1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright(c) 1999 - 2018 Intel Corporation. */
3  
4  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5  
6  #include <linux/module.h>
7  #include <linux/types.h>
8  #include <linux/init.h>
9  #include <linux/pci.h>
10  #include <linux/vmalloc.h>
11  #include <linux/pagemap.h>
12  #include <linux/delay.h>
13  #include <linux/netdevice.h>
14  #include <linux/interrupt.h>
15  #include <linux/tcp.h>
16  #include <linux/ipv6.h>
17  #include <linux/slab.h>
18  #include <net/checksum.h>
19  #include <net/ip6_checksum.h>
20  #include <linux/ethtool.h>
21  #include <linux/if_vlan.h>
22  #include <linux/cpu.h>
23  #include <linux/smp.h>
24  #include <linux/pm_qos.h>
25  #include <linux/pm_runtime.h>
26  #include <linux/prefetch.h>
27  #include <linux/suspend.h>
28  
29  #include "e1000.h"
30  #define CREATE_TRACE_POINTS
31  #include "e1000e_trace.h"
32  
33  char e1000e_driver_name[] = "e1000e";
34  
35  #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36  static int debug = -1;
37  module_param(debug, int, 0);
38  MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39  
40  static const struct e1000_info *e1000_info_tbl[] = {
41  	[board_82571]		= &e1000_82571_info,
42  	[board_82572]		= &e1000_82572_info,
43  	[board_82573]		= &e1000_82573_info,
44  	[board_82574]		= &e1000_82574_info,
45  	[board_82583]		= &e1000_82583_info,
46  	[board_80003es2lan]	= &e1000_es2_info,
47  	[board_ich8lan]		= &e1000_ich8_info,
48  	[board_ich9lan]		= &e1000_ich9_info,
49  	[board_ich10lan]	= &e1000_ich10_info,
50  	[board_pchlan]		= &e1000_pch_info,
51  	[board_pch2lan]		= &e1000_pch2_info,
52  	[board_pch_lpt]		= &e1000_pch_lpt_info,
53  	[board_pch_spt]		= &e1000_pch_spt_info,
54  	[board_pch_cnp]		= &e1000_pch_cnp_info,
55  	[board_pch_tgp]		= &e1000_pch_tgp_info,
56  	[board_pch_adp]		= &e1000_pch_adp_info,
57  	[board_pch_mtp]		= &e1000_pch_mtp_info,
58  };
59  
60  struct e1000_reg_info {
61  	u32 ofs;
62  	char *name;
63  };
64  
65  static const struct e1000_reg_info e1000_reg_info_tbl[] = {
66  	/* General Registers */
67  	{E1000_CTRL, "CTRL"},
68  	{E1000_STATUS, "STATUS"},
69  	{E1000_CTRL_EXT, "CTRL_EXT"},
70  
71  	/* Interrupt Registers */
72  	{E1000_ICR, "ICR"},
73  
74  	/* Rx Registers */
75  	{E1000_RCTL, "RCTL"},
76  	{E1000_RDLEN(0), "RDLEN"},
77  	{E1000_RDH(0), "RDH"},
78  	{E1000_RDT(0), "RDT"},
79  	{E1000_RDTR, "RDTR"},
80  	{E1000_RXDCTL(0), "RXDCTL"},
81  	{E1000_ERT, "ERT"},
82  	{E1000_RDBAL(0), "RDBAL"},
83  	{E1000_RDBAH(0), "RDBAH"},
84  	{E1000_RDFH, "RDFH"},
85  	{E1000_RDFT, "RDFT"},
86  	{E1000_RDFHS, "RDFHS"},
87  	{E1000_RDFTS, "RDFTS"},
88  	{E1000_RDFPC, "RDFPC"},
89  
90  	/* Tx Registers */
91  	{E1000_TCTL, "TCTL"},
92  	{E1000_TDBAL(0), "TDBAL"},
93  	{E1000_TDBAH(0), "TDBAH"},
94  	{E1000_TDLEN(0), "TDLEN"},
95  	{E1000_TDH(0), "TDH"},
96  	{E1000_TDT(0), "TDT"},
97  	{E1000_TIDV, "TIDV"},
98  	{E1000_TXDCTL(0), "TXDCTL"},
99  	{E1000_TADV, "TADV"},
100  	{E1000_TARC(0), "TARC"},
101  	{E1000_TDFH, "TDFH"},
102  	{E1000_TDFT, "TDFT"},
103  	{E1000_TDFHS, "TDFHS"},
104  	{E1000_TDFTS, "TDFTS"},
105  	{E1000_TDFPC, "TDFPC"},
106  
107  	/* List Terminator */
108  	{0, NULL}
109  };
110  
111  /**
112   * __ew32_prepare - prepare to write to MAC CSR register on certain parts
113   * @hw: pointer to the HW structure
114   *
115   * When updating the MAC CSR registers, the Manageability Engine (ME) could
116   * be accessing the registers at the same time.  Normally, this is handled in
117   * h/w by an arbiter but on some parts there is a bug that acknowledges Host
118   * accesses later than it should which could result in the register to have
119   * an incorrect value.  Workaround this by checking the FWSM register which
120   * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
121   * and try again a number of times.
122   **/
__ew32_prepare(struct e1000_hw * hw)123  static void __ew32_prepare(struct e1000_hw *hw)
124  {
125  	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
126  
127  	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
128  		udelay(50);
129  }
130  
__ew32(struct e1000_hw * hw,unsigned long reg,u32 val)131  void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
132  {
133  	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
134  		__ew32_prepare(hw);
135  
136  	writel(val, hw->hw_addr + reg);
137  }
138  
139  /**
140   * e1000_regdump - register printout routine
141   * @hw: pointer to the HW structure
142   * @reginfo: pointer to the register info table
143   **/
e1000_regdump(struct e1000_hw * hw,struct e1000_reg_info * reginfo)144  static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
145  {
146  	int n = 0;
147  	char rname[16];
148  	u32 regs[8];
149  
150  	switch (reginfo->ofs) {
151  	case E1000_RXDCTL(0):
152  		for (n = 0; n < 2; n++)
153  			regs[n] = __er32(hw, E1000_RXDCTL(n));
154  		break;
155  	case E1000_TXDCTL(0):
156  		for (n = 0; n < 2; n++)
157  			regs[n] = __er32(hw, E1000_TXDCTL(n));
158  		break;
159  	case E1000_TARC(0):
160  		for (n = 0; n < 2; n++)
161  			regs[n] = __er32(hw, E1000_TARC(n));
162  		break;
163  	default:
164  		pr_info("%-15s %08x\n",
165  			reginfo->name, __er32(hw, reginfo->ofs));
166  		return;
167  	}
168  
169  	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
170  	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
171  }
172  
e1000e_dump_ps_pages(struct e1000_adapter * adapter,struct e1000_buffer * bi)173  static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
174  				 struct e1000_buffer *bi)
175  {
176  	int i;
177  	struct e1000_ps_page *ps_page;
178  
179  	for (i = 0; i < adapter->rx_ps_pages; i++) {
180  		ps_page = &bi->ps_pages[i];
181  
182  		if (ps_page->page) {
183  			pr_info("packet dump for ps_page %d:\n", i);
184  			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
185  				       16, 1, page_address(ps_page->page),
186  				       PAGE_SIZE, true);
187  		}
188  	}
189  }
190  
191  /**
192   * e1000e_dump - Print registers, Tx-ring and Rx-ring
193   * @adapter: board private structure
194   **/
e1000e_dump(struct e1000_adapter * adapter)195  static void e1000e_dump(struct e1000_adapter *adapter)
196  {
197  	struct net_device *netdev = adapter->netdev;
198  	struct e1000_hw *hw = &adapter->hw;
199  	struct e1000_reg_info *reginfo;
200  	struct e1000_ring *tx_ring = adapter->tx_ring;
201  	struct e1000_tx_desc *tx_desc;
202  	struct my_u0 {
203  		__le64 a;
204  		__le64 b;
205  	} *u0;
206  	struct e1000_buffer *buffer_info;
207  	struct e1000_ring *rx_ring = adapter->rx_ring;
208  	union e1000_rx_desc_packet_split *rx_desc_ps;
209  	union e1000_rx_desc_extended *rx_desc;
210  	struct my_u1 {
211  		__le64 a;
212  		__le64 b;
213  		__le64 c;
214  		__le64 d;
215  	} *u1;
216  	u32 staterr;
217  	int i = 0;
218  
219  	if (!netif_msg_hw(adapter))
220  		return;
221  
222  	/* Print netdevice Info */
223  	if (netdev) {
224  		dev_info(&adapter->pdev->dev, "Net device Info\n");
225  		pr_info("Device Name     state            trans_start\n");
226  		pr_info("%-15s %016lX %016lX\n", netdev->name,
227  			netdev->state, dev_trans_start(netdev));
228  	}
229  
230  	/* Print Registers */
231  	dev_info(&adapter->pdev->dev, "Register Dump\n");
232  	pr_info(" Register Name   Value\n");
233  	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
234  	     reginfo->name; reginfo++) {
235  		e1000_regdump(hw, reginfo);
236  	}
237  
238  	/* Print Tx Ring Summary */
239  	if (!netdev || !netif_running(netdev))
240  		return;
241  
242  	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
243  	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
244  	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
245  	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
246  		0, tx_ring->next_to_use, tx_ring->next_to_clean,
247  		(unsigned long long)buffer_info->dma,
248  		buffer_info->length,
249  		buffer_info->next_to_watch,
250  		(unsigned long long)buffer_info->time_stamp);
251  
252  	/* Print Tx Ring */
253  	if (!netif_msg_tx_done(adapter))
254  		goto rx_ring_summary;
255  
256  	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
257  
258  	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
259  	 *
260  	 * Legacy Transmit Descriptor
261  	 *   +--------------------------------------------------------------+
262  	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
263  	 *   +--------------------------------------------------------------+
264  	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
265  	 *   +--------------------------------------------------------------+
266  	 *   63       48 47        36 35    32 31     24 23    16 15        0
267  	 *
268  	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
269  	 *   63      48 47    40 39       32 31             16 15    8 7      0
270  	 *   +----------------------------------------------------------------+
271  	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
272  	 *   +----------------------------------------------------------------+
273  	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
274  	 *   +----------------------------------------------------------------+
275  	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
276  	 *
277  	 * Extended Data Descriptor (DTYP=0x1)
278  	 *   +----------------------------------------------------------------+
279  	 * 0 |                     Buffer Address [63:0]                      |
280  	 *   +----------------------------------------------------------------+
281  	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
282  	 *   +----------------------------------------------------------------+
283  	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
284  	 */
285  	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
286  	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
287  	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
288  	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
289  		const char *next_desc;
290  		tx_desc = E1000_TX_DESC(*tx_ring, i);
291  		buffer_info = &tx_ring->buffer_info[i];
292  		u0 = (struct my_u0 *)tx_desc;
293  		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
294  			next_desc = " NTC/U";
295  		else if (i == tx_ring->next_to_use)
296  			next_desc = " NTU";
297  		else if (i == tx_ring->next_to_clean)
298  			next_desc = " NTC";
299  		else
300  			next_desc = "";
301  		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
302  			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
303  			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
304  			i,
305  			(unsigned long long)le64_to_cpu(u0->a),
306  			(unsigned long long)le64_to_cpu(u0->b),
307  			(unsigned long long)buffer_info->dma,
308  			buffer_info->length, buffer_info->next_to_watch,
309  			(unsigned long long)buffer_info->time_stamp,
310  			buffer_info->skb, next_desc);
311  
312  		if (netif_msg_pktdata(adapter) && buffer_info->skb)
313  			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
314  				       16, 1, buffer_info->skb->data,
315  				       buffer_info->skb->len, true);
316  	}
317  
318  	/* Print Rx Ring Summary */
319  rx_ring_summary:
320  	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
321  	pr_info("Queue [NTU] [NTC]\n");
322  	pr_info(" %5d %5X %5X\n",
323  		0, rx_ring->next_to_use, rx_ring->next_to_clean);
324  
325  	/* Print Rx Ring */
326  	if (!netif_msg_rx_status(adapter))
327  		return;
328  
329  	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
330  	switch (adapter->rx_ps_pages) {
331  	case 1:
332  	case 2:
333  	case 3:
334  		/* [Extended] Packet Split Receive Descriptor Format
335  		 *
336  		 *    +-----------------------------------------------------+
337  		 *  0 |                Buffer Address 0 [63:0]              |
338  		 *    +-----------------------------------------------------+
339  		 *  8 |                Buffer Address 1 [63:0]              |
340  		 *    +-----------------------------------------------------+
341  		 * 16 |                Buffer Address 2 [63:0]              |
342  		 *    +-----------------------------------------------------+
343  		 * 24 |                Buffer Address 3 [63:0]              |
344  		 *    +-----------------------------------------------------+
345  		 */
346  		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
347  		/* [Extended] Receive Descriptor (Write-Back) Format
348  		 *
349  		 *   63       48 47    32 31     13 12    8 7    4 3        0
350  		 *   +------------------------------------------------------+
351  		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
352  		 *   | Checksum | Ident  |         | Queue |      |  Type   |
353  		 *   +------------------------------------------------------+
354  		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
355  		 *   +------------------------------------------------------+
356  		 *   63       48 47    32 31            20 19               0
357  		 */
358  		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
359  		for (i = 0; i < rx_ring->count; i++) {
360  			const char *next_desc;
361  			buffer_info = &rx_ring->buffer_info[i];
362  			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
363  			u1 = (struct my_u1 *)rx_desc_ps;
364  			staterr =
365  			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
366  
367  			if (i == rx_ring->next_to_use)
368  				next_desc = " NTU";
369  			else if (i == rx_ring->next_to_clean)
370  				next_desc = " NTC";
371  			else
372  				next_desc = "";
373  
374  			if (staterr & E1000_RXD_STAT_DD) {
375  				/* Descriptor Done */
376  				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
377  					"RWB", i,
378  					(unsigned long long)le64_to_cpu(u1->a),
379  					(unsigned long long)le64_to_cpu(u1->b),
380  					(unsigned long long)le64_to_cpu(u1->c),
381  					(unsigned long long)le64_to_cpu(u1->d),
382  					buffer_info->skb, next_desc);
383  			} else {
384  				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
385  					"R  ", i,
386  					(unsigned long long)le64_to_cpu(u1->a),
387  					(unsigned long long)le64_to_cpu(u1->b),
388  					(unsigned long long)le64_to_cpu(u1->c),
389  					(unsigned long long)le64_to_cpu(u1->d),
390  					(unsigned long long)buffer_info->dma,
391  					buffer_info->skb, next_desc);
392  
393  				if (netif_msg_pktdata(adapter))
394  					e1000e_dump_ps_pages(adapter,
395  							     buffer_info);
396  			}
397  		}
398  		break;
399  	default:
400  	case 0:
401  		/* Extended Receive Descriptor (Read) Format
402  		 *
403  		 *   +-----------------------------------------------------+
404  		 * 0 |                Buffer Address [63:0]                |
405  		 *   +-----------------------------------------------------+
406  		 * 8 |                      Reserved                       |
407  		 *   +-----------------------------------------------------+
408  		 */
409  		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
410  		/* Extended Receive Descriptor (Write-Back) Format
411  		 *
412  		 *   63       48 47    32 31    24 23            4 3        0
413  		 *   +------------------------------------------------------+
414  		 *   |     RSS Hash      |        |               |         |
415  		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
416  		 *   | Packet   | IP     |        |               |  Type   |
417  		 *   | Checksum | Ident  |        |               |         |
418  		 *   +------------------------------------------------------+
419  		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
420  		 *   +------------------------------------------------------+
421  		 *   63       48 47    32 31            20 19               0
422  		 */
423  		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
424  
425  		for (i = 0; i < rx_ring->count; i++) {
426  			const char *next_desc;
427  
428  			buffer_info = &rx_ring->buffer_info[i];
429  			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
430  			u1 = (struct my_u1 *)rx_desc;
431  			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
432  
433  			if (i == rx_ring->next_to_use)
434  				next_desc = " NTU";
435  			else if (i == rx_ring->next_to_clean)
436  				next_desc = " NTC";
437  			else
438  				next_desc = "";
439  
440  			if (staterr & E1000_RXD_STAT_DD) {
441  				/* Descriptor Done */
442  				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
443  					"RWB", i,
444  					(unsigned long long)le64_to_cpu(u1->a),
445  					(unsigned long long)le64_to_cpu(u1->b),
446  					buffer_info->skb, next_desc);
447  			} else {
448  				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
449  					"R  ", i,
450  					(unsigned long long)le64_to_cpu(u1->a),
451  					(unsigned long long)le64_to_cpu(u1->b),
452  					(unsigned long long)buffer_info->dma,
453  					buffer_info->skb, next_desc);
454  
455  				if (netif_msg_pktdata(adapter) &&
456  				    buffer_info->skb)
457  					print_hex_dump(KERN_INFO, "",
458  						       DUMP_PREFIX_ADDRESS, 16,
459  						       1,
460  						       buffer_info->skb->data,
461  						       adapter->rx_buffer_len,
462  						       true);
463  			}
464  		}
465  	}
466  }
467  
468  /**
469   * e1000_desc_unused - calculate if we have unused descriptors
470   * @ring: pointer to ring struct to perform calculation on
471   **/
e1000_desc_unused(struct e1000_ring * ring)472  static int e1000_desc_unused(struct e1000_ring *ring)
473  {
474  	if (ring->next_to_clean > ring->next_to_use)
475  		return ring->next_to_clean - ring->next_to_use - 1;
476  
477  	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
478  }
479  
480  /**
481   * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482   * @adapter: board private structure
483   * @hwtstamps: time stamp structure to update
484   * @systim: unsigned 64bit system time value.
485   *
486   * Convert the system time value stored in the RX/TXSTMP registers into a
487   * hwtstamp which can be used by the upper level time stamping functions.
488   *
489   * The 'systim_lock' spinlock is used to protect the consistency of the
490   * system time value. This is needed because reading the 64 bit time
491   * value involves reading two 32 bit registers. The first read latches the
492   * value.
493   **/
e1000e_systim_to_hwtstamp(struct e1000_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)494  static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495  				      struct skb_shared_hwtstamps *hwtstamps,
496  				      u64 systim)
497  {
498  	u64 ns;
499  	unsigned long flags;
500  
501  	spin_lock_irqsave(&adapter->systim_lock, flags);
502  	ns = timecounter_cyc2time(&adapter->tc, systim);
503  	spin_unlock_irqrestore(&adapter->systim_lock, flags);
504  
505  	memset(hwtstamps, 0, sizeof(*hwtstamps));
506  	hwtstamps->hwtstamp = ns_to_ktime(ns);
507  }
508  
509  /**
510   * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511   * @adapter: board private structure
512   * @status: descriptor extended error and status field
513   * @skb: particular skb to include time stamp
514   *
515   * If the time stamp is valid, convert it into the timecounter ns value
516   * and store that result into the shhwtstamps structure which is passed
517   * up the network stack.
518   **/
e1000e_rx_hwtstamp(struct e1000_adapter * adapter,u32 status,struct sk_buff * skb)519  static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520  			       struct sk_buff *skb)
521  {
522  	struct e1000_hw *hw = &adapter->hw;
523  	u64 rxstmp;
524  
525  	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526  	    !(status & E1000_RXDEXT_STATERR_TST) ||
527  	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528  		return;
529  
530  	/* The Rx time stamp registers contain the time stamp.  No other
531  	 * received packet will be time stamped until the Rx time stamp
532  	 * registers are read.  Because only one packet can be time stamped
533  	 * at a time, the register values must belong to this packet and
534  	 * therefore none of the other additional attributes need to be
535  	 * compared.
536  	 */
537  	rxstmp = (u64)er32(RXSTMPL);
538  	rxstmp |= (u64)er32(RXSTMPH) << 32;
539  	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
540  
541  	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
542  }
543  
544  /**
545   * e1000_receive_skb - helper function to handle Rx indications
546   * @adapter: board private structure
547   * @netdev: pointer to netdev struct
548   * @staterr: descriptor extended error and status field as written by hardware
549   * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
550   * @skb: pointer to sk_buff to be indicated to stack
551   **/
e1000_receive_skb(struct e1000_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 staterr,__le16 vlan)552  static void e1000_receive_skb(struct e1000_adapter *adapter,
553  			      struct net_device *netdev, struct sk_buff *skb,
554  			      u32 staterr, __le16 vlan)
555  {
556  	u16 tag = le16_to_cpu(vlan);
557  
558  	e1000e_rx_hwtstamp(adapter, staterr, skb);
559  
560  	skb->protocol = eth_type_trans(skb, netdev);
561  
562  	if (staterr & E1000_RXD_STAT_VP)
563  		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
564  
565  	napi_gro_receive(&adapter->napi, skb);
566  }
567  
568  /**
569   * e1000_rx_checksum - Receive Checksum Offload
570   * @adapter: board private structure
571   * @status_err: receive descriptor status and error fields
572   * @skb: socket buffer with received data
573   **/
e1000_rx_checksum(struct e1000_adapter * adapter,u32 status_err,struct sk_buff * skb)574  static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575  			      struct sk_buff *skb)
576  {
577  	u16 status = (u16)status_err;
578  	u8 errors = (u8)(status_err >> 24);
579  
580  	skb_checksum_none_assert(skb);
581  
582  	/* Rx checksum disabled */
583  	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584  		return;
585  
586  	/* Ignore Checksum bit is set */
587  	if (status & E1000_RXD_STAT_IXSM)
588  		return;
589  
590  	/* TCP/UDP checksum error bit or IP checksum error bit is set */
591  	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592  		/* let the stack verify checksum errors */
593  		adapter->hw_csum_err++;
594  		return;
595  	}
596  
597  	/* TCP/UDP Checksum has not been calculated */
598  	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599  		return;
600  
601  	/* It must be a TCP or UDP packet with a valid checksum */
602  	skb->ip_summed = CHECKSUM_UNNECESSARY;
603  	adapter->hw_csum_good++;
604  }
605  
e1000e_update_rdt_wa(struct e1000_ring * rx_ring,unsigned int i)606  static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
607  {
608  	struct e1000_adapter *adapter = rx_ring->adapter;
609  	struct e1000_hw *hw = &adapter->hw;
610  
611  	__ew32_prepare(hw);
612  	writel(i, rx_ring->tail);
613  
614  	if (unlikely(i != readl(rx_ring->tail))) {
615  		u32 rctl = er32(RCTL);
616  
617  		ew32(RCTL, rctl & ~E1000_RCTL_EN);
618  		e_err("ME firmware caused invalid RDT - resetting\n");
619  		schedule_work(&adapter->reset_task);
620  	}
621  }
622  
e1000e_update_tdt_wa(struct e1000_ring * tx_ring,unsigned int i)623  static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
624  {
625  	struct e1000_adapter *adapter = tx_ring->adapter;
626  	struct e1000_hw *hw = &adapter->hw;
627  
628  	__ew32_prepare(hw);
629  	writel(i, tx_ring->tail);
630  
631  	if (unlikely(i != readl(tx_ring->tail))) {
632  		u32 tctl = er32(TCTL);
633  
634  		ew32(TCTL, tctl & ~E1000_TCTL_EN);
635  		e_err("ME firmware caused invalid TDT - resetting\n");
636  		schedule_work(&adapter->reset_task);
637  	}
638  }
639  
640  /**
641   * e1000_alloc_rx_buffers - Replace used receive buffers
642   * @rx_ring: Rx descriptor ring
643   * @cleaned_count: number to reallocate
644   * @gfp: flags for allocation
645   **/
e1000_alloc_rx_buffers(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)646  static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
647  				   int cleaned_count, gfp_t gfp)
648  {
649  	struct e1000_adapter *adapter = rx_ring->adapter;
650  	struct net_device *netdev = adapter->netdev;
651  	struct pci_dev *pdev = adapter->pdev;
652  	union e1000_rx_desc_extended *rx_desc;
653  	struct e1000_buffer *buffer_info;
654  	struct sk_buff *skb;
655  	unsigned int i;
656  	unsigned int bufsz = adapter->rx_buffer_len;
657  
658  	i = rx_ring->next_to_use;
659  	buffer_info = &rx_ring->buffer_info[i];
660  
661  	while (cleaned_count--) {
662  		skb = buffer_info->skb;
663  		if (skb) {
664  			skb_trim(skb, 0);
665  			goto map_skb;
666  		}
667  
668  		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
669  		if (!skb) {
670  			/* Better luck next round */
671  			adapter->alloc_rx_buff_failed++;
672  			break;
673  		}
674  
675  		buffer_info->skb = skb;
676  map_skb:
677  		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
678  						  adapter->rx_buffer_len,
679  						  DMA_FROM_DEVICE);
680  		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
681  			dev_err(&pdev->dev, "Rx DMA map failed\n");
682  			adapter->rx_dma_failed++;
683  			break;
684  		}
685  
686  		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
687  		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
688  
689  		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
690  			/* Force memory writes to complete before letting h/w
691  			 * know there are new descriptors to fetch.  (Only
692  			 * applicable for weak-ordered memory model archs,
693  			 * such as IA-64).
694  			 */
695  			wmb();
696  			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
697  				e1000e_update_rdt_wa(rx_ring, i);
698  			else
699  				writel(i, rx_ring->tail);
700  		}
701  		i++;
702  		if (i == rx_ring->count)
703  			i = 0;
704  		buffer_info = &rx_ring->buffer_info[i];
705  	}
706  
707  	rx_ring->next_to_use = i;
708  }
709  
710  /**
711   * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
712   * @rx_ring: Rx descriptor ring
713   * @cleaned_count: number to reallocate
714   * @gfp: flags for allocation
715   **/
e1000_alloc_rx_buffers_ps(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)716  static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
717  				      int cleaned_count, gfp_t gfp)
718  {
719  	struct e1000_adapter *adapter = rx_ring->adapter;
720  	struct net_device *netdev = adapter->netdev;
721  	struct pci_dev *pdev = adapter->pdev;
722  	union e1000_rx_desc_packet_split *rx_desc;
723  	struct e1000_buffer *buffer_info;
724  	struct e1000_ps_page *ps_page;
725  	struct sk_buff *skb;
726  	unsigned int i, j;
727  
728  	i = rx_ring->next_to_use;
729  	buffer_info = &rx_ring->buffer_info[i];
730  
731  	while (cleaned_count--) {
732  		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
733  
734  		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
735  			ps_page = &buffer_info->ps_pages[j];
736  			if (j >= adapter->rx_ps_pages) {
737  				/* all unused desc entries get hw null ptr */
738  				rx_desc->read.buffer_addr[j + 1] =
739  				    ~cpu_to_le64(0);
740  				continue;
741  			}
742  			if (!ps_page->page) {
743  				ps_page->page = alloc_page(gfp);
744  				if (!ps_page->page) {
745  					adapter->alloc_rx_buff_failed++;
746  					goto no_buffers;
747  				}
748  				ps_page->dma = dma_map_page(&pdev->dev,
749  							    ps_page->page,
750  							    0, PAGE_SIZE,
751  							    DMA_FROM_DEVICE);
752  				if (dma_mapping_error(&pdev->dev,
753  						      ps_page->dma)) {
754  					dev_err(&adapter->pdev->dev,
755  						"Rx DMA page map failed\n");
756  					adapter->rx_dma_failed++;
757  					goto no_buffers;
758  				}
759  			}
760  			/* Refresh the desc even if buffer_addrs
761  			 * didn't change because each write-back
762  			 * erases this info.
763  			 */
764  			rx_desc->read.buffer_addr[j + 1] =
765  			    cpu_to_le64(ps_page->dma);
766  		}
767  
768  		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
769  						  gfp);
770  
771  		if (!skb) {
772  			adapter->alloc_rx_buff_failed++;
773  			break;
774  		}
775  
776  		buffer_info->skb = skb;
777  		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
778  						  adapter->rx_ps_bsize0,
779  						  DMA_FROM_DEVICE);
780  		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
781  			dev_err(&pdev->dev, "Rx DMA map failed\n");
782  			adapter->rx_dma_failed++;
783  			/* cleanup skb */
784  			dev_kfree_skb_any(skb);
785  			buffer_info->skb = NULL;
786  			break;
787  		}
788  
789  		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
790  
791  		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
792  			/* Force memory writes to complete before letting h/w
793  			 * know there are new descriptors to fetch.  (Only
794  			 * applicable for weak-ordered memory model archs,
795  			 * such as IA-64).
796  			 */
797  			wmb();
798  			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
799  				e1000e_update_rdt_wa(rx_ring, i << 1);
800  			else
801  				writel(i << 1, rx_ring->tail);
802  		}
803  
804  		i++;
805  		if (i == rx_ring->count)
806  			i = 0;
807  		buffer_info = &rx_ring->buffer_info[i];
808  	}
809  
810  no_buffers:
811  	rx_ring->next_to_use = i;
812  }
813  
814  /**
815   * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
816   * @rx_ring: Rx descriptor ring
817   * @cleaned_count: number of buffers to allocate this pass
818   * @gfp: flags for allocation
819   **/
820  
e1000_alloc_jumbo_rx_buffers(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)821  static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
822  					 int cleaned_count, gfp_t gfp)
823  {
824  	struct e1000_adapter *adapter = rx_ring->adapter;
825  	struct net_device *netdev = adapter->netdev;
826  	struct pci_dev *pdev = adapter->pdev;
827  	union e1000_rx_desc_extended *rx_desc;
828  	struct e1000_buffer *buffer_info;
829  	struct sk_buff *skb;
830  	unsigned int i;
831  	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
832  
833  	i = rx_ring->next_to_use;
834  	buffer_info = &rx_ring->buffer_info[i];
835  
836  	while (cleaned_count--) {
837  		skb = buffer_info->skb;
838  		if (skb) {
839  			skb_trim(skb, 0);
840  			goto check_page;
841  		}
842  
843  		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
844  		if (unlikely(!skb)) {
845  			/* Better luck next round */
846  			adapter->alloc_rx_buff_failed++;
847  			break;
848  		}
849  
850  		buffer_info->skb = skb;
851  check_page:
852  		/* allocate a new page if necessary */
853  		if (!buffer_info->page) {
854  			buffer_info->page = alloc_page(gfp);
855  			if (unlikely(!buffer_info->page)) {
856  				adapter->alloc_rx_buff_failed++;
857  				break;
858  			}
859  		}
860  
861  		if (!buffer_info->dma) {
862  			buffer_info->dma = dma_map_page(&pdev->dev,
863  							buffer_info->page, 0,
864  							PAGE_SIZE,
865  							DMA_FROM_DEVICE);
866  			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
867  				adapter->alloc_rx_buff_failed++;
868  				break;
869  			}
870  		}
871  
872  		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
873  		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
874  
875  		if (unlikely(++i == rx_ring->count))
876  			i = 0;
877  		buffer_info = &rx_ring->buffer_info[i];
878  	}
879  
880  	if (likely(rx_ring->next_to_use != i)) {
881  		rx_ring->next_to_use = i;
882  		if (unlikely(i-- == 0))
883  			i = (rx_ring->count - 1);
884  
885  		/* Force memory writes to complete before letting h/w
886  		 * know there are new descriptors to fetch.  (Only
887  		 * applicable for weak-ordered memory model archs,
888  		 * such as IA-64).
889  		 */
890  		wmb();
891  		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
892  			e1000e_update_rdt_wa(rx_ring, i);
893  		else
894  			writel(i, rx_ring->tail);
895  	}
896  }
897  
e1000_rx_hash(struct net_device * netdev,__le32 rss,struct sk_buff * skb)898  static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
899  				 struct sk_buff *skb)
900  {
901  	if (netdev->features & NETIF_F_RXHASH)
902  		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
903  }
904  
905  /**
906   * e1000_clean_rx_irq - Send received data up the network stack
907   * @rx_ring: Rx descriptor ring
908   * @work_done: output parameter for indicating completed work
909   * @work_to_do: how many packets we can clean
910   *
911   * the return value indicates whether actual cleaning was done, there
912   * is no guarantee that everything was cleaned
913   **/
e1000_clean_rx_irq(struct e1000_ring * rx_ring,int * work_done,int work_to_do)914  static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
915  			       int work_to_do)
916  {
917  	struct e1000_adapter *adapter = rx_ring->adapter;
918  	struct net_device *netdev = adapter->netdev;
919  	struct pci_dev *pdev = adapter->pdev;
920  	struct e1000_hw *hw = &adapter->hw;
921  	union e1000_rx_desc_extended *rx_desc, *next_rxd;
922  	struct e1000_buffer *buffer_info, *next_buffer;
923  	u32 length, staterr;
924  	unsigned int i;
925  	int cleaned_count = 0;
926  	bool cleaned = false;
927  	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
928  
929  	i = rx_ring->next_to_clean;
930  	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
931  	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
932  	buffer_info = &rx_ring->buffer_info[i];
933  
934  	while (staterr & E1000_RXD_STAT_DD) {
935  		struct sk_buff *skb;
936  
937  		if (*work_done >= work_to_do)
938  			break;
939  		(*work_done)++;
940  		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
941  
942  		skb = buffer_info->skb;
943  		buffer_info->skb = NULL;
944  
945  		prefetch(skb->data - NET_IP_ALIGN);
946  
947  		i++;
948  		if (i == rx_ring->count)
949  			i = 0;
950  		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
951  		prefetch(next_rxd);
952  
953  		next_buffer = &rx_ring->buffer_info[i];
954  
955  		cleaned = true;
956  		cleaned_count++;
957  		dma_unmap_single(&pdev->dev, buffer_info->dma,
958  				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
959  		buffer_info->dma = 0;
960  
961  		length = le16_to_cpu(rx_desc->wb.upper.length);
962  
963  		/* !EOP means multiple descriptors were used to store a single
964  		 * packet, if that's the case we need to toss it.  In fact, we
965  		 * need to toss every packet with the EOP bit clear and the
966  		 * next frame that _does_ have the EOP bit set, as it is by
967  		 * definition only a frame fragment
968  		 */
969  		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
970  			adapter->flags2 |= FLAG2_IS_DISCARDING;
971  
972  		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
973  			/* All receives must fit into a single buffer */
974  			e_dbg("Receive packet consumed multiple buffers\n");
975  			/* recycle */
976  			buffer_info->skb = skb;
977  			if (staterr & E1000_RXD_STAT_EOP)
978  				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
979  			goto next_desc;
980  		}
981  
982  		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
983  			     !(netdev->features & NETIF_F_RXALL))) {
984  			/* recycle */
985  			buffer_info->skb = skb;
986  			goto next_desc;
987  		}
988  
989  		/* adjust length to remove Ethernet CRC */
990  		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
991  			/* If configured to store CRC, don't subtract FCS,
992  			 * but keep the FCS bytes out of the total_rx_bytes
993  			 * counter
994  			 */
995  			if (netdev->features & NETIF_F_RXFCS)
996  				total_rx_bytes -= 4;
997  			else
998  				length -= 4;
999  		}
1000  
1001  		total_rx_bytes += length;
1002  		total_rx_packets++;
1003  
1004  		/* code added for copybreak, this should improve
1005  		 * performance for small packets with large amounts
1006  		 * of reassembly being done in the stack
1007  		 */
1008  		if (length < copybreak) {
1009  			struct sk_buff *new_skb =
1010  				napi_alloc_skb(&adapter->napi, length);
1011  			if (new_skb) {
1012  				skb_copy_to_linear_data_offset(new_skb,
1013  							       -NET_IP_ALIGN,
1014  							       (skb->data -
1015  								NET_IP_ALIGN),
1016  							       (length +
1017  								NET_IP_ALIGN));
1018  				/* save the skb in buffer_info as good */
1019  				buffer_info->skb = skb;
1020  				skb = new_skb;
1021  			}
1022  			/* else just continue with the old one */
1023  		}
1024  		/* end copybreak code */
1025  		skb_put(skb, length);
1026  
1027  		/* Receive Checksum Offload */
1028  		e1000_rx_checksum(adapter, staterr, skb);
1029  
1030  		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031  
1032  		e1000_receive_skb(adapter, netdev, skb, staterr,
1033  				  rx_desc->wb.upper.vlan);
1034  
1035  next_desc:
1036  		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037  
1038  		/* return some buffers to hardware, one at a time is too slow */
1039  		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040  			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041  					      GFP_ATOMIC);
1042  			cleaned_count = 0;
1043  		}
1044  
1045  		/* use prefetched values */
1046  		rx_desc = next_rxd;
1047  		buffer_info = next_buffer;
1048  
1049  		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050  	}
1051  	rx_ring->next_to_clean = i;
1052  
1053  	cleaned_count = e1000_desc_unused(rx_ring);
1054  	if (cleaned_count)
1055  		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056  
1057  	adapter->total_rx_bytes += total_rx_bytes;
1058  	adapter->total_rx_packets += total_rx_packets;
1059  	return cleaned;
1060  }
1061  
e1000_put_txbuf(struct e1000_ring * tx_ring,struct e1000_buffer * buffer_info,bool drop)1062  static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063  			    struct e1000_buffer *buffer_info,
1064  			    bool drop)
1065  {
1066  	struct e1000_adapter *adapter = tx_ring->adapter;
1067  
1068  	if (buffer_info->dma) {
1069  		if (buffer_info->mapped_as_page)
1070  			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071  				       buffer_info->length, DMA_TO_DEVICE);
1072  		else
1073  			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074  					 buffer_info->length, DMA_TO_DEVICE);
1075  		buffer_info->dma = 0;
1076  	}
1077  	if (buffer_info->skb) {
1078  		if (drop)
1079  			dev_kfree_skb_any(buffer_info->skb);
1080  		else
1081  			dev_consume_skb_any(buffer_info->skb);
1082  		buffer_info->skb = NULL;
1083  	}
1084  	buffer_info->time_stamp = 0;
1085  }
1086  
e1000_print_hw_hang(struct work_struct * work)1087  static void e1000_print_hw_hang(struct work_struct *work)
1088  {
1089  	struct e1000_adapter *adapter = container_of(work,
1090  						     struct e1000_adapter,
1091  						     print_hang_task);
1092  	struct net_device *netdev = adapter->netdev;
1093  	struct e1000_ring *tx_ring = adapter->tx_ring;
1094  	unsigned int i = tx_ring->next_to_clean;
1095  	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096  	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097  	struct e1000_hw *hw = &adapter->hw;
1098  	u16 phy_status, phy_1000t_status, phy_ext_status;
1099  	u16 pci_status;
1100  
1101  	if (test_bit(__E1000_DOWN, &adapter->state))
1102  		return;
1103  
1104  	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105  		/* May be block on write-back, flush and detect again
1106  		 * flush pending descriptor writebacks to memory
1107  		 */
1108  		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109  		/* execute the writes immediately */
1110  		e1e_flush();
1111  		/* Due to rare timing issues, write to TIDV again to ensure
1112  		 * the write is successful
1113  		 */
1114  		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115  		/* execute the writes immediately */
1116  		e1e_flush();
1117  		adapter->tx_hang_recheck = true;
1118  		return;
1119  	}
1120  	adapter->tx_hang_recheck = false;
1121  
1122  	if (er32(TDH(0)) == er32(TDT(0))) {
1123  		e_dbg("false hang detected, ignoring\n");
1124  		return;
1125  	}
1126  
1127  	/* Real hang detected */
1128  	netif_stop_queue(netdev);
1129  
1130  	e1e_rphy(hw, MII_BMSR, &phy_status);
1131  	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132  	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133  
1134  	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135  
1136  	/* detected Hardware unit hang */
1137  	e_err("Detected Hardware Unit Hang:\n"
1138  	      "  TDH                  <%x>\n"
1139  	      "  TDT                  <%x>\n"
1140  	      "  next_to_use          <%x>\n"
1141  	      "  next_to_clean        <%x>\n"
1142  	      "buffer_info[next_to_clean]:\n"
1143  	      "  time_stamp           <%lx>\n"
1144  	      "  next_to_watch        <%x>\n"
1145  	      "  jiffies              <%lx>\n"
1146  	      "  next_to_watch.status <%x>\n"
1147  	      "MAC Status             <%x>\n"
1148  	      "PHY Status             <%x>\n"
1149  	      "PHY 1000BASE-T Status  <%x>\n"
1150  	      "PHY Extended Status    <%x>\n"
1151  	      "PCI Status             <%x>\n",
1152  	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153  	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154  	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155  	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156  
1157  	e1000e_dump(adapter);
1158  
1159  	/* Suggest workaround for known h/w issue */
1160  	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161  		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162  }
1163  
1164  /**
1165   * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166   * @work: pointer to work struct
1167   *
1168   * This work function polls the TSYNCTXCTL valid bit to determine when a
1169   * timestamp has been taken for the current stored skb.  The timestamp must
1170   * be for this skb because only one such packet is allowed in the queue.
1171   */
e1000e_tx_hwtstamp_work(struct work_struct * work)1172  static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173  {
1174  	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175  						     tx_hwtstamp_work);
1176  	struct e1000_hw *hw = &adapter->hw;
1177  
1178  	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179  		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180  		struct skb_shared_hwtstamps shhwtstamps;
1181  		u64 txstmp;
1182  
1183  		txstmp = er32(TXSTMPL);
1184  		txstmp |= (u64)er32(TXSTMPH) << 32;
1185  
1186  		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187  
1188  		/* Clear the global tx_hwtstamp_skb pointer and force writes
1189  		 * prior to notifying the stack of a Tx timestamp.
1190  		 */
1191  		adapter->tx_hwtstamp_skb = NULL;
1192  		wmb(); /* force write prior to skb_tstamp_tx */
1193  
1194  		skb_tstamp_tx(skb, &shhwtstamps);
1195  		dev_consume_skb_any(skb);
1196  	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197  			      + adapter->tx_timeout_factor * HZ)) {
1198  		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199  		adapter->tx_hwtstamp_skb = NULL;
1200  		adapter->tx_hwtstamp_timeouts++;
1201  		e_warn("clearing Tx timestamp hang\n");
1202  	} else {
1203  		/* reschedule to check later */
1204  		schedule_work(&adapter->tx_hwtstamp_work);
1205  	}
1206  }
1207  
1208  /**
1209   * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210   * @tx_ring: Tx descriptor ring
1211   *
1212   * the return value indicates whether actual cleaning was done, there
1213   * is no guarantee that everything was cleaned
1214   **/
e1000_clean_tx_irq(struct e1000_ring * tx_ring)1215  static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216  {
1217  	struct e1000_adapter *adapter = tx_ring->adapter;
1218  	struct net_device *netdev = adapter->netdev;
1219  	struct e1000_hw *hw = &adapter->hw;
1220  	struct e1000_tx_desc *tx_desc, *eop_desc;
1221  	struct e1000_buffer *buffer_info;
1222  	unsigned int i, eop;
1223  	unsigned int count = 0;
1224  	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225  	unsigned int bytes_compl = 0, pkts_compl = 0;
1226  
1227  	i = tx_ring->next_to_clean;
1228  	eop = tx_ring->buffer_info[i].next_to_watch;
1229  	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230  
1231  	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232  	       (count < tx_ring->count)) {
1233  		bool cleaned = false;
1234  
1235  		dma_rmb();		/* read buffer_info after eop_desc */
1236  		for (; !cleaned; count++) {
1237  			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238  			buffer_info = &tx_ring->buffer_info[i];
1239  			cleaned = (i == eop);
1240  
1241  			if (cleaned) {
1242  				total_tx_packets += buffer_info->segs;
1243  				total_tx_bytes += buffer_info->bytecount;
1244  				if (buffer_info->skb) {
1245  					bytes_compl += buffer_info->skb->len;
1246  					pkts_compl++;
1247  				}
1248  			}
1249  
1250  			e1000_put_txbuf(tx_ring, buffer_info, false);
1251  			tx_desc->upper.data = 0;
1252  
1253  			i++;
1254  			if (i == tx_ring->count)
1255  				i = 0;
1256  		}
1257  
1258  		if (i == tx_ring->next_to_use)
1259  			break;
1260  		eop = tx_ring->buffer_info[i].next_to_watch;
1261  		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262  	}
1263  
1264  	tx_ring->next_to_clean = i;
1265  
1266  	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267  
1268  #define TX_WAKE_THRESHOLD 32
1269  	if (count && netif_carrier_ok(netdev) &&
1270  	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271  		/* Make sure that anybody stopping the queue after this
1272  		 * sees the new next_to_clean.
1273  		 */
1274  		smp_mb();
1275  
1276  		if (netif_queue_stopped(netdev) &&
1277  		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278  			netif_wake_queue(netdev);
1279  			++adapter->restart_queue;
1280  		}
1281  	}
1282  
1283  	if (adapter->detect_tx_hung) {
1284  		/* Detect a transmit hang in hardware, this serializes the
1285  		 * check with the clearing of time_stamp and movement of i
1286  		 */
1287  		adapter->detect_tx_hung = false;
1288  		if (tx_ring->buffer_info[i].time_stamp &&
1289  		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290  			       + (adapter->tx_timeout_factor * HZ)) &&
1291  		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292  			schedule_work(&adapter->print_hang_task);
1293  		else
1294  			adapter->tx_hang_recheck = false;
1295  	}
1296  	adapter->total_tx_bytes += total_tx_bytes;
1297  	adapter->total_tx_packets += total_tx_packets;
1298  	return count < tx_ring->count;
1299  }
1300  
1301  /**
1302   * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303   * @rx_ring: Rx descriptor ring
1304   * @work_done: output parameter for indicating completed work
1305   * @work_to_do: how many packets we can clean
1306   *
1307   * the return value indicates whether actual cleaning was done, there
1308   * is no guarantee that everything was cleaned
1309   **/
e1000_clean_rx_irq_ps(struct e1000_ring * rx_ring,int * work_done,int work_to_do)1310  static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311  				  int work_to_do)
1312  {
1313  	struct e1000_adapter *adapter = rx_ring->adapter;
1314  	struct e1000_hw *hw = &adapter->hw;
1315  	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316  	struct net_device *netdev = adapter->netdev;
1317  	struct pci_dev *pdev = adapter->pdev;
1318  	struct e1000_buffer *buffer_info, *next_buffer;
1319  	struct e1000_ps_page *ps_page;
1320  	struct sk_buff *skb;
1321  	unsigned int i, j;
1322  	u32 length, staterr;
1323  	int cleaned_count = 0;
1324  	bool cleaned = false;
1325  	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326  
1327  	i = rx_ring->next_to_clean;
1328  	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329  	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330  	buffer_info = &rx_ring->buffer_info[i];
1331  
1332  	while (staterr & E1000_RXD_STAT_DD) {
1333  		if (*work_done >= work_to_do)
1334  			break;
1335  		(*work_done)++;
1336  		skb = buffer_info->skb;
1337  		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1338  
1339  		/* in the packet split case this is header only */
1340  		prefetch(skb->data - NET_IP_ALIGN);
1341  
1342  		i++;
1343  		if (i == rx_ring->count)
1344  			i = 0;
1345  		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346  		prefetch(next_rxd);
1347  
1348  		next_buffer = &rx_ring->buffer_info[i];
1349  
1350  		cleaned = true;
1351  		cleaned_count++;
1352  		dma_unmap_single(&pdev->dev, buffer_info->dma,
1353  				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354  		buffer_info->dma = 0;
1355  
1356  		/* see !EOP comment in other Rx routine */
1357  		if (!(staterr & E1000_RXD_STAT_EOP))
1358  			adapter->flags2 |= FLAG2_IS_DISCARDING;
1359  
1360  		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361  			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362  			dev_kfree_skb_irq(skb);
1363  			if (staterr & E1000_RXD_STAT_EOP)
1364  				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365  			goto next_desc;
1366  		}
1367  
1368  		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369  			     !(netdev->features & NETIF_F_RXALL))) {
1370  			dev_kfree_skb_irq(skb);
1371  			goto next_desc;
1372  		}
1373  
1374  		length = le16_to_cpu(rx_desc->wb.middle.length0);
1375  
1376  		if (!length) {
1377  			e_dbg("Last part of the packet spanning multiple descriptors\n");
1378  			dev_kfree_skb_irq(skb);
1379  			goto next_desc;
1380  		}
1381  
1382  		/* Good Receive */
1383  		skb_put(skb, length);
1384  
1385  		{
1386  			/* this looks ugly, but it seems compiler issues make
1387  			 * it more efficient than reusing j
1388  			 */
1389  			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390  
1391  			/* page alloc/put takes too long and effects small
1392  			 * packet throughput, so unsplit small packets and
1393  			 * save the alloc/put
1394  			 */
1395  			if (l1 && (l1 <= copybreak) &&
1396  			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1397  				ps_page = &buffer_info->ps_pages[0];
1398  
1399  				dma_sync_single_for_cpu(&pdev->dev,
1400  							ps_page->dma,
1401  							PAGE_SIZE,
1402  							DMA_FROM_DEVICE);
1403  				memcpy(skb_tail_pointer(skb),
1404  				       page_address(ps_page->page), l1);
1405  				dma_sync_single_for_device(&pdev->dev,
1406  							   ps_page->dma,
1407  							   PAGE_SIZE,
1408  							   DMA_FROM_DEVICE);
1409  
1410  				/* remove the CRC */
1411  				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412  					if (!(netdev->features & NETIF_F_RXFCS))
1413  						l1 -= 4;
1414  				}
1415  
1416  				skb_put(skb, l1);
1417  				goto copydone;
1418  			}	/* if */
1419  		}
1420  
1421  		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422  			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423  			if (!length)
1424  				break;
1425  
1426  			ps_page = &buffer_info->ps_pages[j];
1427  			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428  				       DMA_FROM_DEVICE);
1429  			ps_page->dma = 0;
1430  			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431  			ps_page->page = NULL;
1432  			skb->len += length;
1433  			skb->data_len += length;
1434  			skb->truesize += PAGE_SIZE;
1435  		}
1436  
1437  		/* strip the ethernet crc, problem is we're using pages now so
1438  		 * this whole operation can get a little cpu intensive
1439  		 */
1440  		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441  			if (!(netdev->features & NETIF_F_RXFCS))
1442  				pskb_trim(skb, skb->len - 4);
1443  		}
1444  
1445  copydone:
1446  		total_rx_bytes += skb->len;
1447  		total_rx_packets++;
1448  
1449  		e1000_rx_checksum(adapter, staterr, skb);
1450  
1451  		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452  
1453  		if (rx_desc->wb.upper.header_status &
1454  		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455  			adapter->rx_hdr_split++;
1456  
1457  		e1000_receive_skb(adapter, netdev, skb, staterr,
1458  				  rx_desc->wb.middle.vlan);
1459  
1460  next_desc:
1461  		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462  		buffer_info->skb = NULL;
1463  
1464  		/* return some buffers to hardware, one at a time is too slow */
1465  		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466  			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467  					      GFP_ATOMIC);
1468  			cleaned_count = 0;
1469  		}
1470  
1471  		/* use prefetched values */
1472  		rx_desc = next_rxd;
1473  		buffer_info = next_buffer;
1474  
1475  		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476  	}
1477  	rx_ring->next_to_clean = i;
1478  
1479  	cleaned_count = e1000_desc_unused(rx_ring);
1480  	if (cleaned_count)
1481  		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482  
1483  	adapter->total_rx_bytes += total_rx_bytes;
1484  	adapter->total_rx_packets += total_rx_packets;
1485  	return cleaned;
1486  }
1487  
e1000_consume_page(struct e1000_buffer * bi,struct sk_buff * skb,u16 length)1488  static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489  			       u16 length)
1490  {
1491  	bi->page = NULL;
1492  	skb->len += length;
1493  	skb->data_len += length;
1494  	skb->truesize += PAGE_SIZE;
1495  }
1496  
1497  /**
1498   * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499   * @rx_ring: Rx descriptor ring
1500   * @work_done: output parameter for indicating completed work
1501   * @work_to_do: how many packets we can clean
1502   *
1503   * the return value indicates whether actual cleaning was done, there
1504   * is no guarantee that everything was cleaned
1505   **/
e1000_clean_jumbo_rx_irq(struct e1000_ring * rx_ring,int * work_done,int work_to_do)1506  static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507  				     int work_to_do)
1508  {
1509  	struct e1000_adapter *adapter = rx_ring->adapter;
1510  	struct net_device *netdev = adapter->netdev;
1511  	struct pci_dev *pdev = adapter->pdev;
1512  	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513  	struct e1000_buffer *buffer_info, *next_buffer;
1514  	u32 length, staterr;
1515  	unsigned int i;
1516  	int cleaned_count = 0;
1517  	bool cleaned = false;
1518  	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519  	struct skb_shared_info *shinfo;
1520  
1521  	i = rx_ring->next_to_clean;
1522  	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523  	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524  	buffer_info = &rx_ring->buffer_info[i];
1525  
1526  	while (staterr & E1000_RXD_STAT_DD) {
1527  		struct sk_buff *skb;
1528  
1529  		if (*work_done >= work_to_do)
1530  			break;
1531  		(*work_done)++;
1532  		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1533  
1534  		skb = buffer_info->skb;
1535  		buffer_info->skb = NULL;
1536  
1537  		++i;
1538  		if (i == rx_ring->count)
1539  			i = 0;
1540  		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541  		prefetch(next_rxd);
1542  
1543  		next_buffer = &rx_ring->buffer_info[i];
1544  
1545  		cleaned = true;
1546  		cleaned_count++;
1547  		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548  			       DMA_FROM_DEVICE);
1549  		buffer_info->dma = 0;
1550  
1551  		length = le16_to_cpu(rx_desc->wb.upper.length);
1552  
1553  		/* errors is only valid for DD + EOP descriptors */
1554  		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555  			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556  			      !(netdev->features & NETIF_F_RXALL)))) {
1557  			/* recycle both page and skb */
1558  			buffer_info->skb = skb;
1559  			/* an error means any chain goes out the window too */
1560  			if (rx_ring->rx_skb_top)
1561  				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562  			rx_ring->rx_skb_top = NULL;
1563  			goto next_desc;
1564  		}
1565  #define rxtop (rx_ring->rx_skb_top)
1566  		if (!(staterr & E1000_RXD_STAT_EOP)) {
1567  			/* this descriptor is only the beginning (or middle) */
1568  			if (!rxtop) {
1569  				/* this is the beginning of a chain */
1570  				rxtop = skb;
1571  				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572  						   0, length);
1573  			} else {
1574  				/* this is the middle of a chain */
1575  				shinfo = skb_shinfo(rxtop);
1576  				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577  						   buffer_info->page, 0,
1578  						   length);
1579  				/* re-use the skb, only consumed the page */
1580  				buffer_info->skb = skb;
1581  			}
1582  			e1000_consume_page(buffer_info, rxtop, length);
1583  			goto next_desc;
1584  		} else {
1585  			if (rxtop) {
1586  				/* end of the chain */
1587  				shinfo = skb_shinfo(rxtop);
1588  				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589  						   buffer_info->page, 0,
1590  						   length);
1591  				/* re-use the current skb, we only consumed the
1592  				 * page
1593  				 */
1594  				buffer_info->skb = skb;
1595  				skb = rxtop;
1596  				rxtop = NULL;
1597  				e1000_consume_page(buffer_info, skb, length);
1598  			} else {
1599  				/* no chain, got EOP, this buf is the packet
1600  				 * copybreak to save the put_page/alloc_page
1601  				 */
1602  				if (length <= copybreak &&
1603  				    skb_tailroom(skb) >= length) {
1604  					memcpy(skb_tail_pointer(skb),
1605  					       page_address(buffer_info->page),
1606  					       length);
1607  					/* re-use the page, so don't erase
1608  					 * buffer_info->page
1609  					 */
1610  					skb_put(skb, length);
1611  				} else {
1612  					skb_fill_page_desc(skb, 0,
1613  							   buffer_info->page, 0,
1614  							   length);
1615  					e1000_consume_page(buffer_info, skb,
1616  							   length);
1617  				}
1618  			}
1619  		}
1620  
1621  		/* Receive Checksum Offload */
1622  		e1000_rx_checksum(adapter, staterr, skb);
1623  
1624  		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625  
1626  		/* probably a little skewed due to removing CRC */
1627  		total_rx_bytes += skb->len;
1628  		total_rx_packets++;
1629  
1630  		/* eth type trans needs skb->data to point to something */
1631  		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632  			e_err("pskb_may_pull failed.\n");
1633  			dev_kfree_skb_irq(skb);
1634  			goto next_desc;
1635  		}
1636  
1637  		e1000_receive_skb(adapter, netdev, skb, staterr,
1638  				  rx_desc->wb.upper.vlan);
1639  
1640  next_desc:
1641  		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642  
1643  		/* return some buffers to hardware, one at a time is too slow */
1644  		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645  			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646  					      GFP_ATOMIC);
1647  			cleaned_count = 0;
1648  		}
1649  
1650  		/* use prefetched values */
1651  		rx_desc = next_rxd;
1652  		buffer_info = next_buffer;
1653  
1654  		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655  	}
1656  	rx_ring->next_to_clean = i;
1657  
1658  	cleaned_count = e1000_desc_unused(rx_ring);
1659  	if (cleaned_count)
1660  		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661  
1662  	adapter->total_rx_bytes += total_rx_bytes;
1663  	adapter->total_rx_packets += total_rx_packets;
1664  	return cleaned;
1665  }
1666  
1667  /**
1668   * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669   * @rx_ring: Rx descriptor ring
1670   **/
e1000_clean_rx_ring(struct e1000_ring * rx_ring)1671  static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672  {
1673  	struct e1000_adapter *adapter = rx_ring->adapter;
1674  	struct e1000_buffer *buffer_info;
1675  	struct e1000_ps_page *ps_page;
1676  	struct pci_dev *pdev = adapter->pdev;
1677  	unsigned int i, j;
1678  
1679  	/* Free all the Rx ring sk_buffs */
1680  	for (i = 0; i < rx_ring->count; i++) {
1681  		buffer_info = &rx_ring->buffer_info[i];
1682  		if (buffer_info->dma) {
1683  			if (adapter->clean_rx == e1000_clean_rx_irq)
1684  				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685  						 adapter->rx_buffer_len,
1686  						 DMA_FROM_DEVICE);
1687  			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688  				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689  					       PAGE_SIZE, DMA_FROM_DEVICE);
1690  			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691  				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692  						 adapter->rx_ps_bsize0,
1693  						 DMA_FROM_DEVICE);
1694  			buffer_info->dma = 0;
1695  		}
1696  
1697  		if (buffer_info->page) {
1698  			put_page(buffer_info->page);
1699  			buffer_info->page = NULL;
1700  		}
1701  
1702  		if (buffer_info->skb) {
1703  			dev_kfree_skb(buffer_info->skb);
1704  			buffer_info->skb = NULL;
1705  		}
1706  
1707  		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708  			ps_page = &buffer_info->ps_pages[j];
1709  			if (!ps_page->page)
1710  				break;
1711  			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712  				       DMA_FROM_DEVICE);
1713  			ps_page->dma = 0;
1714  			put_page(ps_page->page);
1715  			ps_page->page = NULL;
1716  		}
1717  	}
1718  
1719  	/* there also may be some cached data from a chained receive */
1720  	if (rx_ring->rx_skb_top) {
1721  		dev_kfree_skb(rx_ring->rx_skb_top);
1722  		rx_ring->rx_skb_top = NULL;
1723  	}
1724  
1725  	/* Zero out the descriptor ring */
1726  	memset(rx_ring->desc, 0, rx_ring->size);
1727  
1728  	rx_ring->next_to_clean = 0;
1729  	rx_ring->next_to_use = 0;
1730  	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731  }
1732  
e1000e_downshift_workaround(struct work_struct * work)1733  static void e1000e_downshift_workaround(struct work_struct *work)
1734  {
1735  	struct e1000_adapter *adapter = container_of(work,
1736  						     struct e1000_adapter,
1737  						     downshift_task);
1738  
1739  	if (test_bit(__E1000_DOWN, &adapter->state))
1740  		return;
1741  
1742  	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743  }
1744  
1745  /**
1746   * e1000_intr_msi - Interrupt Handler
1747   * @irq: interrupt number
1748   * @data: pointer to a network interface device structure
1749   **/
e1000_intr_msi(int __always_unused irq,void * data)1750  static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751  {
1752  	struct net_device *netdev = data;
1753  	struct e1000_adapter *adapter = netdev_priv(netdev);
1754  	struct e1000_hw *hw = &adapter->hw;
1755  	u32 icr = er32(ICR);
1756  
1757  	/* read ICR disables interrupts using IAM */
1758  	if (icr & E1000_ICR_LSC) {
1759  		hw->mac.get_link_status = true;
1760  		/* ICH8 workaround-- Call gig speed drop workaround on cable
1761  		 * disconnect (LSC) before accessing any PHY registers
1762  		 */
1763  		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764  		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765  			schedule_work(&adapter->downshift_task);
1766  
1767  		/* 80003ES2LAN workaround-- For packet buffer work-around on
1768  		 * link down event; disable receives here in the ISR and reset
1769  		 * adapter in watchdog
1770  		 */
1771  		if (netif_carrier_ok(netdev) &&
1772  		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773  			/* disable receives */
1774  			u32 rctl = er32(RCTL);
1775  
1776  			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777  			adapter->flags |= FLAG_RESTART_NOW;
1778  		}
1779  		/* guard against interrupt when we're going down */
1780  		if (!test_bit(__E1000_DOWN, &adapter->state))
1781  			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782  	}
1783  
1784  	/* Reset on uncorrectable ECC error */
1785  	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786  		u32 pbeccsts = er32(PBECCSTS);
1787  
1788  		adapter->corr_errors +=
1789  		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790  		adapter->uncorr_errors +=
1791  		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1792  
1793  		/* Do the reset outside of interrupt context */
1794  		schedule_work(&adapter->reset_task);
1795  
1796  		/* return immediately since reset is imminent */
1797  		return IRQ_HANDLED;
1798  	}
1799  
1800  	if (napi_schedule_prep(&adapter->napi)) {
1801  		adapter->total_tx_bytes = 0;
1802  		adapter->total_tx_packets = 0;
1803  		adapter->total_rx_bytes = 0;
1804  		adapter->total_rx_packets = 0;
1805  		__napi_schedule(&adapter->napi);
1806  	}
1807  
1808  	return IRQ_HANDLED;
1809  }
1810  
1811  /**
1812   * e1000_intr - Interrupt Handler
1813   * @irq: interrupt number
1814   * @data: pointer to a network interface device structure
1815   **/
e1000_intr(int __always_unused irq,void * data)1816  static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817  {
1818  	struct net_device *netdev = data;
1819  	struct e1000_adapter *adapter = netdev_priv(netdev);
1820  	struct e1000_hw *hw = &adapter->hw;
1821  	u32 rctl, icr = er32(ICR);
1822  
1823  	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824  		return IRQ_NONE;	/* Not our interrupt */
1825  
1826  	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827  	 * not set, then the adapter didn't send an interrupt
1828  	 */
1829  	if (!(icr & E1000_ICR_INT_ASSERTED))
1830  		return IRQ_NONE;
1831  
1832  	/* Interrupt Auto-Mask...upon reading ICR,
1833  	 * interrupts are masked.  No need for the
1834  	 * IMC write
1835  	 */
1836  
1837  	if (icr & E1000_ICR_LSC) {
1838  		hw->mac.get_link_status = true;
1839  		/* ICH8 workaround-- Call gig speed drop workaround on cable
1840  		 * disconnect (LSC) before accessing any PHY registers
1841  		 */
1842  		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843  		    (!(er32(STATUS) & E1000_STATUS_LU)))
1844  			schedule_work(&adapter->downshift_task);
1845  
1846  		/* 80003ES2LAN workaround--
1847  		 * For packet buffer work-around on link down event;
1848  		 * disable receives here in the ISR and
1849  		 * reset adapter in watchdog
1850  		 */
1851  		if (netif_carrier_ok(netdev) &&
1852  		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853  			/* disable receives */
1854  			rctl = er32(RCTL);
1855  			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856  			adapter->flags |= FLAG_RESTART_NOW;
1857  		}
1858  		/* guard against interrupt when we're going down */
1859  		if (!test_bit(__E1000_DOWN, &adapter->state))
1860  			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861  	}
1862  
1863  	/* Reset on uncorrectable ECC error */
1864  	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865  		u32 pbeccsts = er32(PBECCSTS);
1866  
1867  		adapter->corr_errors +=
1868  		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869  		adapter->uncorr_errors +=
1870  		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1871  
1872  		/* Do the reset outside of interrupt context */
1873  		schedule_work(&adapter->reset_task);
1874  
1875  		/* return immediately since reset is imminent */
1876  		return IRQ_HANDLED;
1877  	}
1878  
1879  	if (napi_schedule_prep(&adapter->napi)) {
1880  		adapter->total_tx_bytes = 0;
1881  		adapter->total_tx_packets = 0;
1882  		adapter->total_rx_bytes = 0;
1883  		adapter->total_rx_packets = 0;
1884  		__napi_schedule(&adapter->napi);
1885  	}
1886  
1887  	return IRQ_HANDLED;
1888  }
1889  
e1000_msix_other(int __always_unused irq,void * data)1890  static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891  {
1892  	struct net_device *netdev = data;
1893  	struct e1000_adapter *adapter = netdev_priv(netdev);
1894  	struct e1000_hw *hw = &adapter->hw;
1895  	u32 icr = er32(ICR);
1896  
1897  	if (icr & adapter->eiac_mask)
1898  		ew32(ICS, (icr & adapter->eiac_mask));
1899  
1900  	if (icr & E1000_ICR_LSC) {
1901  		hw->mac.get_link_status = true;
1902  		/* guard against interrupt when we're going down */
1903  		if (!test_bit(__E1000_DOWN, &adapter->state))
1904  			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905  	}
1906  
1907  	if (!test_bit(__E1000_DOWN, &adapter->state))
1908  		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909  
1910  	return IRQ_HANDLED;
1911  }
1912  
e1000_intr_msix_tx(int __always_unused irq,void * data)1913  static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914  {
1915  	struct net_device *netdev = data;
1916  	struct e1000_adapter *adapter = netdev_priv(netdev);
1917  	struct e1000_hw *hw = &adapter->hw;
1918  	struct e1000_ring *tx_ring = adapter->tx_ring;
1919  
1920  	adapter->total_tx_bytes = 0;
1921  	adapter->total_tx_packets = 0;
1922  
1923  	if (!e1000_clean_tx_irq(tx_ring))
1924  		/* Ring was not completely cleaned, so fire another interrupt */
1925  		ew32(ICS, tx_ring->ims_val);
1926  
1927  	if (!test_bit(__E1000_DOWN, &adapter->state))
1928  		ew32(IMS, adapter->tx_ring->ims_val);
1929  
1930  	return IRQ_HANDLED;
1931  }
1932  
e1000_intr_msix_rx(int __always_unused irq,void * data)1933  static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934  {
1935  	struct net_device *netdev = data;
1936  	struct e1000_adapter *adapter = netdev_priv(netdev);
1937  	struct e1000_ring *rx_ring = adapter->rx_ring;
1938  
1939  	/* Write the ITR value calculated at the end of the
1940  	 * previous interrupt.
1941  	 */
1942  	if (rx_ring->set_itr) {
1943  		u32 itr = rx_ring->itr_val ?
1944  			  1000000000 / (rx_ring->itr_val * 256) : 0;
1945  
1946  		writel(itr, rx_ring->itr_register);
1947  		rx_ring->set_itr = 0;
1948  	}
1949  
1950  	if (napi_schedule_prep(&adapter->napi)) {
1951  		adapter->total_rx_bytes = 0;
1952  		adapter->total_rx_packets = 0;
1953  		__napi_schedule(&adapter->napi);
1954  	}
1955  	return IRQ_HANDLED;
1956  }
1957  
1958  /**
1959   * e1000_configure_msix - Configure MSI-X hardware
1960   * @adapter: board private structure
1961   *
1962   * e1000_configure_msix sets up the hardware to properly
1963   * generate MSI-X interrupts.
1964   **/
e1000_configure_msix(struct e1000_adapter * adapter)1965  static void e1000_configure_msix(struct e1000_adapter *adapter)
1966  {
1967  	struct e1000_hw *hw = &adapter->hw;
1968  	struct e1000_ring *rx_ring = adapter->rx_ring;
1969  	struct e1000_ring *tx_ring = adapter->tx_ring;
1970  	int vector = 0;
1971  	u32 ctrl_ext, ivar = 0;
1972  
1973  	adapter->eiac_mask = 0;
1974  
1975  	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976  	if (hw->mac.type == e1000_82574) {
1977  		u32 rfctl = er32(RFCTL);
1978  
1979  		rfctl |= E1000_RFCTL_ACK_DIS;
1980  		ew32(RFCTL, rfctl);
1981  	}
1982  
1983  	/* Configure Rx vector */
1984  	rx_ring->ims_val = E1000_IMS_RXQ0;
1985  	adapter->eiac_mask |= rx_ring->ims_val;
1986  	if (rx_ring->itr_val)
1987  		writel(1000000000 / (rx_ring->itr_val * 256),
1988  		       rx_ring->itr_register);
1989  	else
1990  		writel(1, rx_ring->itr_register);
1991  	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992  
1993  	/* Configure Tx vector */
1994  	tx_ring->ims_val = E1000_IMS_TXQ0;
1995  	vector++;
1996  	if (tx_ring->itr_val)
1997  		writel(1000000000 / (tx_ring->itr_val * 256),
1998  		       tx_ring->itr_register);
1999  	else
2000  		writel(1, tx_ring->itr_register);
2001  	adapter->eiac_mask |= tx_ring->ims_val;
2002  	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003  
2004  	/* set vector for Other Causes, e.g. link changes */
2005  	vector++;
2006  	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007  	if (rx_ring->itr_val)
2008  		writel(1000000000 / (rx_ring->itr_val * 256),
2009  		       hw->hw_addr + E1000_EITR_82574(vector));
2010  	else
2011  		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012  
2013  	/* Cause Tx interrupts on every write back */
2014  	ivar |= BIT(31);
2015  
2016  	ew32(IVAR, ivar);
2017  
2018  	/* enable MSI-X PBA support */
2019  	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020  	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2021  	ew32(CTRL_EXT, ctrl_ext);
2022  	e1e_flush();
2023  }
2024  
e1000e_reset_interrupt_capability(struct e1000_adapter * adapter)2025  void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026  {
2027  	if (adapter->msix_entries) {
2028  		pci_disable_msix(adapter->pdev);
2029  		kfree(adapter->msix_entries);
2030  		adapter->msix_entries = NULL;
2031  	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2032  		pci_disable_msi(adapter->pdev);
2033  		adapter->flags &= ~FLAG_MSI_ENABLED;
2034  	}
2035  }
2036  
2037  /**
2038   * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039   * @adapter: board private structure
2040   *
2041   * Attempt to configure interrupts using the best available
2042   * capabilities of the hardware and kernel.
2043   **/
e1000e_set_interrupt_capability(struct e1000_adapter * adapter)2044  void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045  {
2046  	int err;
2047  	int i;
2048  
2049  	switch (adapter->int_mode) {
2050  	case E1000E_INT_MODE_MSIX:
2051  		if (adapter->flags & FLAG_HAS_MSIX) {
2052  			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053  			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054  							sizeof(struct
2055  							       msix_entry),
2056  							GFP_KERNEL);
2057  			if (adapter->msix_entries) {
2058  				struct e1000_adapter *a = adapter;
2059  
2060  				for (i = 0; i < adapter->num_vectors; i++)
2061  					adapter->msix_entries[i].entry = i;
2062  
2063  				err = pci_enable_msix_range(a->pdev,
2064  							    a->msix_entries,
2065  							    a->num_vectors,
2066  							    a->num_vectors);
2067  				if (err > 0)
2068  					return;
2069  			}
2070  			/* MSI-X failed, so fall through and try MSI */
2071  			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072  			e1000e_reset_interrupt_capability(adapter);
2073  		}
2074  		adapter->int_mode = E1000E_INT_MODE_MSI;
2075  		fallthrough;
2076  	case E1000E_INT_MODE_MSI:
2077  		if (!pci_enable_msi(adapter->pdev)) {
2078  			adapter->flags |= FLAG_MSI_ENABLED;
2079  		} else {
2080  			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081  			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082  		}
2083  		fallthrough;
2084  	case E1000E_INT_MODE_LEGACY:
2085  		/* Don't do anything; this is the system default */
2086  		break;
2087  	}
2088  
2089  	/* store the number of vectors being used */
2090  	adapter->num_vectors = 1;
2091  }
2092  
2093  /**
2094   * e1000_request_msix - Initialize MSI-X interrupts
2095   * @adapter: board private structure
2096   *
2097   * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098   * kernel.
2099   **/
e1000_request_msix(struct e1000_adapter * adapter)2100  static int e1000_request_msix(struct e1000_adapter *adapter)
2101  {
2102  	struct net_device *netdev = adapter->netdev;
2103  	int err = 0, vector = 0;
2104  
2105  	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106  		snprintf(adapter->rx_ring->name,
2107  			 sizeof(adapter->rx_ring->name) - 1,
2108  			 "%.14s-rx-0", netdev->name);
2109  	else
2110  		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111  	err = request_irq(adapter->msix_entries[vector].vector,
2112  			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113  			  netdev);
2114  	if (err)
2115  		return err;
2116  	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117  	    E1000_EITR_82574(vector);
2118  	adapter->rx_ring->itr_val = adapter->itr;
2119  	vector++;
2120  
2121  	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122  		snprintf(adapter->tx_ring->name,
2123  			 sizeof(adapter->tx_ring->name) - 1,
2124  			 "%.14s-tx-0", netdev->name);
2125  	else
2126  		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127  	err = request_irq(adapter->msix_entries[vector].vector,
2128  			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129  			  netdev);
2130  	if (err)
2131  		return err;
2132  	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133  	    E1000_EITR_82574(vector);
2134  	adapter->tx_ring->itr_val = adapter->itr;
2135  	vector++;
2136  
2137  	err = request_irq(adapter->msix_entries[vector].vector,
2138  			  e1000_msix_other, 0, netdev->name, netdev);
2139  	if (err)
2140  		return err;
2141  
2142  	e1000_configure_msix(adapter);
2143  
2144  	return 0;
2145  }
2146  
2147  /**
2148   * e1000_request_irq - initialize interrupts
2149   * @adapter: board private structure
2150   *
2151   * Attempts to configure interrupts using the best available
2152   * capabilities of the hardware and kernel.
2153   **/
e1000_request_irq(struct e1000_adapter * adapter)2154  static int e1000_request_irq(struct e1000_adapter *adapter)
2155  {
2156  	struct net_device *netdev = adapter->netdev;
2157  	int err;
2158  
2159  	if (adapter->msix_entries) {
2160  		err = e1000_request_msix(adapter);
2161  		if (!err)
2162  			return err;
2163  		/* fall back to MSI */
2164  		e1000e_reset_interrupt_capability(adapter);
2165  		adapter->int_mode = E1000E_INT_MODE_MSI;
2166  		e1000e_set_interrupt_capability(adapter);
2167  	}
2168  	if (adapter->flags & FLAG_MSI_ENABLED) {
2169  		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170  				  netdev->name, netdev);
2171  		if (!err)
2172  			return err;
2173  
2174  		/* fall back to legacy interrupt */
2175  		e1000e_reset_interrupt_capability(adapter);
2176  		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177  	}
2178  
2179  	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180  			  netdev->name, netdev);
2181  	if (err)
2182  		e_err("Unable to allocate interrupt, Error: %d\n", err);
2183  
2184  	return err;
2185  }
2186  
e1000_free_irq(struct e1000_adapter * adapter)2187  static void e1000_free_irq(struct e1000_adapter *adapter)
2188  {
2189  	struct net_device *netdev = adapter->netdev;
2190  
2191  	if (adapter->msix_entries) {
2192  		int vector = 0;
2193  
2194  		free_irq(adapter->msix_entries[vector].vector, netdev);
2195  		vector++;
2196  
2197  		free_irq(adapter->msix_entries[vector].vector, netdev);
2198  		vector++;
2199  
2200  		/* Other Causes interrupt vector */
2201  		free_irq(adapter->msix_entries[vector].vector, netdev);
2202  		return;
2203  	}
2204  
2205  	free_irq(adapter->pdev->irq, netdev);
2206  }
2207  
2208  /**
2209   * e1000_irq_disable - Mask off interrupt generation on the NIC
2210   * @adapter: board private structure
2211   **/
e1000_irq_disable(struct e1000_adapter * adapter)2212  static void e1000_irq_disable(struct e1000_adapter *adapter)
2213  {
2214  	struct e1000_hw *hw = &adapter->hw;
2215  
2216  	ew32(IMC, ~0);
2217  	if (adapter->msix_entries)
2218  		ew32(EIAC_82574, 0);
2219  	e1e_flush();
2220  
2221  	if (adapter->msix_entries) {
2222  		int i;
2223  
2224  		for (i = 0; i < adapter->num_vectors; i++)
2225  			synchronize_irq(adapter->msix_entries[i].vector);
2226  	} else {
2227  		synchronize_irq(adapter->pdev->irq);
2228  	}
2229  }
2230  
2231  /**
2232   * e1000_irq_enable - Enable default interrupt generation settings
2233   * @adapter: board private structure
2234   **/
e1000_irq_enable(struct e1000_adapter * adapter)2235  static void e1000_irq_enable(struct e1000_adapter *adapter)
2236  {
2237  	struct e1000_hw *hw = &adapter->hw;
2238  
2239  	if (adapter->msix_entries) {
2240  		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241  		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242  		     IMS_OTHER_MASK);
2243  	} else if (hw->mac.type >= e1000_pch_lpt) {
2244  		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245  	} else {
2246  		ew32(IMS, IMS_ENABLE_MASK);
2247  	}
2248  	e1e_flush();
2249  }
2250  
2251  /**
2252   * e1000e_get_hw_control - get control of the h/w from f/w
2253   * @adapter: address of board private structure
2254   *
2255   * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256   * For ASF and Pass Through versions of f/w this means that
2257   * the driver is loaded. For AMT version (only with 82573)
2258   * of the f/w this means that the network i/f is open.
2259   **/
e1000e_get_hw_control(struct e1000_adapter * adapter)2260  void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261  {
2262  	struct e1000_hw *hw = &adapter->hw;
2263  	u32 ctrl_ext;
2264  	u32 swsm;
2265  
2266  	/* Let firmware know the driver has taken over */
2267  	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268  		swsm = er32(SWSM);
2269  		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270  	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271  		ctrl_ext = er32(CTRL_EXT);
2272  		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273  	}
2274  }
2275  
2276  /**
2277   * e1000e_release_hw_control - release control of the h/w to f/w
2278   * @adapter: address of board private structure
2279   *
2280   * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281   * For ASF and Pass Through versions of f/w this means that the
2282   * driver is no longer loaded. For AMT version (only with 82573) i
2283   * of the f/w this means that the network i/f is closed.
2284   *
2285   **/
e1000e_release_hw_control(struct e1000_adapter * adapter)2286  void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287  {
2288  	struct e1000_hw *hw = &adapter->hw;
2289  	u32 ctrl_ext;
2290  	u32 swsm;
2291  
2292  	/* Let firmware taken over control of h/w */
2293  	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294  		swsm = er32(SWSM);
2295  		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296  	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297  		ctrl_ext = er32(CTRL_EXT);
2298  		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299  	}
2300  }
2301  
2302  /**
2303   * e1000_alloc_ring_dma - allocate memory for a ring structure
2304   * @adapter: board private structure
2305   * @ring: ring struct for which to allocate dma
2306   **/
e1000_alloc_ring_dma(struct e1000_adapter * adapter,struct e1000_ring * ring)2307  static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308  				struct e1000_ring *ring)
2309  {
2310  	struct pci_dev *pdev = adapter->pdev;
2311  
2312  	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313  					GFP_KERNEL);
2314  	if (!ring->desc)
2315  		return -ENOMEM;
2316  
2317  	return 0;
2318  }
2319  
2320  /**
2321   * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322   * @tx_ring: Tx descriptor ring
2323   *
2324   * Return 0 on success, negative on failure
2325   **/
e1000e_setup_tx_resources(struct e1000_ring * tx_ring)2326  int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327  {
2328  	struct e1000_adapter *adapter = tx_ring->adapter;
2329  	int err = -ENOMEM, size;
2330  
2331  	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332  	tx_ring->buffer_info = vzalloc(size);
2333  	if (!tx_ring->buffer_info)
2334  		goto err;
2335  
2336  	/* round up to nearest 4K */
2337  	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338  	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339  
2340  	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341  	if (err)
2342  		goto err;
2343  
2344  	tx_ring->next_to_use = 0;
2345  	tx_ring->next_to_clean = 0;
2346  
2347  	return 0;
2348  err:
2349  	vfree(tx_ring->buffer_info);
2350  	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351  	return err;
2352  }
2353  
2354  /**
2355   * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356   * @rx_ring: Rx descriptor ring
2357   *
2358   * Returns 0 on success, negative on failure
2359   **/
e1000e_setup_rx_resources(struct e1000_ring * rx_ring)2360  int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361  {
2362  	struct e1000_adapter *adapter = rx_ring->adapter;
2363  	struct e1000_buffer *buffer_info;
2364  	int i, size, desc_len, err = -ENOMEM;
2365  
2366  	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367  	rx_ring->buffer_info = vzalloc(size);
2368  	if (!rx_ring->buffer_info)
2369  		goto err;
2370  
2371  	for (i = 0; i < rx_ring->count; i++) {
2372  		buffer_info = &rx_ring->buffer_info[i];
2373  		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374  						sizeof(struct e1000_ps_page),
2375  						GFP_KERNEL);
2376  		if (!buffer_info->ps_pages)
2377  			goto err_pages;
2378  	}
2379  
2380  	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381  
2382  	/* Round up to nearest 4K */
2383  	rx_ring->size = rx_ring->count * desc_len;
2384  	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385  
2386  	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387  	if (err)
2388  		goto err_pages;
2389  
2390  	rx_ring->next_to_clean = 0;
2391  	rx_ring->next_to_use = 0;
2392  	rx_ring->rx_skb_top = NULL;
2393  
2394  	return 0;
2395  
2396  err_pages:
2397  	for (i = 0; i < rx_ring->count; i++) {
2398  		buffer_info = &rx_ring->buffer_info[i];
2399  		kfree(buffer_info->ps_pages);
2400  	}
2401  err:
2402  	vfree(rx_ring->buffer_info);
2403  	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404  	return err;
2405  }
2406  
2407  /**
2408   * e1000_clean_tx_ring - Free Tx Buffers
2409   * @tx_ring: Tx descriptor ring
2410   **/
e1000_clean_tx_ring(struct e1000_ring * tx_ring)2411  static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412  {
2413  	struct e1000_adapter *adapter = tx_ring->adapter;
2414  	struct e1000_buffer *buffer_info;
2415  	unsigned long size;
2416  	unsigned int i;
2417  
2418  	for (i = 0; i < tx_ring->count; i++) {
2419  		buffer_info = &tx_ring->buffer_info[i];
2420  		e1000_put_txbuf(tx_ring, buffer_info, false);
2421  	}
2422  
2423  	netdev_reset_queue(adapter->netdev);
2424  	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425  	memset(tx_ring->buffer_info, 0, size);
2426  
2427  	memset(tx_ring->desc, 0, tx_ring->size);
2428  
2429  	tx_ring->next_to_use = 0;
2430  	tx_ring->next_to_clean = 0;
2431  }
2432  
2433  /**
2434   * e1000e_free_tx_resources - Free Tx Resources per Queue
2435   * @tx_ring: Tx descriptor ring
2436   *
2437   * Free all transmit software resources
2438   **/
e1000e_free_tx_resources(struct e1000_ring * tx_ring)2439  void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440  {
2441  	struct e1000_adapter *adapter = tx_ring->adapter;
2442  	struct pci_dev *pdev = adapter->pdev;
2443  
2444  	e1000_clean_tx_ring(tx_ring);
2445  
2446  	vfree(tx_ring->buffer_info);
2447  	tx_ring->buffer_info = NULL;
2448  
2449  	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450  			  tx_ring->dma);
2451  	tx_ring->desc = NULL;
2452  }
2453  
2454  /**
2455   * e1000e_free_rx_resources - Free Rx Resources
2456   * @rx_ring: Rx descriptor ring
2457   *
2458   * Free all receive software resources
2459   **/
e1000e_free_rx_resources(struct e1000_ring * rx_ring)2460  void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461  {
2462  	struct e1000_adapter *adapter = rx_ring->adapter;
2463  	struct pci_dev *pdev = adapter->pdev;
2464  	int i;
2465  
2466  	e1000_clean_rx_ring(rx_ring);
2467  
2468  	for (i = 0; i < rx_ring->count; i++)
2469  		kfree(rx_ring->buffer_info[i].ps_pages);
2470  
2471  	vfree(rx_ring->buffer_info);
2472  	rx_ring->buffer_info = NULL;
2473  
2474  	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475  			  rx_ring->dma);
2476  	rx_ring->desc = NULL;
2477  }
2478  
2479  /**
2480   * e1000_update_itr - update the dynamic ITR value based on statistics
2481   * @itr_setting: current adapter->itr
2482   * @packets: the number of packets during this measurement interval
2483   * @bytes: the number of bytes during this measurement interval
2484   *
2485   *      Stores a new ITR value based on packets and byte
2486   *      counts during the last interrupt.  The advantage of per interrupt
2487   *      computation is faster updates and more accurate ITR for the current
2488   *      traffic pattern.  Constants in this function were computed
2489   *      based on theoretical maximum wire speed and thresholds were set based
2490   *      on testing data as well as attempting to minimize response time
2491   *      while increasing bulk throughput.  This functionality is controlled
2492   *      by the InterruptThrottleRate module parameter.
2493   **/
e1000_update_itr(u16 itr_setting,int packets,int bytes)2494  static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495  {
2496  	unsigned int retval = itr_setting;
2497  
2498  	if (packets == 0)
2499  		return itr_setting;
2500  
2501  	switch (itr_setting) {
2502  	case lowest_latency:
2503  		/* handle TSO and jumbo frames */
2504  		if (bytes / packets > 8000)
2505  			retval = bulk_latency;
2506  		else if ((packets < 5) && (bytes > 512))
2507  			retval = low_latency;
2508  		break;
2509  	case low_latency:	/* 50 usec aka 20000 ints/s */
2510  		if (bytes > 10000) {
2511  			/* this if handles the TSO accounting */
2512  			if (bytes / packets > 8000)
2513  				retval = bulk_latency;
2514  			else if ((packets < 10) || ((bytes / packets) > 1200))
2515  				retval = bulk_latency;
2516  			else if ((packets > 35))
2517  				retval = lowest_latency;
2518  		} else if (bytes / packets > 2000) {
2519  			retval = bulk_latency;
2520  		} else if (packets <= 2 && bytes < 512) {
2521  			retval = lowest_latency;
2522  		}
2523  		break;
2524  	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2525  		if (bytes > 25000) {
2526  			if (packets > 35)
2527  				retval = low_latency;
2528  		} else if (bytes < 6000) {
2529  			retval = low_latency;
2530  		}
2531  		break;
2532  	}
2533  
2534  	return retval;
2535  }
2536  
e1000_set_itr(struct e1000_adapter * adapter)2537  static void e1000_set_itr(struct e1000_adapter *adapter)
2538  {
2539  	u16 current_itr;
2540  	u32 new_itr = adapter->itr;
2541  
2542  	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543  	if (adapter->link_speed != SPEED_1000) {
2544  		new_itr = 4000;
2545  		goto set_itr_now;
2546  	}
2547  
2548  	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549  		new_itr = 0;
2550  		goto set_itr_now;
2551  	}
2552  
2553  	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554  					   adapter->total_tx_packets,
2555  					   adapter->total_tx_bytes);
2556  	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2557  	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558  		adapter->tx_itr = low_latency;
2559  
2560  	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561  					   adapter->total_rx_packets,
2562  					   adapter->total_rx_bytes);
2563  	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2564  	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565  		adapter->rx_itr = low_latency;
2566  
2567  	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568  
2569  	/* counts and packets in update_itr are dependent on these numbers */
2570  	switch (current_itr) {
2571  	case lowest_latency:
2572  		new_itr = 70000;
2573  		break;
2574  	case low_latency:
2575  		new_itr = 20000;	/* aka hwitr = ~200 */
2576  		break;
2577  	case bulk_latency:
2578  		new_itr = 4000;
2579  		break;
2580  	default:
2581  		break;
2582  	}
2583  
2584  set_itr_now:
2585  	if (new_itr != adapter->itr) {
2586  		/* this attempts to bias the interrupt rate towards Bulk
2587  		 * by adding intermediate steps when interrupt rate is
2588  		 * increasing
2589  		 */
2590  		new_itr = new_itr > adapter->itr ?
2591  		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592  		adapter->itr = new_itr;
2593  		adapter->rx_ring->itr_val = new_itr;
2594  		if (adapter->msix_entries)
2595  			adapter->rx_ring->set_itr = 1;
2596  		else
2597  			e1000e_write_itr(adapter, new_itr);
2598  	}
2599  }
2600  
2601  /**
2602   * e1000e_write_itr - write the ITR value to the appropriate registers
2603   * @adapter: address of board private structure
2604   * @itr: new ITR value to program
2605   *
2606   * e1000e_write_itr determines if the adapter is in MSI-X mode
2607   * and, if so, writes the EITR registers with the ITR value.
2608   * Otherwise, it writes the ITR value into the ITR register.
2609   **/
e1000e_write_itr(struct e1000_adapter * adapter,u32 itr)2610  void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611  {
2612  	struct e1000_hw *hw = &adapter->hw;
2613  	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614  
2615  	if (adapter->msix_entries) {
2616  		int vector;
2617  
2618  		for (vector = 0; vector < adapter->num_vectors; vector++)
2619  			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620  	} else {
2621  		ew32(ITR, new_itr);
2622  	}
2623  }
2624  
2625  /**
2626   * e1000_alloc_queues - Allocate memory for all rings
2627   * @adapter: board private structure to initialize
2628   **/
e1000_alloc_queues(struct e1000_adapter * adapter)2629  static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630  {
2631  	int size = sizeof(struct e1000_ring);
2632  
2633  	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634  	if (!adapter->tx_ring)
2635  		goto err;
2636  	adapter->tx_ring->count = adapter->tx_ring_count;
2637  	adapter->tx_ring->adapter = adapter;
2638  
2639  	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640  	if (!adapter->rx_ring)
2641  		goto err;
2642  	adapter->rx_ring->count = adapter->rx_ring_count;
2643  	adapter->rx_ring->adapter = adapter;
2644  
2645  	return 0;
2646  err:
2647  	e_err("Unable to allocate memory for queues\n");
2648  	kfree(adapter->rx_ring);
2649  	kfree(adapter->tx_ring);
2650  	return -ENOMEM;
2651  }
2652  
2653  /**
2654   * e1000e_poll - NAPI Rx polling callback
2655   * @napi: struct associated with this polling callback
2656   * @budget: number of packets driver is allowed to process this poll
2657   **/
e1000e_poll(struct napi_struct * napi,int budget)2658  static int e1000e_poll(struct napi_struct *napi, int budget)
2659  {
2660  	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661  						     napi);
2662  	struct e1000_hw *hw = &adapter->hw;
2663  	struct net_device *poll_dev = adapter->netdev;
2664  	int tx_cleaned = 1, work_done = 0;
2665  
2666  	adapter = netdev_priv(poll_dev);
2667  
2668  	if (!adapter->msix_entries ||
2669  	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670  		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671  
2672  	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673  
2674  	if (!tx_cleaned || work_done == budget)
2675  		return budget;
2676  
2677  	/* Exit the polling mode, but don't re-enable interrupts if stack might
2678  	 * poll us due to busy-polling
2679  	 */
2680  	if (likely(napi_complete_done(napi, work_done))) {
2681  		if (adapter->itr_setting & 3)
2682  			e1000_set_itr(adapter);
2683  		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684  			if (adapter->msix_entries)
2685  				ew32(IMS, adapter->rx_ring->ims_val);
2686  			else
2687  				e1000_irq_enable(adapter);
2688  		}
2689  	}
2690  
2691  	return work_done;
2692  }
2693  
e1000_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)2694  static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695  				 __always_unused __be16 proto, u16 vid)
2696  {
2697  	struct e1000_adapter *adapter = netdev_priv(netdev);
2698  	struct e1000_hw *hw = &adapter->hw;
2699  	u32 vfta, index;
2700  
2701  	/* don't update vlan cookie if already programmed */
2702  	if ((adapter->hw.mng_cookie.status &
2703  	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704  	    (vid == adapter->mng_vlan_id))
2705  		return 0;
2706  
2707  	/* add VID to filter table */
2708  	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709  		index = (vid >> 5) & 0x7F;
2710  		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711  		vfta |= BIT((vid & 0x1F));
2712  		hw->mac.ops.write_vfta(hw, index, vfta);
2713  	}
2714  
2715  	set_bit(vid, adapter->active_vlans);
2716  
2717  	return 0;
2718  }
2719  
e1000_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)2720  static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721  				  __always_unused __be16 proto, u16 vid)
2722  {
2723  	struct e1000_adapter *adapter = netdev_priv(netdev);
2724  	struct e1000_hw *hw = &adapter->hw;
2725  	u32 vfta, index;
2726  
2727  	if ((adapter->hw.mng_cookie.status &
2728  	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729  	    (vid == adapter->mng_vlan_id)) {
2730  		/* release control to f/w */
2731  		e1000e_release_hw_control(adapter);
2732  		return 0;
2733  	}
2734  
2735  	/* remove VID from filter table */
2736  	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737  		index = (vid >> 5) & 0x7F;
2738  		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739  		vfta &= ~BIT((vid & 0x1F));
2740  		hw->mac.ops.write_vfta(hw, index, vfta);
2741  	}
2742  
2743  	clear_bit(vid, adapter->active_vlans);
2744  
2745  	return 0;
2746  }
2747  
2748  /**
2749   * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750   * @adapter: board private structure to initialize
2751   **/
e1000e_vlan_filter_disable(struct e1000_adapter * adapter)2752  static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753  {
2754  	struct net_device *netdev = adapter->netdev;
2755  	struct e1000_hw *hw = &adapter->hw;
2756  	u32 rctl;
2757  
2758  	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759  		/* disable VLAN receive filtering */
2760  		rctl = er32(RCTL);
2761  		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762  		ew32(RCTL, rctl);
2763  
2764  		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765  			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766  					       adapter->mng_vlan_id);
2767  			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768  		}
2769  	}
2770  }
2771  
2772  /**
2773   * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774   * @adapter: board private structure to initialize
2775   **/
e1000e_vlan_filter_enable(struct e1000_adapter * adapter)2776  static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777  {
2778  	struct e1000_hw *hw = &adapter->hw;
2779  	u32 rctl;
2780  
2781  	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782  		/* enable VLAN receive filtering */
2783  		rctl = er32(RCTL);
2784  		rctl |= E1000_RCTL_VFE;
2785  		rctl &= ~E1000_RCTL_CFIEN;
2786  		ew32(RCTL, rctl);
2787  	}
2788  }
2789  
2790  /**
2791   * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792   * @adapter: board private structure to initialize
2793   **/
e1000e_vlan_strip_disable(struct e1000_adapter * adapter)2794  static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795  {
2796  	struct e1000_hw *hw = &adapter->hw;
2797  	u32 ctrl;
2798  
2799  	/* disable VLAN tag insert/strip */
2800  	ctrl = er32(CTRL);
2801  	ctrl &= ~E1000_CTRL_VME;
2802  	ew32(CTRL, ctrl);
2803  }
2804  
2805  /**
2806   * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807   * @adapter: board private structure to initialize
2808   **/
e1000e_vlan_strip_enable(struct e1000_adapter * adapter)2809  static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810  {
2811  	struct e1000_hw *hw = &adapter->hw;
2812  	u32 ctrl;
2813  
2814  	/* enable VLAN tag insert/strip */
2815  	ctrl = er32(CTRL);
2816  	ctrl |= E1000_CTRL_VME;
2817  	ew32(CTRL, ctrl);
2818  }
2819  
e1000_update_mng_vlan(struct e1000_adapter * adapter)2820  static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821  {
2822  	struct net_device *netdev = adapter->netdev;
2823  	u16 vid = adapter->hw.mng_cookie.vlan_id;
2824  	u16 old_vid = adapter->mng_vlan_id;
2825  
2826  	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827  		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828  		adapter->mng_vlan_id = vid;
2829  	}
2830  
2831  	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832  		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833  }
2834  
e1000_restore_vlan(struct e1000_adapter * adapter)2835  static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836  {
2837  	u16 vid;
2838  
2839  	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840  
2841  	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842  	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843  }
2844  
e1000_init_manageability_pt(struct e1000_adapter * adapter)2845  static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846  {
2847  	struct e1000_hw *hw = &adapter->hw;
2848  	u32 manc, manc2h, mdef, i, j;
2849  
2850  	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851  		return;
2852  
2853  	manc = er32(MANC);
2854  
2855  	/* enable receiving management packets to the host. this will probably
2856  	 * generate destination unreachable messages from the host OS, but
2857  	 * the packets will be handled on SMBUS
2858  	 */
2859  	manc |= E1000_MANC_EN_MNG2HOST;
2860  	manc2h = er32(MANC2H);
2861  
2862  	switch (hw->mac.type) {
2863  	default:
2864  		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865  		break;
2866  	case e1000_82574:
2867  	case e1000_82583:
2868  		/* Check if IPMI pass-through decision filter already exists;
2869  		 * if so, enable it.
2870  		 */
2871  		for (i = 0, j = 0; i < 8; i++) {
2872  			mdef = er32(MDEF(i));
2873  
2874  			/* Ignore filters with anything other than IPMI ports */
2875  			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876  				continue;
2877  
2878  			/* Enable this decision filter in MANC2H */
2879  			if (mdef)
2880  				manc2h |= BIT(i);
2881  
2882  			j |= mdef;
2883  		}
2884  
2885  		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886  			break;
2887  
2888  		/* Create new decision filter in an empty filter */
2889  		for (i = 0, j = 0; i < 8; i++)
2890  			if (er32(MDEF(i)) == 0) {
2891  				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892  					       E1000_MDEF_PORT_664));
2893  				manc2h |= BIT(1);
2894  				j++;
2895  				break;
2896  			}
2897  
2898  		if (!j)
2899  			e_warn("Unable to create IPMI pass-through filter\n");
2900  		break;
2901  	}
2902  
2903  	ew32(MANC2H, manc2h);
2904  	ew32(MANC, manc);
2905  }
2906  
2907  /**
2908   * e1000_configure_tx - Configure Transmit Unit after Reset
2909   * @adapter: board private structure
2910   *
2911   * Configure the Tx unit of the MAC after a reset.
2912   **/
e1000_configure_tx(struct e1000_adapter * adapter)2913  static void e1000_configure_tx(struct e1000_adapter *adapter)
2914  {
2915  	struct e1000_hw *hw = &adapter->hw;
2916  	struct e1000_ring *tx_ring = adapter->tx_ring;
2917  	u64 tdba;
2918  	u32 tdlen, tctl, tarc;
2919  
2920  	/* Setup the HW Tx Head and Tail descriptor pointers */
2921  	tdba = tx_ring->dma;
2922  	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923  	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924  	ew32(TDBAH(0), (tdba >> 32));
2925  	ew32(TDLEN(0), tdlen);
2926  	ew32(TDH(0), 0);
2927  	ew32(TDT(0), 0);
2928  	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929  	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930  
2931  	writel(0, tx_ring->head);
2932  	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2933  		e1000e_update_tdt_wa(tx_ring, 0);
2934  	else
2935  		writel(0, tx_ring->tail);
2936  
2937  	/* Set the Tx Interrupt Delay register */
2938  	ew32(TIDV, adapter->tx_int_delay);
2939  	/* Tx irq moderation */
2940  	ew32(TADV, adapter->tx_abs_int_delay);
2941  
2942  	if (adapter->flags2 & FLAG2_DMA_BURST) {
2943  		u32 txdctl = er32(TXDCTL(0));
2944  
2945  		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2946  			    E1000_TXDCTL_WTHRESH);
2947  		/* set up some performance related parameters to encourage the
2948  		 * hardware to use the bus more efficiently in bursts, depends
2949  		 * on the tx_int_delay to be enabled,
2950  		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2951  		 * hthresh = 1 ==> prefetch when one or more available
2952  		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2953  		 * BEWARE: this seems to work but should be considered first if
2954  		 * there are Tx hangs or other Tx related bugs
2955  		 */
2956  		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2957  		ew32(TXDCTL(0), txdctl);
2958  	}
2959  	/* erratum work around: set txdctl the same for both queues */
2960  	ew32(TXDCTL(1), er32(TXDCTL(0)));
2961  
2962  	/* Program the Transmit Control Register */
2963  	tctl = er32(TCTL);
2964  	tctl &= ~E1000_TCTL_CT;
2965  	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2966  		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2967  
2968  	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2969  		tarc = er32(TARC(0));
2970  		/* set the speed mode bit, we'll clear it if we're not at
2971  		 * gigabit link later
2972  		 */
2973  #define SPEED_MODE_BIT BIT(21)
2974  		tarc |= SPEED_MODE_BIT;
2975  		ew32(TARC(0), tarc);
2976  	}
2977  
2978  	/* errata: program both queues to unweighted RR */
2979  	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2980  		tarc = er32(TARC(0));
2981  		tarc |= 1;
2982  		ew32(TARC(0), tarc);
2983  		tarc = er32(TARC(1));
2984  		tarc |= 1;
2985  		ew32(TARC(1), tarc);
2986  	}
2987  
2988  	/* Setup Transmit Descriptor Settings for eop descriptor */
2989  	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2990  
2991  	/* only set IDE if we are delaying interrupts using the timers */
2992  	if (adapter->tx_int_delay)
2993  		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2994  
2995  	/* enable Report Status bit */
2996  	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2997  
2998  	ew32(TCTL, tctl);
2999  
3000  	hw->mac.ops.config_collision_dist(hw);
3001  
3002  	/* SPT and KBL Si errata workaround to avoid data corruption */
3003  	if (hw->mac.type == e1000_pch_spt) {
3004  		u32 reg_val;
3005  
3006  		reg_val = er32(IOSFPC);
3007  		reg_val |= E1000_RCTL_RDMTS_HEX;
3008  		ew32(IOSFPC, reg_val);
3009  
3010  		reg_val = er32(TARC(0));
3011  		/* SPT and KBL Si errata workaround to avoid Tx hang.
3012  		 * Dropping the number of outstanding requests from
3013  		 * 3 to 2 in order to avoid a buffer overrun.
3014  		 */
3015  		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3016  		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3017  		ew32(TARC(0), reg_val);
3018  	}
3019  }
3020  
3021  #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3022  			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3023  
3024  /**
3025   * e1000_setup_rctl - configure the receive control registers
3026   * @adapter: Board private structure
3027   **/
e1000_setup_rctl(struct e1000_adapter * adapter)3028  static void e1000_setup_rctl(struct e1000_adapter *adapter)
3029  {
3030  	struct e1000_hw *hw = &adapter->hw;
3031  	u32 rctl, rfctl;
3032  	u32 pages = 0;
3033  
3034  	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3035  	 * If jumbo frames not set, program related MAC/PHY registers
3036  	 * to h/w defaults
3037  	 */
3038  	if (hw->mac.type >= e1000_pch2lan) {
3039  		s32 ret_val;
3040  
3041  		if (adapter->netdev->mtu > ETH_DATA_LEN)
3042  			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3043  		else
3044  			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3045  
3046  		if (ret_val)
3047  			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3048  	}
3049  
3050  	/* Program MC offset vector base */
3051  	rctl = er32(RCTL);
3052  	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3053  	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3054  	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3055  	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3056  
3057  	/* Do not Store bad packets */
3058  	rctl &= ~E1000_RCTL_SBP;
3059  
3060  	/* Enable Long Packet receive */
3061  	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3062  		rctl &= ~E1000_RCTL_LPE;
3063  	else
3064  		rctl |= E1000_RCTL_LPE;
3065  
3066  	/* Some systems expect that the CRC is included in SMBUS traffic. The
3067  	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3068  	 * host memory when this is enabled
3069  	 */
3070  	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3071  		rctl |= E1000_RCTL_SECRC;
3072  
3073  	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3074  	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3075  		u16 phy_data;
3076  
3077  		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3078  		phy_data &= 0xfff8;
3079  		phy_data |= BIT(2);
3080  		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3081  
3082  		e1e_rphy(hw, 22, &phy_data);
3083  		phy_data &= 0x0fff;
3084  		phy_data |= BIT(14);
3085  		e1e_wphy(hw, 0x10, 0x2823);
3086  		e1e_wphy(hw, 0x11, 0x0003);
3087  		e1e_wphy(hw, 22, phy_data);
3088  	}
3089  
3090  	/* Setup buffer sizes */
3091  	rctl &= ~E1000_RCTL_SZ_4096;
3092  	rctl |= E1000_RCTL_BSEX;
3093  	switch (adapter->rx_buffer_len) {
3094  	case 2048:
3095  	default:
3096  		rctl |= E1000_RCTL_SZ_2048;
3097  		rctl &= ~E1000_RCTL_BSEX;
3098  		break;
3099  	case 4096:
3100  		rctl |= E1000_RCTL_SZ_4096;
3101  		break;
3102  	case 8192:
3103  		rctl |= E1000_RCTL_SZ_8192;
3104  		break;
3105  	case 16384:
3106  		rctl |= E1000_RCTL_SZ_16384;
3107  		break;
3108  	}
3109  
3110  	/* Enable Extended Status in all Receive Descriptors */
3111  	rfctl = er32(RFCTL);
3112  	rfctl |= E1000_RFCTL_EXTEN;
3113  	ew32(RFCTL, rfctl);
3114  
3115  	/* 82571 and greater support packet-split where the protocol
3116  	 * header is placed in skb->data and the packet data is
3117  	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3118  	 * In the case of a non-split, skb->data is linearly filled,
3119  	 * followed by the page buffers.  Therefore, skb->data is
3120  	 * sized to hold the largest protocol header.
3121  	 *
3122  	 * allocations using alloc_page take too long for regular MTU
3123  	 * so only enable packet split for jumbo frames
3124  	 *
3125  	 * Using pages when the page size is greater than 16k wastes
3126  	 * a lot of memory, since we allocate 3 pages at all times
3127  	 * per packet.
3128  	 */
3129  	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3130  	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3131  		adapter->rx_ps_pages = pages;
3132  	else
3133  		adapter->rx_ps_pages = 0;
3134  
3135  	if (adapter->rx_ps_pages) {
3136  		u32 psrctl = 0;
3137  
3138  		/* Enable Packet split descriptors */
3139  		rctl |= E1000_RCTL_DTYP_PS;
3140  
3141  		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3142  
3143  		switch (adapter->rx_ps_pages) {
3144  		case 3:
3145  			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3146  			fallthrough;
3147  		case 2:
3148  			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3149  			fallthrough;
3150  		case 1:
3151  			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3152  			break;
3153  		}
3154  
3155  		ew32(PSRCTL, psrctl);
3156  	}
3157  
3158  	/* This is useful for sniffing bad packets. */
3159  	if (adapter->netdev->features & NETIF_F_RXALL) {
3160  		/* UPE and MPE will be handled by normal PROMISC logic
3161  		 * in e1000e_set_rx_mode
3162  		 */
3163  		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3164  			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3165  			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3166  
3167  		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3168  			  E1000_RCTL_DPF |	/* Allow filtered pause */
3169  			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3170  		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3171  		 * and that breaks VLANs.
3172  		 */
3173  	}
3174  
3175  	ew32(RCTL, rctl);
3176  	/* just started the receive unit, no need to restart */
3177  	adapter->flags &= ~FLAG_RESTART_NOW;
3178  }
3179  
3180  /**
3181   * e1000_configure_rx - Configure Receive Unit after Reset
3182   * @adapter: board private structure
3183   *
3184   * Configure the Rx unit of the MAC after a reset.
3185   **/
e1000_configure_rx(struct e1000_adapter * adapter)3186  static void e1000_configure_rx(struct e1000_adapter *adapter)
3187  {
3188  	struct e1000_hw *hw = &adapter->hw;
3189  	struct e1000_ring *rx_ring = adapter->rx_ring;
3190  	u64 rdba;
3191  	u32 rdlen, rctl, rxcsum, ctrl_ext;
3192  
3193  	if (adapter->rx_ps_pages) {
3194  		/* this is a 32 byte descriptor */
3195  		rdlen = rx_ring->count *
3196  		    sizeof(union e1000_rx_desc_packet_split);
3197  		adapter->clean_rx = e1000_clean_rx_irq_ps;
3198  		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3199  	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3200  		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3201  		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3202  		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3203  	} else {
3204  		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3205  		adapter->clean_rx = e1000_clean_rx_irq;
3206  		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3207  	}
3208  
3209  	/* disable receives while setting up the descriptors */
3210  	rctl = er32(RCTL);
3211  	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3212  		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3213  	e1e_flush();
3214  	usleep_range(10000, 11000);
3215  
3216  	if (adapter->flags2 & FLAG2_DMA_BURST) {
3217  		/* set the writeback threshold (only takes effect if the RDTR
3218  		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3219  		 * enable prefetching of 0x20 Rx descriptors
3220  		 * granularity = 01
3221  		 * wthresh = 04,
3222  		 * hthresh = 04,
3223  		 * pthresh = 0x20
3224  		 */
3225  		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3226  		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3227  	}
3228  
3229  	/* set the Receive Delay Timer Register */
3230  	ew32(RDTR, adapter->rx_int_delay);
3231  
3232  	/* irq moderation */
3233  	ew32(RADV, adapter->rx_abs_int_delay);
3234  	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3235  		e1000e_write_itr(adapter, adapter->itr);
3236  
3237  	ctrl_ext = er32(CTRL_EXT);
3238  	/* Auto-Mask interrupts upon ICR access */
3239  	ctrl_ext |= E1000_CTRL_EXT_IAME;
3240  	ew32(IAM, 0xffffffff);
3241  	ew32(CTRL_EXT, ctrl_ext);
3242  	e1e_flush();
3243  
3244  	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3245  	 * the Base and Length of the Rx Descriptor Ring
3246  	 */
3247  	rdba = rx_ring->dma;
3248  	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3249  	ew32(RDBAH(0), (rdba >> 32));
3250  	ew32(RDLEN(0), rdlen);
3251  	ew32(RDH(0), 0);
3252  	ew32(RDT(0), 0);
3253  	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3254  	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3255  
3256  	writel(0, rx_ring->head);
3257  	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3258  		e1000e_update_rdt_wa(rx_ring, 0);
3259  	else
3260  		writel(0, rx_ring->tail);
3261  
3262  	/* Enable Receive Checksum Offload for TCP and UDP */
3263  	rxcsum = er32(RXCSUM);
3264  	if (adapter->netdev->features & NETIF_F_RXCSUM)
3265  		rxcsum |= E1000_RXCSUM_TUOFL;
3266  	else
3267  		rxcsum &= ~E1000_RXCSUM_TUOFL;
3268  	ew32(RXCSUM, rxcsum);
3269  
3270  	/* With jumbo frames, excessive C-state transition latencies result
3271  	 * in dropped transactions.
3272  	 */
3273  	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3274  		u32 lat =
3275  		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3276  		     adapter->max_frame_size) * 8 / 1000;
3277  
3278  		if (adapter->flags & FLAG_IS_ICH) {
3279  			u32 rxdctl = er32(RXDCTL(0));
3280  
3281  			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3282  		}
3283  
3284  		dev_info(&adapter->pdev->dev,
3285  			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3286  		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3287  	} else {
3288  		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3289  					       PM_QOS_DEFAULT_VALUE);
3290  	}
3291  
3292  	/* Enable Receives */
3293  	ew32(RCTL, rctl);
3294  }
3295  
3296  /**
3297   * e1000e_write_mc_addr_list - write multicast addresses to MTA
3298   * @netdev: network interface device structure
3299   *
3300   * Writes multicast address list to the MTA hash table.
3301   * Returns: -ENOMEM on failure
3302   *                0 on no addresses written
3303   *                X on writing X addresses to MTA
3304   */
e1000e_write_mc_addr_list(struct net_device * netdev)3305  static int e1000e_write_mc_addr_list(struct net_device *netdev)
3306  {
3307  	struct e1000_adapter *adapter = netdev_priv(netdev);
3308  	struct e1000_hw *hw = &adapter->hw;
3309  	struct netdev_hw_addr *ha;
3310  	u8 *mta_list;
3311  	int i;
3312  
3313  	if (netdev_mc_empty(netdev)) {
3314  		/* nothing to program, so clear mc list */
3315  		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3316  		return 0;
3317  	}
3318  
3319  	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3320  	if (!mta_list)
3321  		return -ENOMEM;
3322  
3323  	/* update_mc_addr_list expects a packed array of only addresses. */
3324  	i = 0;
3325  	netdev_for_each_mc_addr(ha, netdev)
3326  	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3327  
3328  	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3329  	kfree(mta_list);
3330  
3331  	return netdev_mc_count(netdev);
3332  }
3333  
3334  /**
3335   * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3336   * @netdev: network interface device structure
3337   *
3338   * Writes unicast address list to the RAR table.
3339   * Returns: -ENOMEM on failure/insufficient address space
3340   *                0 on no addresses written
3341   *                X on writing X addresses to the RAR table
3342   **/
e1000e_write_uc_addr_list(struct net_device * netdev)3343  static int e1000e_write_uc_addr_list(struct net_device *netdev)
3344  {
3345  	struct e1000_adapter *adapter = netdev_priv(netdev);
3346  	struct e1000_hw *hw = &adapter->hw;
3347  	unsigned int rar_entries;
3348  	int count = 0;
3349  
3350  	rar_entries = hw->mac.ops.rar_get_count(hw);
3351  
3352  	/* save a rar entry for our hardware address */
3353  	rar_entries--;
3354  
3355  	/* save a rar entry for the LAA workaround */
3356  	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3357  		rar_entries--;
3358  
3359  	/* return ENOMEM indicating insufficient memory for addresses */
3360  	if (netdev_uc_count(netdev) > rar_entries)
3361  		return -ENOMEM;
3362  
3363  	if (!netdev_uc_empty(netdev) && rar_entries) {
3364  		struct netdev_hw_addr *ha;
3365  
3366  		/* write the addresses in reverse order to avoid write
3367  		 * combining
3368  		 */
3369  		netdev_for_each_uc_addr(ha, netdev) {
3370  			int ret_val;
3371  
3372  			if (!rar_entries)
3373  				break;
3374  			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3375  			if (ret_val < 0)
3376  				return -ENOMEM;
3377  			count++;
3378  		}
3379  	}
3380  
3381  	/* zero out the remaining RAR entries not used above */
3382  	for (; rar_entries > 0; rar_entries--) {
3383  		ew32(RAH(rar_entries), 0);
3384  		ew32(RAL(rar_entries), 0);
3385  	}
3386  	e1e_flush();
3387  
3388  	return count;
3389  }
3390  
3391  /**
3392   * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3393   * @netdev: network interface device structure
3394   *
3395   * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3396   * address list or the network interface flags are updated.  This routine is
3397   * responsible for configuring the hardware for proper unicast, multicast,
3398   * promiscuous mode, and all-multi behavior.
3399   **/
e1000e_set_rx_mode(struct net_device * netdev)3400  static void e1000e_set_rx_mode(struct net_device *netdev)
3401  {
3402  	struct e1000_adapter *adapter = netdev_priv(netdev);
3403  	struct e1000_hw *hw = &adapter->hw;
3404  	u32 rctl;
3405  
3406  	if (pm_runtime_suspended(netdev->dev.parent))
3407  		return;
3408  
3409  	/* Check for Promiscuous and All Multicast modes */
3410  	rctl = er32(RCTL);
3411  
3412  	/* clear the affected bits */
3413  	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3414  
3415  	if (netdev->flags & IFF_PROMISC) {
3416  		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3417  		/* Do not hardware filter VLANs in promisc mode */
3418  		e1000e_vlan_filter_disable(adapter);
3419  	} else {
3420  		int count;
3421  
3422  		if (netdev->flags & IFF_ALLMULTI) {
3423  			rctl |= E1000_RCTL_MPE;
3424  		} else {
3425  			/* Write addresses to the MTA, if the attempt fails
3426  			 * then we should just turn on promiscuous mode so
3427  			 * that we can at least receive multicast traffic
3428  			 */
3429  			count = e1000e_write_mc_addr_list(netdev);
3430  			if (count < 0)
3431  				rctl |= E1000_RCTL_MPE;
3432  		}
3433  		e1000e_vlan_filter_enable(adapter);
3434  		/* Write addresses to available RAR registers, if there is not
3435  		 * sufficient space to store all the addresses then enable
3436  		 * unicast promiscuous mode
3437  		 */
3438  		count = e1000e_write_uc_addr_list(netdev);
3439  		if (count < 0)
3440  			rctl |= E1000_RCTL_UPE;
3441  	}
3442  
3443  	ew32(RCTL, rctl);
3444  
3445  	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3446  		e1000e_vlan_strip_enable(adapter);
3447  	else
3448  		e1000e_vlan_strip_disable(adapter);
3449  }
3450  
e1000e_setup_rss_hash(struct e1000_adapter * adapter)3451  static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3452  {
3453  	struct e1000_hw *hw = &adapter->hw;
3454  	u32 mrqc, rxcsum;
3455  	u32 rss_key[10];
3456  	int i;
3457  
3458  	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3459  	for (i = 0; i < 10; i++)
3460  		ew32(RSSRK(i), rss_key[i]);
3461  
3462  	/* Direct all traffic to queue 0 */
3463  	for (i = 0; i < 32; i++)
3464  		ew32(RETA(i), 0);
3465  
3466  	/* Disable raw packet checksumming so that RSS hash is placed in
3467  	 * descriptor on writeback.
3468  	 */
3469  	rxcsum = er32(RXCSUM);
3470  	rxcsum |= E1000_RXCSUM_PCSD;
3471  
3472  	ew32(RXCSUM, rxcsum);
3473  
3474  	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3475  		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3476  		E1000_MRQC_RSS_FIELD_IPV6 |
3477  		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3478  		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3479  
3480  	ew32(MRQC, mrqc);
3481  }
3482  
3483  /**
3484   * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3485   * @adapter: board private structure
3486   * @timinca: pointer to returned time increment attributes
3487   *
3488   * Get attributes for incrementing the System Time Register SYSTIML/H at
3489   * the default base frequency, and set the cyclecounter shift value.
3490   **/
e1000e_get_base_timinca(struct e1000_adapter * adapter,u32 * timinca)3491  s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3492  {
3493  	struct e1000_hw *hw = &adapter->hw;
3494  	u32 incvalue, incperiod, shift;
3495  
3496  	/* Make sure clock is enabled on I217/I218/I219  before checking
3497  	 * the frequency
3498  	 */
3499  	if ((hw->mac.type >= e1000_pch_lpt) &&
3500  	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3501  	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3502  		u32 fextnvm7 = er32(FEXTNVM7);
3503  
3504  		if (!(fextnvm7 & BIT(0))) {
3505  			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3506  			e1e_flush();
3507  		}
3508  	}
3509  
3510  	switch (hw->mac.type) {
3511  	case e1000_pch2lan:
3512  		/* Stable 96MHz frequency */
3513  		incperiod = INCPERIOD_96MHZ;
3514  		incvalue = INCVALUE_96MHZ;
3515  		shift = INCVALUE_SHIFT_96MHZ;
3516  		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3517  		break;
3518  	case e1000_pch_lpt:
3519  		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3520  			/* Stable 96MHz frequency */
3521  			incperiod = INCPERIOD_96MHZ;
3522  			incvalue = INCVALUE_96MHZ;
3523  			shift = INCVALUE_SHIFT_96MHZ;
3524  			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3525  		} else {
3526  			/* Stable 25MHz frequency */
3527  			incperiod = INCPERIOD_25MHZ;
3528  			incvalue = INCVALUE_25MHZ;
3529  			shift = INCVALUE_SHIFT_25MHZ;
3530  			adapter->cc.shift = shift;
3531  		}
3532  		break;
3533  	case e1000_pch_spt:
3534  		/* Stable 24MHz frequency */
3535  		incperiod = INCPERIOD_24MHZ;
3536  		incvalue = INCVALUE_24MHZ;
3537  		shift = INCVALUE_SHIFT_24MHZ;
3538  		adapter->cc.shift = shift;
3539  		break;
3540  	case e1000_pch_cnp:
3541  	case e1000_pch_tgp:
3542  	case e1000_pch_adp:
3543  	case e1000_pch_mtp:
3544  	case e1000_pch_lnp:
3545  	case e1000_pch_ptp:
3546  	case e1000_pch_nvp:
3547  		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3548  			/* Stable 24MHz frequency */
3549  			incperiod = INCPERIOD_24MHZ;
3550  			incvalue = INCVALUE_24MHZ;
3551  			shift = INCVALUE_SHIFT_24MHZ;
3552  			adapter->cc.shift = shift;
3553  		} else {
3554  			/* Stable 38400KHz frequency */
3555  			incperiod = INCPERIOD_38400KHZ;
3556  			incvalue = INCVALUE_38400KHZ;
3557  			shift = INCVALUE_SHIFT_38400KHZ;
3558  			adapter->cc.shift = shift;
3559  		}
3560  		break;
3561  	case e1000_82574:
3562  	case e1000_82583:
3563  		/* Stable 25MHz frequency */
3564  		incperiod = INCPERIOD_25MHZ;
3565  		incvalue = INCVALUE_25MHZ;
3566  		shift = INCVALUE_SHIFT_25MHZ;
3567  		adapter->cc.shift = shift;
3568  		break;
3569  	default:
3570  		return -EINVAL;
3571  	}
3572  
3573  	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3574  		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3575  
3576  	return 0;
3577  }
3578  
3579  /**
3580   * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3581   * @adapter: board private structure
3582   * @config: timestamp configuration
3583   *
3584   * Outgoing time stamping can be enabled and disabled. Play nice and
3585   * disable it when requested, although it shouldn't cause any overhead
3586   * when no packet needs it. At most one packet in the queue may be
3587   * marked for time stamping, otherwise it would be impossible to tell
3588   * for sure to which packet the hardware time stamp belongs.
3589   *
3590   * Incoming time stamping has to be configured via the hardware filters.
3591   * Not all combinations are supported, in particular event type has to be
3592   * specified. Matching the kind of event packet is not supported, with the
3593   * exception of "all V2 events regardless of level 2 or 4".
3594   **/
e1000e_config_hwtstamp(struct e1000_adapter * adapter,struct hwtstamp_config * config)3595  static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3596  				  struct hwtstamp_config *config)
3597  {
3598  	struct e1000_hw *hw = &adapter->hw;
3599  	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3600  	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3601  	u32 rxmtrl = 0;
3602  	u16 rxudp = 0;
3603  	bool is_l4 = false;
3604  	bool is_l2 = false;
3605  	u32 regval;
3606  
3607  	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3608  		return -EINVAL;
3609  
3610  	switch (config->tx_type) {
3611  	case HWTSTAMP_TX_OFF:
3612  		tsync_tx_ctl = 0;
3613  		break;
3614  	case HWTSTAMP_TX_ON:
3615  		break;
3616  	default:
3617  		return -ERANGE;
3618  	}
3619  
3620  	switch (config->rx_filter) {
3621  	case HWTSTAMP_FILTER_NONE:
3622  		tsync_rx_ctl = 0;
3623  		break;
3624  	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3625  		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3626  		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3627  		is_l4 = true;
3628  		break;
3629  	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3630  		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3631  		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3632  		is_l4 = true;
3633  		break;
3634  	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3635  		/* Also time stamps V2 L2 Path Delay Request/Response */
3636  		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637  		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3638  		is_l2 = true;
3639  		break;
3640  	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3641  		/* Also time stamps V2 L2 Path Delay Request/Response. */
3642  		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3643  		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3644  		is_l2 = true;
3645  		break;
3646  	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3647  		/* Hardware cannot filter just V2 L4 Sync messages */
3648  		fallthrough;
3649  	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3650  		/* Also time stamps V2 Path Delay Request/Response. */
3651  		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3652  		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3653  		is_l2 = true;
3654  		is_l4 = true;
3655  		break;
3656  	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3657  		/* Hardware cannot filter just V2 L4 Delay Request messages */
3658  		fallthrough;
3659  	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3660  		/* Also time stamps V2 Path Delay Request/Response. */
3661  		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3662  		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3663  		is_l2 = true;
3664  		is_l4 = true;
3665  		break;
3666  	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3667  	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3668  		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3669  		fallthrough;
3670  	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3671  		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3672  		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3673  		is_l2 = true;
3674  		is_l4 = true;
3675  		break;
3676  	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3677  		/* For V1, the hardware can only filter Sync messages or
3678  		 * Delay Request messages but not both so fall-through to
3679  		 * time stamp all packets.
3680  		 */
3681  		fallthrough;
3682  	case HWTSTAMP_FILTER_NTP_ALL:
3683  	case HWTSTAMP_FILTER_ALL:
3684  		is_l2 = true;
3685  		is_l4 = true;
3686  		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3687  		config->rx_filter = HWTSTAMP_FILTER_ALL;
3688  		break;
3689  	default:
3690  		return -ERANGE;
3691  	}
3692  
3693  	adapter->hwtstamp_config = *config;
3694  
3695  	/* enable/disable Tx h/w time stamping */
3696  	regval = er32(TSYNCTXCTL);
3697  	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3698  	regval |= tsync_tx_ctl;
3699  	ew32(TSYNCTXCTL, regval);
3700  	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3701  	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3702  		e_err("Timesync Tx Control register not set as expected\n");
3703  		return -EAGAIN;
3704  	}
3705  
3706  	/* enable/disable Rx h/w time stamping */
3707  	regval = er32(TSYNCRXCTL);
3708  	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3709  	regval |= tsync_rx_ctl;
3710  	ew32(TSYNCRXCTL, regval);
3711  	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3712  				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3713  	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3714  		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3715  		e_err("Timesync Rx Control register not set as expected\n");
3716  		return -EAGAIN;
3717  	}
3718  
3719  	/* L2: define ethertype filter for time stamped packets */
3720  	if (is_l2)
3721  		rxmtrl |= ETH_P_1588;
3722  
3723  	/* define which PTP packets get time stamped */
3724  	ew32(RXMTRL, rxmtrl);
3725  
3726  	/* Filter by destination port */
3727  	if (is_l4) {
3728  		rxudp = PTP_EV_PORT;
3729  		cpu_to_be16s(&rxudp);
3730  	}
3731  	ew32(RXUDP, rxudp);
3732  
3733  	e1e_flush();
3734  
3735  	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3736  	er32(RXSTMPH);
3737  	er32(TXSTMPH);
3738  
3739  	return 0;
3740  }
3741  
3742  /**
3743   * e1000_configure - configure the hardware for Rx and Tx
3744   * @adapter: private board structure
3745   **/
e1000_configure(struct e1000_adapter * adapter)3746  static void e1000_configure(struct e1000_adapter *adapter)
3747  {
3748  	struct e1000_ring *rx_ring = adapter->rx_ring;
3749  
3750  	e1000e_set_rx_mode(adapter->netdev);
3751  
3752  	e1000_restore_vlan(adapter);
3753  	e1000_init_manageability_pt(adapter);
3754  
3755  	e1000_configure_tx(adapter);
3756  
3757  	if (adapter->netdev->features & NETIF_F_RXHASH)
3758  		e1000e_setup_rss_hash(adapter);
3759  	e1000_setup_rctl(adapter);
3760  	e1000_configure_rx(adapter);
3761  	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3762  }
3763  
3764  /**
3765   * e1000e_power_up_phy - restore link in case the phy was powered down
3766   * @adapter: address of board private structure
3767   *
3768   * The phy may be powered down to save power and turn off link when the
3769   * driver is unloaded and wake on lan is not enabled (among others)
3770   * *** this routine MUST be followed by a call to e1000e_reset ***
3771   **/
e1000e_power_up_phy(struct e1000_adapter * adapter)3772  void e1000e_power_up_phy(struct e1000_adapter *adapter)
3773  {
3774  	if (adapter->hw.phy.ops.power_up)
3775  		adapter->hw.phy.ops.power_up(&adapter->hw);
3776  
3777  	adapter->hw.mac.ops.setup_link(&adapter->hw);
3778  }
3779  
3780  /**
3781   * e1000_power_down_phy - Power down the PHY
3782   * @adapter: board private structure
3783   *
3784   * Power down the PHY so no link is implied when interface is down.
3785   * The PHY cannot be powered down if management or WoL is active.
3786   */
e1000_power_down_phy(struct e1000_adapter * adapter)3787  static void e1000_power_down_phy(struct e1000_adapter *adapter)
3788  {
3789  	if (adapter->hw.phy.ops.power_down)
3790  		adapter->hw.phy.ops.power_down(&adapter->hw);
3791  }
3792  
3793  /**
3794   * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3795   * @adapter: board private structure
3796   *
3797   * We want to clear all pending descriptors from the TX ring.
3798   * zeroing happens when the HW reads the regs. We  assign the ring itself as
3799   * the data of the next descriptor. We don't care about the data we are about
3800   * to reset the HW.
3801   */
e1000_flush_tx_ring(struct e1000_adapter * adapter)3802  static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3803  {
3804  	struct e1000_hw *hw = &adapter->hw;
3805  	struct e1000_ring *tx_ring = adapter->tx_ring;
3806  	struct e1000_tx_desc *tx_desc = NULL;
3807  	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3808  	u16 size = 512;
3809  
3810  	tctl = er32(TCTL);
3811  	ew32(TCTL, tctl | E1000_TCTL_EN);
3812  	tdt = er32(TDT(0));
3813  	BUG_ON(tdt != tx_ring->next_to_use);
3814  	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3815  	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3816  
3817  	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3818  	tx_desc->upper.data = 0;
3819  	/* flush descriptors to memory before notifying the HW */
3820  	wmb();
3821  	tx_ring->next_to_use++;
3822  	if (tx_ring->next_to_use == tx_ring->count)
3823  		tx_ring->next_to_use = 0;
3824  	ew32(TDT(0), tx_ring->next_to_use);
3825  	usleep_range(200, 250);
3826  }
3827  
3828  /**
3829   * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3830   * @adapter: board private structure
3831   *
3832   * Mark all descriptors in the RX ring as consumed and disable the rx ring
3833   */
e1000_flush_rx_ring(struct e1000_adapter * adapter)3834  static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3835  {
3836  	u32 rctl, rxdctl;
3837  	struct e1000_hw *hw = &adapter->hw;
3838  
3839  	rctl = er32(RCTL);
3840  	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3841  	e1e_flush();
3842  	usleep_range(100, 150);
3843  
3844  	rxdctl = er32(RXDCTL(0));
3845  	/* zero the lower 14 bits (prefetch and host thresholds) */
3846  	rxdctl &= 0xffffc000;
3847  
3848  	/* update thresholds: prefetch threshold to 31, host threshold to 1
3849  	 * and make sure the granularity is "descriptors" and not "cache lines"
3850  	 */
3851  	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3852  
3853  	ew32(RXDCTL(0), rxdctl);
3854  	/* momentarily enable the RX ring for the changes to take effect */
3855  	ew32(RCTL, rctl | E1000_RCTL_EN);
3856  	e1e_flush();
3857  	usleep_range(100, 150);
3858  	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3859  }
3860  
3861  /**
3862   * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3863   * @adapter: board private structure
3864   *
3865   * In i219, the descriptor rings must be emptied before resetting the HW
3866   * or before changing the device state to D3 during runtime (runtime PM).
3867   *
3868   * Failure to do this will cause the HW to enter a unit hang state which can
3869   * only be released by PCI reset on the device
3870   *
3871   */
3872  
e1000_flush_desc_rings(struct e1000_adapter * adapter)3873  static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3874  {
3875  	u16 hang_state;
3876  	u32 fext_nvm11, tdlen;
3877  	struct e1000_hw *hw = &adapter->hw;
3878  
3879  	/* First, disable MULR fix in FEXTNVM11 */
3880  	fext_nvm11 = er32(FEXTNVM11);
3881  	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3882  	ew32(FEXTNVM11, fext_nvm11);
3883  	/* do nothing if we're not in faulty state, or if the queue is empty */
3884  	tdlen = er32(TDLEN(0));
3885  	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886  			     &hang_state);
3887  	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3888  		return;
3889  	e1000_flush_tx_ring(adapter);
3890  	/* recheck, maybe the fault is caused by the rx ring */
3891  	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3892  			     &hang_state);
3893  	if (hang_state & FLUSH_DESC_REQUIRED)
3894  		e1000_flush_rx_ring(adapter);
3895  }
3896  
3897  /**
3898   * e1000e_systim_reset - reset the timesync registers after a hardware reset
3899   * @adapter: board private structure
3900   *
3901   * When the MAC is reset, all hardware bits for timesync will be reset to the
3902   * default values. This function will restore the settings last in place.
3903   * Since the clock SYSTIME registers are reset, we will simply restore the
3904   * cyclecounter to the kernel real clock time.
3905   **/
e1000e_systim_reset(struct e1000_adapter * adapter)3906  static void e1000e_systim_reset(struct e1000_adapter *adapter)
3907  {
3908  	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3909  	struct e1000_hw *hw = &adapter->hw;
3910  	unsigned long flags;
3911  	u32 timinca;
3912  	s32 ret_val;
3913  
3914  	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3915  		return;
3916  
3917  	if (info->adjfine) {
3918  		/* restore the previous ptp frequency delta */
3919  		ret_val = info->adjfine(info, adapter->ptp_delta);
3920  	} else {
3921  		/* set the default base frequency if no adjustment possible */
3922  		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3923  		if (!ret_val)
3924  			ew32(TIMINCA, timinca);
3925  	}
3926  
3927  	if (ret_val) {
3928  		dev_warn(&adapter->pdev->dev,
3929  			 "Failed to restore TIMINCA clock rate delta: %d\n",
3930  			 ret_val);
3931  		return;
3932  	}
3933  
3934  	/* reset the systim ns time counter */
3935  	spin_lock_irqsave(&adapter->systim_lock, flags);
3936  	timecounter_init(&adapter->tc, &adapter->cc,
3937  			 ktime_to_ns(ktime_get_real()));
3938  	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3939  
3940  	/* restore the previous hwtstamp configuration settings */
3941  	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3942  }
3943  
3944  /**
3945   * e1000e_reset - bring the hardware into a known good state
3946   * @adapter: board private structure
3947   *
3948   * This function boots the hardware and enables some settings that
3949   * require a configuration cycle of the hardware - those cannot be
3950   * set/changed during runtime. After reset the device needs to be
3951   * properly configured for Rx, Tx etc.
3952   */
e1000e_reset(struct e1000_adapter * adapter)3953  void e1000e_reset(struct e1000_adapter *adapter)
3954  {
3955  	struct e1000_mac_info *mac = &adapter->hw.mac;
3956  	struct e1000_fc_info *fc = &adapter->hw.fc;
3957  	struct e1000_hw *hw = &adapter->hw;
3958  	u32 tx_space, min_tx_space, min_rx_space;
3959  	u32 pba = adapter->pba;
3960  	u16 hwm;
3961  
3962  	/* reset Packet Buffer Allocation to default */
3963  	ew32(PBA, pba);
3964  
3965  	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3966  		/* To maintain wire speed transmits, the Tx FIFO should be
3967  		 * large enough to accommodate two full transmit packets,
3968  		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3969  		 * the Rx FIFO should be large enough to accommodate at least
3970  		 * one full receive packet and is similarly rounded up and
3971  		 * expressed in KB.
3972  		 */
3973  		pba = er32(PBA);
3974  		/* upper 16 bits has Tx packet buffer allocation size in KB */
3975  		tx_space = pba >> 16;
3976  		/* lower 16 bits has Rx packet buffer allocation size in KB */
3977  		pba &= 0xffff;
3978  		/* the Tx fifo also stores 16 bytes of information about the Tx
3979  		 * but don't include ethernet FCS because hardware appends it
3980  		 */
3981  		min_tx_space = (adapter->max_frame_size +
3982  				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3983  		min_tx_space = ALIGN(min_tx_space, 1024);
3984  		min_tx_space >>= 10;
3985  		/* software strips receive CRC, so leave room for it */
3986  		min_rx_space = adapter->max_frame_size;
3987  		min_rx_space = ALIGN(min_rx_space, 1024);
3988  		min_rx_space >>= 10;
3989  
3990  		/* If current Tx allocation is less than the min Tx FIFO size,
3991  		 * and the min Tx FIFO size is less than the current Rx FIFO
3992  		 * allocation, take space away from current Rx allocation
3993  		 */
3994  		if ((tx_space < min_tx_space) &&
3995  		    ((min_tx_space - tx_space) < pba)) {
3996  			pba -= min_tx_space - tx_space;
3997  
3998  			/* if short on Rx space, Rx wins and must trump Tx
3999  			 * adjustment
4000  			 */
4001  			if (pba < min_rx_space)
4002  				pba = min_rx_space;
4003  		}
4004  
4005  		ew32(PBA, pba);
4006  	}
4007  
4008  	/* flow control settings
4009  	 *
4010  	 * The high water mark must be low enough to fit one full frame
4011  	 * (or the size used for early receive) above it in the Rx FIFO.
4012  	 * Set it to the lower of:
4013  	 * - 90% of the Rx FIFO size, and
4014  	 * - the full Rx FIFO size minus one full frame
4015  	 */
4016  	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4017  		fc->pause_time = 0xFFFF;
4018  	else
4019  		fc->pause_time = E1000_FC_PAUSE_TIME;
4020  	fc->send_xon = true;
4021  	fc->current_mode = fc->requested_mode;
4022  
4023  	switch (hw->mac.type) {
4024  	case e1000_ich9lan:
4025  	case e1000_ich10lan:
4026  		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4027  			pba = 14;
4028  			ew32(PBA, pba);
4029  			fc->high_water = 0x2800;
4030  			fc->low_water = fc->high_water - 8;
4031  			break;
4032  		}
4033  		fallthrough;
4034  	default:
4035  		hwm = min(((pba << 10) * 9 / 10),
4036  			  ((pba << 10) - adapter->max_frame_size));
4037  
4038  		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4039  		fc->low_water = fc->high_water - 8;
4040  		break;
4041  	case e1000_pchlan:
4042  		/* Workaround PCH LOM adapter hangs with certain network
4043  		 * loads.  If hangs persist, try disabling Tx flow control.
4044  		 */
4045  		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4046  			fc->high_water = 0x3500;
4047  			fc->low_water = 0x1500;
4048  		} else {
4049  			fc->high_water = 0x5000;
4050  			fc->low_water = 0x3000;
4051  		}
4052  		fc->refresh_time = 0x1000;
4053  		break;
4054  	case e1000_pch2lan:
4055  	case e1000_pch_lpt:
4056  	case e1000_pch_spt:
4057  	case e1000_pch_cnp:
4058  	case e1000_pch_tgp:
4059  	case e1000_pch_adp:
4060  	case e1000_pch_mtp:
4061  	case e1000_pch_lnp:
4062  	case e1000_pch_ptp:
4063  	case e1000_pch_nvp:
4064  		fc->refresh_time = 0xFFFF;
4065  		fc->pause_time = 0xFFFF;
4066  
4067  		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4068  			fc->high_water = 0x05C20;
4069  			fc->low_water = 0x05048;
4070  			break;
4071  		}
4072  
4073  		pba = 14;
4074  		ew32(PBA, pba);
4075  		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4076  		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4077  		break;
4078  	}
4079  
4080  	/* Alignment of Tx data is on an arbitrary byte boundary with the
4081  	 * maximum size per Tx descriptor limited only to the transmit
4082  	 * allocation of the packet buffer minus 96 bytes with an upper
4083  	 * limit of 24KB due to receive synchronization limitations.
4084  	 */
4085  	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4086  				       24 << 10);
4087  
4088  	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4089  	 * fit in receive buffer.
4090  	 */
4091  	if (adapter->itr_setting & 0x3) {
4092  		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4093  			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4094  				dev_info(&adapter->pdev->dev,
4095  					 "Interrupt Throttle Rate off\n");
4096  				adapter->flags2 |= FLAG2_DISABLE_AIM;
4097  				e1000e_write_itr(adapter, 0);
4098  			}
4099  		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4100  			dev_info(&adapter->pdev->dev,
4101  				 "Interrupt Throttle Rate on\n");
4102  			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4103  			adapter->itr = 20000;
4104  			e1000e_write_itr(adapter, adapter->itr);
4105  		}
4106  	}
4107  
4108  	if (hw->mac.type >= e1000_pch_spt)
4109  		e1000_flush_desc_rings(adapter);
4110  	/* Allow time for pending master requests to run */
4111  	mac->ops.reset_hw(hw);
4112  
4113  	/* For parts with AMT enabled, let the firmware know
4114  	 * that the network interface is in control
4115  	 */
4116  	if (adapter->flags & FLAG_HAS_AMT)
4117  		e1000e_get_hw_control(adapter);
4118  
4119  	ew32(WUC, 0);
4120  
4121  	if (mac->ops.init_hw(hw))
4122  		e_err("Hardware Error\n");
4123  
4124  	e1000_update_mng_vlan(adapter);
4125  
4126  	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4127  	ew32(VET, ETH_P_8021Q);
4128  
4129  	e1000e_reset_adaptive(hw);
4130  
4131  	/* restore systim and hwtstamp settings */
4132  	e1000e_systim_reset(adapter);
4133  
4134  	/* Set EEE advertisement as appropriate */
4135  	if (adapter->flags2 & FLAG2_HAS_EEE) {
4136  		s32 ret_val;
4137  		u16 adv_addr;
4138  
4139  		switch (hw->phy.type) {
4140  		case e1000_phy_82579:
4141  			adv_addr = I82579_EEE_ADVERTISEMENT;
4142  			break;
4143  		case e1000_phy_i217:
4144  			adv_addr = I217_EEE_ADVERTISEMENT;
4145  			break;
4146  		default:
4147  			dev_err(&adapter->pdev->dev,
4148  				"Invalid PHY type setting EEE advertisement\n");
4149  			return;
4150  		}
4151  
4152  		ret_val = hw->phy.ops.acquire(hw);
4153  		if (ret_val) {
4154  			dev_err(&adapter->pdev->dev,
4155  				"EEE advertisement - unable to acquire PHY\n");
4156  			return;
4157  		}
4158  
4159  		e1000_write_emi_reg_locked(hw, adv_addr,
4160  					   hw->dev_spec.ich8lan.eee_disable ?
4161  					   0 : adapter->eee_advert);
4162  
4163  		hw->phy.ops.release(hw);
4164  	}
4165  
4166  	if (!netif_running(adapter->netdev) &&
4167  	    !test_bit(__E1000_TESTING, &adapter->state))
4168  		e1000_power_down_phy(adapter);
4169  
4170  	e1000_get_phy_info(hw);
4171  
4172  	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4173  	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4174  		u16 phy_data = 0;
4175  		/* speed up time to link by disabling smart power down, ignore
4176  		 * the return value of this function because there is nothing
4177  		 * different we would do if it failed
4178  		 */
4179  		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4180  		phy_data &= ~IGP02E1000_PM_SPD;
4181  		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4182  	}
4183  	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4184  		u32 reg;
4185  
4186  		/* Fextnvm7 @ 0xe4[2] = 1 */
4187  		reg = er32(FEXTNVM7);
4188  		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4189  		ew32(FEXTNVM7, reg);
4190  		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4191  		reg = er32(FEXTNVM9);
4192  		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4193  		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4194  		ew32(FEXTNVM9, reg);
4195  	}
4196  
4197  }
4198  
4199  /**
4200   * e1000e_trigger_lsc - trigger an LSC interrupt
4201   * @adapter: board private structure
4202   *
4203   * Fire a link status change interrupt to start the watchdog.
4204   **/
e1000e_trigger_lsc(struct e1000_adapter * adapter)4205  static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4206  {
4207  	struct e1000_hw *hw = &adapter->hw;
4208  
4209  	if (adapter->msix_entries)
4210  		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4211  	else
4212  		ew32(ICS, E1000_ICS_LSC);
4213  }
4214  
e1000e_up(struct e1000_adapter * adapter)4215  void e1000e_up(struct e1000_adapter *adapter)
4216  {
4217  	/* hardware has been reset, we need to reload some things */
4218  	e1000_configure(adapter);
4219  
4220  	clear_bit(__E1000_DOWN, &adapter->state);
4221  
4222  	if (adapter->msix_entries)
4223  		e1000_configure_msix(adapter);
4224  	e1000_irq_enable(adapter);
4225  
4226  	/* Tx queue started by watchdog timer when link is up */
4227  
4228  	e1000e_trigger_lsc(adapter);
4229  }
4230  
e1000e_flush_descriptors(struct e1000_adapter * adapter)4231  static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4232  {
4233  	struct e1000_hw *hw = &adapter->hw;
4234  
4235  	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4236  		return;
4237  
4238  	/* flush pending descriptor writebacks to memory */
4239  	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4240  	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4241  
4242  	/* execute the writes immediately */
4243  	e1e_flush();
4244  
4245  	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4246  	 * write is successful
4247  	 */
4248  	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4249  	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4250  
4251  	/* execute the writes immediately */
4252  	e1e_flush();
4253  }
4254  
4255  static void e1000e_update_stats(struct e1000_adapter *adapter);
4256  
4257  /**
4258   * e1000e_down - quiesce the device and optionally reset the hardware
4259   * @adapter: board private structure
4260   * @reset: boolean flag to reset the hardware or not
4261   */
e1000e_down(struct e1000_adapter * adapter,bool reset)4262  void e1000e_down(struct e1000_adapter *adapter, bool reset)
4263  {
4264  	struct net_device *netdev = adapter->netdev;
4265  	struct e1000_hw *hw = &adapter->hw;
4266  	u32 tctl, rctl;
4267  
4268  	/* signal that we're down so the interrupt handler does not
4269  	 * reschedule our watchdog timer
4270  	 */
4271  	set_bit(__E1000_DOWN, &adapter->state);
4272  
4273  	netif_carrier_off(netdev);
4274  
4275  	/* disable receives in the hardware */
4276  	rctl = er32(RCTL);
4277  	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4278  		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4279  	/* flush and sleep below */
4280  
4281  	netif_stop_queue(netdev);
4282  
4283  	/* disable transmits in the hardware */
4284  	tctl = er32(TCTL);
4285  	tctl &= ~E1000_TCTL_EN;
4286  	ew32(TCTL, tctl);
4287  
4288  	/* flush both disables and wait for them to finish */
4289  	e1e_flush();
4290  	usleep_range(10000, 11000);
4291  
4292  	e1000_irq_disable(adapter);
4293  
4294  	napi_synchronize(&adapter->napi);
4295  
4296  	del_timer_sync(&adapter->watchdog_timer);
4297  	del_timer_sync(&adapter->phy_info_timer);
4298  
4299  	spin_lock(&adapter->stats64_lock);
4300  	e1000e_update_stats(adapter);
4301  	spin_unlock(&adapter->stats64_lock);
4302  
4303  	e1000e_flush_descriptors(adapter);
4304  
4305  	adapter->link_speed = 0;
4306  	adapter->link_duplex = 0;
4307  
4308  	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4309  	if ((hw->mac.type >= e1000_pch2lan) &&
4310  	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4311  	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4312  		e_dbg("failed to disable jumbo frame workaround mode\n");
4313  
4314  	if (!pci_channel_offline(adapter->pdev)) {
4315  		if (reset)
4316  			e1000e_reset(adapter);
4317  		else if (hw->mac.type >= e1000_pch_spt)
4318  			e1000_flush_desc_rings(adapter);
4319  	}
4320  	e1000_clean_tx_ring(adapter->tx_ring);
4321  	e1000_clean_rx_ring(adapter->rx_ring);
4322  }
4323  
e1000e_reinit_locked(struct e1000_adapter * adapter)4324  void e1000e_reinit_locked(struct e1000_adapter *adapter)
4325  {
4326  	might_sleep();
4327  	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4328  		usleep_range(1000, 1100);
4329  	e1000e_down(adapter, true);
4330  	e1000e_up(adapter);
4331  	clear_bit(__E1000_RESETTING, &adapter->state);
4332  }
4333  
4334  /**
4335   * e1000e_sanitize_systim - sanitize raw cycle counter reads
4336   * @hw: pointer to the HW structure
4337   * @systim: PHC time value read, sanitized and returned
4338   * @sts: structure to hold system time before and after reading SYSTIML,
4339   * may be NULL
4340   *
4341   * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4342   * check to see that the time is incrementing at a reasonable
4343   * rate and is a multiple of incvalue.
4344   **/
e1000e_sanitize_systim(struct e1000_hw * hw,u64 systim,struct ptp_system_timestamp * sts)4345  static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4346  				  struct ptp_system_timestamp *sts)
4347  {
4348  	u64 time_delta, rem, temp;
4349  	u64 systim_next;
4350  	u32 incvalue;
4351  	int i;
4352  
4353  	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4354  	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4355  		/* latch SYSTIMH on read of SYSTIML */
4356  		ptp_read_system_prets(sts);
4357  		systim_next = (u64)er32(SYSTIML);
4358  		ptp_read_system_postts(sts);
4359  		systim_next |= (u64)er32(SYSTIMH) << 32;
4360  
4361  		time_delta = systim_next - systim;
4362  		temp = time_delta;
4363  		/* VMWare users have seen incvalue of zero, don't div / 0 */
4364  		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4365  
4366  		systim = systim_next;
4367  
4368  		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4369  			break;
4370  	}
4371  
4372  	return systim;
4373  }
4374  
4375  /**
4376   * e1000e_read_systim - read SYSTIM register
4377   * @adapter: board private structure
4378   * @sts: structure which will contain system time before and after reading
4379   * SYSTIML, may be NULL
4380   **/
e1000e_read_systim(struct e1000_adapter * adapter,struct ptp_system_timestamp * sts)4381  u64 e1000e_read_systim(struct e1000_adapter *adapter,
4382  		       struct ptp_system_timestamp *sts)
4383  {
4384  	struct e1000_hw *hw = &adapter->hw;
4385  	u32 systimel, systimel_2, systimeh;
4386  	u64 systim;
4387  	/* SYSTIMH latching upon SYSTIML read does not work well.
4388  	 * This means that if SYSTIML overflows after we read it but before
4389  	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4390  	 * will experience a huge non linear increment in the systime value
4391  	 * to fix that we test for overflow and if true, we re-read systime.
4392  	 */
4393  	ptp_read_system_prets(sts);
4394  	systimel = er32(SYSTIML);
4395  	ptp_read_system_postts(sts);
4396  	systimeh = er32(SYSTIMH);
4397  	/* Is systimel is so large that overflow is possible? */
4398  	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4399  		ptp_read_system_prets(sts);
4400  		systimel_2 = er32(SYSTIML);
4401  		ptp_read_system_postts(sts);
4402  		if (systimel > systimel_2) {
4403  			/* There was an overflow, read again SYSTIMH, and use
4404  			 * systimel_2
4405  			 */
4406  			systimeh = er32(SYSTIMH);
4407  			systimel = systimel_2;
4408  		}
4409  	}
4410  	systim = (u64)systimel;
4411  	systim |= (u64)systimeh << 32;
4412  
4413  	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4414  		systim = e1000e_sanitize_systim(hw, systim, sts);
4415  
4416  	return systim;
4417  }
4418  
4419  /**
4420   * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4421   * @cc: cyclecounter structure
4422   **/
e1000e_cyclecounter_read(const struct cyclecounter * cc)4423  static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4424  {
4425  	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4426  						     cc);
4427  
4428  	return e1000e_read_systim(adapter, NULL);
4429  }
4430  
4431  /**
4432   * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4433   * @adapter: board private structure to initialize
4434   *
4435   * e1000_sw_init initializes the Adapter private data structure.
4436   * Fields are initialized based on PCI device information and
4437   * OS network device settings (MTU size).
4438   **/
e1000_sw_init(struct e1000_adapter * adapter)4439  static int e1000_sw_init(struct e1000_adapter *adapter)
4440  {
4441  	struct net_device *netdev = adapter->netdev;
4442  
4443  	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4444  	adapter->rx_ps_bsize0 = 128;
4445  	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4446  	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4447  	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4448  	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4449  
4450  	spin_lock_init(&adapter->stats64_lock);
4451  
4452  	e1000e_set_interrupt_capability(adapter);
4453  
4454  	if (e1000_alloc_queues(adapter))
4455  		return -ENOMEM;
4456  
4457  	/* Setup hardware time stamping cyclecounter */
4458  	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4459  		adapter->cc.read = e1000e_cyclecounter_read;
4460  		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4461  		adapter->cc.mult = 1;
4462  		/* cc.shift set in e1000e_get_base_tininca() */
4463  
4464  		spin_lock_init(&adapter->systim_lock);
4465  		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4466  	}
4467  
4468  	/* Explicitly disable IRQ since the NIC can be in any state. */
4469  	e1000_irq_disable(adapter);
4470  
4471  	set_bit(__E1000_DOWN, &adapter->state);
4472  	return 0;
4473  }
4474  
4475  /**
4476   * e1000_intr_msi_test - Interrupt Handler
4477   * @irq: interrupt number
4478   * @data: pointer to a network interface device structure
4479   **/
e1000_intr_msi_test(int __always_unused irq,void * data)4480  static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4481  {
4482  	struct net_device *netdev = data;
4483  	struct e1000_adapter *adapter = netdev_priv(netdev);
4484  	struct e1000_hw *hw = &adapter->hw;
4485  	u32 icr = er32(ICR);
4486  
4487  	e_dbg("icr is %08X\n", icr);
4488  	if (icr & E1000_ICR_RXSEQ) {
4489  		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4490  		/* Force memory writes to complete before acknowledging the
4491  		 * interrupt is handled.
4492  		 */
4493  		wmb();
4494  	}
4495  
4496  	return IRQ_HANDLED;
4497  }
4498  
4499  /**
4500   * e1000_test_msi_interrupt - Returns 0 for successful test
4501   * @adapter: board private struct
4502   *
4503   * code flow taken from tg3.c
4504   **/
e1000_test_msi_interrupt(struct e1000_adapter * adapter)4505  static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4506  {
4507  	struct net_device *netdev = adapter->netdev;
4508  	struct e1000_hw *hw = &adapter->hw;
4509  	int err;
4510  
4511  	/* poll_enable hasn't been called yet, so don't need disable */
4512  	/* clear any pending events */
4513  	er32(ICR);
4514  
4515  	/* free the real vector and request a test handler */
4516  	e1000_free_irq(adapter);
4517  	e1000e_reset_interrupt_capability(adapter);
4518  
4519  	/* Assume that the test fails, if it succeeds then the test
4520  	 * MSI irq handler will unset this flag
4521  	 */
4522  	adapter->flags |= FLAG_MSI_TEST_FAILED;
4523  
4524  	err = pci_enable_msi(adapter->pdev);
4525  	if (err)
4526  		goto msi_test_failed;
4527  
4528  	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4529  			  netdev->name, netdev);
4530  	if (err) {
4531  		pci_disable_msi(adapter->pdev);
4532  		goto msi_test_failed;
4533  	}
4534  
4535  	/* Force memory writes to complete before enabling and firing an
4536  	 * interrupt.
4537  	 */
4538  	wmb();
4539  
4540  	e1000_irq_enable(adapter);
4541  
4542  	/* fire an unusual interrupt on the test handler */
4543  	ew32(ICS, E1000_ICS_RXSEQ);
4544  	e1e_flush();
4545  	msleep(100);
4546  
4547  	e1000_irq_disable(adapter);
4548  
4549  	rmb();			/* read flags after interrupt has been fired */
4550  
4551  	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4552  		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4553  		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4554  	} else {
4555  		e_dbg("MSI interrupt test succeeded!\n");
4556  	}
4557  
4558  	free_irq(adapter->pdev->irq, netdev);
4559  	pci_disable_msi(adapter->pdev);
4560  
4561  msi_test_failed:
4562  	e1000e_set_interrupt_capability(adapter);
4563  	return e1000_request_irq(adapter);
4564  }
4565  
4566  /**
4567   * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4568   * @adapter: board private struct
4569   *
4570   * code flow taken from tg3.c, called with e1000 interrupts disabled.
4571   **/
e1000_test_msi(struct e1000_adapter * adapter)4572  static int e1000_test_msi(struct e1000_adapter *adapter)
4573  {
4574  	int err;
4575  	u16 pci_cmd;
4576  
4577  	if (!(adapter->flags & FLAG_MSI_ENABLED))
4578  		return 0;
4579  
4580  	/* disable SERR in case the MSI write causes a master abort */
4581  	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4582  	if (pci_cmd & PCI_COMMAND_SERR)
4583  		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4584  				      pci_cmd & ~PCI_COMMAND_SERR);
4585  
4586  	err = e1000_test_msi_interrupt(adapter);
4587  
4588  	/* re-enable SERR */
4589  	if (pci_cmd & PCI_COMMAND_SERR) {
4590  		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4591  		pci_cmd |= PCI_COMMAND_SERR;
4592  		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4593  	}
4594  
4595  	return err;
4596  }
4597  
4598  /**
4599   * e1000e_open - Called when a network interface is made active
4600   * @netdev: network interface device structure
4601   *
4602   * Returns 0 on success, negative value on failure
4603   *
4604   * The open entry point is called when a network interface is made
4605   * active by the system (IFF_UP).  At this point all resources needed
4606   * for transmit and receive operations are allocated, the interrupt
4607   * handler is registered with the OS, the watchdog timer is started,
4608   * and the stack is notified that the interface is ready.
4609   **/
e1000e_open(struct net_device * netdev)4610  int e1000e_open(struct net_device *netdev)
4611  {
4612  	struct e1000_adapter *adapter = netdev_priv(netdev);
4613  	struct e1000_hw *hw = &adapter->hw;
4614  	struct pci_dev *pdev = adapter->pdev;
4615  	int err;
4616  
4617  	/* disallow open during test */
4618  	if (test_bit(__E1000_TESTING, &adapter->state))
4619  		return -EBUSY;
4620  
4621  	pm_runtime_get_sync(&pdev->dev);
4622  
4623  	netif_carrier_off(netdev);
4624  	netif_stop_queue(netdev);
4625  
4626  	/* allocate transmit descriptors */
4627  	err = e1000e_setup_tx_resources(adapter->tx_ring);
4628  	if (err)
4629  		goto err_setup_tx;
4630  
4631  	/* allocate receive descriptors */
4632  	err = e1000e_setup_rx_resources(adapter->rx_ring);
4633  	if (err)
4634  		goto err_setup_rx;
4635  
4636  	/* If AMT is enabled, let the firmware know that the network
4637  	 * interface is now open and reset the part to a known state.
4638  	 */
4639  	if (adapter->flags & FLAG_HAS_AMT) {
4640  		e1000e_get_hw_control(adapter);
4641  		e1000e_reset(adapter);
4642  	}
4643  
4644  	e1000e_power_up_phy(adapter);
4645  
4646  	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4647  	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4648  		e1000_update_mng_vlan(adapter);
4649  
4650  	/* DMA latency requirement to workaround jumbo issue */
4651  	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4652  
4653  	/* before we allocate an interrupt, we must be ready to handle it.
4654  	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4655  	 * as soon as we call pci_request_irq, so we have to setup our
4656  	 * clean_rx handler before we do so.
4657  	 */
4658  	e1000_configure(adapter);
4659  
4660  	err = e1000_request_irq(adapter);
4661  	if (err)
4662  		goto err_req_irq;
4663  
4664  	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4665  	 * ignore e1000e MSI messages, which means we need to test our MSI
4666  	 * interrupt now
4667  	 */
4668  	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4669  		err = e1000_test_msi(adapter);
4670  		if (err) {
4671  			e_err("Interrupt allocation failed\n");
4672  			goto err_req_irq;
4673  		}
4674  	}
4675  
4676  	/* From here on the code is the same as e1000e_up() */
4677  	clear_bit(__E1000_DOWN, &adapter->state);
4678  
4679  	napi_enable(&adapter->napi);
4680  
4681  	e1000_irq_enable(adapter);
4682  
4683  	adapter->tx_hang_recheck = false;
4684  
4685  	hw->mac.get_link_status = true;
4686  	pm_runtime_put(&pdev->dev);
4687  
4688  	e1000e_trigger_lsc(adapter);
4689  
4690  	return 0;
4691  
4692  err_req_irq:
4693  	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4694  	e1000e_release_hw_control(adapter);
4695  	e1000_power_down_phy(adapter);
4696  	e1000e_free_rx_resources(adapter->rx_ring);
4697  err_setup_rx:
4698  	e1000e_free_tx_resources(adapter->tx_ring);
4699  err_setup_tx:
4700  	e1000e_reset(adapter);
4701  	pm_runtime_put_sync(&pdev->dev);
4702  
4703  	return err;
4704  }
4705  
4706  /**
4707   * e1000e_close - Disables a network interface
4708   * @netdev: network interface device structure
4709   *
4710   * Returns 0, this is not allowed to fail
4711   *
4712   * The close entry point is called when an interface is de-activated
4713   * by the OS.  The hardware is still under the drivers control, but
4714   * needs to be disabled.  A global MAC reset is issued to stop the
4715   * hardware, and all transmit and receive resources are freed.
4716   **/
e1000e_close(struct net_device * netdev)4717  int e1000e_close(struct net_device *netdev)
4718  {
4719  	struct e1000_adapter *adapter = netdev_priv(netdev);
4720  	struct pci_dev *pdev = adapter->pdev;
4721  	int count = E1000_CHECK_RESET_COUNT;
4722  
4723  	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4724  		usleep_range(10000, 11000);
4725  
4726  	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4727  
4728  	pm_runtime_get_sync(&pdev->dev);
4729  
4730  	if (netif_device_present(netdev)) {
4731  		e1000e_down(adapter, true);
4732  		e1000_free_irq(adapter);
4733  
4734  		/* Link status message must follow this format */
4735  		netdev_info(netdev, "NIC Link is Down\n");
4736  	}
4737  
4738  	napi_disable(&adapter->napi);
4739  
4740  	e1000e_free_tx_resources(adapter->tx_ring);
4741  	e1000e_free_rx_resources(adapter->rx_ring);
4742  
4743  	/* kill manageability vlan ID if supported, but not if a vlan with
4744  	 * the same ID is registered on the host OS (let 8021q kill it)
4745  	 */
4746  	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4747  		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4748  				       adapter->mng_vlan_id);
4749  
4750  	/* If AMT is enabled, let the firmware know that the network
4751  	 * interface is now closed
4752  	 */
4753  	if ((adapter->flags & FLAG_HAS_AMT) &&
4754  	    !test_bit(__E1000_TESTING, &adapter->state))
4755  		e1000e_release_hw_control(adapter);
4756  
4757  	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4758  
4759  	pm_runtime_put_sync(&pdev->dev);
4760  
4761  	return 0;
4762  }
4763  
4764  /**
4765   * e1000_set_mac - Change the Ethernet Address of the NIC
4766   * @netdev: network interface device structure
4767   * @p: pointer to an address structure
4768   *
4769   * Returns 0 on success, negative on failure
4770   **/
e1000_set_mac(struct net_device * netdev,void * p)4771  static int e1000_set_mac(struct net_device *netdev, void *p)
4772  {
4773  	struct e1000_adapter *adapter = netdev_priv(netdev);
4774  	struct e1000_hw *hw = &adapter->hw;
4775  	struct sockaddr *addr = p;
4776  
4777  	if (!is_valid_ether_addr(addr->sa_data))
4778  		return -EADDRNOTAVAIL;
4779  
4780  	eth_hw_addr_set(netdev, addr->sa_data);
4781  	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4782  
4783  	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4784  
4785  	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4786  		/* activate the work around */
4787  		e1000e_set_laa_state_82571(&adapter->hw, 1);
4788  
4789  		/* Hold a copy of the LAA in RAR[14] This is done so that
4790  		 * between the time RAR[0] gets clobbered  and the time it
4791  		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4792  		 * of the RARs and no incoming packets directed to this port
4793  		 * are dropped. Eventually the LAA will be in RAR[0] and
4794  		 * RAR[14]
4795  		 */
4796  		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4797  				    adapter->hw.mac.rar_entry_count - 1);
4798  	}
4799  
4800  	return 0;
4801  }
4802  
4803  /**
4804   * e1000e_update_phy_task - work thread to update phy
4805   * @work: pointer to our work struct
4806   *
4807   * this worker thread exists because we must acquire a
4808   * semaphore to read the phy, which we could msleep while
4809   * waiting for it, and we can't msleep in a timer.
4810   **/
e1000e_update_phy_task(struct work_struct * work)4811  static void e1000e_update_phy_task(struct work_struct *work)
4812  {
4813  	struct e1000_adapter *adapter = container_of(work,
4814  						     struct e1000_adapter,
4815  						     update_phy_task);
4816  	struct e1000_hw *hw = &adapter->hw;
4817  
4818  	if (test_bit(__E1000_DOWN, &adapter->state))
4819  		return;
4820  
4821  	e1000_get_phy_info(hw);
4822  
4823  	/* Enable EEE on 82579 after link up */
4824  	if (hw->phy.type >= e1000_phy_82579)
4825  		e1000_set_eee_pchlan(hw);
4826  }
4827  
4828  /**
4829   * e1000_update_phy_info - timre call-back to update PHY info
4830   * @t: pointer to timer_list containing private info adapter
4831   *
4832   * Need to wait a few seconds after link up to get diagnostic information from
4833   * the phy
4834   **/
e1000_update_phy_info(struct timer_list * t)4835  static void e1000_update_phy_info(struct timer_list *t)
4836  {
4837  	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4838  
4839  	if (test_bit(__E1000_DOWN, &adapter->state))
4840  		return;
4841  
4842  	schedule_work(&adapter->update_phy_task);
4843  }
4844  
4845  /**
4846   * e1000e_update_phy_stats - Update the PHY statistics counters
4847   * @adapter: board private structure
4848   *
4849   * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4850   **/
e1000e_update_phy_stats(struct e1000_adapter * adapter)4851  static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4852  {
4853  	struct e1000_hw *hw = &adapter->hw;
4854  	s32 ret_val;
4855  	u16 phy_data;
4856  
4857  	ret_val = hw->phy.ops.acquire(hw);
4858  	if (ret_val)
4859  		return;
4860  
4861  	/* A page set is expensive so check if already on desired page.
4862  	 * If not, set to the page with the PHY status registers.
4863  	 */
4864  	hw->phy.addr = 1;
4865  	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4866  					   &phy_data);
4867  	if (ret_val)
4868  		goto release;
4869  	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4870  		ret_val = hw->phy.ops.set_page(hw,
4871  					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4872  		if (ret_val)
4873  			goto release;
4874  	}
4875  
4876  	/* Single Collision Count */
4877  	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4878  	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4879  	if (!ret_val)
4880  		adapter->stats.scc += phy_data;
4881  
4882  	/* Excessive Collision Count */
4883  	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4884  	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4885  	if (!ret_val)
4886  		adapter->stats.ecol += phy_data;
4887  
4888  	/* Multiple Collision Count */
4889  	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4890  	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4891  	if (!ret_val)
4892  		adapter->stats.mcc += phy_data;
4893  
4894  	/* Late Collision Count */
4895  	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4896  	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4897  	if (!ret_val)
4898  		adapter->stats.latecol += phy_data;
4899  
4900  	/* Collision Count - also used for adaptive IFS */
4901  	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4902  	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4903  	if (!ret_val)
4904  		hw->mac.collision_delta = phy_data;
4905  
4906  	/* Defer Count */
4907  	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4908  	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4909  	if (!ret_val)
4910  		adapter->stats.dc += phy_data;
4911  
4912  	/* Transmit with no CRS */
4913  	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4914  	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4915  	if (!ret_val)
4916  		adapter->stats.tncrs += phy_data;
4917  
4918  release:
4919  	hw->phy.ops.release(hw);
4920  }
4921  
4922  /**
4923   * e1000e_update_stats - Update the board statistics counters
4924   * @adapter: board private structure
4925   **/
e1000e_update_stats(struct e1000_adapter * adapter)4926  static void e1000e_update_stats(struct e1000_adapter *adapter)
4927  {
4928  	struct net_device *netdev = adapter->netdev;
4929  	struct e1000_hw *hw = &adapter->hw;
4930  	struct pci_dev *pdev = adapter->pdev;
4931  
4932  	/* Prevent stats update while adapter is being reset, or if the pci
4933  	 * connection is down.
4934  	 */
4935  	if (adapter->link_speed == 0)
4936  		return;
4937  	if (pci_channel_offline(pdev))
4938  		return;
4939  
4940  	adapter->stats.crcerrs += er32(CRCERRS);
4941  	adapter->stats.gprc += er32(GPRC);
4942  	adapter->stats.gorc += er32(GORCL);
4943  	er32(GORCH);		/* Clear gorc */
4944  	adapter->stats.bprc += er32(BPRC);
4945  	adapter->stats.mprc += er32(MPRC);
4946  	adapter->stats.roc += er32(ROC);
4947  
4948  	adapter->stats.mpc += er32(MPC);
4949  
4950  	/* Half-duplex statistics */
4951  	if (adapter->link_duplex == HALF_DUPLEX) {
4952  		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4953  			e1000e_update_phy_stats(adapter);
4954  		} else {
4955  			adapter->stats.scc += er32(SCC);
4956  			adapter->stats.ecol += er32(ECOL);
4957  			adapter->stats.mcc += er32(MCC);
4958  			adapter->stats.latecol += er32(LATECOL);
4959  			adapter->stats.dc += er32(DC);
4960  
4961  			hw->mac.collision_delta = er32(COLC);
4962  
4963  			if ((hw->mac.type != e1000_82574) &&
4964  			    (hw->mac.type != e1000_82583))
4965  				adapter->stats.tncrs += er32(TNCRS);
4966  		}
4967  		adapter->stats.colc += hw->mac.collision_delta;
4968  	}
4969  
4970  	adapter->stats.xonrxc += er32(XONRXC);
4971  	adapter->stats.xontxc += er32(XONTXC);
4972  	adapter->stats.xoffrxc += er32(XOFFRXC);
4973  	adapter->stats.xofftxc += er32(XOFFTXC);
4974  	adapter->stats.gptc += er32(GPTC);
4975  	adapter->stats.gotc += er32(GOTCL);
4976  	er32(GOTCH);		/* Clear gotc */
4977  	adapter->stats.rnbc += er32(RNBC);
4978  	adapter->stats.ruc += er32(RUC);
4979  
4980  	adapter->stats.mptc += er32(MPTC);
4981  	adapter->stats.bptc += er32(BPTC);
4982  
4983  	/* used for adaptive IFS */
4984  
4985  	hw->mac.tx_packet_delta = er32(TPT);
4986  	adapter->stats.tpt += hw->mac.tx_packet_delta;
4987  
4988  	adapter->stats.algnerrc += er32(ALGNERRC);
4989  	adapter->stats.rxerrc += er32(RXERRC);
4990  	adapter->stats.cexterr += er32(CEXTERR);
4991  	adapter->stats.tsctc += er32(TSCTC);
4992  	adapter->stats.tsctfc += er32(TSCTFC);
4993  
4994  	/* Fill out the OS statistics structure */
4995  	netdev->stats.multicast = adapter->stats.mprc;
4996  	netdev->stats.collisions = adapter->stats.colc;
4997  
4998  	/* Rx Errors */
4999  
5000  	/* RLEC on some newer hardware can be incorrect so build
5001  	 * our own version based on RUC and ROC
5002  	 */
5003  	netdev->stats.rx_errors = adapter->stats.rxerrc +
5004  	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5005  	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5006  	netdev->stats.rx_length_errors = adapter->stats.ruc +
5007  	    adapter->stats.roc;
5008  	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5009  	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5010  	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5011  
5012  	/* Tx Errors */
5013  	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5014  	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5015  	netdev->stats.tx_window_errors = adapter->stats.latecol;
5016  	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5017  
5018  	/* Tx Dropped needs to be maintained elsewhere */
5019  
5020  	/* Management Stats */
5021  	adapter->stats.mgptc += er32(MGTPTC);
5022  	adapter->stats.mgprc += er32(MGTPRC);
5023  	adapter->stats.mgpdc += er32(MGTPDC);
5024  
5025  	/* Correctable ECC Errors */
5026  	if (hw->mac.type >= e1000_pch_lpt) {
5027  		u32 pbeccsts = er32(PBECCSTS);
5028  
5029  		adapter->corr_errors +=
5030  		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5031  		adapter->uncorr_errors +=
5032  		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
5033  	}
5034  }
5035  
5036  /**
5037   * e1000_phy_read_status - Update the PHY register status snapshot
5038   * @adapter: board private structure
5039   **/
e1000_phy_read_status(struct e1000_adapter * adapter)5040  static void e1000_phy_read_status(struct e1000_adapter *adapter)
5041  {
5042  	struct e1000_hw *hw = &adapter->hw;
5043  	struct e1000_phy_regs *phy = &adapter->phy_regs;
5044  
5045  	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5046  	    (er32(STATUS) & E1000_STATUS_LU) &&
5047  	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5048  		int ret_val;
5049  
5050  		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5051  		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5052  		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5053  		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5054  		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5055  		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5056  		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5057  		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5058  		if (ret_val)
5059  			e_warn("Error reading PHY register\n");
5060  	} else {
5061  		/* Do not read PHY registers if link is not up
5062  		 * Set values to typical power-on defaults
5063  		 */
5064  		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5065  		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5066  			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5067  			     BMSR_ERCAP);
5068  		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5069  				  ADVERTISE_ALL | ADVERTISE_CSMA);
5070  		phy->lpa = 0;
5071  		phy->expansion = EXPANSION_ENABLENPAGE;
5072  		phy->ctrl1000 = ADVERTISE_1000FULL;
5073  		phy->stat1000 = 0;
5074  		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5075  	}
5076  }
5077  
e1000_print_link_info(struct e1000_adapter * adapter)5078  static void e1000_print_link_info(struct e1000_adapter *adapter)
5079  {
5080  	struct e1000_hw *hw = &adapter->hw;
5081  	u32 ctrl = er32(CTRL);
5082  
5083  	/* Link status message must follow this format for user tools */
5084  	netdev_info(adapter->netdev,
5085  		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5086  		    adapter->link_speed,
5087  		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5088  		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5089  		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5090  		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5091  }
5092  
e1000e_has_link(struct e1000_adapter * adapter)5093  static bool e1000e_has_link(struct e1000_adapter *adapter)
5094  {
5095  	struct e1000_hw *hw = &adapter->hw;
5096  	bool link_active = false;
5097  	s32 ret_val = 0;
5098  
5099  	/* get_link_status is set on LSC (link status) interrupt or
5100  	 * Rx sequence error interrupt.  get_link_status will stay
5101  	 * true until the check_for_link establishes link
5102  	 * for copper adapters ONLY
5103  	 */
5104  	switch (hw->phy.media_type) {
5105  	case e1000_media_type_copper:
5106  		if (hw->mac.get_link_status) {
5107  			ret_val = hw->mac.ops.check_for_link(hw);
5108  			link_active = !hw->mac.get_link_status;
5109  		} else {
5110  			link_active = true;
5111  		}
5112  		break;
5113  	case e1000_media_type_fiber:
5114  		ret_val = hw->mac.ops.check_for_link(hw);
5115  		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5116  		break;
5117  	case e1000_media_type_internal_serdes:
5118  		ret_val = hw->mac.ops.check_for_link(hw);
5119  		link_active = hw->mac.serdes_has_link;
5120  		break;
5121  	default:
5122  	case e1000_media_type_unknown:
5123  		break;
5124  	}
5125  
5126  	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5127  	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5128  		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5129  		e_info("Gigabit has been disabled, downgrading speed\n");
5130  	}
5131  
5132  	return link_active;
5133  }
5134  
e1000e_enable_receives(struct e1000_adapter * adapter)5135  static void e1000e_enable_receives(struct e1000_adapter *adapter)
5136  {
5137  	/* make sure the receive unit is started */
5138  	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5139  	    (adapter->flags & FLAG_RESTART_NOW)) {
5140  		struct e1000_hw *hw = &adapter->hw;
5141  		u32 rctl = er32(RCTL);
5142  
5143  		ew32(RCTL, rctl | E1000_RCTL_EN);
5144  		adapter->flags &= ~FLAG_RESTART_NOW;
5145  	}
5146  }
5147  
e1000e_check_82574_phy_workaround(struct e1000_adapter * adapter)5148  static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5149  {
5150  	struct e1000_hw *hw = &adapter->hw;
5151  
5152  	/* With 82574 controllers, PHY needs to be checked periodically
5153  	 * for hung state and reset, if two calls return true
5154  	 */
5155  	if (e1000_check_phy_82574(hw))
5156  		adapter->phy_hang_count++;
5157  	else
5158  		adapter->phy_hang_count = 0;
5159  
5160  	if (adapter->phy_hang_count > 1) {
5161  		adapter->phy_hang_count = 0;
5162  		e_dbg("PHY appears hung - resetting\n");
5163  		schedule_work(&adapter->reset_task);
5164  	}
5165  }
5166  
5167  /**
5168   * e1000_watchdog - Timer Call-back
5169   * @t: pointer to timer_list containing private info adapter
5170   **/
e1000_watchdog(struct timer_list * t)5171  static void e1000_watchdog(struct timer_list *t)
5172  {
5173  	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5174  
5175  	/* Do the rest outside of interrupt context */
5176  	schedule_work(&adapter->watchdog_task);
5177  
5178  	/* TODO: make this use queue_delayed_work() */
5179  }
5180  
e1000_watchdog_task(struct work_struct * work)5181  static void e1000_watchdog_task(struct work_struct *work)
5182  {
5183  	struct e1000_adapter *adapter = container_of(work,
5184  						     struct e1000_adapter,
5185  						     watchdog_task);
5186  	struct net_device *netdev = adapter->netdev;
5187  	struct e1000_mac_info *mac = &adapter->hw.mac;
5188  	struct e1000_phy_info *phy = &adapter->hw.phy;
5189  	struct e1000_ring *tx_ring = adapter->tx_ring;
5190  	u32 dmoff_exit_timeout = 100, tries = 0;
5191  	struct e1000_hw *hw = &adapter->hw;
5192  	u32 link, tctl, pcim_state;
5193  
5194  	if (test_bit(__E1000_DOWN, &adapter->state))
5195  		return;
5196  
5197  	link = e1000e_has_link(adapter);
5198  	if ((netif_carrier_ok(netdev)) && link) {
5199  		/* Cancel scheduled suspend requests. */
5200  		pm_runtime_resume(netdev->dev.parent);
5201  
5202  		e1000e_enable_receives(adapter);
5203  		goto link_up;
5204  	}
5205  
5206  	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5207  	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5208  		e1000_update_mng_vlan(adapter);
5209  
5210  	if (link) {
5211  		if (!netif_carrier_ok(netdev)) {
5212  			bool txb2b = true;
5213  
5214  			/* Cancel scheduled suspend requests. */
5215  			pm_runtime_resume(netdev->dev.parent);
5216  
5217  			/* Checking if MAC is in DMoff state*/
5218  			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5219  				pcim_state = er32(STATUS);
5220  				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5221  					if (tries++ == dmoff_exit_timeout) {
5222  						e_dbg("Error in exiting dmoff\n");
5223  						break;
5224  					}
5225  					usleep_range(10000, 20000);
5226  					pcim_state = er32(STATUS);
5227  
5228  					/* Checking if MAC exited DMoff state */
5229  					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5230  						e1000_phy_hw_reset(&adapter->hw);
5231  				}
5232  			}
5233  
5234  			/* update snapshot of PHY registers on LSC */
5235  			e1000_phy_read_status(adapter);
5236  			mac->ops.get_link_up_info(&adapter->hw,
5237  						  &adapter->link_speed,
5238  						  &adapter->link_duplex);
5239  			e1000_print_link_info(adapter);
5240  
5241  			/* check if SmartSpeed worked */
5242  			e1000e_check_downshift(hw);
5243  			if (phy->speed_downgraded)
5244  				netdev_warn(netdev,
5245  					    "Link Speed was downgraded by SmartSpeed\n");
5246  
5247  			/* On supported PHYs, check for duplex mismatch only
5248  			 * if link has autonegotiated at 10/100 half
5249  			 */
5250  			if ((hw->phy.type == e1000_phy_igp_3 ||
5251  			     hw->phy.type == e1000_phy_bm) &&
5252  			    hw->mac.autoneg &&
5253  			    (adapter->link_speed == SPEED_10 ||
5254  			     adapter->link_speed == SPEED_100) &&
5255  			    (adapter->link_duplex == HALF_DUPLEX)) {
5256  				u16 autoneg_exp;
5257  
5258  				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5259  
5260  				if (!(autoneg_exp & EXPANSION_NWAY))
5261  					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5262  			}
5263  
5264  			/* adjust timeout factor according to speed/duplex */
5265  			adapter->tx_timeout_factor = 1;
5266  			switch (adapter->link_speed) {
5267  			case SPEED_10:
5268  				txb2b = false;
5269  				adapter->tx_timeout_factor = 16;
5270  				break;
5271  			case SPEED_100:
5272  				txb2b = false;
5273  				adapter->tx_timeout_factor = 10;
5274  				break;
5275  			}
5276  
5277  			/* workaround: re-program speed mode bit after
5278  			 * link-up event
5279  			 */
5280  			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5281  			    !txb2b) {
5282  				u32 tarc0;
5283  
5284  				tarc0 = er32(TARC(0));
5285  				tarc0 &= ~SPEED_MODE_BIT;
5286  				ew32(TARC(0), tarc0);
5287  			}
5288  
5289  			/* enable transmits in the hardware, need to do this
5290  			 * after setting TARC(0)
5291  			 */
5292  			tctl = er32(TCTL);
5293  			tctl |= E1000_TCTL_EN;
5294  			ew32(TCTL, tctl);
5295  
5296  			/* Perform any post-link-up configuration before
5297  			 * reporting link up.
5298  			 */
5299  			if (phy->ops.cfg_on_link_up)
5300  				phy->ops.cfg_on_link_up(hw);
5301  
5302  			netif_wake_queue(netdev);
5303  			netif_carrier_on(netdev);
5304  
5305  			if (!test_bit(__E1000_DOWN, &adapter->state))
5306  				mod_timer(&adapter->phy_info_timer,
5307  					  round_jiffies(jiffies + 2 * HZ));
5308  		}
5309  	} else {
5310  		if (netif_carrier_ok(netdev)) {
5311  			adapter->link_speed = 0;
5312  			adapter->link_duplex = 0;
5313  			/* Link status message must follow this format */
5314  			netdev_info(netdev, "NIC Link is Down\n");
5315  			netif_carrier_off(netdev);
5316  			netif_stop_queue(netdev);
5317  			if (!test_bit(__E1000_DOWN, &adapter->state))
5318  				mod_timer(&adapter->phy_info_timer,
5319  					  round_jiffies(jiffies + 2 * HZ));
5320  
5321  			/* 8000ES2LAN requires a Rx packet buffer work-around
5322  			 * on link down event; reset the controller to flush
5323  			 * the Rx packet buffer.
5324  			 */
5325  			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5326  				adapter->flags |= FLAG_RESTART_NOW;
5327  			else
5328  				pm_schedule_suspend(netdev->dev.parent,
5329  						    LINK_TIMEOUT);
5330  		}
5331  	}
5332  
5333  link_up:
5334  	spin_lock(&adapter->stats64_lock);
5335  	e1000e_update_stats(adapter);
5336  
5337  	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5338  	adapter->tpt_old = adapter->stats.tpt;
5339  	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5340  	adapter->colc_old = adapter->stats.colc;
5341  
5342  	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5343  	adapter->gorc_old = adapter->stats.gorc;
5344  	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5345  	adapter->gotc_old = adapter->stats.gotc;
5346  	spin_unlock(&adapter->stats64_lock);
5347  
5348  	/* If the link is lost the controller stops DMA, but
5349  	 * if there is queued Tx work it cannot be done.  So
5350  	 * reset the controller to flush the Tx packet buffers.
5351  	 */
5352  	if (!netif_carrier_ok(netdev) &&
5353  	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5354  		adapter->flags |= FLAG_RESTART_NOW;
5355  
5356  	/* If reset is necessary, do it outside of interrupt context. */
5357  	if (adapter->flags & FLAG_RESTART_NOW) {
5358  		schedule_work(&adapter->reset_task);
5359  		/* return immediately since reset is imminent */
5360  		return;
5361  	}
5362  
5363  	e1000e_update_adaptive(&adapter->hw);
5364  
5365  	/* Simple mode for Interrupt Throttle Rate (ITR) */
5366  	if (adapter->itr_setting == 4) {
5367  		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5368  		 * Total asymmetrical Tx or Rx gets ITR=8000;
5369  		 * everyone else is between 2000-8000.
5370  		 */
5371  		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5372  		u32 dif = (adapter->gotc > adapter->gorc ?
5373  			   adapter->gotc - adapter->gorc :
5374  			   adapter->gorc - adapter->gotc) / 10000;
5375  		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5376  
5377  		e1000e_write_itr(adapter, itr);
5378  	}
5379  
5380  	/* Cause software interrupt to ensure Rx ring is cleaned */
5381  	if (adapter->msix_entries)
5382  		ew32(ICS, adapter->rx_ring->ims_val);
5383  	else
5384  		ew32(ICS, E1000_ICS_RXDMT0);
5385  
5386  	/* flush pending descriptors to memory before detecting Tx hang */
5387  	e1000e_flush_descriptors(adapter);
5388  
5389  	/* Force detection of hung controller every watchdog period */
5390  	adapter->detect_tx_hung = true;
5391  
5392  	/* With 82571 controllers, LAA may be overwritten due to controller
5393  	 * reset from the other port. Set the appropriate LAA in RAR[0]
5394  	 */
5395  	if (e1000e_get_laa_state_82571(hw))
5396  		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5397  
5398  	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5399  		e1000e_check_82574_phy_workaround(adapter);
5400  
5401  	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5402  	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5403  		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5404  		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5405  			er32(RXSTMPH);
5406  			adapter->rx_hwtstamp_cleared++;
5407  		} else {
5408  			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5409  		}
5410  	}
5411  
5412  	/* Reset the timer */
5413  	if (!test_bit(__E1000_DOWN, &adapter->state))
5414  		mod_timer(&adapter->watchdog_timer,
5415  			  round_jiffies(jiffies + 2 * HZ));
5416  }
5417  
5418  #define E1000_TX_FLAGS_CSUM		0x00000001
5419  #define E1000_TX_FLAGS_VLAN		0x00000002
5420  #define E1000_TX_FLAGS_TSO		0x00000004
5421  #define E1000_TX_FLAGS_IPV4		0x00000008
5422  #define E1000_TX_FLAGS_NO_FCS		0x00000010
5423  #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5424  #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5425  #define E1000_TX_FLAGS_VLAN_SHIFT	16
5426  
e1000_tso(struct e1000_ring * tx_ring,struct sk_buff * skb,__be16 protocol)5427  static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5428  		     __be16 protocol)
5429  {
5430  	struct e1000_context_desc *context_desc;
5431  	struct e1000_buffer *buffer_info;
5432  	unsigned int i;
5433  	u32 cmd_length = 0;
5434  	u16 ipcse = 0, mss;
5435  	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5436  	int err;
5437  
5438  	if (!skb_is_gso(skb))
5439  		return 0;
5440  
5441  	err = skb_cow_head(skb, 0);
5442  	if (err < 0)
5443  		return err;
5444  
5445  	hdr_len = skb_tcp_all_headers(skb);
5446  	mss = skb_shinfo(skb)->gso_size;
5447  	if (protocol == htons(ETH_P_IP)) {
5448  		struct iphdr *iph = ip_hdr(skb);
5449  		iph->tot_len = 0;
5450  		iph->check = 0;
5451  		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5452  							 0, IPPROTO_TCP, 0);
5453  		cmd_length = E1000_TXD_CMD_IP;
5454  		ipcse = skb_transport_offset(skb) - 1;
5455  	} else if (skb_is_gso_v6(skb)) {
5456  		tcp_v6_gso_csum_prep(skb);
5457  		ipcse = 0;
5458  	}
5459  	ipcss = skb_network_offset(skb);
5460  	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5461  	tucss = skb_transport_offset(skb);
5462  	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5463  
5464  	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5465  		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5466  
5467  	i = tx_ring->next_to_use;
5468  	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5469  	buffer_info = &tx_ring->buffer_info[i];
5470  
5471  	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5472  	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5473  	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5474  	context_desc->upper_setup.tcp_fields.tucss = tucss;
5475  	context_desc->upper_setup.tcp_fields.tucso = tucso;
5476  	context_desc->upper_setup.tcp_fields.tucse = 0;
5477  	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5478  	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5479  	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5480  
5481  	buffer_info->time_stamp = jiffies;
5482  	buffer_info->next_to_watch = i;
5483  
5484  	i++;
5485  	if (i == tx_ring->count)
5486  		i = 0;
5487  	tx_ring->next_to_use = i;
5488  
5489  	return 1;
5490  }
5491  
e1000_tx_csum(struct e1000_ring * tx_ring,struct sk_buff * skb,__be16 protocol)5492  static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5493  			  __be16 protocol)
5494  {
5495  	struct e1000_adapter *adapter = tx_ring->adapter;
5496  	struct e1000_context_desc *context_desc;
5497  	struct e1000_buffer *buffer_info;
5498  	unsigned int i;
5499  	u8 css;
5500  	u32 cmd_len = E1000_TXD_CMD_DEXT;
5501  
5502  	if (skb->ip_summed != CHECKSUM_PARTIAL)
5503  		return false;
5504  
5505  	switch (protocol) {
5506  	case cpu_to_be16(ETH_P_IP):
5507  		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5508  			cmd_len |= E1000_TXD_CMD_TCP;
5509  		break;
5510  	case cpu_to_be16(ETH_P_IPV6):
5511  		/* XXX not handling all IPV6 headers */
5512  		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5513  			cmd_len |= E1000_TXD_CMD_TCP;
5514  		break;
5515  	default:
5516  		if (unlikely(net_ratelimit()))
5517  			e_warn("checksum_partial proto=%x!\n",
5518  			       be16_to_cpu(protocol));
5519  		break;
5520  	}
5521  
5522  	css = skb_checksum_start_offset(skb);
5523  
5524  	i = tx_ring->next_to_use;
5525  	buffer_info = &tx_ring->buffer_info[i];
5526  	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5527  
5528  	context_desc->lower_setup.ip_config = 0;
5529  	context_desc->upper_setup.tcp_fields.tucss = css;
5530  	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5531  	context_desc->upper_setup.tcp_fields.tucse = 0;
5532  	context_desc->tcp_seg_setup.data = 0;
5533  	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5534  
5535  	buffer_info->time_stamp = jiffies;
5536  	buffer_info->next_to_watch = i;
5537  
5538  	i++;
5539  	if (i == tx_ring->count)
5540  		i = 0;
5541  	tx_ring->next_to_use = i;
5542  
5543  	return true;
5544  }
5545  
e1000_tx_map(struct e1000_ring * tx_ring,struct sk_buff * skb,unsigned int first,unsigned int max_per_txd,unsigned int nr_frags)5546  static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5547  			unsigned int first, unsigned int max_per_txd,
5548  			unsigned int nr_frags)
5549  {
5550  	struct e1000_adapter *adapter = tx_ring->adapter;
5551  	struct pci_dev *pdev = adapter->pdev;
5552  	struct e1000_buffer *buffer_info;
5553  	unsigned int len = skb_headlen(skb);
5554  	unsigned int offset = 0, size, count = 0, i;
5555  	unsigned int f, bytecount, segs;
5556  
5557  	i = tx_ring->next_to_use;
5558  
5559  	while (len) {
5560  		buffer_info = &tx_ring->buffer_info[i];
5561  		size = min(len, max_per_txd);
5562  
5563  		buffer_info->length = size;
5564  		buffer_info->time_stamp = jiffies;
5565  		buffer_info->next_to_watch = i;
5566  		buffer_info->dma = dma_map_single(&pdev->dev,
5567  						  skb->data + offset,
5568  						  size, DMA_TO_DEVICE);
5569  		buffer_info->mapped_as_page = false;
5570  		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5571  			goto dma_error;
5572  
5573  		len -= size;
5574  		offset += size;
5575  		count++;
5576  
5577  		if (len) {
5578  			i++;
5579  			if (i == tx_ring->count)
5580  				i = 0;
5581  		}
5582  	}
5583  
5584  	for (f = 0; f < nr_frags; f++) {
5585  		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5586  
5587  		len = skb_frag_size(frag);
5588  		offset = 0;
5589  
5590  		while (len) {
5591  			i++;
5592  			if (i == tx_ring->count)
5593  				i = 0;
5594  
5595  			buffer_info = &tx_ring->buffer_info[i];
5596  			size = min(len, max_per_txd);
5597  
5598  			buffer_info->length = size;
5599  			buffer_info->time_stamp = jiffies;
5600  			buffer_info->next_to_watch = i;
5601  			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5602  							    offset, size,
5603  							    DMA_TO_DEVICE);
5604  			buffer_info->mapped_as_page = true;
5605  			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5606  				goto dma_error;
5607  
5608  			len -= size;
5609  			offset += size;
5610  			count++;
5611  		}
5612  	}
5613  
5614  	segs = skb_shinfo(skb)->gso_segs ? : 1;
5615  	/* multiply data chunks by size of headers */
5616  	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5617  
5618  	tx_ring->buffer_info[i].skb = skb;
5619  	tx_ring->buffer_info[i].segs = segs;
5620  	tx_ring->buffer_info[i].bytecount = bytecount;
5621  	tx_ring->buffer_info[first].next_to_watch = i;
5622  
5623  	return count;
5624  
5625  dma_error:
5626  	dev_err(&pdev->dev, "Tx DMA map failed\n");
5627  	buffer_info->dma = 0;
5628  	if (count)
5629  		count--;
5630  
5631  	while (count--) {
5632  		if (i == 0)
5633  			i += tx_ring->count;
5634  		i--;
5635  		buffer_info = &tx_ring->buffer_info[i];
5636  		e1000_put_txbuf(tx_ring, buffer_info, true);
5637  	}
5638  
5639  	return 0;
5640  }
5641  
e1000_tx_queue(struct e1000_ring * tx_ring,int tx_flags,int count)5642  static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5643  {
5644  	struct e1000_adapter *adapter = tx_ring->adapter;
5645  	struct e1000_tx_desc *tx_desc = NULL;
5646  	struct e1000_buffer *buffer_info;
5647  	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5648  	unsigned int i;
5649  
5650  	if (tx_flags & E1000_TX_FLAGS_TSO) {
5651  		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5652  		    E1000_TXD_CMD_TSE;
5653  		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5654  
5655  		if (tx_flags & E1000_TX_FLAGS_IPV4)
5656  			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5657  	}
5658  
5659  	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5660  		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5661  		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5662  	}
5663  
5664  	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5665  		txd_lower |= E1000_TXD_CMD_VLE;
5666  		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5667  	}
5668  
5669  	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5670  		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5671  
5672  	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5673  		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5674  		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5675  	}
5676  
5677  	i = tx_ring->next_to_use;
5678  
5679  	do {
5680  		buffer_info = &tx_ring->buffer_info[i];
5681  		tx_desc = E1000_TX_DESC(*tx_ring, i);
5682  		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5683  		tx_desc->lower.data = cpu_to_le32(txd_lower |
5684  						  buffer_info->length);
5685  		tx_desc->upper.data = cpu_to_le32(txd_upper);
5686  
5687  		i++;
5688  		if (i == tx_ring->count)
5689  			i = 0;
5690  	} while (--count > 0);
5691  
5692  	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5693  
5694  	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5695  	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5696  		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5697  
5698  	/* Force memory writes to complete before letting h/w
5699  	 * know there are new descriptors to fetch.  (Only
5700  	 * applicable for weak-ordered memory model archs,
5701  	 * such as IA-64).
5702  	 */
5703  	wmb();
5704  
5705  	tx_ring->next_to_use = i;
5706  }
5707  
5708  #define MINIMUM_DHCP_PACKET_SIZE 282
e1000_transfer_dhcp_info(struct e1000_adapter * adapter,struct sk_buff * skb)5709  static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5710  				    struct sk_buff *skb)
5711  {
5712  	struct e1000_hw *hw = &adapter->hw;
5713  	u16 length, offset;
5714  
5715  	if (skb_vlan_tag_present(skb) &&
5716  	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5717  	      (adapter->hw.mng_cookie.status &
5718  	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5719  		return 0;
5720  
5721  	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5722  		return 0;
5723  
5724  	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5725  		return 0;
5726  
5727  	{
5728  		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5729  		struct udphdr *udp;
5730  
5731  		if (ip->protocol != IPPROTO_UDP)
5732  			return 0;
5733  
5734  		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5735  		if (ntohs(udp->dest) != 67)
5736  			return 0;
5737  
5738  		offset = (u8 *)udp + 8 - skb->data;
5739  		length = skb->len - offset;
5740  		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5741  	}
5742  
5743  	return 0;
5744  }
5745  
__e1000_maybe_stop_tx(struct e1000_ring * tx_ring,int size)5746  static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5747  {
5748  	struct e1000_adapter *adapter = tx_ring->adapter;
5749  
5750  	netif_stop_queue(adapter->netdev);
5751  	/* Herbert's original patch had:
5752  	 *  smp_mb__after_netif_stop_queue();
5753  	 * but since that doesn't exist yet, just open code it.
5754  	 */
5755  	smp_mb();
5756  
5757  	/* We need to check again in a case another CPU has just
5758  	 * made room available.
5759  	 */
5760  	if (e1000_desc_unused(tx_ring) < size)
5761  		return -EBUSY;
5762  
5763  	/* A reprieve! */
5764  	netif_start_queue(adapter->netdev);
5765  	++adapter->restart_queue;
5766  	return 0;
5767  }
5768  
e1000_maybe_stop_tx(struct e1000_ring * tx_ring,int size)5769  static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5770  {
5771  	BUG_ON(size > tx_ring->count);
5772  
5773  	if (e1000_desc_unused(tx_ring) >= size)
5774  		return 0;
5775  	return __e1000_maybe_stop_tx(tx_ring, size);
5776  }
5777  
e1000_xmit_frame(struct sk_buff * skb,struct net_device * netdev)5778  static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5779  				    struct net_device *netdev)
5780  {
5781  	struct e1000_adapter *adapter = netdev_priv(netdev);
5782  	struct e1000_ring *tx_ring = adapter->tx_ring;
5783  	unsigned int first;
5784  	unsigned int tx_flags = 0;
5785  	unsigned int len = skb_headlen(skb);
5786  	unsigned int nr_frags;
5787  	unsigned int mss;
5788  	int count = 0;
5789  	int tso;
5790  	unsigned int f;
5791  	__be16 protocol = vlan_get_protocol(skb);
5792  
5793  	if (test_bit(__E1000_DOWN, &adapter->state)) {
5794  		dev_kfree_skb_any(skb);
5795  		return NETDEV_TX_OK;
5796  	}
5797  
5798  	if (skb->len <= 0) {
5799  		dev_kfree_skb_any(skb);
5800  		return NETDEV_TX_OK;
5801  	}
5802  
5803  	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5804  	 * pad skb in order to meet this minimum size requirement
5805  	 */
5806  	if (skb_put_padto(skb, 17))
5807  		return NETDEV_TX_OK;
5808  
5809  	mss = skb_shinfo(skb)->gso_size;
5810  	if (mss) {
5811  		u8 hdr_len;
5812  
5813  		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5814  		 * points to just header, pull a few bytes of payload from
5815  		 * frags into skb->data
5816  		 */
5817  		hdr_len = skb_tcp_all_headers(skb);
5818  		/* we do this workaround for ES2LAN, but it is un-necessary,
5819  		 * avoiding it could save a lot of cycles
5820  		 */
5821  		if (skb->data_len && (hdr_len == len)) {
5822  			unsigned int pull_size;
5823  
5824  			pull_size = min_t(unsigned int, 4, skb->data_len);
5825  			if (!__pskb_pull_tail(skb, pull_size)) {
5826  				e_err("__pskb_pull_tail failed.\n");
5827  				dev_kfree_skb_any(skb);
5828  				return NETDEV_TX_OK;
5829  			}
5830  			len = skb_headlen(skb);
5831  		}
5832  	}
5833  
5834  	/* reserve a descriptor for the offload context */
5835  	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5836  		count++;
5837  	count++;
5838  
5839  	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5840  
5841  	nr_frags = skb_shinfo(skb)->nr_frags;
5842  	for (f = 0; f < nr_frags; f++)
5843  		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5844  				      adapter->tx_fifo_limit);
5845  
5846  	if (adapter->hw.mac.tx_pkt_filtering)
5847  		e1000_transfer_dhcp_info(adapter, skb);
5848  
5849  	/* need: count + 2 desc gap to keep tail from touching
5850  	 * head, otherwise try next time
5851  	 */
5852  	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5853  		return NETDEV_TX_BUSY;
5854  
5855  	if (skb_vlan_tag_present(skb)) {
5856  		tx_flags |= E1000_TX_FLAGS_VLAN;
5857  		tx_flags |= (skb_vlan_tag_get(skb) <<
5858  			     E1000_TX_FLAGS_VLAN_SHIFT);
5859  	}
5860  
5861  	first = tx_ring->next_to_use;
5862  
5863  	tso = e1000_tso(tx_ring, skb, protocol);
5864  	if (tso < 0) {
5865  		dev_kfree_skb_any(skb);
5866  		return NETDEV_TX_OK;
5867  	}
5868  
5869  	if (tso)
5870  		tx_flags |= E1000_TX_FLAGS_TSO;
5871  	else if (e1000_tx_csum(tx_ring, skb, protocol))
5872  		tx_flags |= E1000_TX_FLAGS_CSUM;
5873  
5874  	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5875  	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5876  	 * no longer assume, we must.
5877  	 */
5878  	if (protocol == htons(ETH_P_IP))
5879  		tx_flags |= E1000_TX_FLAGS_IPV4;
5880  
5881  	if (unlikely(skb->no_fcs))
5882  		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5883  
5884  	/* if count is 0 then mapping error has occurred */
5885  	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5886  			     nr_frags);
5887  	if (count) {
5888  		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5889  		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5890  			if (!adapter->tx_hwtstamp_skb) {
5891  				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5892  				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5893  				adapter->tx_hwtstamp_skb = skb_get(skb);
5894  				adapter->tx_hwtstamp_start = jiffies;
5895  				schedule_work(&adapter->tx_hwtstamp_work);
5896  			} else {
5897  				adapter->tx_hwtstamp_skipped++;
5898  			}
5899  		}
5900  
5901  		skb_tx_timestamp(skb);
5902  
5903  		netdev_sent_queue(netdev, skb->len);
5904  		e1000_tx_queue(tx_ring, tx_flags, count);
5905  		/* Make sure there is space in the ring for the next send. */
5906  		e1000_maybe_stop_tx(tx_ring,
5907  				    ((MAX_SKB_FRAGS + 1) *
5908  				     DIV_ROUND_UP(PAGE_SIZE,
5909  						  adapter->tx_fifo_limit) + 4));
5910  
5911  		if (!netdev_xmit_more() ||
5912  		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5913  			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5914  				e1000e_update_tdt_wa(tx_ring,
5915  						     tx_ring->next_to_use);
5916  			else
5917  				writel(tx_ring->next_to_use, tx_ring->tail);
5918  		}
5919  	} else {
5920  		dev_kfree_skb_any(skb);
5921  		tx_ring->buffer_info[first].time_stamp = 0;
5922  		tx_ring->next_to_use = first;
5923  	}
5924  
5925  	return NETDEV_TX_OK;
5926  }
5927  
5928  /**
5929   * e1000_tx_timeout - Respond to a Tx Hang
5930   * @netdev: network interface device structure
5931   * @txqueue: index of the hung queue (unused)
5932   **/
e1000_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5933  static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5934  {
5935  	struct e1000_adapter *adapter = netdev_priv(netdev);
5936  
5937  	/* Do the reset outside of interrupt context */
5938  	adapter->tx_timeout_count++;
5939  	schedule_work(&adapter->reset_task);
5940  }
5941  
e1000_reset_task(struct work_struct * work)5942  static void e1000_reset_task(struct work_struct *work)
5943  {
5944  	struct e1000_adapter *adapter;
5945  	adapter = container_of(work, struct e1000_adapter, reset_task);
5946  
5947  	rtnl_lock();
5948  	/* don't run the task if already down */
5949  	if (test_bit(__E1000_DOWN, &adapter->state)) {
5950  		rtnl_unlock();
5951  		return;
5952  	}
5953  
5954  	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5955  		e1000e_dump(adapter);
5956  		e_err("Reset adapter unexpectedly\n");
5957  	}
5958  	e1000e_reinit_locked(adapter);
5959  	rtnl_unlock();
5960  }
5961  
5962  /**
5963   * e1000e_get_stats64 - Get System Network Statistics
5964   * @netdev: network interface device structure
5965   * @stats: rtnl_link_stats64 pointer
5966   *
5967   * Returns the address of the device statistics structure.
5968   **/
e1000e_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5969  void e1000e_get_stats64(struct net_device *netdev,
5970  			struct rtnl_link_stats64 *stats)
5971  {
5972  	struct e1000_adapter *adapter = netdev_priv(netdev);
5973  
5974  	spin_lock(&adapter->stats64_lock);
5975  	e1000e_update_stats(adapter);
5976  	/* Fill out the OS statistics structure */
5977  	stats->rx_bytes = adapter->stats.gorc;
5978  	stats->rx_packets = adapter->stats.gprc;
5979  	stats->tx_bytes = adapter->stats.gotc;
5980  	stats->tx_packets = adapter->stats.gptc;
5981  	stats->multicast = adapter->stats.mprc;
5982  	stats->collisions = adapter->stats.colc;
5983  
5984  	/* Rx Errors */
5985  
5986  	/* RLEC on some newer hardware can be incorrect so build
5987  	 * our own version based on RUC and ROC
5988  	 */
5989  	stats->rx_errors = adapter->stats.rxerrc +
5990  	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5991  	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5992  	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5993  	stats->rx_crc_errors = adapter->stats.crcerrs;
5994  	stats->rx_frame_errors = adapter->stats.algnerrc;
5995  	stats->rx_missed_errors = adapter->stats.mpc;
5996  
5997  	/* Tx Errors */
5998  	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5999  	stats->tx_aborted_errors = adapter->stats.ecol;
6000  	stats->tx_window_errors = adapter->stats.latecol;
6001  	stats->tx_carrier_errors = adapter->stats.tncrs;
6002  
6003  	/* Tx Dropped needs to be maintained elsewhere */
6004  
6005  	spin_unlock(&adapter->stats64_lock);
6006  }
6007  
6008  /**
6009   * e1000_change_mtu - Change the Maximum Transfer Unit
6010   * @netdev: network interface device structure
6011   * @new_mtu: new value for maximum frame size
6012   *
6013   * Returns 0 on success, negative on failure
6014   **/
e1000_change_mtu(struct net_device * netdev,int new_mtu)6015  static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6016  {
6017  	struct e1000_adapter *adapter = netdev_priv(netdev);
6018  	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6019  
6020  	/* Jumbo frame support */
6021  	if ((new_mtu > ETH_DATA_LEN) &&
6022  	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6023  		e_err("Jumbo Frames not supported.\n");
6024  		return -EINVAL;
6025  	}
6026  
6027  	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6028  	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6029  	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6030  	    (new_mtu > ETH_DATA_LEN)) {
6031  		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6032  		return -EINVAL;
6033  	}
6034  
6035  	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6036  		usleep_range(1000, 1100);
6037  	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6038  	adapter->max_frame_size = max_frame;
6039  	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6040  		   netdev->mtu, new_mtu);
6041  	WRITE_ONCE(netdev->mtu, new_mtu);
6042  
6043  	pm_runtime_get_sync(netdev->dev.parent);
6044  
6045  	if (netif_running(netdev))
6046  		e1000e_down(adapter, true);
6047  
6048  	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6049  	 * means we reserve 2 more, this pushes us to allocate from the next
6050  	 * larger slab size.
6051  	 * i.e. RXBUFFER_2048 --> size-4096 slab
6052  	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6053  	 * fragmented skbs
6054  	 */
6055  
6056  	if (max_frame <= 2048)
6057  		adapter->rx_buffer_len = 2048;
6058  	else
6059  		adapter->rx_buffer_len = 4096;
6060  
6061  	/* adjust allocation if LPE protects us, and we aren't using SBP */
6062  	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6063  		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6064  
6065  	if (netif_running(netdev))
6066  		e1000e_up(adapter);
6067  	else
6068  		e1000e_reset(adapter);
6069  
6070  	pm_runtime_put_sync(netdev->dev.parent);
6071  
6072  	clear_bit(__E1000_RESETTING, &adapter->state);
6073  
6074  	return 0;
6075  }
6076  
e1000_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6077  static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6078  			   int cmd)
6079  {
6080  	struct e1000_adapter *adapter = netdev_priv(netdev);
6081  	struct mii_ioctl_data *data = if_mii(ifr);
6082  
6083  	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6084  		return -EOPNOTSUPP;
6085  
6086  	switch (cmd) {
6087  	case SIOCGMIIPHY:
6088  		data->phy_id = adapter->hw.phy.addr;
6089  		break;
6090  	case SIOCGMIIREG:
6091  		e1000_phy_read_status(adapter);
6092  
6093  		switch (data->reg_num & 0x1F) {
6094  		case MII_BMCR:
6095  			data->val_out = adapter->phy_regs.bmcr;
6096  			break;
6097  		case MII_BMSR:
6098  			data->val_out = adapter->phy_regs.bmsr;
6099  			break;
6100  		case MII_PHYSID1:
6101  			data->val_out = (adapter->hw.phy.id >> 16);
6102  			break;
6103  		case MII_PHYSID2:
6104  			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6105  			break;
6106  		case MII_ADVERTISE:
6107  			data->val_out = adapter->phy_regs.advertise;
6108  			break;
6109  		case MII_LPA:
6110  			data->val_out = adapter->phy_regs.lpa;
6111  			break;
6112  		case MII_EXPANSION:
6113  			data->val_out = adapter->phy_regs.expansion;
6114  			break;
6115  		case MII_CTRL1000:
6116  			data->val_out = adapter->phy_regs.ctrl1000;
6117  			break;
6118  		case MII_STAT1000:
6119  			data->val_out = adapter->phy_regs.stat1000;
6120  			break;
6121  		case MII_ESTATUS:
6122  			data->val_out = adapter->phy_regs.estatus;
6123  			break;
6124  		default:
6125  			return -EIO;
6126  		}
6127  		break;
6128  	case SIOCSMIIREG:
6129  	default:
6130  		return -EOPNOTSUPP;
6131  	}
6132  	return 0;
6133  }
6134  
6135  /**
6136   * e1000e_hwtstamp_set - control hardware time stamping
6137   * @netdev: network interface device structure
6138   * @ifr: interface request
6139   *
6140   * Outgoing time stamping can be enabled and disabled. Play nice and
6141   * disable it when requested, although it shouldn't cause any overhead
6142   * when no packet needs it. At most one packet in the queue may be
6143   * marked for time stamping, otherwise it would be impossible to tell
6144   * for sure to which packet the hardware time stamp belongs.
6145   *
6146   * Incoming time stamping has to be configured via the hardware filters.
6147   * Not all combinations are supported, in particular event type has to be
6148   * specified. Matching the kind of event packet is not supported, with the
6149   * exception of "all V2 events regardless of level 2 or 4".
6150   **/
e1000e_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)6151  static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6152  {
6153  	struct e1000_adapter *adapter = netdev_priv(netdev);
6154  	struct hwtstamp_config config;
6155  	int ret_val;
6156  
6157  	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6158  		return -EFAULT;
6159  
6160  	ret_val = e1000e_config_hwtstamp(adapter, &config);
6161  	if (ret_val)
6162  		return ret_val;
6163  
6164  	switch (config.rx_filter) {
6165  	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6166  	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6167  	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6168  	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6169  	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6170  	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6171  		/* With V2 type filters which specify a Sync or Delay Request,
6172  		 * Path Delay Request/Response messages are also time stamped
6173  		 * by hardware so notify the caller the requested packets plus
6174  		 * some others are time stamped.
6175  		 */
6176  		config.rx_filter = HWTSTAMP_FILTER_SOME;
6177  		break;
6178  	default:
6179  		break;
6180  	}
6181  
6182  	return copy_to_user(ifr->ifr_data, &config,
6183  			    sizeof(config)) ? -EFAULT : 0;
6184  }
6185  
e1000e_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)6186  static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6187  {
6188  	struct e1000_adapter *adapter = netdev_priv(netdev);
6189  
6190  	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6191  			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6192  }
6193  
e1000_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6194  static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6195  {
6196  	switch (cmd) {
6197  	case SIOCGMIIPHY:
6198  	case SIOCGMIIREG:
6199  	case SIOCSMIIREG:
6200  		return e1000_mii_ioctl(netdev, ifr, cmd);
6201  	case SIOCSHWTSTAMP:
6202  		return e1000e_hwtstamp_set(netdev, ifr);
6203  	case SIOCGHWTSTAMP:
6204  		return e1000e_hwtstamp_get(netdev, ifr);
6205  	default:
6206  		return -EOPNOTSUPP;
6207  	}
6208  }
6209  
e1000_init_phy_wakeup(struct e1000_adapter * adapter,u32 wufc)6210  static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6211  {
6212  	struct e1000_hw *hw = &adapter->hw;
6213  	u32 i, mac_reg, wuc;
6214  	u16 phy_reg, wuc_enable;
6215  	int retval;
6216  
6217  	/* copy MAC RARs to PHY RARs */
6218  	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6219  
6220  	retval = hw->phy.ops.acquire(hw);
6221  	if (retval) {
6222  		e_err("Could not acquire PHY\n");
6223  		return retval;
6224  	}
6225  
6226  	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6227  	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6228  	if (retval)
6229  		goto release;
6230  
6231  	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6232  	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6233  		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6234  		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6235  					   (u16)(mac_reg & 0xFFFF));
6236  		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6237  					   (u16)((mac_reg >> 16) & 0xFFFF));
6238  	}
6239  
6240  	/* configure PHY Rx Control register */
6241  	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6242  	mac_reg = er32(RCTL);
6243  	if (mac_reg & E1000_RCTL_UPE)
6244  		phy_reg |= BM_RCTL_UPE;
6245  	if (mac_reg & E1000_RCTL_MPE)
6246  		phy_reg |= BM_RCTL_MPE;
6247  	phy_reg &= ~(BM_RCTL_MO_MASK);
6248  	if (mac_reg & E1000_RCTL_MO_3)
6249  		phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6250  			    << BM_RCTL_MO_SHIFT);
6251  	if (mac_reg & E1000_RCTL_BAM)
6252  		phy_reg |= BM_RCTL_BAM;
6253  	if (mac_reg & E1000_RCTL_PMCF)
6254  		phy_reg |= BM_RCTL_PMCF;
6255  	mac_reg = er32(CTRL);
6256  	if (mac_reg & E1000_CTRL_RFCE)
6257  		phy_reg |= BM_RCTL_RFCE;
6258  	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6259  
6260  	wuc = E1000_WUC_PME_EN;
6261  	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6262  		wuc |= E1000_WUC_APME;
6263  
6264  	/* enable PHY wakeup in MAC register */
6265  	ew32(WUFC, wufc);
6266  	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6267  		   E1000_WUC_PME_STATUS | wuc));
6268  
6269  	/* configure and enable PHY wakeup in PHY registers */
6270  	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6271  	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6272  
6273  	/* activate PHY wakeup */
6274  	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6275  	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6276  	if (retval)
6277  		e_err("Could not set PHY Host Wakeup bit\n");
6278  release:
6279  	hw->phy.ops.release(hw);
6280  
6281  	return retval;
6282  }
6283  
e1000e_flush_lpic(struct pci_dev * pdev)6284  static void e1000e_flush_lpic(struct pci_dev *pdev)
6285  {
6286  	struct net_device *netdev = pci_get_drvdata(pdev);
6287  	struct e1000_adapter *adapter = netdev_priv(netdev);
6288  	struct e1000_hw *hw = &adapter->hw;
6289  	u32 ret_val;
6290  
6291  	pm_runtime_get_sync(netdev->dev.parent);
6292  
6293  	ret_val = hw->phy.ops.acquire(hw);
6294  	if (ret_val)
6295  		goto fl_out;
6296  
6297  	pr_info("EEE TX LPI TIMER: %08X\n",
6298  		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6299  
6300  	hw->phy.ops.release(hw);
6301  
6302  fl_out:
6303  	pm_runtime_put_sync(netdev->dev.parent);
6304  }
6305  
6306  /* S0ix implementation */
e1000e_s0ix_entry_flow(struct e1000_adapter * adapter)6307  static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6308  {
6309  	struct e1000_hw *hw = &adapter->hw;
6310  	u32 mac_data;
6311  	u16 phy_data;
6312  
6313  	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6314  	    hw->mac.type >= e1000_pch_adp) {
6315  		/* Request ME configure the device for S0ix */
6316  		mac_data = er32(H2ME);
6317  		mac_data |= E1000_H2ME_START_DPG;
6318  		mac_data &= ~E1000_H2ME_EXIT_DPG;
6319  		trace_e1000e_trace_mac_register(mac_data);
6320  		ew32(H2ME, mac_data);
6321  	} else {
6322  		/* Request driver configure the device to S0ix */
6323  		/* Disable the periodic inband message,
6324  		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6325  		 */
6326  		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6327  		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6328  		phy_data |= BIT(10);
6329  		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6330  
6331  		/* Make sure we don't exit K1 every time a new packet arrives
6332  		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6333  		 */
6334  		e1e_rphy(hw, I217_CGFREG, &phy_data);
6335  		phy_data |= BIT(5);
6336  		e1e_wphy(hw, I217_CGFREG, phy_data);
6337  
6338  		/* Change the MAC/PHY interface to SMBus
6339  		 * Force the SMBus in PHY page769_23[0] = 1
6340  		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6341  		 */
6342  		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6343  		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6344  		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6345  		mac_data = er32(CTRL_EXT);
6346  		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6347  		ew32(CTRL_EXT, mac_data);
6348  
6349  		/* DFT control: PHY bit: page769_20[0] = 1
6350  		 * page769_20[7] - PHY PLL stop
6351  		 * page769_20[8] - PHY go to the electrical idle
6352  		 * page769_20[9] - PHY serdes disable
6353  		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6354  		 */
6355  		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6356  		phy_data |= BIT(0);
6357  		phy_data |= BIT(7);
6358  		phy_data |= BIT(8);
6359  		phy_data |= BIT(9);
6360  		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6361  
6362  		mac_data = er32(EXTCNF_CTRL);
6363  		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6364  		ew32(EXTCNF_CTRL, mac_data);
6365  
6366  		/* Disable disconnected cable conditioning for Power Gating */
6367  		mac_data = er32(DPGFR);
6368  		mac_data |= BIT(2);
6369  		ew32(DPGFR, mac_data);
6370  
6371  		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6372  		mac_data = er32(CTRL_EXT);
6373  		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6374  		ew32(CTRL_EXT, mac_data);
6375  	}
6376  
6377  	/* Enable the Dynamic Power Gating in the MAC */
6378  	mac_data = er32(FEXTNVM7);
6379  	mac_data |= BIT(22);
6380  	ew32(FEXTNVM7, mac_data);
6381  
6382  	/* Don't wake from dynamic Power Gating with clock request */
6383  	mac_data = er32(FEXTNVM12);
6384  	mac_data |= BIT(12);
6385  	ew32(FEXTNVM12, mac_data);
6386  
6387  	/* Ungate PGCB clock */
6388  	mac_data = er32(FEXTNVM9);
6389  	mac_data &= ~BIT(28);
6390  	ew32(FEXTNVM9, mac_data);
6391  
6392  	/* Enable K1 off to enable mPHY Power Gating */
6393  	mac_data = er32(FEXTNVM6);
6394  	mac_data |= BIT(31);
6395  	ew32(FEXTNVM6, mac_data);
6396  
6397  	/* Enable mPHY power gating for any link and speed */
6398  	mac_data = er32(FEXTNVM8);
6399  	mac_data |= BIT(9);
6400  	ew32(FEXTNVM8, mac_data);
6401  
6402  	/* No MAC DPG gating SLP_S0 in modern standby
6403  	 * Switch the logic of the lanphypc to use PMC counter
6404  	 */
6405  	mac_data = er32(FEXTNVM5);
6406  	mac_data |= BIT(7);
6407  	ew32(FEXTNVM5, mac_data);
6408  
6409  	/* Disable the time synchronization clock */
6410  	mac_data = er32(FEXTNVM7);
6411  	mac_data |= BIT(31);
6412  	mac_data &= ~BIT(0);
6413  	ew32(FEXTNVM7, mac_data);
6414  
6415  	/* Dynamic Power Gating Enable */
6416  	mac_data = er32(CTRL_EXT);
6417  	mac_data |= BIT(3);
6418  	ew32(CTRL_EXT, mac_data);
6419  
6420  	/* Check MAC Tx/Rx packet buffer pointers.
6421  	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6422  	 * pending traffic indication that would prevent power gating.
6423  	 */
6424  	mac_data = er32(TDFH);
6425  	if (mac_data)
6426  		ew32(TDFH, 0);
6427  	mac_data = er32(TDFT);
6428  	if (mac_data)
6429  		ew32(TDFT, 0);
6430  	mac_data = er32(TDFHS);
6431  	if (mac_data)
6432  		ew32(TDFHS, 0);
6433  	mac_data = er32(TDFTS);
6434  	if (mac_data)
6435  		ew32(TDFTS, 0);
6436  	mac_data = er32(TDFPC);
6437  	if (mac_data)
6438  		ew32(TDFPC, 0);
6439  	mac_data = er32(RDFH);
6440  	if (mac_data)
6441  		ew32(RDFH, 0);
6442  	mac_data = er32(RDFT);
6443  	if (mac_data)
6444  		ew32(RDFT, 0);
6445  	mac_data = er32(RDFHS);
6446  	if (mac_data)
6447  		ew32(RDFHS, 0);
6448  	mac_data = er32(RDFTS);
6449  	if (mac_data)
6450  		ew32(RDFTS, 0);
6451  	mac_data = er32(RDFPC);
6452  	if (mac_data)
6453  		ew32(RDFPC, 0);
6454  }
6455  
e1000e_s0ix_exit_flow(struct e1000_adapter * adapter)6456  static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6457  {
6458  	struct e1000_hw *hw = &adapter->hw;
6459  	bool firmware_bug = false;
6460  	u32 mac_data;
6461  	u16 phy_data;
6462  	u32 i = 0;
6463  
6464  	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6465  	    hw->mac.type >= e1000_pch_adp) {
6466  		/* Keep the GPT clock enabled for CSME */
6467  		mac_data = er32(FEXTNVM);
6468  		mac_data |= BIT(3);
6469  		ew32(FEXTNVM, mac_data);
6470  		/* Request ME unconfigure the device from S0ix */
6471  		mac_data = er32(H2ME);
6472  		mac_data &= ~E1000_H2ME_START_DPG;
6473  		mac_data |= E1000_H2ME_EXIT_DPG;
6474  		trace_e1000e_trace_mac_register(mac_data);
6475  		ew32(H2ME, mac_data);
6476  
6477  		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6478  		 * If this takes more than 1 second, show a warning indicating a
6479  		 * firmware bug
6480  		 */
6481  		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6482  			if (i > 100 && !firmware_bug)
6483  				firmware_bug = true;
6484  
6485  			if (i++ == 250) {
6486  				e_dbg("Timeout (firmware bug): %d msec\n",
6487  				      i * 10);
6488  				break;
6489  			}
6490  
6491  			usleep_range(10000, 11000);
6492  		}
6493  		if (firmware_bug)
6494  			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6495  			       i * 10);
6496  		else
6497  			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6498  	} else {
6499  		/* Request driver unconfigure the device from S0ix */
6500  
6501  		/* Cancel disable disconnected cable conditioning
6502  		 * for Power Gating
6503  		 */
6504  		mac_data = er32(DPGFR);
6505  		mac_data &= ~BIT(2);
6506  		ew32(DPGFR, mac_data);
6507  
6508  		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6509  		mac_data = er32(CTRL_EXT);
6510  		mac_data &= 0xFFF7FFFF;
6511  		ew32(CTRL_EXT, mac_data);
6512  
6513  		/* Enable the periodic inband message,
6514  		 * Request PCIe clock in K1 page770_17[10:9] =01b
6515  		 */
6516  		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6517  		phy_data &= 0xFBFF;
6518  		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6519  		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6520  
6521  		/* Return back configuration
6522  		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6523  		 */
6524  		e1e_rphy(hw, I217_CGFREG, &phy_data);
6525  		phy_data &= 0xFFDF;
6526  		e1e_wphy(hw, I217_CGFREG, phy_data);
6527  
6528  		/* Change the MAC/PHY interface to Kumeran
6529  		 * Unforce the SMBus in PHY page769_23[0] = 0
6530  		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6531  		 */
6532  		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6533  		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6534  		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6535  		mac_data = er32(CTRL_EXT);
6536  		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6537  		ew32(CTRL_EXT, mac_data);
6538  	}
6539  
6540  	/* Disable Dynamic Power Gating */
6541  	mac_data = er32(CTRL_EXT);
6542  	mac_data &= 0xFFFFFFF7;
6543  	ew32(CTRL_EXT, mac_data);
6544  
6545  	/* Enable the time synchronization clock */
6546  	mac_data = er32(FEXTNVM7);
6547  	mac_data &= ~BIT(31);
6548  	mac_data |= BIT(0);
6549  	ew32(FEXTNVM7, mac_data);
6550  
6551  	/* Disable the Dynamic Power Gating in the MAC */
6552  	mac_data = er32(FEXTNVM7);
6553  	mac_data &= 0xFFBFFFFF;
6554  	ew32(FEXTNVM7, mac_data);
6555  
6556  	/* Disable mPHY power gating for any link and speed */
6557  	mac_data = er32(FEXTNVM8);
6558  	mac_data &= ~BIT(9);
6559  	ew32(FEXTNVM8, mac_data);
6560  
6561  	/* Disable K1 off */
6562  	mac_data = er32(FEXTNVM6);
6563  	mac_data &= ~BIT(31);
6564  	ew32(FEXTNVM6, mac_data);
6565  
6566  	/* Disable Ungate PGCB clock */
6567  	mac_data = er32(FEXTNVM9);
6568  	mac_data |= BIT(28);
6569  	ew32(FEXTNVM9, mac_data);
6570  
6571  	/* Cancel not waking from dynamic
6572  	 * Power Gating with clock request
6573  	 */
6574  	mac_data = er32(FEXTNVM12);
6575  	mac_data &= ~BIT(12);
6576  	ew32(FEXTNVM12, mac_data);
6577  
6578  	/* Revert the lanphypc logic to use the internal Gbe counter
6579  	 * and not the PMC counter
6580  	 */
6581  	mac_data = er32(FEXTNVM5);
6582  	mac_data &= 0xFFFFFF7F;
6583  	ew32(FEXTNVM5, mac_data);
6584  }
6585  
e1000e_pm_freeze(struct device * dev)6586  static int e1000e_pm_freeze(struct device *dev)
6587  {
6588  	struct net_device *netdev = dev_get_drvdata(dev);
6589  	struct e1000_adapter *adapter = netdev_priv(netdev);
6590  	bool present;
6591  
6592  	rtnl_lock();
6593  
6594  	present = netif_device_present(netdev);
6595  	netif_device_detach(netdev);
6596  
6597  	if (present && netif_running(netdev)) {
6598  		int count = E1000_CHECK_RESET_COUNT;
6599  
6600  		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6601  			usleep_range(10000, 11000);
6602  
6603  		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6604  
6605  		/* Quiesce the device without resetting the hardware */
6606  		e1000e_down(adapter, false);
6607  		e1000_free_irq(adapter);
6608  	}
6609  	rtnl_unlock();
6610  
6611  	e1000e_reset_interrupt_capability(adapter);
6612  
6613  	/* Allow time for pending master requests to run */
6614  	e1000e_disable_pcie_master(&adapter->hw);
6615  
6616  	return 0;
6617  }
6618  
__e1000_shutdown(struct pci_dev * pdev,bool runtime)6619  static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6620  {
6621  	struct net_device *netdev = pci_get_drvdata(pdev);
6622  	struct e1000_adapter *adapter = netdev_priv(netdev);
6623  	struct e1000_hw *hw = &adapter->hw;
6624  	u32 ctrl, ctrl_ext, rctl, status, wufc;
6625  	int retval = 0;
6626  
6627  	/* Runtime suspend should only enable wakeup for link changes */
6628  	if (runtime)
6629  		wufc = E1000_WUFC_LNKC;
6630  	else if (device_may_wakeup(&pdev->dev))
6631  		wufc = adapter->wol;
6632  	else
6633  		wufc = 0;
6634  
6635  	status = er32(STATUS);
6636  	if (status & E1000_STATUS_LU)
6637  		wufc &= ~E1000_WUFC_LNKC;
6638  
6639  	if (wufc) {
6640  		e1000_setup_rctl(adapter);
6641  		e1000e_set_rx_mode(netdev);
6642  
6643  		/* turn on all-multi mode if wake on multicast is enabled */
6644  		if (wufc & E1000_WUFC_MC) {
6645  			rctl = er32(RCTL);
6646  			rctl |= E1000_RCTL_MPE;
6647  			ew32(RCTL, rctl);
6648  		}
6649  
6650  		ctrl = er32(CTRL);
6651  		ctrl |= E1000_CTRL_ADVD3WUC;
6652  		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6653  			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6654  		ew32(CTRL, ctrl);
6655  
6656  		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6657  		    adapter->hw.phy.media_type ==
6658  		    e1000_media_type_internal_serdes) {
6659  			/* keep the laser running in D3 */
6660  			ctrl_ext = er32(CTRL_EXT);
6661  			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6662  			ew32(CTRL_EXT, ctrl_ext);
6663  		}
6664  
6665  		if (!runtime)
6666  			e1000e_power_up_phy(adapter);
6667  
6668  		if (adapter->flags & FLAG_IS_ICH)
6669  			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6670  
6671  		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6672  			/* enable wakeup by the PHY */
6673  			retval = e1000_init_phy_wakeup(adapter, wufc);
6674  			if (retval) {
6675  				e_err("Failed to enable wakeup\n");
6676  				goto skip_phy_configurations;
6677  			}
6678  		} else {
6679  			/* enable wakeup by the MAC */
6680  			ew32(WUFC, wufc);
6681  			ew32(WUC, E1000_WUC_PME_EN);
6682  		}
6683  	} else {
6684  		ew32(WUC, 0);
6685  		ew32(WUFC, 0);
6686  
6687  		e1000_power_down_phy(adapter);
6688  	}
6689  
6690  	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6691  		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6692  	} else if (hw->mac.type >= e1000_pch_lpt) {
6693  		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) {
6694  			/* ULP does not support wake from unicast, multicast
6695  			 * or broadcast.
6696  			 */
6697  			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6698  			if (retval) {
6699  				e_err("Failed to enable ULP\n");
6700  				goto skip_phy_configurations;
6701  			}
6702  		}
6703  	}
6704  
6705  	/* Ensure that the appropriate bits are set in LPI_CTRL
6706  	 * for EEE in Sx
6707  	 */
6708  	if ((hw->phy.type >= e1000_phy_i217) &&
6709  	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6710  		u16 lpi_ctrl = 0;
6711  
6712  		retval = hw->phy.ops.acquire(hw);
6713  		if (!retval) {
6714  			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6715  						 &lpi_ctrl);
6716  			if (!retval) {
6717  				if (adapter->eee_advert &
6718  				    hw->dev_spec.ich8lan.eee_lp_ability &
6719  				    I82579_EEE_100_SUPPORTED)
6720  					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6721  				if (adapter->eee_advert &
6722  				    hw->dev_spec.ich8lan.eee_lp_ability &
6723  				    I82579_EEE_1000_SUPPORTED)
6724  					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6725  
6726  				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6727  							 lpi_ctrl);
6728  			}
6729  		}
6730  		hw->phy.ops.release(hw);
6731  	}
6732  
6733  skip_phy_configurations:
6734  	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6735  	 * would have already happened in close and is redundant.
6736  	 */
6737  	e1000e_release_hw_control(adapter);
6738  
6739  	pci_clear_master(pdev);
6740  
6741  	/* The pci-e switch on some quad port adapters will report a
6742  	 * correctable error when the MAC transitions from D0 to D3.  To
6743  	 * prevent this we need to mask off the correctable errors on the
6744  	 * downstream port of the pci-e switch.
6745  	 *
6746  	 * We don't have the associated upstream bridge while assigning
6747  	 * the PCI device into guest. For example, the KVM on power is
6748  	 * one of the cases.
6749  	 */
6750  	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6751  		struct pci_dev *us_dev = pdev->bus->self;
6752  		u16 devctl;
6753  
6754  		if (!us_dev)
6755  			return 0;
6756  
6757  		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6758  		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6759  					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6760  
6761  		pci_save_state(pdev);
6762  		pci_prepare_to_sleep(pdev);
6763  
6764  		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6765  	}
6766  
6767  	return 0;
6768  }
6769  
6770  /**
6771   * __e1000e_disable_aspm - Disable ASPM states
6772   * @pdev: pointer to PCI device struct
6773   * @state: bit-mask of ASPM states to disable
6774   * @locked: indication if this context holds pci_bus_sem locked.
6775   *
6776   * Some devices *must* have certain ASPM states disabled per hardware errata.
6777   **/
__e1000e_disable_aspm(struct pci_dev * pdev,u16 state,int locked)6778  static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6779  {
6780  	struct pci_dev *parent = pdev->bus->self;
6781  	u16 aspm_dis_mask = 0;
6782  	u16 pdev_aspmc, parent_aspmc;
6783  
6784  	switch (state) {
6785  	case PCIE_LINK_STATE_L0S:
6786  	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6787  		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6788  		fallthrough; /* can't have L1 without L0s */
6789  	case PCIE_LINK_STATE_L1:
6790  		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6791  		break;
6792  	default:
6793  		return;
6794  	}
6795  
6796  	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6797  	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6798  
6799  	if (parent) {
6800  		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6801  					  &parent_aspmc);
6802  		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6803  	}
6804  
6805  	/* Nothing to do if the ASPM states to be disabled already are */
6806  	if (!(pdev_aspmc & aspm_dis_mask) &&
6807  	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6808  		return;
6809  
6810  	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6811  		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6812  		 "L0s" : "",
6813  		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6814  		 "L1" : "");
6815  
6816  #ifdef CONFIG_PCIEASPM
6817  	if (locked)
6818  		pci_disable_link_state_locked(pdev, state);
6819  	else
6820  		pci_disable_link_state(pdev, state);
6821  
6822  	/* Double-check ASPM control.  If not disabled by the above, the
6823  	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6824  	 * not enabled); override by writing PCI config space directly.
6825  	 */
6826  	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6827  	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6828  
6829  	if (!(aspm_dis_mask & pdev_aspmc))
6830  		return;
6831  #endif
6832  
6833  	/* Both device and parent should have the same ASPM setting.
6834  	 * Disable ASPM in downstream component first and then upstream.
6835  	 */
6836  	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6837  
6838  	if (parent)
6839  		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6840  					   aspm_dis_mask);
6841  }
6842  
6843  /**
6844   * e1000e_disable_aspm - Disable ASPM states.
6845   * @pdev: pointer to PCI device struct
6846   * @state: bit-mask of ASPM states to disable
6847   *
6848   * This function acquires the pci_bus_sem!
6849   * Some devices *must* have certain ASPM states disabled per hardware errata.
6850   **/
e1000e_disable_aspm(struct pci_dev * pdev,u16 state)6851  static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6852  {
6853  	__e1000e_disable_aspm(pdev, state, 0);
6854  }
6855  
6856  /**
6857   * e1000e_disable_aspm_locked - Disable ASPM states.
6858   * @pdev: pointer to PCI device struct
6859   * @state: bit-mask of ASPM states to disable
6860   *
6861   * This function must be called with pci_bus_sem acquired!
6862   * Some devices *must* have certain ASPM states disabled per hardware errata.
6863   **/
e1000e_disable_aspm_locked(struct pci_dev * pdev,u16 state)6864  static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6865  {
6866  	__e1000e_disable_aspm(pdev, state, 1);
6867  }
6868  
e1000e_pm_thaw(struct device * dev)6869  static int e1000e_pm_thaw(struct device *dev)
6870  {
6871  	struct net_device *netdev = dev_get_drvdata(dev);
6872  	struct e1000_adapter *adapter = netdev_priv(netdev);
6873  	int rc = 0;
6874  
6875  	e1000e_set_interrupt_capability(adapter);
6876  
6877  	rtnl_lock();
6878  	if (netif_running(netdev)) {
6879  		rc = e1000_request_irq(adapter);
6880  		if (rc)
6881  			goto err_irq;
6882  
6883  		e1000e_up(adapter);
6884  	}
6885  
6886  	netif_device_attach(netdev);
6887  err_irq:
6888  	rtnl_unlock();
6889  
6890  	return rc;
6891  }
6892  
__e1000_resume(struct pci_dev * pdev)6893  static int __e1000_resume(struct pci_dev *pdev)
6894  {
6895  	struct net_device *netdev = pci_get_drvdata(pdev);
6896  	struct e1000_adapter *adapter = netdev_priv(netdev);
6897  	struct e1000_hw *hw = &adapter->hw;
6898  	u16 aspm_disable_flag = 0;
6899  
6900  	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6901  		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6902  	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6903  		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6904  	if (aspm_disable_flag)
6905  		e1000e_disable_aspm(pdev, aspm_disable_flag);
6906  
6907  	pci_set_master(pdev);
6908  
6909  	if (hw->mac.type >= e1000_pch2lan)
6910  		e1000_resume_workarounds_pchlan(&adapter->hw);
6911  
6912  	e1000e_power_up_phy(adapter);
6913  
6914  	/* report the system wakeup cause from S3/S4 */
6915  	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6916  		u16 phy_data;
6917  
6918  		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6919  		if (phy_data) {
6920  			e_info("PHY Wakeup cause - %s\n",
6921  			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6922  			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6923  			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6924  			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6925  			       phy_data & E1000_WUS_LNKC ?
6926  			       "Link Status Change" : "other");
6927  		}
6928  		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6929  	} else {
6930  		u32 wus = er32(WUS);
6931  
6932  		if (wus) {
6933  			e_info("MAC Wakeup cause - %s\n",
6934  			       wus & E1000_WUS_EX ? "Unicast Packet" :
6935  			       wus & E1000_WUS_MC ? "Multicast Packet" :
6936  			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6937  			       wus & E1000_WUS_MAG ? "Magic Packet" :
6938  			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6939  			       "other");
6940  		}
6941  		ew32(WUS, ~0);
6942  	}
6943  
6944  	e1000e_reset(adapter);
6945  
6946  	e1000_init_manageability_pt(adapter);
6947  
6948  	/* If the controller has AMT, do not set DRV_LOAD until the interface
6949  	 * is up.  For all other cases, let the f/w know that the h/w is now
6950  	 * under the control of the driver.
6951  	 */
6952  	if (!(adapter->flags & FLAG_HAS_AMT))
6953  		e1000e_get_hw_control(adapter);
6954  
6955  	return 0;
6956  }
6957  
e1000e_pm_prepare(struct device * dev)6958  static int e1000e_pm_prepare(struct device *dev)
6959  {
6960  	return pm_runtime_suspended(dev) &&
6961  		pm_suspend_via_firmware();
6962  }
6963  
e1000e_pm_suspend(struct device * dev)6964  static int e1000e_pm_suspend(struct device *dev)
6965  {
6966  	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6967  	struct e1000_adapter *adapter = netdev_priv(netdev);
6968  	struct pci_dev *pdev = to_pci_dev(dev);
6969  	int rc;
6970  
6971  	e1000e_flush_lpic(pdev);
6972  
6973  	e1000e_pm_freeze(dev);
6974  
6975  	rc = __e1000_shutdown(pdev, false);
6976  	if (!rc) {
6977  		/* Introduce S0ix implementation */
6978  		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6979  			e1000e_s0ix_entry_flow(adapter);
6980  	}
6981  
6982  	return 0;
6983  }
6984  
e1000e_pm_resume(struct device * dev)6985  static int e1000e_pm_resume(struct device *dev)
6986  {
6987  	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6988  	struct e1000_adapter *adapter = netdev_priv(netdev);
6989  	struct pci_dev *pdev = to_pci_dev(dev);
6990  	int rc;
6991  
6992  	/* Introduce S0ix implementation */
6993  	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6994  		e1000e_s0ix_exit_flow(adapter);
6995  
6996  	rc = __e1000_resume(pdev);
6997  	if (rc)
6998  		return rc;
6999  
7000  	return e1000e_pm_thaw(dev);
7001  }
7002  
e1000e_pm_runtime_idle(struct device * dev)7003  static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7004  {
7005  	struct net_device *netdev = dev_get_drvdata(dev);
7006  	struct e1000_adapter *adapter = netdev_priv(netdev);
7007  	u16 eee_lp;
7008  
7009  	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7010  
7011  	if (!e1000e_has_link(adapter)) {
7012  		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7013  		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7014  	}
7015  
7016  	return -EBUSY;
7017  }
7018  
e1000e_pm_runtime_resume(struct device * dev)7019  static int e1000e_pm_runtime_resume(struct device *dev)
7020  {
7021  	struct pci_dev *pdev = to_pci_dev(dev);
7022  	struct net_device *netdev = pci_get_drvdata(pdev);
7023  	struct e1000_adapter *adapter = netdev_priv(netdev);
7024  	int rc;
7025  
7026  	pdev->pme_poll = true;
7027  
7028  	rc = __e1000_resume(pdev);
7029  	if (rc)
7030  		return rc;
7031  
7032  	if (netdev->flags & IFF_UP)
7033  		e1000e_up(adapter);
7034  
7035  	return rc;
7036  }
7037  
e1000e_pm_runtime_suspend(struct device * dev)7038  static int e1000e_pm_runtime_suspend(struct device *dev)
7039  {
7040  	struct pci_dev *pdev = to_pci_dev(dev);
7041  	struct net_device *netdev = pci_get_drvdata(pdev);
7042  	struct e1000_adapter *adapter = netdev_priv(netdev);
7043  
7044  	if (netdev->flags & IFF_UP) {
7045  		int count = E1000_CHECK_RESET_COUNT;
7046  
7047  		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7048  			usleep_range(10000, 11000);
7049  
7050  		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7051  
7052  		/* Down the device without resetting the hardware */
7053  		e1000e_down(adapter, false);
7054  	}
7055  
7056  	if (__e1000_shutdown(pdev, true)) {
7057  		e1000e_pm_runtime_resume(dev);
7058  		return -EBUSY;
7059  	}
7060  
7061  	return 0;
7062  }
7063  
e1000_shutdown(struct pci_dev * pdev)7064  static void e1000_shutdown(struct pci_dev *pdev)
7065  {
7066  	e1000e_flush_lpic(pdev);
7067  
7068  	e1000e_pm_freeze(&pdev->dev);
7069  
7070  	__e1000_shutdown(pdev, false);
7071  }
7072  
7073  #ifdef CONFIG_NET_POLL_CONTROLLER
7074  
e1000_intr_msix(int __always_unused irq,void * data)7075  static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7076  {
7077  	struct net_device *netdev = data;
7078  	struct e1000_adapter *adapter = netdev_priv(netdev);
7079  
7080  	if (adapter->msix_entries) {
7081  		int vector, msix_irq;
7082  
7083  		vector = 0;
7084  		msix_irq = adapter->msix_entries[vector].vector;
7085  		if (disable_hardirq(msix_irq))
7086  			e1000_intr_msix_rx(msix_irq, netdev);
7087  		enable_irq(msix_irq);
7088  
7089  		vector++;
7090  		msix_irq = adapter->msix_entries[vector].vector;
7091  		if (disable_hardirq(msix_irq))
7092  			e1000_intr_msix_tx(msix_irq, netdev);
7093  		enable_irq(msix_irq);
7094  
7095  		vector++;
7096  		msix_irq = adapter->msix_entries[vector].vector;
7097  		if (disable_hardirq(msix_irq))
7098  			e1000_msix_other(msix_irq, netdev);
7099  		enable_irq(msix_irq);
7100  	}
7101  
7102  	return IRQ_HANDLED;
7103  }
7104  
7105  /**
7106   * e1000_netpoll
7107   * @netdev: network interface device structure
7108   *
7109   * Polling 'interrupt' - used by things like netconsole to send skbs
7110   * without having to re-enable interrupts. It's not called while
7111   * the interrupt routine is executing.
7112   */
e1000_netpoll(struct net_device * netdev)7113  static void e1000_netpoll(struct net_device *netdev)
7114  {
7115  	struct e1000_adapter *adapter = netdev_priv(netdev);
7116  
7117  	switch (adapter->int_mode) {
7118  	case E1000E_INT_MODE_MSIX:
7119  		e1000_intr_msix(adapter->pdev->irq, netdev);
7120  		break;
7121  	case E1000E_INT_MODE_MSI:
7122  		if (disable_hardirq(adapter->pdev->irq))
7123  			e1000_intr_msi(adapter->pdev->irq, netdev);
7124  		enable_irq(adapter->pdev->irq);
7125  		break;
7126  	default:		/* E1000E_INT_MODE_LEGACY */
7127  		if (disable_hardirq(adapter->pdev->irq))
7128  			e1000_intr(adapter->pdev->irq, netdev);
7129  		enable_irq(adapter->pdev->irq);
7130  		break;
7131  	}
7132  }
7133  #endif
7134  
7135  /**
7136   * e1000_io_error_detected - called when PCI error is detected
7137   * @pdev: Pointer to PCI device
7138   * @state: The current pci connection state
7139   *
7140   * This function is called after a PCI bus error affecting
7141   * this device has been detected.
7142   */
e1000_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7143  static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7144  						pci_channel_state_t state)
7145  {
7146  	e1000e_pm_freeze(&pdev->dev);
7147  
7148  	if (state == pci_channel_io_perm_failure)
7149  		return PCI_ERS_RESULT_DISCONNECT;
7150  
7151  	pci_disable_device(pdev);
7152  
7153  	/* Request a slot reset. */
7154  	return PCI_ERS_RESULT_NEED_RESET;
7155  }
7156  
7157  /**
7158   * e1000_io_slot_reset - called after the pci bus has been reset.
7159   * @pdev: Pointer to PCI device
7160   *
7161   * Restart the card from scratch, as if from a cold-boot. Implementation
7162   * resembles the first-half of the e1000e_pm_resume routine.
7163   */
e1000_io_slot_reset(struct pci_dev * pdev)7164  static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7165  {
7166  	struct net_device *netdev = pci_get_drvdata(pdev);
7167  	struct e1000_adapter *adapter = netdev_priv(netdev);
7168  	struct e1000_hw *hw = &adapter->hw;
7169  	u16 aspm_disable_flag = 0;
7170  	int err;
7171  	pci_ers_result_t result;
7172  
7173  	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7174  		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7175  	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7176  		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7177  	if (aspm_disable_flag)
7178  		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7179  
7180  	err = pci_enable_device_mem(pdev);
7181  	if (err) {
7182  		dev_err(&pdev->dev,
7183  			"Cannot re-enable PCI device after reset.\n");
7184  		result = PCI_ERS_RESULT_DISCONNECT;
7185  	} else {
7186  		pdev->state_saved = true;
7187  		pci_restore_state(pdev);
7188  		pci_set_master(pdev);
7189  
7190  		pci_enable_wake(pdev, PCI_D3hot, 0);
7191  		pci_enable_wake(pdev, PCI_D3cold, 0);
7192  
7193  		e1000e_reset(adapter);
7194  		ew32(WUS, ~0);
7195  		result = PCI_ERS_RESULT_RECOVERED;
7196  	}
7197  
7198  	return result;
7199  }
7200  
7201  /**
7202   * e1000_io_resume - called when traffic can start flowing again.
7203   * @pdev: Pointer to PCI device
7204   *
7205   * This callback is called when the error recovery driver tells us that
7206   * its OK to resume normal operation. Implementation resembles the
7207   * second-half of the e1000e_pm_resume routine.
7208   */
e1000_io_resume(struct pci_dev * pdev)7209  static void e1000_io_resume(struct pci_dev *pdev)
7210  {
7211  	struct net_device *netdev = pci_get_drvdata(pdev);
7212  	struct e1000_adapter *adapter = netdev_priv(netdev);
7213  
7214  	e1000_init_manageability_pt(adapter);
7215  
7216  	e1000e_pm_thaw(&pdev->dev);
7217  
7218  	/* If the controller has AMT, do not set DRV_LOAD until the interface
7219  	 * is up.  For all other cases, let the f/w know that the h/w is now
7220  	 * under the control of the driver.
7221  	 */
7222  	if (!(adapter->flags & FLAG_HAS_AMT))
7223  		e1000e_get_hw_control(adapter);
7224  }
7225  
e1000_print_device_info(struct e1000_adapter * adapter)7226  static void e1000_print_device_info(struct e1000_adapter *adapter)
7227  {
7228  	struct e1000_hw *hw = &adapter->hw;
7229  	struct net_device *netdev = adapter->netdev;
7230  	u32 ret_val;
7231  	u8 pba_str[E1000_PBANUM_LENGTH];
7232  
7233  	/* print bus type/speed/width info */
7234  	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7235  	       /* bus width */
7236  	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7237  		"Width x1"),
7238  	       /* MAC address */
7239  	       netdev->dev_addr);
7240  	e_info("Intel(R) PRO/%s Network Connection\n",
7241  	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7242  	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7243  						E1000_PBANUM_LENGTH);
7244  	if (ret_val)
7245  		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7246  	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7247  	       hw->mac.type, hw->phy.type, pba_str);
7248  }
7249  
e1000_eeprom_checks(struct e1000_adapter * adapter)7250  static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7251  {
7252  	struct e1000_hw *hw = &adapter->hw;
7253  	int ret_val;
7254  	u16 buf = 0;
7255  
7256  	if (hw->mac.type != e1000_82573)
7257  		return;
7258  
7259  	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7260  	le16_to_cpus(&buf);
7261  	if (!ret_val && (!(buf & BIT(0)))) {
7262  		/* Deep Smart Power Down (DSPD) */
7263  		dev_warn(&adapter->pdev->dev,
7264  			 "Warning: detected DSPD enabled in EEPROM\n");
7265  	}
7266  }
7267  
e1000_fix_features(struct net_device * netdev,netdev_features_t features)7268  static netdev_features_t e1000_fix_features(struct net_device *netdev,
7269  					    netdev_features_t features)
7270  {
7271  	struct e1000_adapter *adapter = netdev_priv(netdev);
7272  	struct e1000_hw *hw = &adapter->hw;
7273  
7274  	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7275  	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7276  		features &= ~NETIF_F_RXFCS;
7277  
7278  	/* Since there is no support for separate Rx/Tx vlan accel
7279  	 * enable/disable make sure Tx flag is always in same state as Rx.
7280  	 */
7281  	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7282  		features |= NETIF_F_HW_VLAN_CTAG_TX;
7283  	else
7284  		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7285  
7286  	return features;
7287  }
7288  
e1000_set_features(struct net_device * netdev,netdev_features_t features)7289  static int e1000_set_features(struct net_device *netdev,
7290  			      netdev_features_t features)
7291  {
7292  	struct e1000_adapter *adapter = netdev_priv(netdev);
7293  	netdev_features_t changed = features ^ netdev->features;
7294  
7295  	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7296  		adapter->flags |= FLAG_TSO_FORCE;
7297  
7298  	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7299  			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7300  			 NETIF_F_RXALL)))
7301  		return 0;
7302  
7303  	if (changed & NETIF_F_RXFCS) {
7304  		if (features & NETIF_F_RXFCS) {
7305  			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7306  		} else {
7307  			/* We need to take it back to defaults, which might mean
7308  			 * stripping is still disabled at the adapter level.
7309  			 */
7310  			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7311  				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7312  			else
7313  				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7314  		}
7315  	}
7316  
7317  	netdev->features = features;
7318  
7319  	if (netif_running(netdev))
7320  		e1000e_reinit_locked(adapter);
7321  	else
7322  		e1000e_reset(adapter);
7323  
7324  	return 1;
7325  }
7326  
7327  static const struct net_device_ops e1000e_netdev_ops = {
7328  	.ndo_open		= e1000e_open,
7329  	.ndo_stop		= e1000e_close,
7330  	.ndo_start_xmit		= e1000_xmit_frame,
7331  	.ndo_get_stats64	= e1000e_get_stats64,
7332  	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7333  	.ndo_set_mac_address	= e1000_set_mac,
7334  	.ndo_change_mtu		= e1000_change_mtu,
7335  	.ndo_eth_ioctl		= e1000_ioctl,
7336  	.ndo_tx_timeout		= e1000_tx_timeout,
7337  	.ndo_validate_addr	= eth_validate_addr,
7338  
7339  	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7340  	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7341  #ifdef CONFIG_NET_POLL_CONTROLLER
7342  	.ndo_poll_controller	= e1000_netpoll,
7343  #endif
7344  	.ndo_set_features = e1000_set_features,
7345  	.ndo_fix_features = e1000_fix_features,
7346  	.ndo_features_check	= passthru_features_check,
7347  };
7348  
7349  /**
7350   * e1000_probe - Device Initialization Routine
7351   * @pdev: PCI device information struct
7352   * @ent: entry in e1000_pci_tbl
7353   *
7354   * Returns 0 on success, negative on failure
7355   *
7356   * e1000_probe initializes an adapter identified by a pci_dev structure.
7357   * The OS initialization, configuring of the adapter private structure,
7358   * and a hardware reset occur.
7359   **/
e1000_probe(struct pci_dev * pdev,const struct pci_device_id * ent)7360  static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7361  {
7362  	struct net_device *netdev;
7363  	struct e1000_adapter *adapter;
7364  	struct e1000_hw *hw;
7365  	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7366  	resource_size_t mmio_start, mmio_len;
7367  	resource_size_t flash_start, flash_len;
7368  	static int cards_found;
7369  	u16 aspm_disable_flag = 0;
7370  	u16 eeprom_data = 0;
7371  	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7372  	int bars, i, err;
7373  	s32 ret_val = 0;
7374  
7375  	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7376  		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7377  	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7378  		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7379  	if (aspm_disable_flag)
7380  		e1000e_disable_aspm(pdev, aspm_disable_flag);
7381  
7382  	err = pci_enable_device_mem(pdev);
7383  	if (err)
7384  		return err;
7385  
7386  	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7387  	if (err) {
7388  		dev_err(&pdev->dev,
7389  			"No usable DMA configuration, aborting\n");
7390  		goto err_dma;
7391  	}
7392  
7393  	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7394  	err = pci_request_selected_regions_exclusive(pdev, bars,
7395  						     e1000e_driver_name);
7396  	if (err)
7397  		goto err_pci_reg;
7398  
7399  	pci_set_master(pdev);
7400  	/* PCI config space info */
7401  	err = pci_save_state(pdev);
7402  	if (err)
7403  		goto err_alloc_etherdev;
7404  
7405  	err = -ENOMEM;
7406  	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7407  	if (!netdev)
7408  		goto err_alloc_etherdev;
7409  
7410  	SET_NETDEV_DEV(netdev, &pdev->dev);
7411  
7412  	netdev->irq = pdev->irq;
7413  
7414  	pci_set_drvdata(pdev, netdev);
7415  	adapter = netdev_priv(netdev);
7416  	hw = &adapter->hw;
7417  	adapter->netdev = netdev;
7418  	adapter->pdev = pdev;
7419  	adapter->ei = ei;
7420  	adapter->pba = ei->pba;
7421  	adapter->flags = ei->flags;
7422  	adapter->flags2 = ei->flags2;
7423  	adapter->hw.adapter = adapter;
7424  	adapter->hw.mac.type = ei->mac;
7425  	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7426  	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7427  
7428  	mmio_start = pci_resource_start(pdev, 0);
7429  	mmio_len = pci_resource_len(pdev, 0);
7430  
7431  	err = -EIO;
7432  	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7433  	if (!adapter->hw.hw_addr)
7434  		goto err_ioremap;
7435  
7436  	if ((adapter->flags & FLAG_HAS_FLASH) &&
7437  	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7438  	    (hw->mac.type < e1000_pch_spt)) {
7439  		flash_start = pci_resource_start(pdev, 1);
7440  		flash_len = pci_resource_len(pdev, 1);
7441  		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7442  		if (!adapter->hw.flash_address)
7443  			goto err_flashmap;
7444  	}
7445  
7446  	/* Set default EEE advertisement */
7447  	if (adapter->flags2 & FLAG2_HAS_EEE)
7448  		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7449  
7450  	/* construct the net_device struct */
7451  	netdev->netdev_ops = &e1000e_netdev_ops;
7452  	e1000e_set_ethtool_ops(netdev);
7453  	netdev->watchdog_timeo = 5 * HZ;
7454  	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7455  	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7456  
7457  	netdev->mem_start = mmio_start;
7458  	netdev->mem_end = mmio_start + mmio_len;
7459  
7460  	adapter->bd_number = cards_found++;
7461  
7462  	e1000e_check_options(adapter);
7463  
7464  	/* setup adapter struct */
7465  	err = e1000_sw_init(adapter);
7466  	if (err)
7467  		goto err_sw_init;
7468  
7469  	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7470  	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7471  	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7472  
7473  	err = ei->get_variants(adapter);
7474  	if (err)
7475  		goto err_hw_init;
7476  
7477  	if ((adapter->flags & FLAG_IS_ICH) &&
7478  	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7479  	    (hw->mac.type < e1000_pch_spt))
7480  		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7481  
7482  	hw->mac.ops.get_bus_info(&adapter->hw);
7483  
7484  	adapter->hw.phy.autoneg_wait_to_complete = 0;
7485  
7486  	/* Copper options */
7487  	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7488  		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7489  		adapter->hw.phy.disable_polarity_correction = 0;
7490  		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7491  	}
7492  
7493  	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7494  		dev_info(&pdev->dev,
7495  			 "PHY reset is blocked due to SOL/IDER session.\n");
7496  
7497  	/* Set initial default active device features */
7498  	netdev->features = (NETIF_F_SG |
7499  			    NETIF_F_HW_VLAN_CTAG_RX |
7500  			    NETIF_F_HW_VLAN_CTAG_TX |
7501  			    NETIF_F_TSO |
7502  			    NETIF_F_TSO6 |
7503  			    NETIF_F_RXHASH |
7504  			    NETIF_F_RXCSUM |
7505  			    NETIF_F_HW_CSUM);
7506  
7507  	/* disable TSO for pcie and 10/100 speeds to avoid
7508  	 * some hardware issues and for i219 to fix transfer
7509  	 * speed being capped at 60%
7510  	 */
7511  	if (!(adapter->flags & FLAG_TSO_FORCE)) {
7512  		switch (adapter->link_speed) {
7513  		case SPEED_10:
7514  		case SPEED_100:
7515  			e_info("10/100 speed: disabling TSO\n");
7516  			netdev->features &= ~NETIF_F_TSO;
7517  			netdev->features &= ~NETIF_F_TSO6;
7518  			break;
7519  		case SPEED_1000:
7520  			netdev->features |= NETIF_F_TSO;
7521  			netdev->features |= NETIF_F_TSO6;
7522  			break;
7523  		default:
7524  			/* oops */
7525  			break;
7526  		}
7527  		if (hw->mac.type == e1000_pch_spt) {
7528  			netdev->features &= ~NETIF_F_TSO;
7529  			netdev->features &= ~NETIF_F_TSO6;
7530  		}
7531  	}
7532  
7533  	/* Set user-changeable features (subset of all device features) */
7534  	netdev->hw_features = netdev->features;
7535  	netdev->hw_features |= NETIF_F_RXFCS;
7536  	netdev->priv_flags |= IFF_SUPP_NOFCS;
7537  	netdev->hw_features |= NETIF_F_RXALL;
7538  
7539  	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7540  		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7541  
7542  	netdev->vlan_features |= (NETIF_F_SG |
7543  				  NETIF_F_TSO |
7544  				  NETIF_F_TSO6 |
7545  				  NETIF_F_HW_CSUM);
7546  
7547  	netdev->priv_flags |= IFF_UNICAST_FLT;
7548  
7549  	netdev->features |= NETIF_F_HIGHDMA;
7550  	netdev->vlan_features |= NETIF_F_HIGHDMA;
7551  
7552  	/* MTU range: 68 - max_hw_frame_size */
7553  	netdev->min_mtu = ETH_MIN_MTU;
7554  	netdev->max_mtu = adapter->max_hw_frame_size -
7555  			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7556  
7557  	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7558  		adapter->flags |= FLAG_MNG_PT_ENABLED;
7559  
7560  	/* before reading the NVM, reset the controller to
7561  	 * put the device in a known good starting state
7562  	 */
7563  	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7564  
7565  	/* systems with ASPM and others may see the checksum fail on the first
7566  	 * attempt. Let's give it a few tries
7567  	 */
7568  	for (i = 0;; i++) {
7569  		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7570  			break;
7571  		if (i == 2) {
7572  			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7573  			err = -EIO;
7574  			goto err_eeprom;
7575  		}
7576  	}
7577  
7578  	e1000_eeprom_checks(adapter);
7579  
7580  	/* copy the MAC address */
7581  	if (e1000e_read_mac_addr(&adapter->hw))
7582  		dev_err(&pdev->dev,
7583  			"NVM Read Error while reading MAC address\n");
7584  
7585  	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7586  
7587  	if (!is_valid_ether_addr(netdev->dev_addr)) {
7588  		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7589  			netdev->dev_addr);
7590  		err = -EIO;
7591  		goto err_eeprom;
7592  	}
7593  
7594  	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7595  	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7596  
7597  	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7598  	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7599  	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7600  	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7601  	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7602  
7603  	/* Initialize link parameters. User can change them with ethtool */
7604  	adapter->hw.mac.autoneg = 1;
7605  	adapter->fc_autoneg = true;
7606  	adapter->hw.fc.requested_mode = e1000_fc_default;
7607  	adapter->hw.fc.current_mode = e1000_fc_default;
7608  	adapter->hw.phy.autoneg_advertised = 0x2f;
7609  
7610  	/* Initial Wake on LAN setting - If APM wake is enabled in
7611  	 * the EEPROM, enable the ACPI Magic Packet filter
7612  	 */
7613  	if (adapter->flags & FLAG_APME_IN_WUC) {
7614  		/* APME bit in EEPROM is mapped to WUC.APME */
7615  		eeprom_data = er32(WUC);
7616  		eeprom_apme_mask = E1000_WUC_APME;
7617  		if ((hw->mac.type > e1000_ich10lan) &&
7618  		    (eeprom_data & E1000_WUC_PHY_WAKE))
7619  			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7620  	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7621  		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7622  		    (adapter->hw.bus.func == 1))
7623  			ret_val = e1000_read_nvm(&adapter->hw,
7624  					      NVM_INIT_CONTROL3_PORT_B,
7625  					      1, &eeprom_data);
7626  		else
7627  			ret_val = e1000_read_nvm(&adapter->hw,
7628  					      NVM_INIT_CONTROL3_PORT_A,
7629  					      1, &eeprom_data);
7630  	}
7631  
7632  	/* fetch WoL from EEPROM */
7633  	if (ret_val)
7634  		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7635  	else if (eeprom_data & eeprom_apme_mask)
7636  		adapter->eeprom_wol |= E1000_WUFC_MAG;
7637  
7638  	/* now that we have the eeprom settings, apply the special cases
7639  	 * where the eeprom may be wrong or the board simply won't support
7640  	 * wake on lan on a particular port
7641  	 */
7642  	if (!(adapter->flags & FLAG_HAS_WOL))
7643  		adapter->eeprom_wol = 0;
7644  
7645  	/* initialize the wol settings based on the eeprom settings */
7646  	adapter->wol = adapter->eeprom_wol;
7647  
7648  	/* make sure adapter isn't asleep if manageability is enabled */
7649  	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7650  	    (hw->mac.ops.check_mng_mode(hw)))
7651  		device_wakeup_enable(&pdev->dev);
7652  
7653  	/* save off EEPROM version number */
7654  	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7655  
7656  	if (ret_val) {
7657  		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7658  		adapter->eeprom_vers = 0;
7659  	}
7660  
7661  	/* init PTP hardware clock */
7662  	e1000e_ptp_init(adapter);
7663  
7664  	/* reset the hardware with the new settings */
7665  	e1000e_reset(adapter);
7666  
7667  	/* If the controller has AMT, do not set DRV_LOAD until the interface
7668  	 * is up.  For all other cases, let the f/w know that the h/w is now
7669  	 * under the control of the driver.
7670  	 */
7671  	if (!(adapter->flags & FLAG_HAS_AMT))
7672  		e1000e_get_hw_control(adapter);
7673  
7674  	if (hw->mac.type >= e1000_pch_cnp)
7675  		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7676  
7677  	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7678  	err = register_netdev(netdev);
7679  	if (err)
7680  		goto err_register;
7681  
7682  	/* carrier off reporting is important to ethtool even BEFORE open */
7683  	netif_carrier_off(netdev);
7684  
7685  	e1000_print_device_info(adapter);
7686  
7687  	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7688  
7689  	if (pci_dev_run_wake(pdev))
7690  		pm_runtime_put_noidle(&pdev->dev);
7691  
7692  	return 0;
7693  
7694  err_register:
7695  	if (!(adapter->flags & FLAG_HAS_AMT))
7696  		e1000e_release_hw_control(adapter);
7697  err_eeprom:
7698  	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7699  		e1000_phy_hw_reset(&adapter->hw);
7700  err_hw_init:
7701  	kfree(adapter->tx_ring);
7702  	kfree(adapter->rx_ring);
7703  err_sw_init:
7704  	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7705  		iounmap(adapter->hw.flash_address);
7706  	e1000e_reset_interrupt_capability(adapter);
7707  err_flashmap:
7708  	iounmap(adapter->hw.hw_addr);
7709  err_ioremap:
7710  	free_netdev(netdev);
7711  err_alloc_etherdev:
7712  	pci_release_mem_regions(pdev);
7713  err_pci_reg:
7714  err_dma:
7715  	pci_disable_device(pdev);
7716  	return err;
7717  }
7718  
7719  /**
7720   * e1000_remove - Device Removal Routine
7721   * @pdev: PCI device information struct
7722   *
7723   * e1000_remove is called by the PCI subsystem to alert the driver
7724   * that it should release a PCI device.  This could be caused by a
7725   * Hot-Plug event, or because the driver is going to be removed from
7726   * memory.
7727   **/
e1000_remove(struct pci_dev * pdev)7728  static void e1000_remove(struct pci_dev *pdev)
7729  {
7730  	struct net_device *netdev = pci_get_drvdata(pdev);
7731  	struct e1000_adapter *adapter = netdev_priv(netdev);
7732  
7733  	e1000e_ptp_remove(adapter);
7734  
7735  	/* The timers may be rescheduled, so explicitly disable them
7736  	 * from being rescheduled.
7737  	 */
7738  	set_bit(__E1000_DOWN, &adapter->state);
7739  	del_timer_sync(&adapter->watchdog_timer);
7740  	del_timer_sync(&adapter->phy_info_timer);
7741  
7742  	cancel_work_sync(&adapter->reset_task);
7743  	cancel_work_sync(&adapter->watchdog_task);
7744  	cancel_work_sync(&adapter->downshift_task);
7745  	cancel_work_sync(&adapter->update_phy_task);
7746  	cancel_work_sync(&adapter->print_hang_task);
7747  
7748  	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7749  		cancel_work_sync(&adapter->tx_hwtstamp_work);
7750  		if (adapter->tx_hwtstamp_skb) {
7751  			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7752  			adapter->tx_hwtstamp_skb = NULL;
7753  		}
7754  	}
7755  
7756  	unregister_netdev(netdev);
7757  
7758  	if (pci_dev_run_wake(pdev))
7759  		pm_runtime_get_noresume(&pdev->dev);
7760  
7761  	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7762  	 * would have already happened in close and is redundant.
7763  	 */
7764  	e1000e_release_hw_control(adapter);
7765  
7766  	e1000e_reset_interrupt_capability(adapter);
7767  	kfree(adapter->tx_ring);
7768  	kfree(adapter->rx_ring);
7769  
7770  	iounmap(adapter->hw.hw_addr);
7771  	if ((adapter->hw.flash_address) &&
7772  	    (adapter->hw.mac.type < e1000_pch_spt))
7773  		iounmap(adapter->hw.flash_address);
7774  	pci_release_mem_regions(pdev);
7775  
7776  	free_netdev(netdev);
7777  
7778  	pci_disable_device(pdev);
7779  }
7780  
7781  /* PCI Error Recovery (ERS) */
7782  static const struct pci_error_handlers e1000_err_handler = {
7783  	.error_detected = e1000_io_error_detected,
7784  	.slot_reset = e1000_io_slot_reset,
7785  	.resume = e1000_io_resume,
7786  };
7787  
7788  static const struct pci_device_id e1000_pci_tbl[] = {
7789  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7790  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7791  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7792  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7793  	  board_82571 },
7794  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7795  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7796  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7797  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7798  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7799  
7800  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7801  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7802  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7803  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7804  
7805  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7806  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7807  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7808  
7809  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7810  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7811  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7812  
7813  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7814  	  board_80003es2lan },
7815  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7816  	  board_80003es2lan },
7817  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7818  	  board_80003es2lan },
7819  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7820  	  board_80003es2lan },
7821  
7822  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7823  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7824  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7825  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7826  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7827  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7828  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7829  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7830  
7831  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7832  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7833  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7834  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7835  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7836  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7837  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7838  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7839  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7840  
7841  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7842  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7843  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7844  
7845  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7846  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7847  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7848  
7849  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7850  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7851  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7852  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7853  
7854  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7855  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7856  
7857  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7858  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7859  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7860  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7861  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7862  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7863  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7864  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7865  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7866  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7867  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7868  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7869  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7870  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7871  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7872  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7873  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7874  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7875  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7876  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7877  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7878  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7879  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7880  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7881  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7882  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7883  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7884  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7885  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7886  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7887  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7888  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7889  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7890  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7891  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7892  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7893  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7894  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7895  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7896  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7897  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7898  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7899  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7900  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7901  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7902  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM19), board_pch_adp },
7903  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V19), board_pch_adp },
7904  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7905  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7906  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7907  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7908  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7909  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7910  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7911  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7912  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7913  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7914  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7915  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7916  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7917  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7918  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7919  	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7920  
7921  	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7922  };
7923  MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7924  
7925  static const struct dev_pm_ops e1000e_pm_ops = {
7926  	.prepare	= e1000e_pm_prepare,
7927  	.suspend	= e1000e_pm_suspend,
7928  	.resume		= e1000e_pm_resume,
7929  	.freeze		= e1000e_pm_freeze,
7930  	.thaw		= e1000e_pm_thaw,
7931  	.poweroff	= e1000e_pm_suspend,
7932  	.restore	= e1000e_pm_resume,
7933  	RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7934  		       e1000e_pm_runtime_idle)
7935  };
7936  
7937  /* PCI Device API Driver */
7938  static struct pci_driver e1000_driver = {
7939  	.name     = e1000e_driver_name,
7940  	.id_table = e1000_pci_tbl,
7941  	.probe    = e1000_probe,
7942  	.remove   = e1000_remove,
7943  	.driver.pm = pm_ptr(&e1000e_pm_ops),
7944  	.shutdown = e1000_shutdown,
7945  	.err_handler = &e1000_err_handler
7946  };
7947  
7948  /**
7949   * e1000_init_module - Driver Registration Routine
7950   *
7951   * e1000_init_module is the first routine called when the driver is
7952   * loaded. All it does is register with the PCI subsystem.
7953   **/
e1000_init_module(void)7954  static int __init e1000_init_module(void)
7955  {
7956  	pr_info("Intel(R) PRO/1000 Network Driver\n");
7957  	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7958  
7959  	return pci_register_driver(&e1000_driver);
7960  }
7961  module_init(e1000_init_module);
7962  
7963  /**
7964   * e1000_exit_module - Driver Exit Cleanup Routine
7965   *
7966   * e1000_exit_module is called just before the driver is removed
7967   * from memory.
7968   **/
e1000_exit_module(void)7969  static void __exit e1000_exit_module(void)
7970  {
7971  	pci_unregister_driver(&e1000_driver);
7972  }
7973  module_exit(e1000_exit_module);
7974  
7975  MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7976  MODULE_LICENSE("GPL v2");
7977  
7978  /* netdev.c */
7979