1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2020 Broadcom Limited
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <asm/byteorder.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmapool.h>
13 #include <linux/errno.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_ether.h>
16 #include <linux/io.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/netdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23
24 #include "bnxt_hsi.h"
25 #include "bnxt.h"
26 #include "bnxt_hwrm.h"
27
hwrm_calc_sentinel(struct bnxt_hwrm_ctx * ctx,u16 req_type)28 static u64 hwrm_calc_sentinel(struct bnxt_hwrm_ctx *ctx, u16 req_type)
29 {
30 return (((uintptr_t)ctx) + req_type) ^ BNXT_HWRM_SENTINEL;
31 }
32
33 /**
34 * __hwrm_req_init() - Initialize an HWRM request.
35 * @bp: The driver context.
36 * @req: A pointer to the request pointer to initialize.
37 * @req_type: The request type. This will be converted to the little endian
38 * before being written to the req_type field of the returned request.
39 * @req_len: The length of the request to be allocated.
40 *
41 * Allocate DMA resources and initialize a new HWRM request object of the
42 * given type. The response address field in the request is configured with
43 * the DMA bus address that has been mapped for the response and the passed
44 * request is pointed to kernel virtual memory mapped for the request (such
45 * that short_input indirection can be accomplished without copying). The
46 * request’s target and completion ring are initialized to default values and
47 * can be overridden by writing to the returned request object directly.
48 *
49 * The initialized request can be further customized by writing to its fields
50 * directly, taking care to covert such fields to little endian. The request
51 * object will be consumed (and all its associated resources release) upon
52 * passing it to hwrm_req_send() unless ownership of the request has been
53 * claimed by the caller via a call to hwrm_req_hold(). If the request is not
54 * consumed, either because it is never sent or because ownership has been
55 * claimed, then it must be released by a call to hwrm_req_drop().
56 *
57 * Return: zero on success, negative error code otherwise:
58 * E2BIG: the type of request pointer is too large to fit.
59 * ENOMEM: an allocation failure occurred.
60 */
__hwrm_req_init(struct bnxt * bp,void ** req,u16 req_type,u32 req_len)61 int __hwrm_req_init(struct bnxt *bp, void **req, u16 req_type, u32 req_len)
62 {
63 struct bnxt_hwrm_ctx *ctx;
64 dma_addr_t dma_handle;
65 u8 *req_addr;
66
67 if (req_len > BNXT_HWRM_CTX_OFFSET)
68 return -E2BIG;
69
70 req_addr = dma_pool_alloc(bp->hwrm_dma_pool, GFP_KERNEL | __GFP_ZERO,
71 &dma_handle);
72 if (!req_addr)
73 return -ENOMEM;
74
75 ctx = (struct bnxt_hwrm_ctx *)(req_addr + BNXT_HWRM_CTX_OFFSET);
76 /* safety first, sentinel used to check for invalid requests */
77 ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
78 ctx->req_len = req_len;
79 ctx->req = (struct input *)req_addr;
80 ctx->resp = (struct output *)(req_addr + BNXT_HWRM_RESP_OFFSET);
81 ctx->dma_handle = dma_handle;
82 ctx->flags = 0; /* __GFP_ZERO, but be explicit regarding ownership */
83 ctx->timeout = bp->hwrm_cmd_timeout ?: DFLT_HWRM_CMD_TIMEOUT;
84 ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
85 ctx->gfp = GFP_KERNEL;
86 ctx->slice_addr = NULL;
87
88 /* initialize common request fields */
89 ctx->req->req_type = cpu_to_le16(req_type);
90 ctx->req->resp_addr = cpu_to_le64(dma_handle + BNXT_HWRM_RESP_OFFSET);
91 ctx->req->cmpl_ring = cpu_to_le16(BNXT_HWRM_NO_CMPL_RING);
92 ctx->req->target_id = cpu_to_le16(BNXT_HWRM_TARGET);
93 *req = ctx->req;
94
95 return 0;
96 }
97
__hwrm_ctx(struct bnxt * bp,u8 * req_addr)98 static struct bnxt_hwrm_ctx *__hwrm_ctx(struct bnxt *bp, u8 *req_addr)
99 {
100 void *ctx_addr = req_addr + BNXT_HWRM_CTX_OFFSET;
101 struct input *req = (struct input *)req_addr;
102 struct bnxt_hwrm_ctx *ctx = ctx_addr;
103 u64 sentinel;
104
105 if (!req) {
106 /* can only be due to software bug, be loud */
107 netdev_err(bp->dev, "null HWRM request");
108 dump_stack();
109 return NULL;
110 }
111
112 /* HWRM API has no type safety, verify sentinel to validate address */
113 sentinel = hwrm_calc_sentinel(ctx, le16_to_cpu(req->req_type));
114 if (ctx->sentinel != sentinel) {
115 /* can only be due to software bug, be loud */
116 netdev_err(bp->dev, "HWRM sentinel mismatch, req_type = %u\n",
117 (u32)le16_to_cpu(req->req_type));
118 dump_stack();
119 return NULL;
120 }
121
122 return ctx;
123 }
124
125 /**
126 * hwrm_req_timeout() - Set the completion timeout for the request.
127 * @bp: The driver context.
128 * @req: The request to set the timeout.
129 * @timeout: The timeout in milliseconds.
130 *
131 * Set the timeout associated with the request for subsequent calls to
132 * hwrm_req_send(). Some requests are long running and require a different
133 * timeout than the default.
134 */
hwrm_req_timeout(struct bnxt * bp,void * req,unsigned int timeout)135 void hwrm_req_timeout(struct bnxt *bp, void *req, unsigned int timeout)
136 {
137 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
138
139 if (ctx)
140 ctx->timeout = timeout;
141 }
142
143 /**
144 * hwrm_req_alloc_flags() - Sets GFP allocation flags for slices.
145 * @bp: The driver context.
146 * @req: The request for which calls to hwrm_req_dma_slice() will have altered
147 * allocation flags.
148 * @gfp: A bitmask of GFP flags. These flags are passed to dma_alloc_coherent()
149 * whenever it is used to allocate backing memory for slices. Note that
150 * calls to hwrm_req_dma_slice() will not always result in new allocations,
151 * however, memory suballocated from the request buffer is already
152 * __GFP_ZERO.
153 *
154 * Sets the GFP allocation flags associated with the request for subsequent
155 * calls to hwrm_req_dma_slice(). This can be useful for specifying __GFP_ZERO
156 * for slice allocations.
157 */
hwrm_req_alloc_flags(struct bnxt * bp,void * req,gfp_t gfp)158 void hwrm_req_alloc_flags(struct bnxt *bp, void *req, gfp_t gfp)
159 {
160 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
161
162 if (ctx)
163 ctx->gfp = gfp;
164 }
165
166 /**
167 * hwrm_req_replace() - Replace request data.
168 * @bp: The driver context.
169 * @req: The request to modify. A call to hwrm_req_replace() is conceptually
170 * an assignment of new_req to req. Subsequent calls to HWRM API functions,
171 * such as hwrm_req_send(), should thus use req and not new_req (in fact,
172 * calls to HWRM API functions will fail if non-managed request objects
173 * are passed).
174 * @len: The length of new_req.
175 * @new_req: The pre-built request to copy or reference.
176 *
177 * Replaces the request data in req with that of new_req. This is useful in
178 * scenarios where a request object has already been constructed by a third
179 * party prior to creating a resource managed request using hwrm_req_init().
180 * Depending on the length, hwrm_req_replace() will either copy the new
181 * request data into the DMA memory allocated for req, or it will simply
182 * reference the new request and use it in lieu of req during subsequent
183 * calls to hwrm_req_send(). The resource management is associated with
184 * req and is independent of and does not apply to new_req. The caller must
185 * ensure that the lifetime of new_req is least as long as req. Any slices
186 * that may have been associated with the original request are released.
187 *
188 * Return: zero on success, negative error code otherwise:
189 * E2BIG: Request is too large.
190 * EINVAL: Invalid request to modify.
191 */
hwrm_req_replace(struct bnxt * bp,void * req,void * new_req,u32 len)192 int hwrm_req_replace(struct bnxt *bp, void *req, void *new_req, u32 len)
193 {
194 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
195 struct input *internal_req = req;
196 u16 req_type;
197
198 if (!ctx)
199 return -EINVAL;
200
201 if (len > BNXT_HWRM_CTX_OFFSET)
202 return -E2BIG;
203
204 /* free any existing slices */
205 ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
206 if (ctx->slice_addr) {
207 dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
208 ctx->slice_addr, ctx->slice_handle);
209 ctx->slice_addr = NULL;
210 }
211 ctx->gfp = GFP_KERNEL;
212
213 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || len > BNXT_HWRM_MAX_REQ_LEN) {
214 memcpy(internal_req, new_req, len);
215 } else {
216 internal_req->req_type = ((struct input *)new_req)->req_type;
217 ctx->req = new_req;
218 }
219
220 ctx->req_len = len;
221 ctx->req->resp_addr = cpu_to_le64(ctx->dma_handle +
222 BNXT_HWRM_RESP_OFFSET);
223
224 /* update sentinel for potentially new request type */
225 req_type = le16_to_cpu(internal_req->req_type);
226 ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
227
228 return 0;
229 }
230
231 /**
232 * hwrm_req_flags() - Set non internal flags of the ctx
233 * @bp: The driver context.
234 * @req: The request containing the HWRM command
235 * @flags: ctx flags that don't have BNXT_HWRM_INTERNAL_FLAG set
236 *
237 * ctx flags can be used by the callers to instruct how the subsequent
238 * hwrm_req_send() should behave. Example: callers can use hwrm_req_flags
239 * with BNXT_HWRM_CTX_SILENT to omit kernel prints of errors of hwrm_req_send()
240 * or with BNXT_HWRM_FULL_WAIT enforce hwrm_req_send() to wait for full timeout
241 * even if FW is not responding.
242 * This generic function can be used to set any flag that is not an internal flag
243 * of the HWRM module.
244 */
hwrm_req_flags(struct bnxt * bp,void * req,enum bnxt_hwrm_ctx_flags flags)245 void hwrm_req_flags(struct bnxt *bp, void *req, enum bnxt_hwrm_ctx_flags flags)
246 {
247 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
248
249 if (ctx)
250 ctx->flags |= (flags & HWRM_API_FLAGS);
251 }
252
253 /**
254 * hwrm_req_hold() - Claim ownership of the request's resources.
255 * @bp: The driver context.
256 * @req: A pointer to the request to own. The request will no longer be
257 * consumed by calls to hwrm_req_send().
258 *
259 * Take ownership of the request. Ownership places responsibility on the
260 * caller to free the resources associated with the request via a call to
261 * hwrm_req_drop(). The caller taking ownership implies that a subsequent
262 * call to hwrm_req_send() will not consume the request (ie. sending will
263 * not free the associated resources if the request is owned by the caller).
264 * Taking ownership returns a reference to the response. Retaining and
265 * accessing the response data is the most common reason to take ownership
266 * of the request. Ownership can also be acquired in order to reuse the same
267 * request object across multiple invocations of hwrm_req_send().
268 *
269 * Return: A pointer to the response object.
270 *
271 * The resources associated with the response will remain available to the
272 * caller until ownership of the request is relinquished via a call to
273 * hwrm_req_drop(). It is not possible for hwrm_req_hold() to return NULL if
274 * a valid request is provided. A returned NULL value would imply a driver
275 * bug and the implementation will complain loudly in the logs to aid in
276 * detection. It should not be necessary to check the result for NULL.
277 */
hwrm_req_hold(struct bnxt * bp,void * req)278 void *hwrm_req_hold(struct bnxt *bp, void *req)
279 {
280 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
281 struct input *input = (struct input *)req;
282
283 if (!ctx)
284 return NULL;
285
286 if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) {
287 /* can only be due to software bug, be loud */
288 netdev_err(bp->dev, "HWRM context already owned, req_type = %u\n",
289 (u32)le16_to_cpu(input->req_type));
290 dump_stack();
291 return NULL;
292 }
293
294 ctx->flags |= BNXT_HWRM_INTERNAL_CTX_OWNED;
295 return ((u8 *)req) + BNXT_HWRM_RESP_OFFSET;
296 }
297
__hwrm_ctx_drop(struct bnxt * bp,struct bnxt_hwrm_ctx * ctx)298 static void __hwrm_ctx_drop(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
299 {
300 void *addr = ((u8 *)ctx) - BNXT_HWRM_CTX_OFFSET;
301 dma_addr_t dma_handle = ctx->dma_handle; /* save before invalidate */
302
303 /* unmap any auxiliary DMA slice */
304 if (ctx->slice_addr)
305 dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
306 ctx->slice_addr, ctx->slice_handle);
307
308 /* invalidate, ensure ownership, sentinel and dma_handle are cleared */
309 memset(ctx, 0, sizeof(struct bnxt_hwrm_ctx));
310
311 /* return the buffer to the DMA pool */
312 if (dma_handle)
313 dma_pool_free(bp->hwrm_dma_pool, addr, dma_handle);
314 }
315
316 /**
317 * hwrm_req_drop() - Release all resources associated with the request.
318 * @bp: The driver context.
319 * @req: The request to consume, releasing the associated resources. The
320 * request object, any slices, and its associated response are no
321 * longer valid.
322 *
323 * It is legal to call hwrm_req_drop() on an unowned request, provided it
324 * has not already been consumed by hwrm_req_send() (for example, to release
325 * an aborted request). A given request should not be dropped more than once,
326 * nor should it be dropped after having been consumed by hwrm_req_send(). To
327 * do so is an error (the context will not be found and a stack trace will be
328 * rendered in the kernel log).
329 */
hwrm_req_drop(struct bnxt * bp,void * req)330 void hwrm_req_drop(struct bnxt *bp, void *req)
331 {
332 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
333
334 if (ctx)
335 __hwrm_ctx_drop(bp, ctx);
336 }
337
__hwrm_to_stderr(u32 hwrm_err)338 static int __hwrm_to_stderr(u32 hwrm_err)
339 {
340 switch (hwrm_err) {
341 case HWRM_ERR_CODE_SUCCESS:
342 return 0;
343 case HWRM_ERR_CODE_RESOURCE_LOCKED:
344 return -EROFS;
345 case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
346 return -EACCES;
347 case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
348 return -ENOSPC;
349 case HWRM_ERR_CODE_INVALID_PARAMS:
350 case HWRM_ERR_CODE_INVALID_FLAGS:
351 case HWRM_ERR_CODE_INVALID_ENABLES:
352 case HWRM_ERR_CODE_UNSUPPORTED_TLV:
353 case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
354 return -EINVAL;
355 case HWRM_ERR_CODE_NO_BUFFER:
356 return -ENOMEM;
357 case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
358 case HWRM_ERR_CODE_BUSY:
359 return -EAGAIN;
360 case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
361 return -EOPNOTSUPP;
362 case HWRM_ERR_CODE_PF_UNAVAILABLE:
363 return -ENODEV;
364 default:
365 return -EIO;
366 }
367 }
368
369 static struct bnxt_hwrm_wait_token *
__hwrm_acquire_token(struct bnxt * bp,enum bnxt_hwrm_chnl dst)370 __hwrm_acquire_token(struct bnxt *bp, enum bnxt_hwrm_chnl dst)
371 {
372 struct bnxt_hwrm_wait_token *token;
373
374 token = kzalloc(sizeof(*token), GFP_KERNEL);
375 if (!token)
376 return NULL;
377
378 mutex_lock(&bp->hwrm_cmd_lock);
379
380 token->dst = dst;
381 token->state = BNXT_HWRM_PENDING;
382 if (dst == BNXT_HWRM_CHNL_CHIMP) {
383 token->seq_id = bp->hwrm_cmd_seq++;
384 hlist_add_head_rcu(&token->node, &bp->hwrm_pending_list);
385 } else {
386 token->seq_id = bp->hwrm_cmd_kong_seq++;
387 }
388
389 return token;
390 }
391
392 static void
__hwrm_release_token(struct bnxt * bp,struct bnxt_hwrm_wait_token * token)393 __hwrm_release_token(struct bnxt *bp, struct bnxt_hwrm_wait_token *token)
394 {
395 if (token->dst == BNXT_HWRM_CHNL_CHIMP) {
396 hlist_del_rcu(&token->node);
397 kfree_rcu(token, rcu);
398 } else {
399 kfree(token);
400 }
401 mutex_unlock(&bp->hwrm_cmd_lock);
402 }
403
404 void
hwrm_update_token(struct bnxt * bp,u16 seq_id,enum bnxt_hwrm_wait_state state)405 hwrm_update_token(struct bnxt *bp, u16 seq_id, enum bnxt_hwrm_wait_state state)
406 {
407 struct bnxt_hwrm_wait_token *token;
408
409 rcu_read_lock();
410 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) {
411 if (token->seq_id == seq_id) {
412 WRITE_ONCE(token->state, state);
413 rcu_read_unlock();
414 return;
415 }
416 }
417 rcu_read_unlock();
418 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
419 }
420
hwrm_req_dbg(struct bnxt * bp,struct input * req)421 static void hwrm_req_dbg(struct bnxt *bp, struct input *req)
422 {
423 u32 ring = le16_to_cpu(req->cmpl_ring);
424 u32 type = le16_to_cpu(req->req_type);
425 u32 tgt = le16_to_cpu(req->target_id);
426 u32 seq = le16_to_cpu(req->seq_id);
427 char opt[32] = "\n";
428
429 if (unlikely(ring != (u16)BNXT_HWRM_NO_CMPL_RING))
430 snprintf(opt, 16, " ring %d\n", ring);
431
432 if (unlikely(tgt != BNXT_HWRM_TARGET))
433 snprintf(opt + strlen(opt) - 1, 16, " tgt 0x%x\n", tgt);
434
435 netdev_dbg(bp->dev, "sent hwrm req_type 0x%x seq id 0x%x%s",
436 type, seq, opt);
437 }
438
439 #define hwrm_err(bp, ctx, fmt, ...) \
440 do { \
441 if ((ctx)->flags & BNXT_HWRM_CTX_SILENT) \
442 netdev_dbg((bp)->dev, fmt, __VA_ARGS__); \
443 else \
444 netdev_err((bp)->dev, fmt, __VA_ARGS__); \
445 } while (0)
446
hwrm_wait_must_abort(struct bnxt * bp,u32 req_type,u32 * fw_status)447 static bool hwrm_wait_must_abort(struct bnxt *bp, u32 req_type, u32 *fw_status)
448 {
449 if (req_type == HWRM_VER_GET)
450 return false;
451
452 if (!bp->fw_health || !bp->fw_health->status_reliable)
453 return false;
454
455 *fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
456 return *fw_status && !BNXT_FW_IS_HEALTHY(*fw_status);
457 }
458
__hwrm_send(struct bnxt * bp,struct bnxt_hwrm_ctx * ctx)459 static int __hwrm_send(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
460 {
461 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
462 enum bnxt_hwrm_chnl dst = BNXT_HWRM_CHNL_CHIMP;
463 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
464 struct bnxt_hwrm_wait_token *token = NULL;
465 struct hwrm_short_input short_input = {0};
466 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
467 unsigned int i, timeout, tmo_count;
468 u32 *data = (u32 *)ctx->req;
469 u32 msg_len = ctx->req_len;
470 u32 req_type, sts;
471 int rc = -EBUSY;
472 u16 len = 0;
473 u8 *valid;
474
475 if (ctx->flags & BNXT_HWRM_INTERNAL_RESP_DIRTY)
476 memset(ctx->resp, 0, PAGE_SIZE);
477
478 req_type = le16_to_cpu(ctx->req->req_type);
479 if (BNXT_NO_FW_ACCESS(bp) &&
480 (req_type != HWRM_FUNC_RESET && req_type != HWRM_VER_GET)) {
481 netdev_dbg(bp->dev, "hwrm req_type 0x%x skipped, FW channel down\n",
482 req_type);
483 goto exit;
484 }
485
486 if (msg_len > BNXT_HWRM_MAX_REQ_LEN &&
487 msg_len > bp->hwrm_max_ext_req_len) {
488 netdev_warn(bp->dev, "oversized hwrm request, req_type 0x%x",
489 req_type);
490 rc = -E2BIG;
491 goto exit;
492 }
493
494 if (bnxt_kong_hwrm_message(bp, ctx->req)) {
495 dst = BNXT_HWRM_CHNL_KONG;
496 bar_offset = BNXT_GRCPF_REG_KONG_COMM;
497 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
498 if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
499 netdev_err(bp->dev, "Ring completions not supported for KONG commands, req_type = %d\n",
500 req_type);
501 rc = -EINVAL;
502 goto exit;
503 }
504 }
505
506 token = __hwrm_acquire_token(bp, dst);
507 if (!token) {
508 rc = -ENOMEM;
509 goto exit;
510 }
511 ctx->req->seq_id = cpu_to_le16(token->seq_id);
512
513 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
514 msg_len > BNXT_HWRM_MAX_REQ_LEN) {
515 short_input.req_type = ctx->req->req_type;
516 short_input.signature =
517 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
518 short_input.size = cpu_to_le16(msg_len);
519 short_input.req_addr = cpu_to_le64(ctx->dma_handle);
520
521 data = (u32 *)&short_input;
522 msg_len = sizeof(short_input);
523
524 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
525 }
526
527 /* Ensure any associated DMA buffers are written before doorbell */
528 wmb();
529
530 /* Write request msg to hwrm channel */
531 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
532
533 for (i = msg_len; i < max_req_len; i += 4)
534 writel(0, bp->bar0 + bar_offset + i);
535
536 /* Ring channel doorbell */
537 writel(1, bp->bar0 + doorbell_offset);
538
539 hwrm_req_dbg(bp, ctx->req);
540
541 if (!pci_is_enabled(bp->pdev)) {
542 rc = -ENODEV;
543 goto exit;
544 }
545
546 /* Limit timeout to an upper limit */
547 timeout = min(ctx->timeout, bp->hwrm_cmd_max_timeout ?: HWRM_CMD_MAX_TIMEOUT);
548 /* convert timeout to usec */
549 timeout *= 1000;
550
551 i = 0;
552 /* Short timeout for the first few iterations:
553 * number of loops = number of loops for short timeout +
554 * number of loops for standard timeout.
555 */
556 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
557 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
558 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
559
560 if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
561 /* Wait until hwrm response cmpl interrupt is processed */
562 while (READ_ONCE(token->state) < BNXT_HWRM_COMPLETE &&
563 i++ < tmo_count) {
564 /* Abort the wait for completion if the FW health
565 * check has failed.
566 */
567 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
568 goto exit;
569 /* on first few passes, just barely sleep */
570 if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
571 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
572 HWRM_SHORT_MAX_TIMEOUT);
573 } else {
574 if (hwrm_wait_must_abort(bp, req_type, &sts)) {
575 hwrm_err(bp, ctx, "Resp cmpl intr abandoning msg: 0x%x due to firmware status: 0x%x\n",
576 req_type, sts);
577 goto exit;
578 }
579 usleep_range(HWRM_MIN_TIMEOUT,
580 HWRM_MAX_TIMEOUT);
581 }
582 }
583
584 if (READ_ONCE(token->state) != BNXT_HWRM_COMPLETE) {
585 hwrm_err(bp, ctx, "Resp cmpl intr err msg: 0x%x\n",
586 req_type);
587 goto exit;
588 }
589 len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
590 valid = ((u8 *)ctx->resp) + len - 1;
591 } else {
592 __le16 seen_out_of_seq = ctx->req->seq_id; /* will never see */
593 int j;
594
595 /* Check if response len is updated */
596 for (i = 0; i < tmo_count; i++) {
597 /* Abort the wait for completion if the FW health
598 * check has failed.
599 */
600 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
601 goto exit;
602
603 if (token &&
604 READ_ONCE(token->state) == BNXT_HWRM_DEFERRED) {
605 __hwrm_release_token(bp, token);
606 token = NULL;
607 }
608
609 len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
610 if (len) {
611 __le16 resp_seq = READ_ONCE(ctx->resp->seq_id);
612
613 if (resp_seq == ctx->req->seq_id)
614 break;
615 if (resp_seq != seen_out_of_seq) {
616 netdev_warn(bp->dev, "Discarding out of seq response: 0x%x for msg {0x%x 0x%x}\n",
617 le16_to_cpu(resp_seq),
618 req_type,
619 le16_to_cpu(ctx->req->seq_id));
620 seen_out_of_seq = resp_seq;
621 }
622 }
623
624 /* on first few passes, just barely sleep */
625 if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
626 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
627 HWRM_SHORT_MAX_TIMEOUT);
628 } else {
629 if (hwrm_wait_must_abort(bp, req_type, &sts)) {
630 hwrm_err(bp, ctx, "Abandoning msg {0x%x 0x%x} len: %d due to firmware status: 0x%x\n",
631 req_type,
632 le16_to_cpu(ctx->req->seq_id),
633 len, sts);
634 goto exit;
635 }
636 usleep_range(HWRM_MIN_TIMEOUT,
637 HWRM_MAX_TIMEOUT);
638 }
639 }
640
641 if (i >= tmo_count) {
642 hwrm_err(bp, ctx, "Error (timeout: %u) msg {0x%x 0x%x} len:%d\n",
643 hwrm_total_timeout(i), req_type,
644 le16_to_cpu(ctx->req->seq_id), len);
645 goto exit;
646 }
647
648 /* Last byte of resp contains valid bit */
649 valid = ((u8 *)ctx->resp) + len - 1;
650 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; ) {
651 /* make sure we read from updated DMA memory */
652 dma_rmb();
653 if (*valid)
654 break;
655 if (j < 10) {
656 udelay(1);
657 j++;
658 } else {
659 usleep_range(20, 30);
660 j += 20;
661 }
662 }
663
664 if (j >= HWRM_VALID_BIT_DELAY_USEC) {
665 hwrm_err(bp, ctx, "Error (timeout: %u) msg {0x%x 0x%x} len:%d v:%d\n",
666 hwrm_total_timeout(i) + j, req_type,
667 le16_to_cpu(ctx->req->seq_id), len, *valid);
668 goto exit;
669 }
670 }
671
672 /* Zero valid bit for compatibility. Valid bit in an older spec
673 * may become a new field in a newer spec. We must make sure that
674 * a new field not implemented by old spec will read zero.
675 */
676 *valid = 0;
677 rc = le16_to_cpu(ctx->resp->error_code);
678 if (rc == HWRM_ERR_CODE_BUSY && !(ctx->flags & BNXT_HWRM_CTX_SILENT))
679 netdev_warn(bp->dev, "FW returned busy, hwrm req_type 0x%x\n",
680 req_type);
681 else if (rc && rc != HWRM_ERR_CODE_PF_UNAVAILABLE)
682 hwrm_err(bp, ctx, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
683 req_type, le16_to_cpu(ctx->req->seq_id), rc);
684 rc = __hwrm_to_stderr(rc);
685 exit:
686 if (token)
687 __hwrm_release_token(bp, token);
688 if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED)
689 ctx->flags |= BNXT_HWRM_INTERNAL_RESP_DIRTY;
690 else
691 __hwrm_ctx_drop(bp, ctx);
692 return rc;
693 }
694
695 /**
696 * hwrm_req_send() - Execute an HWRM command.
697 * @bp: The driver context.
698 * @req: A pointer to the request to send. The DMA resources associated with
699 * the request will be released (ie. the request will be consumed) unless
700 * ownership of the request has been assumed by the caller via a call to
701 * hwrm_req_hold().
702 *
703 * Send an HWRM request to the device and wait for a response. The request is
704 * consumed if it is not owned by the caller. This function will block until
705 * the request has either completed or times out due to an error.
706 *
707 * Return: A result code.
708 *
709 * The result is zero on success, otherwise the negative error code indicates
710 * one of the following errors:
711 * E2BIG: The request was too large.
712 * EBUSY: The firmware is in a fatal state or the request timed out
713 * EACCESS: HWRM access denied.
714 * ENOSPC: HWRM resource allocation error.
715 * EINVAL: Request parameters are invalid.
716 * ENOMEM: HWRM has no buffers.
717 * EAGAIN: HWRM busy or reset in progress.
718 * EOPNOTSUPP: Invalid request type.
719 * EIO: Any other error.
720 * Error handling is orthogonal to request ownership. An unowned request will
721 * still be consumed on error. If the caller owns the request, then the caller
722 * is responsible for releasing the resources. Otherwise, hwrm_req_send() will
723 * always consume the request.
724 */
hwrm_req_send(struct bnxt * bp,void * req)725 int hwrm_req_send(struct bnxt *bp, void *req)
726 {
727 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
728
729 if (!ctx)
730 return -EINVAL;
731
732 return __hwrm_send(bp, ctx);
733 }
734
735 /**
736 * hwrm_req_send_silent() - A silent version of hwrm_req_send().
737 * @bp: The driver context.
738 * @req: The request to send without logging.
739 *
740 * The same as hwrm_req_send(), except that the request is silenced using
741 * hwrm_req_silence() prior the call. This version of the function is
742 * provided solely to preserve the legacy API’s flavor for this functionality.
743 *
744 * Return: A result code, see hwrm_req_send().
745 */
hwrm_req_send_silent(struct bnxt * bp,void * req)746 int hwrm_req_send_silent(struct bnxt *bp, void *req)
747 {
748 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT);
749 return hwrm_req_send(bp, req);
750 }
751
752 /**
753 * hwrm_req_dma_slice() - Allocate a slice of DMA mapped memory.
754 * @bp: The driver context.
755 * @req: The request for which indirect data will be associated.
756 * @size: The size of the allocation.
757 * @dma_handle: The bus address associated with the allocation. The HWRM API has
758 * no knowledge about the type of the request and so cannot infer how the
759 * caller intends to use the indirect data. Thus, the caller is
760 * responsible for configuring the request object appropriately to
761 * point to the associated indirect memory. Note, DMA handle has the
762 * same definition as it does in dma_alloc_coherent(), the caller is
763 * responsible for endian conversions via cpu_to_le64() before assigning
764 * this address.
765 *
766 * Allocates DMA mapped memory for indirect data related to a request. The
767 * lifetime of the DMA resources will be bound to that of the request (ie.
768 * they will be automatically released when the request is either consumed by
769 * hwrm_req_send() or dropped by hwrm_req_drop()). Small allocations are
770 * efficiently suballocated out of the request buffer space, hence the name
771 * slice, while larger requests are satisfied via an underlying call to
772 * dma_alloc_coherent(). Multiple suballocations are supported, however, only
773 * one externally mapped region is.
774 *
775 * Return: The kernel virtual address of the DMA mapping.
776 */
777 void *
hwrm_req_dma_slice(struct bnxt * bp,void * req,u32 size,dma_addr_t * dma_handle)778 hwrm_req_dma_slice(struct bnxt *bp, void *req, u32 size, dma_addr_t *dma_handle)
779 {
780 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
781 u8 *end = ((u8 *)req) + BNXT_HWRM_DMA_SIZE;
782 struct input *input = req;
783 u8 *addr, *req_addr = req;
784 u32 max_offset, offset;
785
786 if (!ctx)
787 return NULL;
788
789 max_offset = BNXT_HWRM_DMA_SIZE - ctx->allocated;
790 offset = max_offset - size;
791 offset = ALIGN_DOWN(offset, BNXT_HWRM_DMA_ALIGN);
792 addr = req_addr + offset;
793
794 if (addr < req_addr + max_offset && req_addr + ctx->req_len <= addr) {
795 ctx->allocated = end - addr;
796 *dma_handle = ctx->dma_handle + offset;
797 return addr;
798 }
799
800 /* could not suballocate from ctx buffer, try create a new mapping */
801 if (ctx->slice_addr) {
802 /* if one exists, can only be due to software bug, be loud */
803 netdev_err(bp->dev, "HWRM refusing to reallocate DMA slice, req_type = %u\n",
804 (u32)le16_to_cpu(input->req_type));
805 dump_stack();
806 return NULL;
807 }
808
809 addr = dma_alloc_coherent(&bp->pdev->dev, size, dma_handle, ctx->gfp);
810
811 if (!addr)
812 return NULL;
813
814 ctx->slice_addr = addr;
815 ctx->slice_size = size;
816 ctx->slice_handle = *dma_handle;
817
818 return addr;
819 }
820