1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_TYPES_H
3 #define _BCACHEFS_BTREE_TYPES_H
4 
5 #include <linux/list.h>
6 #include <linux/rhashtable.h>
7 
8 #include "bbpos_types.h"
9 #include "btree_key_cache_types.h"
10 #include "buckets_types.h"
11 #include "darray.h"
12 #include "errcode.h"
13 #include "journal_types.h"
14 #include "replicas_types.h"
15 #include "six.h"
16 
17 struct open_bucket;
18 struct btree_update;
19 struct btree_trans;
20 
21 #define MAX_BSETS		3U
22 
23 struct btree_nr_keys {
24 
25 	/*
26 	 * Amount of live metadata (i.e. size of node after a compaction) in
27 	 * units of u64s
28 	 */
29 	u16			live_u64s;
30 	u16			bset_u64s[MAX_BSETS];
31 
32 	/* live keys only: */
33 	u16			packed_keys;
34 	u16			unpacked_keys;
35 };
36 
37 struct bset_tree {
38 	/*
39 	 * We construct a binary tree in an array as if the array
40 	 * started at 1, so that things line up on the same cachelines
41 	 * better: see comments in bset.c at cacheline_to_bkey() for
42 	 * details
43 	 */
44 
45 	/* size of the binary tree and prev array */
46 	u16			size;
47 
48 	/* function of size - precalculated for to_inorder() */
49 	u16			extra;
50 
51 	u16			data_offset;
52 	u16			aux_data_offset;
53 	u16			end_offset;
54 };
55 
56 struct btree_write {
57 	struct journal_entry_pin	journal;
58 };
59 
60 struct btree_alloc {
61 	struct open_buckets	ob;
62 	__BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX);
63 };
64 
65 struct btree_bkey_cached_common {
66 	struct six_lock		lock;
67 	u8			level;
68 	u8			btree_id;
69 	bool			cached;
70 };
71 
72 struct btree {
73 	struct btree_bkey_cached_common c;
74 
75 	struct rhash_head	hash;
76 	u64			hash_val;
77 
78 	unsigned long		flags;
79 	u16			written;
80 	u8			nsets;
81 	u8			nr_key_bits;
82 	u16			version_ondisk;
83 
84 	struct bkey_format	format;
85 
86 	struct btree_node	*data;
87 	void			*aux_data;
88 
89 	/*
90 	 * Sets of sorted keys - the real btree node - plus a binary search tree
91 	 *
92 	 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
93 	 * to the memory we have allocated for this btree node. Additionally,
94 	 * set[0]->data points to the entire btree node as it exists on disk.
95 	 */
96 	struct bset_tree	set[MAX_BSETS];
97 
98 	struct btree_nr_keys	nr;
99 	u16			sib_u64s[2];
100 	u16			whiteout_u64s;
101 	u8			byte_order;
102 	u8			unpack_fn_len;
103 
104 	struct btree_write	writes[2];
105 
106 	/* Key/pointer for this btree node */
107 	__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
108 
109 	/*
110 	 * XXX: add a delete sequence number, so when bch2_btree_node_relock()
111 	 * fails because the lock sequence number has changed - i.e. the
112 	 * contents were modified - we can still relock the node if it's still
113 	 * the one we want, without redoing the traversal
114 	 */
115 
116 	/*
117 	 * For asynchronous splits/interior node updates:
118 	 * When we do a split, we allocate new child nodes and update the parent
119 	 * node to point to them: we update the parent in memory immediately,
120 	 * but then we must wait until the children have been written out before
121 	 * the update to the parent can be written - this is a list of the
122 	 * btree_updates that are blocking this node from being
123 	 * written:
124 	 */
125 	struct list_head	write_blocked;
126 
127 	/*
128 	 * Also for asynchronous splits/interior node updates:
129 	 * If a btree node isn't reachable yet, we don't want to kick off
130 	 * another write - because that write also won't yet be reachable and
131 	 * marking it as completed before it's reachable would be incorrect:
132 	 */
133 	unsigned long		will_make_reachable;
134 
135 	struct open_buckets	ob;
136 
137 	/* lru list */
138 	struct list_head	list;
139 };
140 
141 #define BCH_BTREE_CACHE_NOT_FREED_REASONS()	\
142 	x(lock_intent)				\
143 	x(lock_write)				\
144 	x(dirty)				\
145 	x(read_in_flight)			\
146 	x(write_in_flight)			\
147 	x(noevict)				\
148 	x(write_blocked)			\
149 	x(will_make_reachable)			\
150 	x(access_bit)
151 
152 enum bch_btree_cache_not_freed_reasons {
153 #define x(n) BCH_BTREE_CACHE_NOT_FREED_##n,
154 	BCH_BTREE_CACHE_NOT_FREED_REASONS()
155 #undef x
156 	BCH_BTREE_CACHE_NOT_FREED_REASONS_NR,
157 };
158 
159 struct btree_cache_list {
160 	unsigned		idx;
161 	struct shrinker		*shrink;
162 	struct list_head	list;
163 	size_t			nr;
164 };
165 
166 struct btree_cache {
167 	struct rhashtable	table;
168 	bool			table_init_done;
169 	/*
170 	 * We never free a struct btree, except on shutdown - we just put it on
171 	 * the btree_cache_freed list and reuse it later. This simplifies the
172 	 * code, and it doesn't cost us much memory as the memory usage is
173 	 * dominated by buffers that hold the actual btree node data and those
174 	 * can be freed - and the number of struct btrees allocated is
175 	 * effectively bounded.
176 	 *
177 	 * btree_cache_freeable effectively is a small cache - we use it because
178 	 * high order page allocations can be rather expensive, and it's quite
179 	 * common to delete and allocate btree nodes in quick succession. It
180 	 * should never grow past ~2-3 nodes in practice.
181 	 */
182 	struct mutex		lock;
183 	struct list_head	freeable;
184 	struct list_head	freed_pcpu;
185 	struct list_head	freed_nonpcpu;
186 	struct btree_cache_list	live[2];
187 
188 	size_t			nr_freeable;
189 	size_t			nr_reserve;
190 	size_t			nr_by_btree[BTREE_ID_NR];
191 	atomic_long_t		nr_dirty;
192 
193 	/* shrinker stats */
194 	size_t			nr_freed;
195 	u64			not_freed[BCH_BTREE_CACHE_NOT_FREED_REASONS_NR];
196 
197 	/*
198 	 * If we need to allocate memory for a new btree node and that
199 	 * allocation fails, we can cannibalize another node in the btree cache
200 	 * to satisfy the allocation - lock to guarantee only one thread does
201 	 * this at a time:
202 	 */
203 	struct task_struct	*alloc_lock;
204 	struct closure_waitlist	alloc_wait;
205 
206 	struct bbpos		pinned_nodes_start;
207 	struct bbpos		pinned_nodes_end;
208 	/* btree id mask: 0 for leaves, 1 for interior */
209 	u64			pinned_nodes_mask[2];
210 };
211 
212 struct btree_node_iter {
213 	struct btree_node_iter_set {
214 		u16	k, end;
215 	} data[MAX_BSETS];
216 };
217 
218 #define BTREE_ITER_FLAGS()			\
219 	x(slots)				\
220 	x(intent)				\
221 	x(prefetch)				\
222 	x(is_extents)				\
223 	x(not_extents)				\
224 	x(cached)				\
225 	x(with_key_cache)			\
226 	x(with_updates)				\
227 	x(with_journal)				\
228 	x(snapshot_field)			\
229 	x(all_snapshots)			\
230 	x(filter_snapshots)			\
231 	x(nopreserve)				\
232 	x(cached_nofill)			\
233 	x(key_cache_fill)			\
234 
235 #define STR_HASH_FLAGS()			\
236 	x(must_create)				\
237 	x(must_replace)
238 
239 #define BTREE_UPDATE_FLAGS()			\
240 	x(internal_snapshot_node)		\
241 	x(nojournal)				\
242 	x(key_cache_reclaim)
243 
244 
245 /*
246  * BTREE_TRIGGER_norun - don't run triggers at all
247  *
248  * BTREE_TRIGGER_transactional - we're running transactional triggers as part of
249  * a transaction commit: triggers may generate new updates
250  *
251  * BTREE_TRIGGER_atomic - we're running atomic triggers during a transaction
252  * commit: we have our journal reservation, we're holding btree node write
253  * locks, and we know the transaction is going to commit (returning an error
254  * here is a fatal error, causing us to go emergency read-only)
255  *
256  * BTREE_TRIGGER_gc - we're in gc/fsck: running triggers to recalculate e.g. disk usage
257  *
258  * BTREE_TRIGGER_insert - @new is entering the btree
259  * BTREE_TRIGGER_overwrite - @old is leaving the btree
260  *
261  * BTREE_TRIGGER_bucket_invalidate - signal from bucket invalidate path to alloc
262  * trigger
263  */
264 #define BTREE_TRIGGER_FLAGS()			\
265 	x(norun)				\
266 	x(transactional)			\
267 	x(atomic)				\
268 	x(check_repair)				\
269 	x(gc)					\
270 	x(insert)				\
271 	x(overwrite)				\
272 	x(is_root)				\
273 	x(bucket_invalidate)
274 
275 enum {
276 #define x(n) BTREE_ITER_FLAG_BIT_##n,
277 	BTREE_ITER_FLAGS()
278 	STR_HASH_FLAGS()
279 	BTREE_UPDATE_FLAGS()
280 	BTREE_TRIGGER_FLAGS()
281 #undef x
282 };
283 
284 /* iter flags must fit in a u16: */
285 //BUILD_BUG_ON(BTREE_ITER_FLAG_BIT_key_cache_fill > 15);
286 
287 enum btree_iter_update_trigger_flags {
288 #define x(n) BTREE_ITER_##n	= 1U << BTREE_ITER_FLAG_BIT_##n,
289 	BTREE_ITER_FLAGS()
290 #undef x
291 #define x(n) STR_HASH_##n	= 1U << BTREE_ITER_FLAG_BIT_##n,
292 	STR_HASH_FLAGS()
293 #undef x
294 #define x(n) BTREE_UPDATE_##n	= 1U << BTREE_ITER_FLAG_BIT_##n,
295 	BTREE_UPDATE_FLAGS()
296 #undef x
297 #define x(n) BTREE_TRIGGER_##n	= 1U << BTREE_ITER_FLAG_BIT_##n,
298 	BTREE_TRIGGER_FLAGS()
299 #undef x
300 };
301 
302 enum btree_path_uptodate {
303 	BTREE_ITER_UPTODATE		= 0,
304 	BTREE_ITER_NEED_RELOCK		= 1,
305 	BTREE_ITER_NEED_TRAVERSE	= 2,
306 };
307 
308 #if defined(CONFIG_BCACHEFS_LOCK_TIME_STATS) || defined(CONFIG_BCACHEFS_DEBUG)
309 #define TRACK_PATH_ALLOCATED
310 #endif
311 
312 typedef u16 btree_path_idx_t;
313 
314 struct btree_path {
315 	btree_path_idx_t	sorted_idx;
316 	u8			ref;
317 	u8			intent_ref;
318 
319 	/* btree_iter_copy starts here: */
320 	struct bpos		pos;
321 
322 	enum btree_id		btree_id:5;
323 	bool			cached:1;
324 	bool			preserve:1;
325 	enum btree_path_uptodate uptodate:2;
326 	/*
327 	 * When true, failing to relock this path will cause the transaction to
328 	 * restart:
329 	 */
330 	bool			should_be_locked:1;
331 	unsigned		level:3,
332 				locks_want:3;
333 	u8			nodes_locked;
334 
335 	struct btree_path_level {
336 		struct btree	*b;
337 		struct btree_node_iter iter;
338 		u32		lock_seq;
339 #ifdef CONFIG_BCACHEFS_LOCK_TIME_STATS
340 		u64             lock_taken_time;
341 #endif
342 	}			l[BTREE_MAX_DEPTH];
343 #ifdef TRACK_PATH_ALLOCATED
344 	unsigned long		ip_allocated;
345 #endif
346 };
347 
path_l(struct btree_path * path)348 static inline struct btree_path_level *path_l(struct btree_path *path)
349 {
350 	return path->l + path->level;
351 }
352 
btree_path_ip_allocated(struct btree_path * path)353 static inline unsigned long btree_path_ip_allocated(struct btree_path *path)
354 {
355 #ifdef TRACK_PATH_ALLOCATED
356 	return path->ip_allocated;
357 #else
358 	return _THIS_IP_;
359 #endif
360 }
361 
362 /*
363  * @pos			- iterator's current position
364  * @level		- current btree depth
365  * @locks_want		- btree level below which we start taking intent locks
366  * @nodes_locked	- bitmask indicating which nodes in @nodes are locked
367  * @nodes_intent_locked	- bitmask indicating which locks are intent locks
368  */
369 struct btree_iter {
370 	struct btree_trans	*trans;
371 	btree_path_idx_t	path;
372 	btree_path_idx_t	update_path;
373 	btree_path_idx_t	key_cache_path;
374 
375 	enum btree_id		btree_id:8;
376 	u8			min_depth;
377 
378 	/* btree_iter_copy starts here: */
379 	u16			flags;
380 
381 	/* When we're filtering by snapshot, the snapshot ID we're looking for: */
382 	unsigned		snapshot;
383 
384 	struct bpos		pos;
385 	/*
386 	 * Current unpacked key - so that bch2_btree_iter_next()/
387 	 * bch2_btree_iter_next_slot() can correctly advance pos.
388 	 */
389 	struct bkey		k;
390 
391 	/* BTREE_ITER_with_journal: */
392 	size_t			journal_idx;
393 #ifdef TRACK_PATH_ALLOCATED
394 	unsigned long		ip_allocated;
395 #endif
396 };
397 
398 #define BKEY_CACHED_ACCESSED		0
399 #define BKEY_CACHED_DIRTY		1
400 
401 struct bkey_cached {
402 	struct btree_bkey_cached_common c;
403 
404 	unsigned long		flags;
405 	u16			u64s;
406 	struct bkey_cached_key	key;
407 
408 	struct rhash_head	hash;
409 
410 	struct journal_entry_pin journal;
411 	u64			seq;
412 
413 	struct bkey_i		*k;
414 	struct rcu_head		rcu;
415 };
416 
btree_node_pos(struct btree_bkey_cached_common * b)417 static inline struct bpos btree_node_pos(struct btree_bkey_cached_common *b)
418 {
419 	return !b->cached
420 		? container_of(b, struct btree, c)->key.k.p
421 		: container_of(b, struct bkey_cached, c)->key.pos;
422 }
423 
424 struct btree_insert_entry {
425 	unsigned		flags;
426 	u8			bkey_type;
427 	enum btree_id		btree_id:8;
428 	u8			level:4;
429 	bool			cached:1;
430 	bool			insert_trigger_run:1;
431 	bool			overwrite_trigger_run:1;
432 	bool			key_cache_already_flushed:1;
433 	/*
434 	 * @old_k may be a key from the journal; @old_btree_u64s always refers
435 	 * to the size of the key being overwritten in the btree:
436 	 */
437 	u8			old_btree_u64s;
438 	btree_path_idx_t	path;
439 	struct bkey_i		*k;
440 	/* key being overwritten: */
441 	struct bkey		old_k;
442 	const struct bch_val	*old_v;
443 	unsigned long		ip_allocated;
444 };
445 
446 /* Number of btree paths we preallocate, usually enough */
447 #define BTREE_ITER_INITIAL		64
448 /*
449  * Lmiit for btree_trans_too_many_iters(); this is enough that almost all code
450  * paths should run inside this limit, and if they don't it usually indicates a
451  * bug (leaking/duplicated btree paths).
452  *
453  * exception: some fsck paths
454  *
455  * bugs with excessive path usage seem to have possibly been eliminated now, so
456  * we might consider eliminating this (and btree_trans_too_many_iter()) at some
457  * point.
458  */
459 #define BTREE_ITER_NORMAL_LIMIT		256
460 /* never exceed limit */
461 #define BTREE_ITER_MAX			(1U << 10)
462 
463 struct btree_trans_commit_hook;
464 typedef int (btree_trans_commit_hook_fn)(struct btree_trans *, struct btree_trans_commit_hook *);
465 
466 struct btree_trans_commit_hook {
467 	btree_trans_commit_hook_fn	*fn;
468 	struct btree_trans_commit_hook	*next;
469 };
470 
471 #define BTREE_TRANS_MEM_MAX	(1U << 16)
472 
473 #define BTREE_TRANS_MAX_LOCK_HOLD_TIME_NS	10000
474 
475 struct btree_trans_paths {
476 	unsigned long		nr_paths;
477 	struct btree_path	paths[];
478 };
479 
480 struct btree_trans {
481 	struct bch_fs		*c;
482 
483 	unsigned long		*paths_allocated;
484 	struct btree_path	*paths;
485 	btree_path_idx_t	*sorted;
486 	struct btree_insert_entry *updates;
487 
488 	void			*mem;
489 	unsigned		mem_top;
490 	unsigned		mem_bytes;
491 
492 	btree_path_idx_t	nr_sorted;
493 	btree_path_idx_t	nr_paths;
494 	btree_path_idx_t	nr_paths_max;
495 	btree_path_idx_t	nr_updates;
496 	u8			fn_idx;
497 	u8			lock_must_abort;
498 	bool			lock_may_not_fail:1;
499 	bool			srcu_held:1;
500 	bool			locked:1;
501 	bool			pf_memalloc_nofs:1;
502 	bool			write_locked:1;
503 	bool			used_mempool:1;
504 	bool			in_traverse_all:1;
505 	bool			paths_sorted:1;
506 	bool			memory_allocation_failure:1;
507 	bool			journal_transaction_names:1;
508 	bool			journal_replay_not_finished:1;
509 	bool			notrace_relock_fail:1;
510 	enum bch_errcode	restarted:16;
511 	u32			restart_count;
512 
513 	u64			last_begin_time;
514 	unsigned long		last_begin_ip;
515 	unsigned long		last_restarted_ip;
516 	unsigned long		last_unlock_ip;
517 	unsigned long		srcu_lock_time;
518 
519 	const char		*fn;
520 	struct btree_bkey_cached_common *locking;
521 	struct six_lock_waiter	locking_wait;
522 	int			srcu_idx;
523 
524 	/* update path: */
525 	u16			journal_entries_u64s;
526 	u16			journal_entries_size;
527 	struct jset_entry	*journal_entries;
528 
529 	struct btree_trans_commit_hook *hooks;
530 	struct journal_entry_pin *journal_pin;
531 
532 	struct journal_res	journal_res;
533 	u64			*journal_seq;
534 	struct disk_reservation *disk_res;
535 
536 	struct bch_fs_usage_base fs_usage_delta;
537 
538 	unsigned		journal_u64s;
539 	unsigned		extra_disk_res; /* XXX kill */
540 
541 #ifdef CONFIG_DEBUG_LOCK_ALLOC
542 	struct lockdep_map	dep_map;
543 #endif
544 	/* Entries before this are zeroed out on every bch2_trans_get() call */
545 
546 	struct list_head	list;
547 	struct closure		ref;
548 
549 	unsigned long		_paths_allocated[BITS_TO_LONGS(BTREE_ITER_INITIAL)];
550 	struct btree_trans_paths trans_paths;
551 	struct btree_path	_paths[BTREE_ITER_INITIAL];
552 	btree_path_idx_t	_sorted[BTREE_ITER_INITIAL + 4];
553 	struct btree_insert_entry _updates[BTREE_ITER_INITIAL];
554 };
555 
btree_iter_path(struct btree_trans * trans,struct btree_iter * iter)556 static inline struct btree_path *btree_iter_path(struct btree_trans *trans, struct btree_iter *iter)
557 {
558 	return trans->paths + iter->path;
559 }
560 
btree_iter_key_cache_path(struct btree_trans * trans,struct btree_iter * iter)561 static inline struct btree_path *btree_iter_key_cache_path(struct btree_trans *trans, struct btree_iter *iter)
562 {
563 	return iter->key_cache_path
564 		? trans->paths + iter->key_cache_path
565 		: NULL;
566 }
567 
568 #define BCH_BTREE_WRITE_TYPES()						\
569 	x(initial,		0)					\
570 	x(init_next_bset,	1)					\
571 	x(cache_reclaim,	2)					\
572 	x(journal_reclaim,	3)					\
573 	x(interior,		4)
574 
575 enum btree_write_type {
576 #define x(t, n) BTREE_WRITE_##t,
577 	BCH_BTREE_WRITE_TYPES()
578 #undef x
579 	BTREE_WRITE_TYPE_NR,
580 };
581 
582 #define BTREE_WRITE_TYPE_MASK	(roundup_pow_of_two(BTREE_WRITE_TYPE_NR) - 1)
583 #define BTREE_WRITE_TYPE_BITS	ilog2(roundup_pow_of_two(BTREE_WRITE_TYPE_NR))
584 
585 #define BTREE_FLAGS()							\
586 	x(read_in_flight)						\
587 	x(read_error)							\
588 	x(dirty)							\
589 	x(need_write)							\
590 	x(write_blocked)						\
591 	x(will_make_reachable)						\
592 	x(noevict)							\
593 	x(write_idx)							\
594 	x(accessed)							\
595 	x(write_in_flight)						\
596 	x(write_in_flight_inner)					\
597 	x(just_written)							\
598 	x(dying)							\
599 	x(fake)								\
600 	x(need_rewrite)							\
601 	x(never_write)							\
602 	x(pinned)
603 
604 enum btree_flags {
605 	/* First bits for btree node write type */
606 	BTREE_NODE_FLAGS_START = BTREE_WRITE_TYPE_BITS - 1,
607 #define x(flag)	BTREE_NODE_##flag,
608 	BTREE_FLAGS()
609 #undef x
610 };
611 
612 #define x(flag)								\
613 static inline bool btree_node_ ## flag(struct btree *b)			\
614 {	return test_bit(BTREE_NODE_ ## flag, &b->flags); }		\
615 									\
616 static inline void set_btree_node_ ## flag(struct btree *b)		\
617 {	set_bit(BTREE_NODE_ ## flag, &b->flags); }			\
618 									\
619 static inline void clear_btree_node_ ## flag(struct btree *b)		\
620 {	clear_bit(BTREE_NODE_ ## flag, &b->flags); }
621 
BTREE_FLAGS()622 BTREE_FLAGS()
623 #undef x
624 
625 static inline struct btree_write *btree_current_write(struct btree *b)
626 {
627 	return b->writes + btree_node_write_idx(b);
628 }
629 
btree_prev_write(struct btree * b)630 static inline struct btree_write *btree_prev_write(struct btree *b)
631 {
632 	return b->writes + (btree_node_write_idx(b) ^ 1);
633 }
634 
bset_tree_last(struct btree * b)635 static inline struct bset_tree *bset_tree_last(struct btree *b)
636 {
637 	EBUG_ON(!b->nsets);
638 	return b->set + b->nsets - 1;
639 }
640 
641 static inline void *
__btree_node_offset_to_ptr(const struct btree * b,u16 offset)642 __btree_node_offset_to_ptr(const struct btree *b, u16 offset)
643 {
644 	return (void *) ((u64 *) b->data + 1 + offset);
645 }
646 
647 static inline u16
__btree_node_ptr_to_offset(const struct btree * b,const void * p)648 __btree_node_ptr_to_offset(const struct btree *b, const void *p)
649 {
650 	u16 ret = (u64 *) p - 1 - (u64 *) b->data;
651 
652 	EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p);
653 	return ret;
654 }
655 
bset(const struct btree * b,const struct bset_tree * t)656 static inline struct bset *bset(const struct btree *b,
657 				const struct bset_tree *t)
658 {
659 	return __btree_node_offset_to_ptr(b, t->data_offset);
660 }
661 
set_btree_bset_end(struct btree * b,struct bset_tree * t)662 static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t)
663 {
664 	t->end_offset =
665 		__btree_node_ptr_to_offset(b, vstruct_last(bset(b, t)));
666 }
667 
set_btree_bset(struct btree * b,struct bset_tree * t,const struct bset * i)668 static inline void set_btree_bset(struct btree *b, struct bset_tree *t,
669 				  const struct bset *i)
670 {
671 	t->data_offset = __btree_node_ptr_to_offset(b, i);
672 	set_btree_bset_end(b, t);
673 }
674 
btree_bset_first(struct btree * b)675 static inline struct bset *btree_bset_first(struct btree *b)
676 {
677 	return bset(b, b->set);
678 }
679 
btree_bset_last(struct btree * b)680 static inline struct bset *btree_bset_last(struct btree *b)
681 {
682 	return bset(b, bset_tree_last(b));
683 }
684 
685 static inline u16
__btree_node_key_to_offset(const struct btree * b,const struct bkey_packed * k)686 __btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k)
687 {
688 	return __btree_node_ptr_to_offset(b, k);
689 }
690 
691 static inline struct bkey_packed *
__btree_node_offset_to_key(const struct btree * b,u16 k)692 __btree_node_offset_to_key(const struct btree *b, u16 k)
693 {
694 	return __btree_node_offset_to_ptr(b, k);
695 }
696 
btree_bkey_first_offset(const struct bset_tree * t)697 static inline unsigned btree_bkey_first_offset(const struct bset_tree *t)
698 {
699 	return t->data_offset + offsetof(struct bset, _data) / sizeof(u64);
700 }
701 
702 #define btree_bkey_first(_b, _t)					\
703 ({									\
704 	EBUG_ON(bset(_b, _t)->start !=					\
705 		__btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\
706 									\
707 	bset(_b, _t)->start;						\
708 })
709 
710 #define btree_bkey_last(_b, _t)						\
711 ({									\
712 	EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) !=	\
713 		vstruct_last(bset(_b, _t)));				\
714 									\
715 	__btree_node_offset_to_key(_b, (_t)->end_offset);		\
716 })
717 
bset_u64s(struct bset_tree * t)718 static inline unsigned bset_u64s(struct bset_tree *t)
719 {
720 	return t->end_offset - t->data_offset -
721 		sizeof(struct bset) / sizeof(u64);
722 }
723 
bset_dead_u64s(struct btree * b,struct bset_tree * t)724 static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t)
725 {
726 	return bset_u64s(t) - b->nr.bset_u64s[t - b->set];
727 }
728 
bset_byte_offset(struct btree * b,void * i)729 static inline unsigned bset_byte_offset(struct btree *b, void *i)
730 {
731 	return i - (void *) b->data;
732 }
733 
734 enum btree_node_type {
735 	BKEY_TYPE_btree,
736 #define x(kwd, val, ...) BKEY_TYPE_##kwd = val + 1,
737 	BCH_BTREE_IDS()
738 #undef x
739 	BKEY_TYPE_NR
740 };
741 
742 /* Type of a key in btree @id at level @level: */
__btree_node_type(unsigned level,enum btree_id id)743 static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id)
744 {
745 	return level ? BKEY_TYPE_btree : (unsigned) id + 1;
746 }
747 
748 /* Type of keys @b contains: */
btree_node_type(struct btree * b)749 static inline enum btree_node_type btree_node_type(struct btree *b)
750 {
751 	return __btree_node_type(b->c.level, b->c.btree_id);
752 }
753 
754 const char *bch2_btree_node_type_str(enum btree_node_type);
755 
756 #define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS		\
757 	(BIT_ULL(BKEY_TYPE_extents)|			\
758 	 BIT_ULL(BKEY_TYPE_alloc)|			\
759 	 BIT_ULL(BKEY_TYPE_inodes)|			\
760 	 BIT_ULL(BKEY_TYPE_stripes)|			\
761 	 BIT_ULL(BKEY_TYPE_reflink)|			\
762 	 BIT_ULL(BKEY_TYPE_subvolumes)|			\
763 	 BIT_ULL(BKEY_TYPE_btree))
764 
765 #define BTREE_NODE_TYPE_HAS_ATOMIC_TRIGGERS		\
766 	(BIT_ULL(BKEY_TYPE_alloc)|			\
767 	 BIT_ULL(BKEY_TYPE_inodes)|			\
768 	 BIT_ULL(BKEY_TYPE_stripes)|			\
769 	 BIT_ULL(BKEY_TYPE_snapshots))
770 
771 #define BTREE_NODE_TYPE_HAS_TRIGGERS			\
772 	(BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS|		\
773 	 BTREE_NODE_TYPE_HAS_ATOMIC_TRIGGERS)
774 
btree_node_type_has_trans_triggers(enum btree_node_type type)775 static inline bool btree_node_type_has_trans_triggers(enum btree_node_type type)
776 {
777 	return BIT_ULL(type) & BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS;
778 }
779 
btree_node_type_has_atomic_triggers(enum btree_node_type type)780 static inline bool btree_node_type_has_atomic_triggers(enum btree_node_type type)
781 {
782 	return BIT_ULL(type) & BTREE_NODE_TYPE_HAS_ATOMIC_TRIGGERS;
783 }
784 
btree_node_type_has_triggers(enum btree_node_type type)785 static inline bool btree_node_type_has_triggers(enum btree_node_type type)
786 {
787 	return BIT_ULL(type) & BTREE_NODE_TYPE_HAS_TRIGGERS;
788 }
789 
btree_node_type_is_extents(enum btree_node_type type)790 static inline bool btree_node_type_is_extents(enum btree_node_type type)
791 {
792 	const u64 mask = 0
793 #define x(name, nr, flags, ...)	|((!!((flags) & BTREE_ID_EXTENTS)) << (nr + 1))
794 	BCH_BTREE_IDS()
795 #undef x
796 	;
797 
798 	return BIT_ULL(type) & mask;
799 }
800 
btree_id_is_extents(enum btree_id btree)801 static inline bool btree_id_is_extents(enum btree_id btree)
802 {
803 	return btree_node_type_is_extents(__btree_node_type(0, btree));
804 }
805 
btree_type_has_snapshots(enum btree_id id)806 static inline bool btree_type_has_snapshots(enum btree_id id)
807 {
808 	const u64 mask = 0
809 #define x(name, nr, flags, ...)	|((!!((flags) & BTREE_ID_SNAPSHOTS)) << nr)
810 	BCH_BTREE_IDS()
811 #undef x
812 	;
813 
814 	return BIT_ULL(id) & mask;
815 }
816 
btree_type_has_snapshot_field(enum btree_id id)817 static inline bool btree_type_has_snapshot_field(enum btree_id id)
818 {
819 	const u64 mask = 0
820 #define x(name, nr, flags, ...)	|((!!((flags) & (BTREE_ID_SNAPSHOT_FIELD|BTREE_ID_SNAPSHOTS))) << nr)
821 	BCH_BTREE_IDS()
822 #undef x
823 	;
824 
825 	return BIT_ULL(id) & mask;
826 }
827 
btree_type_has_ptrs(enum btree_id id)828 static inline bool btree_type_has_ptrs(enum btree_id id)
829 {
830 	const u64 mask = 0
831 #define x(name, nr, flags, ...)	|((!!((flags) & BTREE_ID_DATA)) << nr)
832 	BCH_BTREE_IDS()
833 #undef x
834 	;
835 
836 	return BIT_ULL(id) & mask;
837 }
838 
839 struct btree_root {
840 	struct btree		*b;
841 
842 	/* On disk root - see async splits: */
843 	__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
844 	u8			level;
845 	u8			alive;
846 	s16			error;
847 };
848 
849 enum btree_gc_coalesce_fail_reason {
850 	BTREE_GC_COALESCE_FAIL_RESERVE_GET,
851 	BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC,
852 	BTREE_GC_COALESCE_FAIL_FORMAT_FITS,
853 };
854 
855 enum btree_node_sibling {
856 	btree_prev_sib,
857 	btree_next_sib,
858 };
859 
860 struct get_locks_fail {
861 	unsigned	l;
862 	struct btree	*b;
863 };
864 
865 #endif /* _BCACHEFS_BTREE_TYPES_H */
866