats_show, NULL);
185  }
186  
187  static const struct file_operations cpastats_fops = {
188  	.open		= cpastats_open,
189  	.read		= seq_read,
190  	.llseek		= seq_lseek,
191  	.release	= single_release,
192  };
193  
cpa_stats_init(void)194  static int __init cpa_stats_init(void)
195  {
196  	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
197  			    &cpastats_fops);
198  	return 0;
199  }
200  late_initcall(cpa_stats_init);
201  #else
cpa_inc_1g_checked(void)202  static inline void cpa_inc_1g_checked(void) { }
cpa_inc_2m_checked(void)203  static inline void cpa_inc_2m_checked(void) { }
cpa_inc_4k_install(void)204  static inline void cpa_inc_4k_install(void) { }
cpa_inc_lp_sameprot(int level)205  static inline void cpa_inc_lp_sameprot(int level) { }
cpa_inc_lp_preserved(int level)206  static inline void cpa_inc_lp_preserved(int level) { }
207  #endif
208  
209  
210  static inline int
within(unsigned long addr,unsigned long start,unsigned long end)211  within(unsigned long addr, unsigned long start, unsigned long end)
212  {
213  	return addr >= start && addr < end;
214  }
215  
216  static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)217  within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
218  {
219  	return addr >= start && addr <= end;
220  }
221  
222  #ifdef CONFIG_X86_64
223  
224  /*
225   * The kernel image is mapped into two places in the virtual address space
226   * (addresses without KASLR, of course):
227   *
228   * 1. The kernel direct map (0xffff880000000000)
229   * 2. The "high kernel map" (0xffffffff81000000)
230   *
231   * We actually execute out of #2. If we get the address of a kernel symbol, it
232   * points to #2, but almost all physical-to-virtual translations point to #1.
233   *
234   * This is so that we can have both a directmap of all physical memory *and*
235   * take full advantage of the limited (s32) immediate addressing range (2G)
236   * of x86_64.
237   *
238   * See Documentation/arch/x86/x86_64/mm.rst for more detail.
239   */
240  
highmap_start_pfn(void)241  static inline unsigned long highmap_start_pfn(void)
242  {
243  	return __pa_symbol(_text) >> PAGE_SHIFT;
244  }
245  
highmap_end_pfn(void)246  static inline unsigned long highmap_end_pfn(void)
247  {
248  	/* Do not reference physical address outside the kernel. */
249  	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
250  }
251  
__cpa_pfn_in_highmap(unsigned long pfn)252  static bool __cpa_pfn_in_highmap(unsigned long pfn)
253  {
254  	/*
255  	 * Kernel text has an alias mapping at a high address, known
256  	 * here as "highmap".
257  	 */
258  	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
259  }
260  
261  #else
262  
__cpa_pfn_in_highmap(unsigned long pfn)263  static bool __cpa_pfn_in_highmap(unsigned long pfn)
264  {
265  	/* There is no highmap on 32-bit */
266  	return false;
267  }
268  
269  #endif
270  
271  /*
272   * See set_mce_nospec().
273   *
274   * Machine check recovery code needs to change cache mode of poisoned pages to
275   * UC to avoid speculative access logging another error. But passing the
276   * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
277   * speculative access. So we cheat and flip the top bit of the address. This
278   * works fine for the code that updates the page tables. But at the end of the
279   * process we need to flush the TLB and cache and the non-canonical address
280   * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
281   *
282   * But in the common case we already have a canonical address. This code
283   * will fix the top bit if needed and is a no-op otherwise.
284   */
fix_addr(unsigned long addr)285  static inline unsigned long fix_addr(unsigned long addr)
286  {
287  #ifdef CONFIG_X86_64
288  	return (long)(addr << 1) >> 1;
289  #else
290  	return addr;
291  #endif
292  }
293  
__cpa_addr(struct cpa_data * cpa,unsigned long idx)294  static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
295  {
296  	if (cpa->flags & CPA_PAGES_ARRAY) {
297  		struct page *page = cpa->pages[idx];
298  
299  		if (unlikely(PageHighMem(page)))
300  			return 0;
301  
302  		return (unsigned long)page_address(page);
303  	}
304  
305  	if (cpa->flags & CPA_ARRAY)
306  		return cpa->vaddr[idx];
307  
308  	return *cpa->vaddr + idx * PAGE_SIZE;
309  }
310  
311  /*
312   * Flushing functions
313   */
314  
clflush_cache_range_opt(void * vaddr,unsigned int size)315  static void clflush_cache_range_opt(void *vaddr, unsigned int size)
316  {
317  	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
318  	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
319  	void *vend = vaddr + size;
320  
321  	if (p >= vend)
322  		return;
323  
324  	for (; p < vend; p += clflush_size)
325  		clflushopt(p);
326  }
327  
328  /**
329   * clflush_cache_range - flush a cache range with clflush
330   * @vaddr:	virtual start address
331   * @size:	number of bytes to flush
332   *
333   * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
334   * SFENCE to avoid ordering issues.
335   */
clflush_cache_range(void * vaddr,unsigned int size)336  void clflush_cache_range(void *vaddr, unsigned int size)
337  {
338  	mb();
339  	clflush_cache_range_opt(vaddr, size);
340  	mb();
341  }
342  EXPORT_SYMBOL_GPL(clflush_cache_range);
343  
344  #ifdef CONFIG_ARCH_HAS_PMEM_API
arch_invalidate_pmem(void * addr,size_t size)345  void arch_invalidate_pmem(void *addr, size_t size)
346  {
347  	clflush_cache_range(addr, size);
348  }
349  EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
350  #endif
351  
352  #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
cpu_cache_has_invalidate_memregion(void)353  bool cpu_cache_has_invalidate_memregion(void)
354  {
355  	return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
356  }
357  EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
358  
cpu_cache_invalidate_memregion(int res_desc)359  int cpu_cache_invalidate_memregion(int res_desc)
360  {
361  	if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
362  		return -ENXIO;
363  	wbinvd_on_all_cpus();
364  	return 0;
365  }
366  EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
367  #endif
368  
__cpa_flush_all(void * arg)369  static void __cpa_flush_all(void *arg)
370  {
371  	unsigned long cache = (unsigned long)arg;
372  
373  	/*
374  	 * Flush all to work around Errata in early athlons regarding
375  	 * large page flushing.
376  	 */
377  	__flush_tlb_all();
378  
379  	if (cache && boot_cpu_data.x86 >= 4)
380  		wbinvd();
381  }
382  
cpa_flush_all(unsigned long cache)383  static void cpa_flush_all(unsigned long cache)
384  {
385  	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
386  
387  	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
388  }
389  
__cpa_flush_tlb(void * data)390  static void __cpa_flush_tlb(void *data)
391  {
392  	struct cpa_data *cpa = data;
393  	unsigned int i;
394  
395  	for (i = 0; i < cpa->numpages; i++)
396  		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
397  }
398  
cpa_flush(struct cpa_data * data,int cache)399  static void cpa_flush(struct cpa_data *data, int cache)
400  {
401  	struct cpa_data *cpa = data;
402  	unsigned int i;
403  
404  	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
405  
406  	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
407  		cpa_flush_all(cache);
408  		return;
409  	}
410  
411  	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
412  		flush_tlb_all();
413  	else
414  		on_each_cpu(__cpa_flush_tlb, cpa, 1);
415  
416  	if (!cache)
417  		return;
418  
419  	mb();
420  	for (i = 0; i < cpa->numpages; i++) {
421  		unsigned long addr = __cpa_addr(cpa, i);
422  		unsigned int level;
423  
424  		pte_t *pte = lookup_address(addr, &level);
425  
426  		/*
427  		 * Only flush present addresses:
428  		 */
429  		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
430  			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
431  	}
432  	mb();
433  }
434  
overlaps(unsigned long r1_start,unsigned long r1_end,unsigned long r2_start,unsigned long r2_end)435  static bool overlaps(unsigned long r1_start, unsigned long r1_end,
436  		     unsigned long r2_start, unsigned long r2_end)
437  {
438  	return (r1_start <= r2_end && r1_end >= r2_start) ||
439  		(r2_start <= r1_end && r2_end >= r1_start);
440  }
441  
442  #ifdef CONFIG_PCI_BIOS
443  /*
444   * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
445   * based config access (CONFIG_PCI_GOBIOS) support.
446   */
447  #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
448  #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
449  
protect_pci_bios(unsigned long spfn,unsigned long epfn)450  static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
451  {
452  	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
453  		return _PAGE_NX;
454  	return 0;
455  }
456  #else
protect_pci_bios(unsigned long spfn,unsigned long epfn)457  static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
458  {
459  	return 0;
460  }
461  #endif
462  
463  /*
464   * The .rodata section needs to be read-only. Using the pfn catches all
465   * aliases.  This also includes __ro_after_init, so do not enforce until
466   * kernel_set_to_readonly is true.
467   */
protect_rodata(unsigned long spfn,unsigned long epfn)468  static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
469  {
470  	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
471  
472  	/*
473  	 * Note: __end_rodata is at page aligned and not inclusive, so
474  	 * subtract 1 to get the last enforced PFN in the rodata area.
475  	 */
476  	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
477  
478  	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
479  		return _PAGE_RW;
480  	return 0;
481  }
482  
483  /*
484   * Protect kernel text against becoming non executable by forbidding
485   * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
486   * out of which the kernel actually executes.  Do not protect the low
487   * mapping.
488   *
489   * This does not cover __inittext since that is gone after boot.
490   */
protect_kernel_text(unsigned long start,unsigned long end)491  static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
492  {
493  	unsigned long t_end = (unsigned long)_etext - 1;
494  	unsigned long t_start = (unsigned long)_text;
495  
496  	if (overlaps(start, end, t_start, t_end))
497  		return _PAGE_NX;
498  	return 0;
499  }
500  
501  #if defined(CONFIG_X86_64)
502  /*
503   * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
504   * kernel text mappings for the large page aligned text, rodata sections
505   * will be always read-only. For the kernel identity mappings covering the
506   * holes caused by this alignment can be anything that user asks.
507   *
508   * This will preserve the large page mappings for kernel text/data at no
509   * extra cost.
510   */
protect_kernel_text_ro(unsigned long start,unsigned long end)511  static pgprotval_t protect_kernel_text_ro(unsigned long start,
512  					  unsigned long end)
513  {
514  	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
515  	unsigned long t_start = (unsigned long)_text;
516  	unsigned int level;
517  
518  	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
519  		return 0;
520  	/*
521  	 * Don't enforce the !RW mapping for the kernel text mapping, if
522  	 * the current mapping is already using small page mapping.  No
523  	 * need to work hard to preserve large page mappings in this case.
524  	 *
525  	 * This also fixes the Linux Xen paravirt guest boot failure caused
526  	 * by unexpected read-only mappings for kernel identity
527  	 * mappings. In this paravirt guest case, the kernel text mapping
528  	 * and the kernel identity mapping share the same page-table pages,
529  	 * so the protections for kernel text and identity mappings have to
530  	 * be the same.
531  	 */
532  	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
533  		return _PAGE_RW;
534  	return 0;
535  }
536  #else
protect_kernel_text_ro(unsigned long start,unsigned long end)537  static pgprotval_t protect_kernel_text_ro(unsigned long start,
538  					  unsigned long end)
539  {
540  	return 0;
541  }
542  #endif
543  
conflicts(pgprot_t prot,pgprotval_t val)544  static inline bool conflicts(pgprot_t prot, pgprotval_t val)
545  {
546  	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
547  }
548  
check_conflict(int warnlvl,pgprot_t prot,pgprotval_t val,unsigned long start,unsigned long end,unsigned long pfn,const char * txt)549  static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
550  				  unsigned long start, unsigned long end,
551  				  unsigned long pfn, const char *txt)
552  {
553  	static const char *lvltxt[] = {
554  		[CPA_CONFLICT]	= "conflict",
555  		[CPA_PROTECT]	= "protect",
556  		[CPA_DETECT]	= "detect",
557  	};
558  
559  	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
560  		return;
561  
562  	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
563  		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
564  		(unsigned long long)val);
565  }
566  
567  /*
568   * Certain areas of memory on x86 require very specific protection flags,
569   * for example the BIOS area or kernel text. Callers don't always get this
570   * right (again, ioremap() on BIOS memory is not uncommon) so this function
571   * checks and fixes these known static required protection bits.
572   */
static_protections(pgprot_t prot,unsigned long start,unsigned long pfn,unsigned long npg,unsigned long lpsize,int warnlvl)573  static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
574  					  unsigned long pfn, unsigned long npg,
575  					  unsigned long lpsize, int warnlvl)
576  {
577  	pgprotval_t forbidden, res;
578  	unsigned long end;
579  
580  	/*
581  	 * There is no point in checking RW/NX conflicts when the requested
582  	 * mapping is setting the page !PRESENT.
583  	 */
584  	if (!(pgprot_val(prot) & _PAGE_PRESENT))
585  		return prot;
586  
587  	/* Operate on the virtual address */
588  	end = start + npg * PAGE_SIZE - 1;
589  
590  	res = protect_kernel_text(start, end);
591  	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
592  	forbidden = res;
593  
594  	/*
595  	 * Special case to preserve a large page. If the change spawns the
596  	 * full large page mapping then there is no point to split it
597  	 * up. Happens with ftrace and is going to be removed once ftrace
598  	 * switched to text_poke().
599  	 */
600  	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
601  		res = protect_kernel_text_ro(start, end);
602  		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
603  		forbidden |= res;
604  	}
605  
606  	/* Check the PFN directly */
607  	res = protect_pci_bios(pfn, pfn + npg - 1);
608  	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
609  	forbidden |= res;
610  
611  	res = protect_rodata(pfn, pfn + npg - 1);
612  	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
613  	forbidden |= res;
614  
615  	return __pgprot(pgprot_val(prot) & ~forbidden);
616  }
617  
618  /*
619   * Validate strict W^X semantics.
620   */
verify_rwx(pgprot_t old,pgprot_t new,unsigned long start,unsigned long pfn,unsigned long npg,bool nx,bool rw)621  static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
622  				  unsigned long pfn, unsigned long npg,
623  				  bool nx, bool rw)
624  {
625  	unsigned long end;
626  
627  	/*
628  	 * 32-bit has some unfixable W+X issues, like EFI code
629  	 * and writeable data being in the same page.  Disable
630  	 * detection and enforcement there.
631  	 */
632  	if (IS_ENABLED(CONFIG_X86_32))
633  		return new;
634  
635  	/* Only verify when NX is supported: */
636  	if (!(__supported_pte_mask & _PAGE_NX))
637  		return new;
638  
639  	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
640  		return new;
641  
642  	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
643  		return new;
644  
645  	/* Non-leaf translation entries can disable writing or execution. */
646  	if (!rw || nx)
647  		return new;
648  
649  	end = start + npg * PAGE_SIZE - 1;
650  	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
651  		  (unsigned long long)pgprot_val(old),
652  		  (unsigned long long)pgprot_val(new),
653  		  start, end, pfn);
654  
655  	/*
656  	 * For now, allow all permission change attempts by returning the
657  	 * attempted permissions.  This can 'return old' to actively
658  	 * refuse the permission change at a later time.
659  	 */
660  	return new;
661  }
662  
663  /*
664   * Lookup the page table entry for a virtual address in a specific pgd.
665   * Return a pointer to the entry (or NULL if the entry does not exist),
666   * the level of the entry, and the effective NX and RW bits of all
667   * page table levels.
668   */
lookup_address_in_pgd_attr(pgd_t * pgd,unsigned long address,unsigned int * level,bool * nx,bool * rw)669  pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address,
670  				  unsigned int *level, bool *nx, bool *rw)
671  {
672  	p4d_t *p4d;
673  	pud_t *pud;
674  	pmd_t *pmd;
675  
676  	*level = PG_LEVEL_256T;
677  	*nx = false;
678  	*rw = true;
679  
680  	if (pgd_none(*pgd))
681  		return NULL;
682  
683  	*level = PG_LEVEL_512G;
684  	*nx |= pgd_flags(*pgd) & _PAGE_NX;
685  	*rw &= pgd_flags(*pgd) & _PAGE_RW;
686  
687  	p4d = p4d_offset(pgd, address);
688  	if (p4d_none(*p4d))
689  		return NULL;
690  
691  	if (p4d_leaf(*p4d) || !p4d_present(*p4d))
692  		return (pte_t *)p4d;
693  
694  	*level = PG_LEVEL_1G;
695  	*nx |= p4d_flags(*p4d) & _PAGE_NX;
696  	*rw &= p4d_flags(*p4d) & _PAGE_RW;
697  
698  	pud = pud_offset(p4d, address);
699  	if (pud_none(*pud))
700  		return NULL;
701  
702  	if (pud_leaf(*pud) || !pud_present(*pud))
703  		return (pte_t *)pud;
704  
705  	*level = PG_LEVEL_2M;
706  	*nx |= pud_flags(*pud) & _PAGE_NX;
707  	*rw &= pud_flags(*pud) & _PAGE_RW;
708  
709  	pmd = pmd_offset(pud, address);
710  	if (pmd_none(*pmd))
711  		return NULL;
712  
713  	if (pmd_leaf(*pmd) || !pmd_present(*pmd))
714  		return (pte_t *)pmd;
715  
716  	*level = PG_LEVEL_4K;
717  	*nx |= pmd_flags(*pmd) & _PAGE_NX;
718  	*rw &= pmd_flags(*pmd) & _PAGE_RW;
719  
720  	return pte_offset_kernel(pmd, address);
721  }
722  
723  /*
724   * Lookup the page table entry for a virtual address in a specific pgd.
725   * Return a pointer to the entry and the level of the mapping.
726   */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)727  pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
728  			     unsigned int *level)
729  {
730  	bool nx, rw;
731  
732  	return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw);
733  }
734  
735  /*
736   * Lookup the page table entry for a virtual address. Return a pointer
737   * to the entry and the level of the mapping.
738   *
739   * Note: the function returns p4d, pud or pmd either when the entry is marked
740   * large or when the present bit is not set. Otherwise it returns NULL.
741   */
lookup_address(unsigned long address,unsigned int * level)742  pte_t *lookup_address(unsigned long address, unsigned int *level)
743  {
744  	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
745  }
746  EXPORT_SYMBOL_GPL(lookup_address);
747  
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level,bool * nx,bool * rw)748  static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
749  				  unsigned int *level, bool *nx, bool *rw)
750  {
751  	pgd_t *pgd;
752  
753  	if (!cpa->pgd)
754  		pgd = pgd_offset_k(address);
755  	else
756  		pgd = cpa->pgd + pgd_index(address);
757  
758  	return lookup_address_in_pgd_attr(pgd, address, level, nx, rw);
759  }
760  
761  /*
762   * Lookup the PMD entry for a virtual address. Return a pointer to the entry
763   * or NULL if not present.
764   */
lookup_pmd_address(unsigned long address)765  pmd_t *lookup_pmd_address(unsigned long address)
766  {
767  	pgd_t *pgd;
768  	p4d_t *p4d;
769  	pud_t *pud;
770  
771  	pgd = pgd_offset_k(address);
772  	if (pgd_none(*pgd))
773  		return NULL;
774  
775  	p4d = p4d_offset(pgd, address);
776  	if (p4d_none(*p4d) || p4d_leaf(*p4d) || !p4d_present(*p4d))
777  		return NULL;
778  
779  	pud = pud_offset(p4d, address);
780  	if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud))
781  		return NULL;
782  
783  	return pmd_offset(pud, address);
784  }
785  
786  /*
787   * This is necessary because __pa() does not work on some
788   * kinds of memory, like vmalloc() or the alloc_remap()
789   * areas on 32-bit NUMA systems.  The percpu areas can
790   * end up in this kind of memory, for instance.
791   *
792   * Note that as long as the PTEs are well-formed with correct PFNs, this
793   * works without checking the PRESENT bit in the leaf PTE.  This is unlike
794   * the similar vmalloc_to_page() and derivatives.  Callers may depend on
795   * this behavior.
796   *
797   * This could be optimized, but it is only used in paths that are not perf
798   * sensitive, and keeping it unoptimized should increase the testing coverage
799   * for the more obscure platforms.
800   */
slow_virt_to_phys(void * __virt_addr)801  phys_addr_t slow_virt_to_phys(void *__virt_addr)
802  {
803  	unsigned long virt_addr = (unsigned long)__virt_addr;
804  	phys_addr_t phys_addr;
805  	unsigned long offset;
806  	enum pg_level level;
807  	pte_t *pte;
808  
809  	pte = lookup_address(virt_addr, &level);
810  	BUG_ON(!pte);
811  
812  	/*
813  	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
814  	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
815  	 * make 32-PAE kernel work correctly.
816  	 */
817  	switch (level) {
818  	case PG_LEVEL_1G:
819  		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
820  		offset = virt_addr & ~PUD_MASK;
821  		break;
822  	case PG_LEVEL_2M:
823  		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
824  		offset = virt_addr & ~PMD_MASK;
825  		break;
826  	default:
827  		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
828  		offset = virt_addr & ~PAGE_MASK;
829  	}
830  
831  	return (phys_addr_t)(phys_addr | offset);
832  }
833  EXPORT_SYMBOL_GPL(slow_virt_to_phys);
834  
835  /*
836   * Set the new pmd in all the pgds we know about:
837   */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)838  static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
839  {
840  	/* change init_mm */
841  	set_pte_atomic(kpte, pte);
842  #ifdef CONFIG_X86_32
843  	if (!SHARED_KERNEL_PMD) {
844  		struct page *page;
845  
846  		list_for_each_entry(page, &pgd_list, lru) {
847  			pgd_t *pgd;
848  			p4d_t *p4d;
849  			pud_t *pud;
850  			pmd_t *pmd;
851  
852  			pgd = (pgd_t *)page_address(page) + pgd_index(address);
853  			p4d = p4d_offset(pgd, address);
854  			pud = pud_offset(p4d, address);
855  			pmd = pmd_offset(pud, address);
856  			set_pte_atomic((pte_t *)pmd, pte);
857  		}
858  	}
859  #endif
860  }
861  
pgprot_clear_protnone_bits(pgprot_t prot)862  static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
863  {
864  	/*
865  	 * _PAGE_GLOBAL means "global page" for present PTEs.
866  	 * But, it is also used to indicate _PAGE_PROTNONE
867  	 * for non-present PTEs.
868  	 *
869  	 * This ensures that a _PAGE_GLOBAL PTE going from
870  	 * present to non-present is not confused as
871  	 * _PAGE_PROTNONE.
872  	 */
873  	if (!(pgprot_val(prot) & _PAGE_PRESENT))
874  		pgprot_val(prot) &= ~_PAGE_GLOBAL;
875  
876  	return prot;
877  }
878  
__should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)879  static int __should_split_large_page(pte_t *kpte, unsigned long address,
880  				     struct cpa_data *cpa)
881  {
882  	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
883  	pgprot_t old_prot, new_prot, req_prot, chk_prot;
884  	pte_t new_pte, *tmp;
885  	enum pg_level level;
886  	bool nx, rw;
887  
888  	/*
889  	 * Check for races, another CPU might have split this page
890  	 * up already:
891  	 */
892  	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
893  	if (tmp != kpte)
894  		return 1;
895  
896  	switch (level) {
897  	case PG_LEVEL_2M:
898  		old_prot = pmd_pgprot(*(pmd_t *)kpte);
899  		old_pfn = pmd_pfn(*(pmd_t *)kpte);
900  		cpa_inc_2m_checked();
901  		break;
902  	case PG_LEVEL_1G:
903  		old_prot = pud_pgprot(*(pud_t *)kpte);
904  		old_pfn = pud_pfn(*(pud_t *)kpte);
905  		cpa_inc_1g_checked();
906  		break;
907  	default:
908  		return -EINVAL;
909  	}
910  
911  	psize = page_level_size(level);
912  	pmask = page_level_mask(level);
913  
914  	/*
915  	 * Calculate the number of pages, which fit into this large
916  	 * page starting at address:
917  	 */
918  	lpaddr = (address + psize) & pmask;
919  	numpages = (lpaddr - address) >> PAGE_SHIFT;
920  	if (numpages < cpa->numpages)
921  		cpa->numpages = numpages;
922  
923  	/*
924  	 * We are safe now. Check whether the new pgprot is the same:
925  	 * Convert protection attributes to 4k-format, as cpa->mask* are set
926  	 * up accordingly.
927  	 */
928  
929  	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
930  	req_prot = pgprot_large_2_4k(old_prot);
931  
932  	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
933  	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
934  
935  	/*
936  	 * req_prot is in format of 4k pages. It must be converted to large
937  	 * page format: the caching mode includes the PAT bit located at
938  	 * different bit positions in the two formats.
939  	 */
940  	req_prot = pgprot_4k_2_large(req_prot);
941  	req_prot = pgprot_clear_protnone_bits(req_prot);
942  	if (pgprot_val(req_prot) & _PAGE_PRESENT)
943  		pgprot_val(req_prot) |= _PAGE_PSE;
944  
945  	/*
946  	 * old_pfn points to the large page base pfn. So we need to add the
947  	 * offset of the virtual address:
948  	 */
949  	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
950  	cpa->pfn = pfn;
951  
952  	/*
953  	 * Calculate the large page base address and the number of 4K pages
954  	 * in the large page
955  	 */
956  	lpaddr = address & pmask;
957  	numpages = psize >> PAGE_SHIFT;
958  
959  	/*
960  	 * Sanity check that the existing mapping is correct versus the static
961  	 * protections. static_protections() guards against !PRESENT, so no
962  	 * extra conditional required here.
963  	 */
964  	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
965  				      psize, CPA_CONFLICT);
966  
967  	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
968  		/*
969  		 * Split the large page and tell the split code to
970  		 * enforce static protections.
971  		 */
972  		cpa->force_static_prot = 1;
973  		return 1;
974  	}
975  
976  	/*
977  	 * Optimization: If the requested pgprot is the same as the current
978  	 * pgprot, then the large page can be preserved and no updates are
979  	 * required independent of alignment and length of the requested
980  	 * range. The above already established that the current pgprot is
981  	 * correct, which in consequence makes the requested pgprot correct
982  	 * as well if it is the same. The static protection scan below will
983  	 * not come to a different conclusion.
984  	 */
985  	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
986  		cpa_inc_lp_sameprot(level);
987  		return 0;
988  	}
989  
990  	/*
991  	 * If the requested range does not cover the full page, split it up
992  	 */
993  	if (address != lpaddr || cpa->numpages != numpages)
994  		return 1;
995  
996  	/*
997  	 * Check whether the requested pgprot is conflicting with a static
998  	 * protection requirement in the large page.
999  	 */
1000  	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
1001  				      psize, CPA_DETECT);
1002  
1003  	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages,
1004  			      nx, rw);
1005  
1006  	/*
1007  	 * If there is a conflict, split the large page.
1008  	 *
1009  	 * There used to be a 4k wise evaluation trying really hard to
1010  	 * preserve the large pages, but experimentation has shown, that this
1011  	 * does not help at all. There might be corner cases which would
1012  	 * preserve one large page occasionally, but it's really not worth the
1013  	 * extra code and cycles for the common case.
1014  	 */
1015  	if (pgprot_val(req_prot) != pgprot_val(new_prot))
1016  		return 1;
1017  
1018  	/* All checks passed. Update the large page mapping. */
1019  	new_pte = pfn_pte(old_pfn, new_prot);
1020  	__set_pmd_pte(kpte, address, new_pte);
1021  	cpa->flags |= CPA_FLUSHTLB;
1022  	cpa_inc_lp_preserved(level);
1023  	return 0;
1024  }
1025  
should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)1026  static int should_split_large_page(pte_t *kpte, unsigned long address,
1027  				   struct cpa_data *cpa)
1028  {
1029  	int do_split;
1030  
1031  	if (cpa->force_split)
1032  		return 1;
1033  
1034  	spin_lock(&pgd_lock);
1035  	do_split = __should_split_large_page(kpte, address, cpa);
1036  	spin_unlock(&pgd_lock);
1037  
1038  	return do_split;
1039  }
1040  
split_set_pte(struct cpa_data * cpa,pte_t * pte,unsigned long pfn,pgprot_t ref_prot,unsigned long address,unsigned long size)1041  static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1042  			  pgprot_t ref_prot, unsigned long address,
1043  			  unsigned long size)
1044  {
1045  	unsigned int npg = PFN_DOWN(size);
1046  	pgprot_t prot;
1047  
1048  	/*
1049  	 * If should_split_large_page() discovered an inconsistent mapping,
1050  	 * remove the invalid protection in the split mapping.
1051  	 */
1052  	if (!cpa->force_static_prot)
1053  		goto set;
1054  
1055  	/* Hand in lpsize = 0 to enforce the protection mechanism */
1056  	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1057  
1058  	if (pgprot_val(prot) == pgprot_val(ref_prot))
1059  		goto set;
1060  
1061  	/*
1062  	 * If this is splitting a PMD, fix it up. PUD splits cannot be
1063  	 * fixed trivially as that would require to rescan the newly
1064  	 * installed PMD mappings after returning from split_large_page()
1065  	 * so an eventual further split can allocate the necessary PTE
1066  	 * pages. Warn for now and revisit it in case this actually
1067  	 * happens.
1068  	 */
1069  	if (size == PAGE_SIZE)
1070  		ref_prot = prot;
1071  	else
1072  		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1073  set:
1074  	set_pte(pte, pfn_pte(pfn, ref_prot));
1075  }
1076  
1077  static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)1078  __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1079  		   struct page *base)
1080  {
1081  	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1082  	pte_t *pbase = (pte_t *)page_address(base);
1083  	unsigned int i, level;
1084  	pgprot_t ref_prot;
1085  	bool nx, rw;
1086  	pte_t *tmp;
1087  
1088  	spin_lock(&pgd_lock);
1089  	/*
1090  	 * Check for races, another CPU might have split this page
1091  	 * up for us already:
1092  	 */
1093  	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1094  	if (tmp != kpte) {
1095  		spin_unlock(&pgd_lock);
1096  		return 1;
1097  	}
1098  
1099  	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1100  
1101  	switch (level) {
1102  	case PG_LEVEL_2M:
1103  		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1104  		/*
1105  		 * Clear PSE (aka _PAGE_PAT) and move
1106  		 * PAT bit to correct position.
1107  		 */
1108  		ref_prot = pgprot_large_2_4k(ref_prot);
1109  		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1110  		lpaddr = address & PMD_MASK;
1111  		lpinc = PAGE_SIZE;
1112  		break;
1113  
1114  	case PG_LEVEL_1G:
1115  		ref_prot = pud_pgprot(*(pud_t *)kpte);
1116  		ref_pfn = pud_pfn(*(pud_t *)kpte);
1117  		pfninc = PMD_SIZE >> PAGE_SHIFT;
1118  		lpaddr = address & PUD_MASK;
1119  		lpinc = PMD_SIZE;
1120  		/*
1121  		 * Clear the PSE flags if the PRESENT flag is not set
1122  		 * otherwise pmd_present() will return true even on a non
1123  		 * present pmd.
1124  		 */
1125  		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1126  			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1127  		break;
1128  
1129  	default:
1130  		spin_unlock(&pgd_lock);
1131  		return 1;
1132  	}
1133  
1134  	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1135  
1136  	/*
1137  	 * Get the target pfn from the original entry:
1138  	 */
1139  	pfn = ref_pfn;
1140  	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1141  		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1142  
1143  	if (virt_addr_valid(address)) {
1144  		unsigned long pfn = PFN_DOWN(__pa(address));
1145  
1146  		if (pfn_range_is_mapped(pfn, pfn + 1))
1147  			split_page_count(level);
1148  	}
1149  
1150  	/*
1151  	 * Install the new, split up pagetable.
1152  	 *
1153  	 * We use the standard kernel pagetable protections for the new
1154  	 * pagetable protections, the actual ptes set above control the
1155  	 * primary protection behavior:
1156  	 */
1157  	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1158  
1159  	/*
1160  	 * Do a global flush tlb after splitting the large page
1161  	 * and before we do the actual change page attribute in the PTE.
1162  	 *
1163  	 * Without this, we violate the TLB application note, that says:
1164  	 * "The TLBs may contain both ordinary and large-page
1165  	 *  translations for a 4-KByte range of linear addresses. This
1166  	 *  may occur if software modifies the paging structures so that
1167  	 *  the page size used for the address range changes. If the two
1168  	 *  translations differ with respect to page frame or attributes
1169  	 *  (e.g., permissions), processor behavior is undefined and may
1170  	 *  be implementation-specific."
1171  	 *
1172  	 * We do this global tlb flush inside the cpa_lock, so that we
1173  	 * don't allow any other cpu, with stale tlb entries change the
1174  	 * page attribute in parallel, that also falls into the
1175  	 * just split large page entry.
1176  	 */
1177  	flush_tlb_all();
1178  	spin_unlock(&pgd_lock);
1179  
1180  	return 0;
1181  }
1182  
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)1183  static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1184  			    unsigned long address)
1185  {
1186  	struct page *base;
1187  
1188  	if (!debug_pagealloc_enabled())
1189  		spin_unlock(&cpa_lock);
1190  	base = alloc_pages(GFP_KERNEL, 0);
1191  	if (!debug_pagealloc_enabled())
1192  		spin_lock(&cpa_lock);
1193  	if (!base)
1194  		return -ENOMEM;
1195  
1196  	if (__split_large_page(cpa, kpte, address, base))
1197  		__free_page(base);
1198  
1199  	return 0;
1200  }
1201  
try_to_free_pte_page(pte_t * pte)1202  static bool try_to_free_pte_page(pte_t *pte)
1203  {
1204  	int i;
1205  
1206  	for (i = 0; i < PTRS_PER_PTE; i++)
1207  		if (!pte_none(pte[i]))
1208  			return false;
1209  
1210  	free_page((unsigned long)pte);
1211  	return true;
1212  }
1213  
try_to_free_pmd_page(pmd_t * pmd)1214  static bool try_to_free_pmd_page(pmd_t *pmd)
1215  {
1216  	int i;
1217  
1218  	for (i = 0; i < PTRS_PER_PMD; i++)
1219  		if (!pmd_none(pmd[i]))
1220  			return false;
1221  
1222  	free_page((unsigned long)pmd);
1223  	return true;
1224  }
1225  
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)1226  static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1227  {
1228  	pte_t *pte = pte_offset_kernel(pmd, start);
1229  
1230  	while (start < end) {
1231  		set_pte(pte, __pte(0));
1232  
1233  		start += PAGE_SIZE;
1234  		pte++;
1235  	}
1236  
1237  	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1238  		pmd_clear(pmd);
1239  		return true;
1240  	}
1241  	return false;
1242  }
1243  
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)1244  static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1245  			      unsigned long start, unsigned long end)
1246  {
1247  	if (unmap_pte_range(pmd, start, end))
1248  		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1249  			pud_clear(pud);
1250  }
1251  
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)1252  static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1253  {
1254  	pmd_t *pmd = pmd_offset(pud, start);
1255  
1256  	/*
1257  	 * Not on a 2MB page boundary?
1258  	 */
1259  	if (start & (PMD_SIZE - 1)) {
1260  		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1261  		unsigned long pre_end = min_t(unsigned long, end, next_page);
1262  
1263  		__unmap_pmd_range(pud, pmd, start, pre_end);
1264  
1265  		start = pre_end;
1266  		pmd++;
1267  	}
1268  
1269  	/*
1270  	 * Try to unmap in 2M chunks.
1271  	 */
1272  	while (end - start >= PMD_SIZE) {
1273  		if (pmd_leaf(*pmd))
1274  			pmd_clear(pmd);
1275  		else
1276  			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1277  
1278  		start += PMD_SIZE;
1279  		pmd++;
1280  	}
1281  
1282  	/*
1283  	 * 4K leftovers?
1284  	 */
1285  	if (start < end)
1286  		return __unmap_pmd_range(pud, pmd, start, end);
1287  
1288  	/*
1289  	 * Try again to free the PMD page if haven't succeeded above.
1290  	 */
1291  	if (!pud_none(*pud))
1292  		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1293  			pud_clear(pud);
1294  }
1295  
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)1296  static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1297  {
1298  	pud_t *pud = pud_offset(p4d, start);
1299  
1300  	/*
1301  	 * Not on a GB page boundary?
1302  	 */
1303  	if (start & (PUD_SIZE - 1)) {
1304  		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1305  		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1306  
1307  		unmap_pmd_range(pud, start, pre_end);
1308  
1309  		start = pre_end;
1310  		pud++;
1311  	}
1312  
1313  	/*
1314  	 * Try to unmap in 1G chunks?
1315  	 */
1316  	while (end - start >= PUD_SIZE) {
1317  
1318  		if (pud_leaf(*pud))
1319  			pud_clear(pud);
1320  		else
1321  			unmap_pmd_range(pud, start, start + PUD_SIZE);
1322  
1323  		start += PUD_SIZE;
1324  		pud++;
1325  	}
1326  
1327  	/*
1328  	 * 2M leftovers?
1329  	 */
1330  	if (start < end)
1331  		unmap_pmd_range(pud, start, end);
1332  
1333  	/*
1334  	 * No need to try to free the PUD page because we'll free it in
1335  	 * populate_pgd's error path
1336  	 */
1337  }
1338  
alloc_pte_page(pmd_t * pmd)1339  static int alloc_pte_page(pmd_t *pmd)
1340  {
1341  	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1342  	if (!pte)
1343  		return -1;
1344  
1345  	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1346  	return 0;
1347  }
1348  
alloc_pmd_page(pud_t * pud)1349  static int alloc_pmd_page(pud_t *pud)
1350  {
1351  	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1352  	if (!pmd)
1353  		return -1;
1354  
1355  	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1356  	return 0;
1357  }
1358  
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)1359  static void populate_pte(struct cpa_data *cpa,
1360  			 unsigned long start, unsigned long end,
1361  			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1362  {
1363  	pte_t *pte;
1364  
1365  	pte = pte_offset_kernel(pmd, start);
1366  
1367  	pgprot = pgprot_clear_protnone_bits(pgprot);
1368  
1369  	while (num_pages-- && start < end) {
1370  		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1371  
1372  		start	 += PAGE_SIZE;
1373  		cpa->pfn++;
1374  		pte++;
1375  	}
1376  }
1377  
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)1378  static long populate_pmd(struct cpa_data *cpa,
1379  			 unsigned long start, unsigned long end,
1380  			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1381  {
1382  	long cur_pages = 0;
1383  	pmd_t *pmd;
1384  	pgprot_t pmd_pgprot;
1385  
1386  	/*
1387  	 * Not on a 2M boundary?
1388  	 */
1389  	if (start & (PMD_SIZE - 1)) {
1390  		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1391  		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1392  
1393  		pre_end   = min_t(unsigned long, pre_end, next_page);
1394  		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1395  		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1396  
1397  		/*
1398  		 * Need a PTE page?
1399  		 */
1400  		pmd = pmd_offset(pud, start);
1401  		if (pmd_none(*pmd))
1402  			if (alloc_pte_page(pmd))
1403  				return -1;
1404  
1405  		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1406  
1407  		start = pre_end;
1408  	}
1409  
1410  	/*
1411  	 * We mapped them all?
1412  	 */
1413  	if (num_pages == cur_pages)
1414  		return cur_pages;
1415  
1416  	pmd_pgprot = pgprot_4k_2_large(pgprot);
1417  
1418  	while (end - start >= PMD_SIZE) {
1419  
1420  		/*
1421  		 * We cannot use a 1G page so allocate a PMD page if needed.
1422  		 */
1423  		if (pud_none(*pud))
1424  			if (alloc_pmd_page(pud))
1425  				return -1;
1426  
1427  		pmd = pmd_offset(pud, start);
1428  
1429  		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1430  					canon_pgprot(pmd_pgprot))));
1431  
1432  		start	  += PMD_SIZE;
1433  		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1434  		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1435  	}
1436  
1437  	/*
1438  	 * Map trailing 4K pages.
1439  	 */
1440  	if (start < end) {
1441  		pmd = pmd_offset(pud, start);
1442  		if (pmd_none(*pmd))
1443  			if (alloc_pte_page(pmd))
1444  				return -1;
1445  
1446  		populate_pte(cpa, start, end, num_pages - cur_pages,
1447  			     pmd, pgprot);
1448  	}
1449  	return num_pages;
1450  }
1451  
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1452  static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1453  			pgprot_t pgprot)
1454  {
1455  	pud_t *pud;
1456  	unsigned long end;
1457  	long cur_pages = 0;
1458  	pgprot_t pud_pgprot;
1459  
1460  	end = start + (cpa->numpages << PAGE_SHIFT);
1461  
1462  	/*
1463  	 * Not on a Gb page boundary? => map everything up to it with
1464  	 * smaller pages.
1465  	 */
1466  	if (start & (PUD_SIZE - 1)) {
1467  		unsigned long pre_end;
1468  		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1469  
1470  		pre_end   = min_t(unsigned long, end, next_page);
1471  		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1472  		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1473  
1474  		pud = pud_offset(p4d, start);
1475  
1476  		/*
1477  		 * Need a PMD page?
1478  		 */
1479  		if (pud_none(*pud))
1480  			if (alloc_pmd_page(pud))
1481  				return -1;
1482  
1483  		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1484  					 pud, pgprot);
1485  		if (cur_pages < 0)
1486  			return cur_pages;
1487  
1488  		start = pre_end;
1489  	}
1490  
1491  	/* We mapped them all? */
1492  	if (cpa->numpages == cur_pages)
1493  		return cur_pages;
1494  
1495  	pud = pud_offset(p4d, start);
1496  	pud_pgprot = pgprot_4k_2_large(pgprot);
1497  
1498  	/*
1499  	 * Map everything starting from the Gb boundary, possibly with 1G pages
1500  	 */
1501  	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1502  		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1503  				   canon_pgprot(pud_pgprot))));
1504  
1505  		start	  += PUD_SIZE;
1506  		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1507  		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1508  		pud++;
1509  	}
1510  
1511  	/* Map trailing leftover */
1512  	if (start < end) {
1513  		long tmp;
1514  
1515  		pud = pud_offset(p4d, start);
1516  		if (pud_none(*pud))
1517  			if (alloc_pmd_page(pud))
1518  				return -1;
1519  
1520  		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1521  				   pud, pgprot);
1522  		if (tmp < 0)
1523  			return cur_pages;
1524  
1525  		cur_pages += tmp;
1526  	}
1527  	return cur_pages;
1528  }
1529  
1530  /*
1531   * Restrictions for kernel page table do not necessarily apply when mapping in
1532   * an alternate PGD.
1533   */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1534  static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1535  {
1536  	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1537  	pud_t *pud = NULL;	/* shut up gcc */
1538  	p4d_t *p4d;
1539  	pgd_t *pgd_entry;
1540  	long ret;
1541  
1542  	pgd_entry = cpa->pgd + pgd_index(addr);
1543  
1544  	if (pgd_none(*pgd_entry)) {
1545  		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1546  		if (!p4d)
1547  			return -1;
1548  
1549  		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1550  	}
1551  
1552  	/*
1553  	 * Allocate a PUD page and hand it down for mapping.
1554  	 */
1555  	p4d = p4d_offset(pgd_entry, addr);
1556  	if (p4d_none(*p4d)) {
1557  		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1558  		if (!pud)
1559  			return -1;
1560  
1561  		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1562  	}
1563  
1564  	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1565  	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1566  
1567  	ret = populate_pud(cpa, addr, p4d, pgprot);
1568  	if (ret < 0) {
1569  		/*
1570  		 * Leave the PUD page in place in case some other CPU or thread
1571  		 * already found it, but remove any useless entries we just
1572  		 * added to it.
1573  		 */
1574  		unmap_pud_range(p4d, addr,
1575  				addr + (cpa->numpages << PAGE_SHIFT));
1576  		return ret;
1577  	}
1578  
1579  	cpa->numpages = ret;
1580  	return 0;
1581  }
1582  
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1583  static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1584  			       int primary)
1585  {
1586  	if (cpa->pgd) {
1587  		/*
1588  		 * Right now, we only execute this code path when mapping
1589  		 * the EFI virtual memory map regions, no other users
1590  		 * provide a ->pgd value. This may change in the future.
1591  		 */
1592  		return populate_pgd(cpa, vaddr);
1593  	}
1594  
1595  	/*
1596  	 * Ignore all non primary paths.
1597  	 */
1598  	if (!primary) {
1599  		cpa->numpages = 1;
1600  		return 0;
1601  	}
1602  
1603  	/*
1604  	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1605  	 * to have holes.
1606  	 * Also set numpages to '1' indicating that we processed cpa req for
1607  	 * one virtual address page and its pfn. TBD: numpages can be set based
1608  	 * on the initial value and the level returned by lookup_address().
1609  	 */
1610  	if (within(vaddr, PAGE_OFFSET,
1611  		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1612  		cpa->numpages = 1;
1613  		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1614  		return 0;
1615  
1616  	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1617  		/* Faults in the highmap are OK, so do not warn: */
1618  		return -EFAULT;
1619  	} else {
1620  		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1621  			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1622  			*cpa->vaddr);
1623  
1624  		return -EFAULT;
1625  	}
1626  }
1627  
__change_page_attr(struct cpa_data * cpa,int primary)1628  static int __change_page_attr(struct cpa_data *cpa, int primary)
1629  {
1630  	unsigned long address;
1631  	int do_split, err;
1632  	unsigned int level;
1633  	pte_t *kpte, old_pte;
1634  	bool nx, rw;
1635  
1636  	address = __cpa_addr(cpa, cpa->curpage);
1637  repeat:
1638  	kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1639  	if (!kpte)
1640  		return __cpa_process_fault(cpa, address, primary);
1641  
1642  	old_pte = *kpte;
1643  	if (pte_none(old_pte))
1644  		return __cpa_process_fault(cpa, address, primary);
1645  
1646  	if (level == PG_LEVEL_4K) {
1647  		pte_t new_pte;
1648  		pgprot_t old_prot = pte_pgprot(old_pte);
1649  		pgprot_t new_prot = pte_pgprot(old_pte);
1650  		unsigned long pfn = pte_pfn(old_pte);
1651  
1652  		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1653  		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1654  
1655  		cpa_inc_4k_install();
1656  		/* Hand in lpsize = 0 to enforce the protection mechanism */
1657  		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1658  					      CPA_PROTECT);
1659  
1660  		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1,
1661  				      nx, rw);
1662  
1663  		new_prot = pgprot_clear_protnone_bits(new_prot);
1664  
1665  		/*
1666  		 * We need to keep the pfn from the existing PTE,
1667  		 * after all we're only going to change its attributes
1668  		 * not the memory it points to
1669  		 */
1670  		new_pte = pfn_pte(pfn, new_prot);
1671  		cpa->pfn = pfn;
1672  		/*
1673  		 * Do we really change anything ?
1674  		 */
1675  		if (pte_val(old_pte) != pte_val(new_pte)) {
1676  			set_pte_atomic(kpte, new_pte);
1677  			cpa->flags |= CPA_FLUSHTLB;
1678  		}
1679  		cpa->numpages = 1;
1680  		return 0;
1681  	}
1682  
1683  	/*
1684  	 * Check, whether we can keep the large page intact
1685  	 * and just change the pte:
1686  	 */
1687  	do_split = should_split_large_page(kpte, address, cpa);
1688  	/*
1689  	 * When the range fits into the existing large page,
1690  	 * return. cp->numpages and cpa->tlbflush have been updated in
1691  	 * try_large_page:
1692  	 */
1693  	if (do_split <= 0)
1694  		return do_split;
1695  
1696  	/*
1697  	 * We have to split the large page:
1698  	 */
1699  	err = split_large_page(cpa, kpte, address);
1700  	if (!err)
1701  		goto repeat;
1702  
1703  	return err;
1704  }
1705  
1706  static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1707  
1708  /*
1709   * Check the directmap and "high kernel map" 'aliases'.
1710   */
cpa_process_alias(struct cpa_data * cpa)1711  static int cpa_process_alias(struct cpa_data *cpa)
1712  {
1713  	struct cpa_data alias_cpa;
1714  	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1715  	unsigned long vaddr;
1716  	int ret;
1717  
1718  	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1719  		return 0;
1720  
1721  	/*
1722  	 * No need to redo, when the primary call touched the direct
1723  	 * mapping already:
1724  	 */
1725  	vaddr = __cpa_addr(cpa, cpa->curpage);
1726  	if (!(within(vaddr, PAGE_OFFSET,
1727  		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1728  
1729  		alias_cpa = *cpa;
1730  		alias_cpa.vaddr = &laddr;
1731  		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1732  		alias_cpa.curpage = 0;
1733  
1734  		/* Directmap always has NX set, do not modify. */
1735  		if (__supported_pte_mask & _PAGE_NX) {
1736  			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1737  			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1738  		}
1739  
1740  		cpa->force_flush_all = 1;
1741  
1742  		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1743  		if (ret)
1744  			return ret;
1745  	}
1746  
1747  #ifdef CONFIG_X86_64
1748  	/*
1749  	 * If the primary call didn't touch the high mapping already
1750  	 * and the physical address is inside the kernel map, we need
1751  	 * to touch the high mapped kernel as well:
1752  	 */
1753  	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1754  	    __cpa_pfn_in_highmap(cpa->pfn)) {
1755  		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1756  					       __START_KERNEL_map - phys_base;
1757  		alias_cpa = *cpa;
1758  		alias_cpa.vaddr = &temp_cpa_vaddr;
1759  		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1760  		alias_cpa.curpage = 0;
1761  
1762  		/*
1763  		 * [_text, _brk_end) also covers data, do not modify NX except
1764  		 * in cases where the highmap is the primary target.
1765  		 */
1766  		if (__supported_pte_mask & _PAGE_NX) {
1767  			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1768  			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1769  		}
1770  
1771  		cpa->force_flush_all = 1;
1772  		/*
1773  		 * The high mapping range is imprecise, so ignore the
1774  		 * return value.
1775  		 */
1776  		__change_page_attr_set_clr(&alias_cpa, 0);
1777  	}
1778  #endif
1779  
1780  	return 0;
1781  }
1782  
__change_page_attr_set_clr(struct cpa_data * cpa,int primary)1783  static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1784  {
1785  	unsigned long numpages = cpa->numpages;
1786  	unsigned long rempages = numpages;
1787  	int ret = 0;
1788  
1789  	/*
1790  	 * No changes, easy!
1791  	 */
1792  	if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1793  	    !cpa->force_split)
1794  		return ret;
1795  
1796  	while (rempages) {
1797  		/*
1798  		 * Store the remaining nr of pages for the large page
1799  		 * preservation check.
1800  		 */
1801  		cpa->numpages = rempages;
1802  		/* for array changes, we can't use large page */
1803  		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1804  			cpa->numpages = 1;
1805  
1806  		if (!debug_pagealloc_enabled())
1807  			spin_lock(&cpa_lock);
1808  		ret = __change_page_attr(cpa, primary);
1809  		if (!debug_pagealloc_enabled())
1810  			spin_unlock(&cpa_lock);
1811  		if (ret)
1812  			goto out;
1813  
1814  		if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1815  			ret = cpa_process_alias(cpa);
1816  			if (ret)
1817  				goto out;
1818  		}
1819  
1820  		/*
1821  		 * Adjust the number of pages with the result of the
1822  		 * CPA operation. Either a large page has been
1823  		 * preserved or a single page update happened.
1824  		 */
1825  		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1826  		rempages -= cpa->numpages;
1827  		cpa->curpage += cpa->numpages;
1828  	}
1829  
1830  out:
1831  	/* Restore the original numpages */
1832  	cpa->numpages = numpages;
1833  	return ret;
1834  }
1835  
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1836  static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1837  				    pgprot_t mask_set, pgprot_t mask_clr,
1838  				    int force_split, int in_flag,
1839  				    struct page **pages)
1840  {
1841  	struct cpa_data cpa;
1842  	int ret, cache;
1843  
1844  	memset(&cpa, 0, sizeof(cpa));
1845  
1846  	/*
1847  	 * Check, if we are requested to set a not supported
1848  	 * feature.  Clearing non-supported features is OK.
1849  	 */
1850  	mask_set = canon_pgprot(mask_set);
1851  
1852  	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1853  		return 0;
1854  
1855  	/* Ensure we are PAGE_SIZE aligned */
1856  	if (in_flag & CPA_ARRAY) {
1857  		int i;
1858  		for (i = 0; i < numpages; i++) {
1859  			if (addr[i] & ~PAGE_MASK) {
1860  				addr[i] &= PAGE_MASK;
1861  				WARN_ON_ONCE(1);
1862  			}
1863  		}
1864  	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1865  		/*
1866  		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1867  		 * No need to check in that case
1868  		 */
1869  		if (*addr & ~PAGE_MASK) {
1870  			*addr &= PAGE_MASK;
1871  			/*
1872  			 * People should not be passing in unaligned addresses:
1873  			 */
1874  			WARN_ON_ONCE(1);
1875  		}
1876  	}
1877  
1878  	/* Must avoid aliasing mappings in the highmem code */
1879  	kmap_flush_unused();
1880  
1881  	vm_unmap_aliases();
1882  
1883  	cpa.vaddr = addr;
1884  	cpa.pages = pages;
1885  	cpa.numpages = numpages;
1886  	cpa.mask_set = mask_set;
1887  	cpa.mask_clr = mask_clr;
1888  	cpa.flags = in_flag;
1889  	cpa.curpage = 0;
1890  	cpa.force_split = force_split;
1891  
1892  	ret = __change_page_attr_set_clr(&cpa, 1);
1893  
1894  	/*
1895  	 * Check whether we really changed something:
1896  	 */
1897  	if (!(cpa.flags & CPA_FLUSHTLB))
1898  		goto out;
1899  
1900  	/*
1901  	 * No need to flush, when we did not set any of the caching
1902  	 * attributes:
1903  	 */
1904  	cache = !!pgprot2cachemode(mask_set);
1905  
1906  	/*
1907  	 * On error; flush everything to be sure.
1908  	 */
1909  	if (ret) {
1910  		cpa_flush_all(cache);
1911  		goto out;
1912  	}
1913  
1914  	cpa_flush(&cpa, cache);
1915  out:
1916  	return ret;
1917  }
1918  
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1919  static inline int change_page_attr_set(unsigned long *addr, int numpages,
1920  				       pgprot_t mask, int array)
1921  {
1922  	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1923  		(array ? CPA_ARRAY : 0), NULL);
1924  }
1925  
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1926  static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1927  					 pgprot_t mask, int array)
1928  {
1929  	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1930  		(array ? CPA_ARRAY : 0), NULL);
1931  }
1932  
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1933  static inline int cpa_set_pages_array(struct page **pages, int numpages,
1934  				       pgprot_t mask)
1935  {
1936  	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1937  		CPA_PAGES_ARRAY, pages);
1938  }
1939  
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1940  static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1941  					 pgprot_t mask)
1942  {
1943  	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1944  		CPA_PAGES_ARRAY, pages);
1945  }
1946  
1947  /*
1948   * __set_memory_prot is an internal helper for callers that have been passed
1949   * a pgprot_t value from upper layers and a reservation has already been taken.
1950   * If you want to set the pgprot to a specific page protocol, use the
1951   * set_memory_xx() functions.
1952   */
__set_memory_prot(unsigned long addr,int numpages,pgprot_t prot)1953  int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1954  {
1955  	return change_page_attr_set_clr(&addr, numpages, prot,
1956  					__pgprot(~pgprot_val(prot)), 0, 0,
1957  					NULL);
1958  }
1959  
_set_memory_uc(unsigned long addr,int numpages)1960  int _set_memory_uc(unsigned long addr, int numpages)
1961  {
1962  	/*
1963  	 * for now UC MINUS. see comments in ioremap()
1964  	 * If you really need strong UC use ioremap_uc(), but note
1965  	 * that you cannot override IO areas with set_memory_*() as
1966  	 * these helpers cannot work with IO memory.
1967  	 */
1968  	return change_page_attr_set(&addr, numpages,
1969  				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1970  				    0);
1971  }
1972  
set_memory_uc(unsigned long addr,int numpages)1973  int set_memory_uc(unsigned long addr, int numpages)
1974  {
1975  	int ret;
1976  
1977  	/*
1978  	 * for now UC MINUS. see comments in ioremap()
1979  	 */
1980  	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1981  			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1982  	if (ret)
1983  		goto out_err;
1984  
1985  	ret = _set_memory_uc(addr, numpages);
1986  	if (ret)
1987  		goto out_free;
1988  
1989  	return 0;
1990  
1991  out_free:
1992  	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1993  out_err:
1994  	return ret;
1995  }
1996  EXPORT_SYMBOL(set_memory_uc);
1997  
_set_memory_wc(unsigned long addr,int numpages)1998  int _set_memory_wc(unsigned long addr, int numpages)
1999  {
2000  	int ret;
2001  
2002  	ret = change_page_attr_set(&addr, numpages,
2003  				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
2004  				   0);
2005  	if (!ret) {
2006  		ret = change_page_attr_set_clr(&addr, numpages,
2007  					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
2008  					       __pgprot(_PAGE_CACHE_MASK),
2009  					       0, 0, NULL);
2010  	}
2011  	return ret;
2012  }
2013  
set_memory_wc(unsigned long addr,int numpages)2014  int set_memory_wc(unsigned long addr, int numpages)
2015  {
2016  	int ret;
2017  
2018  	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
2019  		_PAGE_CACHE_MODE_WC, NULL);
2020  	if (ret)
2021  		return ret;
2022  
2023  	ret = _set_memory_wc(addr, numpages);
2024  	if (ret)
2025  		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2026  
2027  	return ret;
2028  }
2029  EXPORT_SYMBOL(set_memory_wc);
2030  
_set_memory_wt(unsigned long addr,int numpages)2031  int _set_memory_wt(unsigned long addr, int numpages)
2032  {
2033  	return change_page_attr_set(&addr, numpages,
2034  				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
2035  }
2036  
_set_memory_wb(unsigned long addr,int numpages)2037  int _set_memory_wb(unsigned long addr, int numpages)
2038  {
2039  	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2040  	return change_page_attr_clear(&addr, numpages,
2041  				      __pgprot(_PAGE_CACHE_MASK), 0);
2042  }
2043  
set_memory_wb(unsigned long addr,int numpages)2044  int set_memory_wb(unsigned long addr, int numpages)
2045  {
2046  	int ret;
2047  
2048  	ret = _set_memory_wb(addr, numpages);
2049  	if (ret)
2050  		return ret;
2051  
2052  	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2053  	return 0;
2054  }
2055  EXPORT_SYMBOL(set_memory_wb);
2056  
2057  /* Prevent speculative access to a page by marking it not-present */
2058  #ifdef CONFIG_X86_64
set_mce_nospec(unsigned long pfn)2059  int set_mce_nospec(unsigned long pfn)
2060  {
2061  	unsigned long decoy_addr;
2062  	int rc;
2063  
2064  	/* SGX pages are not in the 1:1 map */
2065  	if (arch_is_platform_page(pfn << PAGE_SHIFT))
2066  		return 0;
2067  	/*
2068  	 * We would like to just call:
2069  	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2070  	 * but doing that would radically increase the odds of a
2071  	 * speculative access to the poison page because we'd have
2072  	 * the virtual address of the kernel 1:1 mapping sitting
2073  	 * around in registers.
2074  	 * Instead we get tricky.  We create a non-canonical address
2075  	 * that looks just like the one we want, but has bit 63 flipped.
2076  	 * This relies on set_memory_XX() properly sanitizing any __pa()
2077  	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2078  	 */
2079  	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2080  
2081  	rc = set_memory_np(decoy_addr, 1);
2082  	if (rc)
2083  		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2084  	return rc;
2085  }
2086  
2087  /* Restore full speculative operation to the pfn. */
clear_mce_nospec(unsigned long pfn)2088  int clear_mce_nospec(unsigned long pfn)
2089  {
2090  	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2091  
2092  	return set_memory_p(addr, 1);
2093  }
2094  EXPORT_SYMBOL_GPL(clear_mce_nospec);
2095  #endif /* CONFIG_X86_64 */
2096  
set_memory_x(unsigned long addr,int numpages)2097  int set_memory_x(unsigned long addr, int numpages)
2098  {
2099  	if (!(__supported_pte_mask & _PAGE_NX))
2100  		return 0;
2101  
2102  	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2103  }
2104  
set_memory_nx(unsigned long addr,int numpages)2105  int set_memory_nx(unsigned long addr, int numpages)
2106  {
2107  	if (!(__supported_pte_mask & _PAGE_NX))
2108  		return 0;
2109  
2110  	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2111  }
2112  
set_memory_ro(unsigned long addr,int numpages)2113  int set_memory_ro(unsigned long addr, int numpages)
2114  {
2115  	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2116  }
2117  
set_memory_rox(unsigned long addr,int numpages)2118  int set_memory_rox(unsigned long addr, int numpages)
2119  {
2120  	pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2121  
2122  	if (__supported_pte_mask & _PAGE_NX)
2123  		clr.pgprot |= _PAGE_NX;
2124  
2125  	return change_page_attr_clear(&addr, numpages, clr, 0);
2126  }
2127  
set_memory_rw(unsigned long addr,int numpages)2128  int set_memory_rw(unsigned long addr, int numpages)
2129  {
2130  	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2131  }
2132  
set_memory_np(unsigned long addr,int numpages)2133  int set_memory_np(unsigned long addr, int numpages)
2134  {
2135  	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2136  }
2137  
set_memory_np_noalias(unsigned long addr,int numpages)2138  int set_memory_np_noalias(unsigned long addr, int numpages)
2139  {
2140  	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2141  					__pgprot(_PAGE_PRESENT), 0,
2142  					CPA_NO_CHECK_ALIAS, NULL);
2143  }
2144  
set_memory_p(unsigned long addr,int numpages)2145  int set_memory_p(unsigned long addr, int numpages)
2146  {
2147  	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2148  }
2149  
set_memory_4k(unsigned long addr,int numpages)2150  int set_memory_4k(unsigned long addr, int numpages)
2151  {
2152  	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2153  					__pgprot(0), 1, 0, NULL);
2154  }
2155  
set_memory_nonglobal(unsigned long addr,int numpages)2156  int set_memory_nonglobal(unsigned long addr, int numpages)
2157  {
2158  	return change_page_attr_clear(&addr, numpages,
2159  				      __pgprot(_PAGE_GLOBAL), 0);
2160  }
2161  
set_memory_global(unsigned long addr,int numpages)2162  int set_memory_global(unsigned long addr, int numpages)
2163  {
2164  	return change_page_attr_set(&addr, numpages,
2165  				    __pgprot(_PAGE_GLOBAL), 0);
2166  }
2167  
2168  /*
2169   * __set_memory_enc_pgtable() is used for the hypervisors that get
2170   * informed about "encryption" status via page tables.
2171   */
__set_memory_enc_pgtable(unsigned long addr,int numpages,bool enc)2172  static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2173  {
2174  	pgprot_t empty = __pgprot(0);
2175  	struct cpa_data cpa;
2176  	int ret;
2177  
2178  	/* Should not be working on unaligned addresses */
2179  	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2180  		addr &= PAGE_MASK;
2181  
2182  	memset(&cpa, 0, sizeof(cpa));
2183  	cpa.vaddr = &addr;
2184  	cpa.numpages = numpages;
2185  	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2186  	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2187  	cpa.pgd = init_mm.pgd;
2188  
2189  	/* Must avoid aliasing mappings in the highmem code */
2190  	kmap_flush_unused();
2191  	vm_unmap_aliases();
2192  
2193  	/* Flush the caches as needed before changing the encryption attribute. */
2194  	if (x86_platform.guest.enc_tlb_flush_required(enc))
2195  		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2196  
2197  	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2198  	ret = x86_platform.guest.enc_status_change_prepare(addr, numpages, enc);
2199  	if (ret)
2200  		goto vmm_fail;
2201  
2202  	ret = __change_page_attr_set_clr(&cpa, 1);
2203  
2204  	/*
2205  	 * After changing the encryption attribute, we need to flush TLBs again
2206  	 * in case any speculative TLB caching occurred (but no need to flush
2207  	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2208  	 * flushing gets optimized in the cpa_flush() path use the same logic
2209  	 * as above.
2210  	 */
2211  	cpa_flush(&cpa, 0);
2212  
2213  	if (ret)
2214  		return ret;
2215  
2216  	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2217  	ret = x86_platform.guest.enc_status_change_finish(addr, numpages, enc);
2218  	if (ret)
2219  		goto vmm_fail;
2220  
2221  	return 0;
2222  
2223  vmm_fail:
2224  	WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s: %d\n",
2225  		  (void *)addr, numpages, enc ? "private" : "shared", ret);
2226  
2227  	return ret;
2228  }
2229  
2230  /*
2231   * The lock serializes conversions between private and shared memory.
2232   *
2233   * It is taken for read on conversion. A write lock guarantees that no
2234   * concurrent conversions are in progress.
2235   */
2236  static DECLARE_RWSEM(mem_enc_lock);
2237  
2238  /*
2239   * Stop new private<->shared conversions.
2240   *
2241   * Taking the exclusive mem_enc_lock waits for in-flight conversions to complete.
2242   * The lock is not released to prevent new conversions from being started.
2243   */
set_memory_enc_stop_conversion(void)2244  bool set_memory_enc_stop_conversion(void)
2245  {
2246  	/*
2247  	 * In a crash scenario, sleep is not allowed. Try to take the lock.
2248  	 * Failure indicates that there is a race with the conversion.
2249  	 */
2250  	if (oops_in_progress)
2251  		return down_write_trylock(&mem_enc_lock);
2252  
2253  	down_write(&mem_enc_lock);
2254  
2255  	return true;
2256  }
2257  
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)2258  static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2259  {
2260  	int ret = 0;
2261  
2262  	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
2263  		if (!down_read_trylock(&mem_enc_lock))
2264  			return -EBUSY;
2265  
2266  		ret = __set_memory_enc_pgtable(addr, numpages, enc);
2267  
2268  		up_read(&mem_enc_lock);
2269  	}
2270  
2271  	return ret;
2272  }
2273  
set_memory_encrypted(unsigned long addr,int numpages)2274  int set_memory_encrypted(unsigned long addr, int numpages)
2275  {
2276  	return __set_memory_enc_dec(addr, numpages, true);
2277  }
2278  EXPORT_SYMBOL_GPL(set_memory_encrypted);
2279  
set_memory_decrypted(unsigned long addr,int numpages)2280  int set_memory_decrypted(unsigned long addr, int numpages)
2281  {
2282  	return __set_memory_enc_dec(addr, numpages, false);
2283  }
2284  EXPORT_SYMBOL_GPL(set_memory_decrypted);
2285  
set_pages_uc(struct page * page,int numpages)2286  int set_pages_uc(struct page *page, int numpages)
2287  {
2288  	unsigned long addr = (unsigned long)page_address(page);
2289  
2290  	return set_memory_uc(addr, numpages);
2291  }
2292  EXPORT_SYMBOL(set_pages_uc);
2293  
_set_pages_array(struct page ** pages,int numpages,enum page_cache_mode new_type)2294  static int _set_pages_array(struct page **pages, int numpages,
2295  		enum page_cache_mode new_type)
2296  {
2297  	unsigned long start;
2298  	unsigned long end;
2299  	enum page_cache_mode set_type;
2300  	int i;
2301  	int free_idx;
2302  	int ret;
2303  
2304  	for (i = 0; i < numpages; i++) {
2305  		if (PageHighMem(pages[i]))
2306  			continue;
2307  		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2308  		end = start + PAGE_SIZE;
2309  		if (memtype_reserve(start, end, new_type, NULL))
2310  			goto err_out;
2311  	}
2312  
2313  	/* If WC, set to UC- first and then WC */
2314  	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2315  				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2316  
2317  	ret = cpa_set_pages_array(pages, numpages,
2318  				  cachemode2pgprot(set_type));
2319  	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2320  		ret = change_page_attr_set_clr(NULL, numpages,
2321  					       cachemode2pgprot(
2322  						_PAGE_CACHE_MODE_WC),
2323  					       __pgprot(_PAGE_CACHE_MASK),
2324  					       0, CPA_PAGES_ARRAY, pages);
2325  	if (ret)
2326  		goto err_out;
2327  	return 0; /* Success */
2328  err_out:
2329  	free_idx = i;
2330  	for (i = 0; i < free_idx; i++) {
2331  		if (PageHighMem(pages[i]))
2332  			continue;
2333  		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2334  		end = start + PAGE_SIZE;
2335  		memtype_free(start, end);
2336  	}
2337  	return -EINVAL;
2338  }
2339  
set_pages_array_uc(struct page ** pages,int numpages)2340  int set_pages_array_uc(struct page **pages, int numpages)
2341  {
2342  	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2343  }
2344  EXPORT_SYMBOL(set_pages_array_uc);
2345  
set_pages_array_wc(struct page ** pages,int numpages)2346  int set_pages_array_wc(struct page **pages, int numpages)
2347  {
2348  	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2349  }
2350  EXPORT_SYMBOL(set_pages_array_wc);
2351  
set_pages_wb(struct page * page,int numpages)2352  int set_pages_wb(struct page *page, int numpages)
2353  {
2354  	unsigned long addr = (unsigned long)page_address(page);
2355  
2356  	return set_memory_wb(addr, numpages);
2357  }
2358  EXPORT_SYMBOL(set_pages_wb);
2359  
set_pages_array_wb(struct page ** pages,int numpages)2360  int set_pages_array_wb(struct page **pages, int numpages)
2361  {
2362  	int retval;
2363  	unsigned long start;
2364  	unsigned long end;
2365  	int i;
2366  
2367  	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2368  	retval = cpa_clear_pages_array(pages, numpages,
2369  			__pgprot(_PAGE_CACHE_MASK));
2370  	if (retval)
2371  		return retval;
2372  
2373  	for (i = 0; i < numpages; i++) {
2374  		if (PageHighMem(pages[i]))
2375  			continue;
2376  		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2377  		end = start + PAGE_SIZE;
2378  		memtype_free(start, end);
2379  	}
2380  
2381  	return 0;
2382  }
2383  EXPORT_SYMBOL(set_pages_array_wb);
2384  
set_pages_ro(struct page * page,int numpages)2385  int set_pages_ro(struct page *page, int numpages)
2386  {
2387  	unsigned long addr = (unsigned long)page_address(page);
2388  
2389  	return set_memory_ro(addr, numpages);
2390  }
2391  
set_pages_rw(struct page * page,int numpages)2392  int set_pages_rw(struct page *page, int numpages)
2393  {
2394  	unsigned long addr = (unsigned long)page_address(page);
2395  
2396  	return set_memory_rw(addr, numpages);
2397  }
2398  
__set_pages_p(struct page * page,int numpages)2399  static int __set_pages_p(struct page *page, int numpages)
2400  {
2401  	unsigned long tempaddr = (unsigned long) page_address(page);
2402  	struct cpa_data cpa = { .vaddr = &tempaddr,
2403  				.pgd = NULL,
2404  				.numpages = numpages,
2405  				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2406  				.mask_clr = __pgprot(0),
2407  				.flags = CPA_NO_CHECK_ALIAS };
2408  
2409  	/*
2410  	 * No alias checking needed for setting present flag. otherwise,
2411  	 * we may need to break large pages for 64-bit kernel text
2412  	 * mappings (this adds to complexity if we want to do this from
2413  	 * atomic context especially). Let's keep it simple!
2414  	 */
2415  	return __change_page_attr_set_clr(&cpa, 1);
2416  }
2417  
__set_pages_np(struct page * page,int numpages)2418  static int __set_pages_np(struct page *page, int numpages)
2419  {
2420  	unsigned long tempaddr = (unsigned long) page_address(page);
2421  	struct cpa_data cpa = { .vaddr = &tempaddr,
2422  				.pgd = NULL,
2423  				.numpages = numpages,
2424  				.mask_set = __pgprot(0),
2425  				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2426  				.flags = CPA_NO_CHECK_ALIAS };
2427  
2428  	/*
2429  	 * No alias checking needed for setting not present flag. otherwise,
2430  	 * we may need to break large pages for 64-bit kernel text
2431  	 * mappings (this adds to complexity if we want to do this from
2432  	 * atomic context especially). Let's keep it simple!
2433  	 */
2434  	return __change_page_attr_set_clr(&cpa, 1);
2435  }
2436  
set_direct_map_invalid_noflush(struct page * page)2437  int set_direct_map_invalid_noflush(struct page *page)
2438  {
2439  	return __set_pages_np(page, 1);
2440  }
2441  
set_direct_map_default_noflush(struct page * page)2442  int set_direct_map_default_noflush(struct page *page)
2443  {
2444  	return __set_pages_p(page, 1);
2445  }
2446  
2447  #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)2448  void __kernel_map_pages(struct page *page, int numpages, int enable)
2449  {
2450  	if (PageHighMem(page))
2451  		return;
2452  	if (!enable) {
2453  		debug_check_no_locks_freed(page_address(page),
2454  					   numpages * PAGE_SIZE);
2455  	}
2456  
2457  	/*
2458  	 * The return value is ignored as the calls cannot fail.
2459  	 * Large pages for identity mappings are not used at boot time
2460  	 * and hence no memory allocations during large page split.
2461  	 */
2462  	if (enable)
2463  		__set_pages_p(page, numpages);
2464  	else
2465  		__set_pages_np(page, numpages);
2466  
2467  	/*
2468  	 * We should perform an IPI and flush all tlbs,
2469  	 * but that can deadlock->flush only current cpu.
2470  	 * Preemption needs to be disabled around __flush_tlb_all() due to
2471  	 * CR3 reload in __native_flush_tlb().
2472  	 */
2473  	preempt_disable();
2474  	__flush_tlb_all();
2475  	preempt_enable();
2476  
2477  	arch_flush_lazy_mmu_mode();
2478  }
2479  #endif /* CONFIG_DEBUG_PAGEALLOC */
2480  
kernel_page_present(struct page * page)2481  bool kernel_page_present(struct page *page)
2482  {
2483  	unsigned int level;
2484  	pte_t *pte;
2485  
2486  	if (PageHighMem(page))
2487  		return false;
2488  
2489  	pte = lookup_address((unsigned long)page_address(page), &level);
2490  	return (pte_val(*pte) & _PAGE_PRESENT);
2491  }
2492  
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2493  int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2494  				   unsigned numpages, unsigned long page_flags)
2495  {
2496  	int retval = -EINVAL;
2497  
2498  	struct cpa_data cpa = {
2499  		.vaddr = &address,
2500  		.pfn = pfn,
2501  		.pgd = pgd,
2502  		.numpages = numpages,
2503  		.mask_set = __pgprot(0),
2504  		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2505  		.flags = CPA_NO_CHECK_ALIAS,
2506  	};
2507  
2508  	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2509  
2510  	if (!(__supported_pte_mask & _PAGE_NX))
2511  		goto out;
2512  
2513  	if (!(page_flags & _PAGE_ENC))
2514  		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2515  
2516  	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2517  
2518  	retval = __change_page_attr_set_clr(&cpa, 1);
2519  	__flush_tlb_all();
2520  
2521  out:
2522  	return retval;
2523  }
2524  
2525  /*
2526   * __flush_tlb_all() flushes mappings only on current CPU and hence this
2527   * function shouldn't be used in an SMP environment. Presently, it's used only
2528   * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2529   */
kernel_unmap_pages_in_pgd(pgd_t * pgd,unsigned long address,unsigned long numpages)2530  int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2531  				     unsigned long numpages)
2532  {
2533  	int retval;
2534  
2535  	/*
2536  	 * The typical sequence for unmapping is to find a pte through
2537  	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2538  	 * the address is already mapped) and change its protections. As pfn is
2539  	 * the *target* of a mapping, it's not useful while unmapping.
2540  	 */
2541  	struct cpa_data cpa = {
2542  		.vaddr		= &address,
2543  		.pfn		= 0,
2544  		.pgd		= pgd,
2545  		.numpages	= numpages,
2546  		.mask_set	= __pgprot(0),
2547  		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2548  		.flags		= CPA_NO_CHECK_ALIAS,
2549  	};
2550  
2551  	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2552  
2553  	retval = __change_page_attr_set_clr(&cpa, 1);
2554  	__flush_tlb_all();
2555  
2556  	return retval;
2557  }
2558  
2559  /*
2560   * The testcases use internal knowledge of the implementation that shouldn't
2561   * be exposed to the rest of the kernel. Include these directly here.
2562   */
2563  #ifdef CONFIG_CPA_DEBUG
2564  #include "cpa-test.c"
2565  #endif
2566