1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/page_io.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95,
8 * Asynchronous swapping added 30.12.95. Stephen Tweedie
9 * Removed race in async swapping. 14.4.1996. Bruno Haible
10 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12 */
13
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/psi.h>
24 #include <linux/uio.h>
25 #include <linux/sched/task.h>
26 #include <linux/delayacct.h>
27 #include <linux/zswap.h>
28 #include "swap.h"
29
__end_swap_bio_write(struct bio * bio)30 static void __end_swap_bio_write(struct bio *bio)
31 {
32 struct folio *folio = bio_first_folio_all(bio);
33
34 if (bio->bi_status) {
35 /*
36 * We failed to write the page out to swap-space.
37 * Re-dirty the page in order to avoid it being reclaimed.
38 * Also print a dire warning that things will go BAD (tm)
39 * very quickly.
40 *
41 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
42 */
43 folio_mark_dirty(folio);
44 pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
45 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
46 (unsigned long long)bio->bi_iter.bi_sector);
47 folio_clear_reclaim(folio);
48 }
49 folio_end_writeback(folio);
50 }
51
end_swap_bio_write(struct bio * bio)52 static void end_swap_bio_write(struct bio *bio)
53 {
54 __end_swap_bio_write(bio);
55 bio_put(bio);
56 }
57
__end_swap_bio_read(struct bio * bio)58 static void __end_swap_bio_read(struct bio *bio)
59 {
60 struct folio *folio = bio_first_folio_all(bio);
61
62 if (bio->bi_status) {
63 pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
64 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
65 (unsigned long long)bio->bi_iter.bi_sector);
66 } else {
67 folio_mark_uptodate(folio);
68 }
69 folio_unlock(folio);
70 }
71
end_swap_bio_read(struct bio * bio)72 static void end_swap_bio_read(struct bio *bio)
73 {
74 __end_swap_bio_read(bio);
75 bio_put(bio);
76 }
77
generic_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)78 int generic_swapfile_activate(struct swap_info_struct *sis,
79 struct file *swap_file,
80 sector_t *span)
81 {
82 struct address_space *mapping = swap_file->f_mapping;
83 struct inode *inode = mapping->host;
84 unsigned blocks_per_page;
85 unsigned long page_no;
86 unsigned blkbits;
87 sector_t probe_block;
88 sector_t last_block;
89 sector_t lowest_block = -1;
90 sector_t highest_block = 0;
91 int nr_extents = 0;
92 int ret;
93
94 blkbits = inode->i_blkbits;
95 blocks_per_page = PAGE_SIZE >> blkbits;
96
97 /*
98 * Map all the blocks into the extent tree. This code doesn't try
99 * to be very smart.
100 */
101 probe_block = 0;
102 page_no = 0;
103 last_block = i_size_read(inode) >> blkbits;
104 while ((probe_block + blocks_per_page) <= last_block &&
105 page_no < sis->max) {
106 unsigned block_in_page;
107 sector_t first_block;
108
109 cond_resched();
110
111 first_block = probe_block;
112 ret = bmap(inode, &first_block);
113 if (ret || !first_block)
114 goto bad_bmap;
115
116 /*
117 * It must be PAGE_SIZE aligned on-disk
118 */
119 if (first_block & (blocks_per_page - 1)) {
120 probe_block++;
121 goto reprobe;
122 }
123
124 for (block_in_page = 1; block_in_page < blocks_per_page;
125 block_in_page++) {
126 sector_t block;
127
128 block = probe_block + block_in_page;
129 ret = bmap(inode, &block);
130 if (ret || !block)
131 goto bad_bmap;
132
133 if (block != first_block + block_in_page) {
134 /* Discontiguity */
135 probe_block++;
136 goto reprobe;
137 }
138 }
139
140 first_block >>= (PAGE_SHIFT - blkbits);
141 if (page_no) { /* exclude the header page */
142 if (first_block < lowest_block)
143 lowest_block = first_block;
144 if (first_block > highest_block)
145 highest_block = first_block;
146 }
147
148 /*
149 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
150 */
151 ret = add_swap_extent(sis, page_no, 1, first_block);
152 if (ret < 0)
153 goto out;
154 nr_extents += ret;
155 page_no++;
156 probe_block += blocks_per_page;
157 reprobe:
158 continue;
159 }
160 ret = nr_extents;
161 *span = 1 + highest_block - lowest_block;
162 if (page_no == 0)
163 page_no = 1; /* force Empty message */
164 sis->max = page_no;
165 sis->pages = page_no - 1;
166 sis->highest_bit = page_no - 1;
167 out:
168 return ret;
169 bad_bmap:
170 pr_err("swapon: swapfile has holes\n");
171 ret = -EINVAL;
172 goto out;
173 }
174
is_folio_zero_filled(struct folio * folio)175 static bool is_folio_zero_filled(struct folio *folio)
176 {
177 unsigned int pos, last_pos;
178 unsigned long *data;
179 unsigned int i;
180
181 last_pos = PAGE_SIZE / sizeof(*data) - 1;
182 for (i = 0; i < folio_nr_pages(folio); i++) {
183 data = kmap_local_folio(folio, i * PAGE_SIZE);
184 /*
185 * Check last word first, incase the page is zero-filled at
186 * the start and has non-zero data at the end, which is common
187 * in real-world workloads.
188 */
189 if (data[last_pos]) {
190 kunmap_local(data);
191 return false;
192 }
193 for (pos = 0; pos < last_pos; pos++) {
194 if (data[pos]) {
195 kunmap_local(data);
196 return false;
197 }
198 }
199 kunmap_local(data);
200 }
201
202 return true;
203 }
204
swap_zeromap_folio_set(struct folio * folio)205 static void swap_zeromap_folio_set(struct folio *folio)
206 {
207 struct obj_cgroup *objcg = get_obj_cgroup_from_folio(folio);
208 struct swap_info_struct *sis = swp_swap_info(folio->swap);
209 int nr_pages = folio_nr_pages(folio);
210 swp_entry_t entry;
211 unsigned int i;
212
213 for (i = 0; i < folio_nr_pages(folio); i++) {
214 entry = page_swap_entry(folio_page(folio, i));
215 set_bit(swp_offset(entry), sis->zeromap);
216 }
217
218 count_vm_events(SWPOUT_ZERO, nr_pages);
219 if (objcg) {
220 count_objcg_events(objcg, SWPOUT_ZERO, nr_pages);
221 obj_cgroup_put(objcg);
222 }
223 }
224
swap_zeromap_folio_clear(struct folio * folio)225 static void swap_zeromap_folio_clear(struct folio *folio)
226 {
227 struct swap_info_struct *sis = swp_swap_info(folio->swap);
228 swp_entry_t entry;
229 unsigned int i;
230
231 for (i = 0; i < folio_nr_pages(folio); i++) {
232 entry = page_swap_entry(folio_page(folio, i));
233 clear_bit(swp_offset(entry), sis->zeromap);
234 }
235 }
236
237 /*
238 * We may have stale swap cache pages in memory: notice
239 * them here and get rid of the unnecessary final write.
240 */
swap_writepage(struct page * page,struct writeback_control * wbc)241 int swap_writepage(struct page *page, struct writeback_control *wbc)
242 {
243 struct folio *folio = page_folio(page);
244 int ret;
245
246 if (folio_free_swap(folio)) {
247 folio_unlock(folio);
248 return 0;
249 }
250 /*
251 * Arch code may have to preserve more data than just the page
252 * contents, e.g. memory tags.
253 */
254 ret = arch_prepare_to_swap(folio);
255 if (ret) {
256 folio_mark_dirty(folio);
257 folio_unlock(folio);
258 return ret;
259 }
260
261 /*
262 * Use a bitmap (zeromap) to avoid doing IO for zero-filled pages.
263 * The bits in zeromap are protected by the locked swapcache folio
264 * and atomic updates are used to protect against read-modify-write
265 * corruption due to other zero swap entries seeing concurrent updates.
266 */
267 if (is_folio_zero_filled(folio)) {
268 swap_zeromap_folio_set(folio);
269 folio_unlock(folio);
270 return 0;
271 } else {
272 /*
273 * Clear bits this folio occupies in the zeromap to prevent
274 * zero data being read in from any previous zero writes that
275 * occupied the same swap entries.
276 */
277 swap_zeromap_folio_clear(folio);
278 }
279 if (zswap_store(folio)) {
280 folio_unlock(folio);
281 return 0;
282 }
283 if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) {
284 folio_mark_dirty(folio);
285 return AOP_WRITEPAGE_ACTIVATE;
286 }
287
288 __swap_writepage(folio, wbc);
289 return 0;
290 }
291
count_swpout_vm_event(struct folio * folio)292 static inline void count_swpout_vm_event(struct folio *folio)
293 {
294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
295 if (unlikely(folio_test_pmd_mappable(folio))) {
296 count_memcg_folio_events(folio, THP_SWPOUT, 1);
297 count_vm_event(THP_SWPOUT);
298 }
299 count_mthp_stat(folio_order(folio), MTHP_STAT_SWPOUT);
300 #endif
301 count_vm_events(PSWPOUT, folio_nr_pages(folio));
302 }
303
304 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
bio_associate_blkg_from_page(struct bio * bio,struct folio * folio)305 static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio)
306 {
307 struct cgroup_subsys_state *css;
308 struct mem_cgroup *memcg;
309
310 memcg = folio_memcg(folio);
311 if (!memcg)
312 return;
313
314 rcu_read_lock();
315 css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
316 bio_associate_blkg_from_css(bio, css);
317 rcu_read_unlock();
318 }
319 #else
320 #define bio_associate_blkg_from_page(bio, folio) do { } while (0)
321 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
322
323 struct swap_iocb {
324 struct kiocb iocb;
325 struct bio_vec bvec[SWAP_CLUSTER_MAX];
326 int pages;
327 int len;
328 };
329 static mempool_t *sio_pool;
330
sio_pool_init(void)331 int sio_pool_init(void)
332 {
333 if (!sio_pool) {
334 mempool_t *pool = mempool_create_kmalloc_pool(
335 SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
336 if (cmpxchg(&sio_pool, NULL, pool))
337 mempool_destroy(pool);
338 }
339 if (!sio_pool)
340 return -ENOMEM;
341 return 0;
342 }
343
sio_write_complete(struct kiocb * iocb,long ret)344 static void sio_write_complete(struct kiocb *iocb, long ret)
345 {
346 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
347 struct page *page = sio->bvec[0].bv_page;
348 int p;
349
350 if (ret != sio->len) {
351 /*
352 * In the case of swap-over-nfs, this can be a
353 * temporary failure if the system has limited
354 * memory for allocating transmit buffers.
355 * Mark the page dirty and avoid
356 * folio_rotate_reclaimable but rate-limit the
357 * messages.
358 */
359 pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
360 ret, swap_dev_pos(page_swap_entry(page)));
361 for (p = 0; p < sio->pages; p++) {
362 page = sio->bvec[p].bv_page;
363 set_page_dirty(page);
364 ClearPageReclaim(page);
365 }
366 }
367
368 for (p = 0; p < sio->pages; p++)
369 end_page_writeback(sio->bvec[p].bv_page);
370
371 mempool_free(sio, sio_pool);
372 }
373
swap_writepage_fs(struct folio * folio,struct writeback_control * wbc)374 static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc)
375 {
376 struct swap_iocb *sio = NULL;
377 struct swap_info_struct *sis = swp_swap_info(folio->swap);
378 struct file *swap_file = sis->swap_file;
379 loff_t pos = swap_dev_pos(folio->swap);
380
381 count_swpout_vm_event(folio);
382 folio_start_writeback(folio);
383 folio_unlock(folio);
384 if (wbc->swap_plug)
385 sio = *wbc->swap_plug;
386 if (sio) {
387 if (sio->iocb.ki_filp != swap_file ||
388 sio->iocb.ki_pos + sio->len != pos) {
389 swap_write_unplug(sio);
390 sio = NULL;
391 }
392 }
393 if (!sio) {
394 sio = mempool_alloc(sio_pool, GFP_NOIO);
395 init_sync_kiocb(&sio->iocb, swap_file);
396 sio->iocb.ki_complete = sio_write_complete;
397 sio->iocb.ki_pos = pos;
398 sio->pages = 0;
399 sio->len = 0;
400 }
401 bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
402 sio->len += folio_size(folio);
403 sio->pages += 1;
404 if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
405 swap_write_unplug(sio);
406 sio = NULL;
407 }
408 if (wbc->swap_plug)
409 *wbc->swap_plug = sio;
410 }
411
swap_writepage_bdev_sync(struct folio * folio,struct writeback_control * wbc,struct swap_info_struct * sis)412 static void swap_writepage_bdev_sync(struct folio *folio,
413 struct writeback_control *wbc, struct swap_info_struct *sis)
414 {
415 struct bio_vec bv;
416 struct bio bio;
417
418 bio_init(&bio, sis->bdev, &bv, 1,
419 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc));
420 bio.bi_iter.bi_sector = swap_folio_sector(folio);
421 bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
422
423 bio_associate_blkg_from_page(&bio, folio);
424 count_swpout_vm_event(folio);
425
426 folio_start_writeback(folio);
427 folio_unlock(folio);
428
429 submit_bio_wait(&bio);
430 __end_swap_bio_write(&bio);
431 }
432
swap_writepage_bdev_async(struct folio * folio,struct writeback_control * wbc,struct swap_info_struct * sis)433 static void swap_writepage_bdev_async(struct folio *folio,
434 struct writeback_control *wbc, struct swap_info_struct *sis)
435 {
436 struct bio *bio;
437
438 bio = bio_alloc(sis->bdev, 1,
439 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
440 GFP_NOIO);
441 bio->bi_iter.bi_sector = swap_folio_sector(folio);
442 bio->bi_end_io = end_swap_bio_write;
443 bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
444
445 bio_associate_blkg_from_page(bio, folio);
446 count_swpout_vm_event(folio);
447 folio_start_writeback(folio);
448 folio_unlock(folio);
449 submit_bio(bio);
450 }
451
__swap_writepage(struct folio * folio,struct writeback_control * wbc)452 void __swap_writepage(struct folio *folio, struct writeback_control *wbc)
453 {
454 struct swap_info_struct *sis = swp_swap_info(folio->swap);
455
456 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
457 /*
458 * ->flags can be updated non-atomicially (scan_swap_map_slots),
459 * but that will never affect SWP_FS_OPS, so the data_race
460 * is safe.
461 */
462 if (data_race(sis->flags & SWP_FS_OPS))
463 swap_writepage_fs(folio, wbc);
464 /*
465 * ->flags can be updated non-atomicially (scan_swap_map_slots),
466 * but that will never affect SWP_SYNCHRONOUS_IO, so the data_race
467 * is safe.
468 */
469 else if (data_race(sis->flags & SWP_SYNCHRONOUS_IO))
470 swap_writepage_bdev_sync(folio, wbc, sis);
471 else
472 swap_writepage_bdev_async(folio, wbc, sis);
473 }
474
swap_write_unplug(struct swap_iocb * sio)475 void swap_write_unplug(struct swap_iocb *sio)
476 {
477 struct iov_iter from;
478 struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
479 int ret;
480
481 iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
482 ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
483 if (ret != -EIOCBQUEUED)
484 sio_write_complete(&sio->iocb, ret);
485 }
486
sio_read_complete(struct kiocb * iocb,long ret)487 static void sio_read_complete(struct kiocb *iocb, long ret)
488 {
489 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
490 int p;
491
492 if (ret == sio->len) {
493 for (p = 0; p < sio->pages; p++) {
494 struct folio *folio = page_folio(sio->bvec[p].bv_page);
495
496 folio_mark_uptodate(folio);
497 folio_unlock(folio);
498 }
499 count_vm_events(PSWPIN, sio->pages);
500 } else {
501 for (p = 0; p < sio->pages; p++) {
502 struct folio *folio = page_folio(sio->bvec[p].bv_page);
503
504 folio_unlock(folio);
505 }
506 pr_alert_ratelimited("Read-error on swap-device\n");
507 }
508 mempool_free(sio, sio_pool);
509 }
510
swap_read_folio_zeromap(struct folio * folio)511 static bool swap_read_folio_zeromap(struct folio *folio)
512 {
513 int nr_pages = folio_nr_pages(folio);
514 struct obj_cgroup *objcg;
515 bool is_zeromap;
516
517 /*
518 * Swapping in a large folio that is partially in the zeromap is not
519 * currently handled. Return true without marking the folio uptodate so
520 * that an IO error is emitted (e.g. do_swap_page() will sigbus).
521 */
522 if (WARN_ON_ONCE(swap_zeromap_batch(folio->swap, nr_pages,
523 &is_zeromap) != nr_pages))
524 return true;
525
526 if (!is_zeromap)
527 return false;
528
529 objcg = get_obj_cgroup_from_folio(folio);
530 count_vm_events(SWPIN_ZERO, nr_pages);
531 if (objcg) {
532 count_objcg_events(objcg, SWPIN_ZERO, nr_pages);
533 obj_cgroup_put(objcg);
534 }
535
536 folio_zero_range(folio, 0, folio_size(folio));
537 folio_mark_uptodate(folio);
538 return true;
539 }
540
swap_read_folio_fs(struct folio * folio,struct swap_iocb ** plug)541 static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug)
542 {
543 struct swap_info_struct *sis = swp_swap_info(folio->swap);
544 struct swap_iocb *sio = NULL;
545 loff_t pos = swap_dev_pos(folio->swap);
546
547 if (plug)
548 sio = *plug;
549 if (sio) {
550 if (sio->iocb.ki_filp != sis->swap_file ||
551 sio->iocb.ki_pos + sio->len != pos) {
552 swap_read_unplug(sio);
553 sio = NULL;
554 }
555 }
556 if (!sio) {
557 sio = mempool_alloc(sio_pool, GFP_KERNEL);
558 init_sync_kiocb(&sio->iocb, sis->swap_file);
559 sio->iocb.ki_pos = pos;
560 sio->iocb.ki_complete = sio_read_complete;
561 sio->pages = 0;
562 sio->len = 0;
563 }
564 bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
565 sio->len += folio_size(folio);
566 sio->pages += 1;
567 if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
568 swap_read_unplug(sio);
569 sio = NULL;
570 }
571 if (plug)
572 *plug = sio;
573 }
574
swap_read_folio_bdev_sync(struct folio * folio,struct swap_info_struct * sis)575 static void swap_read_folio_bdev_sync(struct folio *folio,
576 struct swap_info_struct *sis)
577 {
578 struct bio_vec bv;
579 struct bio bio;
580
581 bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ);
582 bio.bi_iter.bi_sector = swap_folio_sector(folio);
583 bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
584 /*
585 * Keep this task valid during swap readpage because the oom killer may
586 * attempt to access it in the page fault retry time check.
587 */
588 get_task_struct(current);
589 count_vm_events(PSWPIN, folio_nr_pages(folio));
590 submit_bio_wait(&bio);
591 __end_swap_bio_read(&bio);
592 put_task_struct(current);
593 }
594
swap_read_folio_bdev_async(struct folio * folio,struct swap_info_struct * sis)595 static void swap_read_folio_bdev_async(struct folio *folio,
596 struct swap_info_struct *sis)
597 {
598 struct bio *bio;
599
600 bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
601 bio->bi_iter.bi_sector = swap_folio_sector(folio);
602 bio->bi_end_io = end_swap_bio_read;
603 bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
604 count_vm_events(PSWPIN, folio_nr_pages(folio));
605 submit_bio(bio);
606 }
607
swap_read_folio(struct folio * folio,struct swap_iocb ** plug)608 void swap_read_folio(struct folio *folio, struct swap_iocb **plug)
609 {
610 struct swap_info_struct *sis = swp_swap_info(folio->swap);
611 bool synchronous = sis->flags & SWP_SYNCHRONOUS_IO;
612 bool workingset = folio_test_workingset(folio);
613 unsigned long pflags;
614 bool in_thrashing;
615
616 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio);
617 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
618 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
619
620 /*
621 * Count submission time as memory stall and delay. When the device
622 * is congested, or the submitting cgroup IO-throttled, submission
623 * can be a significant part of overall IO time.
624 */
625 if (workingset) {
626 delayacct_thrashing_start(&in_thrashing);
627 psi_memstall_enter(&pflags);
628 }
629 delayacct_swapin_start();
630
631 if (swap_read_folio_zeromap(folio)) {
632 folio_unlock(folio);
633 goto finish;
634 } else if (zswap_load(folio)) {
635 folio_unlock(folio);
636 goto finish;
637 }
638
639 /* We have to read from slower devices. Increase zswap protection. */
640 zswap_folio_swapin(folio);
641
642 if (data_race(sis->flags & SWP_FS_OPS)) {
643 swap_read_folio_fs(folio, plug);
644 } else if (synchronous) {
645 swap_read_folio_bdev_sync(folio, sis);
646 } else {
647 swap_read_folio_bdev_async(folio, sis);
648 }
649
650 finish:
651 if (workingset) {
652 delayacct_thrashing_end(&in_thrashing);
653 psi_memstall_leave(&pflags);
654 }
655 delayacct_swapin_end();
656 }
657
__swap_read_unplug(struct swap_iocb * sio)658 void __swap_read_unplug(struct swap_iocb *sio)
659 {
660 struct iov_iter from;
661 struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
662 int ret;
663
664 iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
665 ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
666 if (ret != -EIOCBQUEUED)
667 sio_read_complete(&sio->iocb, ret);
668 }
669