1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/iommu-dma.h>
14 #include <linux/kmsan.h>
15 #include <linux/of_device.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18 #include "debug.h"
19 #include "direct.h"
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/dma.h>
23
24 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28 #endif
29
30 /*
31 * Managed DMA API
32 */
33 struct dma_devres {
34 size_t size;
35 void *vaddr;
36 dma_addr_t dma_handle;
37 unsigned long attrs;
38 };
39
dmam_release(struct device * dev,void * res)40 static void dmam_release(struct device *dev, void *res)
41 {
42 struct dma_devres *this = res;
43
44 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45 this->attrs);
46 }
47
dmam_match(struct device * dev,void * res,void * match_data)48 static int dmam_match(struct device *dev, void *res, void *match_data)
49 {
50 struct dma_devres *this = res, *match = match_data;
51
52 if (this->vaddr == match->vaddr) {
53 WARN_ON(this->size != match->size ||
54 this->dma_handle != match->dma_handle);
55 return 1;
56 }
57 return 0;
58 }
59
60 /**
61 * dmam_free_coherent - Managed dma_free_coherent()
62 * @dev: Device to free coherent memory for
63 * @size: Size of allocation
64 * @vaddr: Virtual address of the memory to free
65 * @dma_handle: DMA handle of the memory to free
66 *
67 * Managed dma_free_coherent().
68 */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)69 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70 dma_addr_t dma_handle)
71 {
72 struct dma_devres match_data = { size, vaddr, dma_handle };
73
74 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75 dma_free_coherent(dev, size, vaddr, dma_handle);
76 }
77 EXPORT_SYMBOL(dmam_free_coherent);
78
79 /**
80 * dmam_alloc_attrs - Managed dma_alloc_attrs()
81 * @dev: Device to allocate non_coherent memory for
82 * @size: Size of allocation
83 * @dma_handle: Out argument for allocated DMA handle
84 * @gfp: Allocation flags
85 * @attrs: Flags in the DMA_ATTR_* namespace.
86 *
87 * Managed dma_alloc_attrs(). Memory allocated using this function will be
88 * automatically released on driver detach.
89 *
90 * RETURNS:
91 * Pointer to allocated memory on success, NULL on failure.
92 */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)93 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94 gfp_t gfp, unsigned long attrs)
95 {
96 struct dma_devres *dr;
97 void *vaddr;
98
99 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100 if (!dr)
101 return NULL;
102
103 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104 if (!vaddr) {
105 devres_free(dr);
106 return NULL;
107 }
108
109 dr->vaddr = vaddr;
110 dr->dma_handle = *dma_handle;
111 dr->size = size;
112 dr->attrs = attrs;
113
114 devres_add(dev, dr);
115
116 return vaddr;
117 }
118 EXPORT_SYMBOL(dmam_alloc_attrs);
119
dma_go_direct(struct device * dev,dma_addr_t mask,const struct dma_map_ops * ops)120 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121 const struct dma_map_ops *ops)
122 {
123 if (use_dma_iommu(dev))
124 return false;
125
126 if (likely(!ops))
127 return true;
128
129 #ifdef CONFIG_DMA_OPS_BYPASS
130 if (dev->dma_ops_bypass)
131 return min_not_zero(mask, dev->bus_dma_limit) >=
132 dma_direct_get_required_mask(dev);
133 #endif
134 return false;
135 }
136
137
138 /*
139 * Check if the devices uses a direct mapping for streaming DMA operations.
140 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141 * enough.
142 */
dma_alloc_direct(struct device * dev,const struct dma_map_ops * ops)143 static inline bool dma_alloc_direct(struct device *dev,
144 const struct dma_map_ops *ops)
145 {
146 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147 }
148
dma_map_direct(struct device * dev,const struct dma_map_ops * ops)149 static inline bool dma_map_direct(struct device *dev,
150 const struct dma_map_ops *ops)
151 {
152 return dma_go_direct(dev, *dev->dma_mask, ops);
153 }
154
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)155 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
156 size_t offset, size_t size, enum dma_data_direction dir,
157 unsigned long attrs)
158 {
159 const struct dma_map_ops *ops = get_dma_ops(dev);
160 dma_addr_t addr;
161
162 BUG_ON(!valid_dma_direction(dir));
163
164 if (WARN_ON_ONCE(!dev->dma_mask))
165 return DMA_MAPPING_ERROR;
166
167 if (dma_map_direct(dev, ops) ||
168 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
169 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
170 else if (use_dma_iommu(dev))
171 addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs);
172 else
173 addr = ops->map_page(dev, page, offset, size, dir, attrs);
174 kmsan_handle_dma(page, offset, size, dir);
175 trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir,
176 attrs);
177 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
178
179 return addr;
180 }
181 EXPORT_SYMBOL(dma_map_page_attrs);
182
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)183 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
184 enum dma_data_direction dir, unsigned long attrs)
185 {
186 const struct dma_map_ops *ops = get_dma_ops(dev);
187
188 BUG_ON(!valid_dma_direction(dir));
189 if (dma_map_direct(dev, ops) ||
190 arch_dma_unmap_page_direct(dev, addr + size))
191 dma_direct_unmap_page(dev, addr, size, dir, attrs);
192 else if (use_dma_iommu(dev))
193 iommu_dma_unmap_page(dev, addr, size, dir, attrs);
194 else
195 ops->unmap_page(dev, addr, size, dir, attrs);
196 trace_dma_unmap_page(dev, addr, size, dir, attrs);
197 debug_dma_unmap_page(dev, addr, size, dir);
198 }
199 EXPORT_SYMBOL(dma_unmap_page_attrs);
200
__dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)201 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
202 int nents, enum dma_data_direction dir, unsigned long attrs)
203 {
204 const struct dma_map_ops *ops = get_dma_ops(dev);
205 int ents;
206
207 BUG_ON(!valid_dma_direction(dir));
208
209 if (WARN_ON_ONCE(!dev->dma_mask))
210 return 0;
211
212 if (dma_map_direct(dev, ops) ||
213 arch_dma_map_sg_direct(dev, sg, nents))
214 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
215 else if (use_dma_iommu(dev))
216 ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
217 else
218 ents = ops->map_sg(dev, sg, nents, dir, attrs);
219
220 if (ents > 0) {
221 kmsan_handle_dma_sg(sg, nents, dir);
222 trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
223 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
224 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
225 ents != -EIO && ents != -EREMOTEIO)) {
226 return -EIO;
227 }
228
229 return ents;
230 }
231
232 /**
233 * dma_map_sg_attrs - Map the given buffer for DMA
234 * @dev: The device for which to perform the DMA operation
235 * @sg: The sg_table object describing the buffer
236 * @nents: Number of entries to map
237 * @dir: DMA direction
238 * @attrs: Optional DMA attributes for the map operation
239 *
240 * Maps a buffer described by a scatterlist passed in the sg argument with
241 * nents segments for the @dir DMA operation by the @dev device.
242 *
243 * Returns the number of mapped entries (which can be less than nents)
244 * on success. Zero is returned for any error.
245 *
246 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
247 * original sg and original nents (not the value returned by this funciton).
248 */
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)249 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
250 int nents, enum dma_data_direction dir, unsigned long attrs)
251 {
252 int ret;
253
254 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
255 if (ret < 0)
256 return 0;
257 return ret;
258 }
259 EXPORT_SYMBOL(dma_map_sg_attrs);
260
261 /**
262 * dma_map_sgtable - Map the given buffer for DMA
263 * @dev: The device for which to perform the DMA operation
264 * @sgt: The sg_table object describing the buffer
265 * @dir: DMA direction
266 * @attrs: Optional DMA attributes for the map operation
267 *
268 * Maps a buffer described by a scatterlist stored in the given sg_table
269 * object for the @dir DMA operation by the @dev device. After success, the
270 * ownership for the buffer is transferred to the DMA domain. One has to
271 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
272 * ownership of the buffer back to the CPU domain before touching the
273 * buffer by the CPU.
274 *
275 * Returns 0 on success or a negative error code on error. The following
276 * error codes are supported with the given meaning:
277 *
278 * -EINVAL An invalid argument, unaligned access or other error
279 * in usage. Will not succeed if retried.
280 * -ENOMEM Insufficient resources (like memory or IOVA space) to
281 * complete the mapping. Should succeed if retried later.
282 * -EIO Legacy error code with an unknown meaning. eg. this is
283 * returned if a lower level call returned
284 * DMA_MAPPING_ERROR.
285 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
286 * in the sg_table. This will not succeed if retried.
287 */
dma_map_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)288 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
289 enum dma_data_direction dir, unsigned long attrs)
290 {
291 int nents;
292
293 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
294 if (nents < 0)
295 return nents;
296 sgt->nents = nents;
297 return 0;
298 }
299 EXPORT_SYMBOL_GPL(dma_map_sgtable);
300
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)301 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
302 int nents, enum dma_data_direction dir,
303 unsigned long attrs)
304 {
305 const struct dma_map_ops *ops = get_dma_ops(dev);
306
307 BUG_ON(!valid_dma_direction(dir));
308 trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
309 debug_dma_unmap_sg(dev, sg, nents, dir);
310 if (dma_map_direct(dev, ops) ||
311 arch_dma_unmap_sg_direct(dev, sg, nents))
312 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
313 else if (use_dma_iommu(dev))
314 iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
315 else if (ops->unmap_sg)
316 ops->unmap_sg(dev, sg, nents, dir, attrs);
317 }
318 EXPORT_SYMBOL(dma_unmap_sg_attrs);
319
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)320 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
321 size_t size, enum dma_data_direction dir, unsigned long attrs)
322 {
323 const struct dma_map_ops *ops = get_dma_ops(dev);
324 dma_addr_t addr = DMA_MAPPING_ERROR;
325
326 BUG_ON(!valid_dma_direction(dir));
327
328 if (WARN_ON_ONCE(!dev->dma_mask))
329 return DMA_MAPPING_ERROR;
330
331 if (dma_map_direct(dev, ops))
332 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
333 else if (use_dma_iommu(dev))
334 addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs);
335 else if (ops->map_resource)
336 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
337
338 trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs);
339 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
340 return addr;
341 }
342 EXPORT_SYMBOL(dma_map_resource);
343
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)344 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
345 enum dma_data_direction dir, unsigned long attrs)
346 {
347 const struct dma_map_ops *ops = get_dma_ops(dev);
348
349 BUG_ON(!valid_dma_direction(dir));
350 if (dma_map_direct(dev, ops))
351 ; /* nothing to do: uncached and no swiotlb */
352 else if (use_dma_iommu(dev))
353 iommu_dma_unmap_resource(dev, addr, size, dir, attrs);
354 else if (ops->unmap_resource)
355 ops->unmap_resource(dev, addr, size, dir, attrs);
356 trace_dma_unmap_resource(dev, addr, size, dir, attrs);
357 debug_dma_unmap_resource(dev, addr, size, dir);
358 }
359 EXPORT_SYMBOL(dma_unmap_resource);
360
361 #ifdef CONFIG_DMA_NEED_SYNC
__dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)362 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
363 enum dma_data_direction dir)
364 {
365 const struct dma_map_ops *ops = get_dma_ops(dev);
366
367 BUG_ON(!valid_dma_direction(dir));
368 if (dma_map_direct(dev, ops))
369 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
370 else if (use_dma_iommu(dev))
371 iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
372 else if (ops->sync_single_for_cpu)
373 ops->sync_single_for_cpu(dev, addr, size, dir);
374 trace_dma_sync_single_for_cpu(dev, addr, size, dir);
375 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
376 }
377 EXPORT_SYMBOL(__dma_sync_single_for_cpu);
378
__dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)379 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
380 size_t size, enum dma_data_direction dir)
381 {
382 const struct dma_map_ops *ops = get_dma_ops(dev);
383
384 BUG_ON(!valid_dma_direction(dir));
385 if (dma_map_direct(dev, ops))
386 dma_direct_sync_single_for_device(dev, addr, size, dir);
387 else if (use_dma_iommu(dev))
388 iommu_dma_sync_single_for_device(dev, addr, size, dir);
389 else if (ops->sync_single_for_device)
390 ops->sync_single_for_device(dev, addr, size, dir);
391 trace_dma_sync_single_for_device(dev, addr, size, dir);
392 debug_dma_sync_single_for_device(dev, addr, size, dir);
393 }
394 EXPORT_SYMBOL(__dma_sync_single_for_device);
395
__dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)396 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
397 int nelems, enum dma_data_direction dir)
398 {
399 const struct dma_map_ops *ops = get_dma_ops(dev);
400
401 BUG_ON(!valid_dma_direction(dir));
402 if (dma_map_direct(dev, ops))
403 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
404 else if (use_dma_iommu(dev))
405 iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
406 else if (ops->sync_sg_for_cpu)
407 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
408 trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
409 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
410 }
411 EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
412
__dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)413 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
414 int nelems, enum dma_data_direction dir)
415 {
416 const struct dma_map_ops *ops = get_dma_ops(dev);
417
418 BUG_ON(!valid_dma_direction(dir));
419 if (dma_map_direct(dev, ops))
420 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
421 else if (use_dma_iommu(dev))
422 iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
423 else if (ops->sync_sg_for_device)
424 ops->sync_sg_for_device(dev, sg, nelems, dir);
425 trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
426 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
427 }
428 EXPORT_SYMBOL(__dma_sync_sg_for_device);
429
__dma_need_sync(struct device * dev,dma_addr_t dma_addr)430 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
431 {
432 const struct dma_map_ops *ops = get_dma_ops(dev);
433
434 if (dma_map_direct(dev, ops))
435 /*
436 * dma_skip_sync could've been reset on first SWIOTLB buffer
437 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
438 * In this case, fall back to more granular check.
439 */
440 return dma_direct_need_sync(dev, dma_addr);
441 return true;
442 }
443 EXPORT_SYMBOL_GPL(__dma_need_sync);
444
dma_setup_need_sync(struct device * dev)445 static void dma_setup_need_sync(struct device *dev)
446 {
447 const struct dma_map_ops *ops = get_dma_ops(dev);
448
449 if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
450 /*
451 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
452 * mapping, if any. During the device initialization, it's
453 * enough to check only for the DMA coherence.
454 */
455 dev->dma_skip_sync = dev_is_dma_coherent(dev);
456 else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
457 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
458 /*
459 * Synchronization is not possible when none of DMA sync ops
460 * is set.
461 */
462 dev->dma_skip_sync = true;
463 else
464 dev->dma_skip_sync = false;
465 }
466 #else /* !CONFIG_DMA_NEED_SYNC */
dma_setup_need_sync(struct device * dev)467 static inline void dma_setup_need_sync(struct device *dev) { }
468 #endif /* !CONFIG_DMA_NEED_SYNC */
469
470 /*
471 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
472 * that the intention is to allow exporting memory allocated via the
473 * coherent DMA APIs through the dma_buf API, which only accepts a
474 * scattertable. This presents a couple of problems:
475 * 1. Not all memory allocated via the coherent DMA APIs is backed by
476 * a struct page
477 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
478 * as we will try to flush the memory through a different alias to that
479 * actually being used (and the flushes are redundant.)
480 */
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)481 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
482 void *cpu_addr, dma_addr_t dma_addr, size_t size,
483 unsigned long attrs)
484 {
485 const struct dma_map_ops *ops = get_dma_ops(dev);
486
487 if (dma_alloc_direct(dev, ops))
488 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
489 size, attrs);
490 if (use_dma_iommu(dev))
491 return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
492 size, attrs);
493 if (!ops->get_sgtable)
494 return -ENXIO;
495 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
496 }
497 EXPORT_SYMBOL(dma_get_sgtable_attrs);
498
499 #ifdef CONFIG_MMU
500 /*
501 * Return the page attributes used for mapping dma_alloc_* memory, either in
502 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
503 */
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)504 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
505 {
506 if (dev_is_dma_coherent(dev))
507 return prot;
508 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
509 if (attrs & DMA_ATTR_WRITE_COMBINE)
510 return pgprot_writecombine(prot);
511 #endif
512 return pgprot_dmacoherent(prot);
513 }
514 #endif /* CONFIG_MMU */
515
516 /**
517 * dma_can_mmap - check if a given device supports dma_mmap_*
518 * @dev: device to check
519 *
520 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
521 * map DMA allocations to userspace.
522 */
dma_can_mmap(struct device * dev)523 bool dma_can_mmap(struct device *dev)
524 {
525 const struct dma_map_ops *ops = get_dma_ops(dev);
526
527 if (dma_alloc_direct(dev, ops))
528 return dma_direct_can_mmap(dev);
529 if (use_dma_iommu(dev))
530 return true;
531 return ops->mmap != NULL;
532 }
533 EXPORT_SYMBOL_GPL(dma_can_mmap);
534
535 /**
536 * dma_mmap_attrs - map a coherent DMA allocation into user space
537 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
538 * @vma: vm_area_struct describing requested user mapping
539 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
540 * @dma_addr: device-view address returned from dma_alloc_attrs
541 * @size: size of memory originally requested in dma_alloc_attrs
542 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
543 *
544 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
545 * space. The coherent DMA buffer must not be freed by the driver until the
546 * user space mapping has been released.
547 */
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)548 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
549 void *cpu_addr, dma_addr_t dma_addr, size_t size,
550 unsigned long attrs)
551 {
552 const struct dma_map_ops *ops = get_dma_ops(dev);
553
554 if (dma_alloc_direct(dev, ops))
555 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
556 attrs);
557 if (use_dma_iommu(dev))
558 return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
559 attrs);
560 if (!ops->mmap)
561 return -ENXIO;
562 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
563 }
564 EXPORT_SYMBOL(dma_mmap_attrs);
565
dma_get_required_mask(struct device * dev)566 u64 dma_get_required_mask(struct device *dev)
567 {
568 const struct dma_map_ops *ops = get_dma_ops(dev);
569
570 if (dma_alloc_direct(dev, ops))
571 return dma_direct_get_required_mask(dev);
572
573 if (use_dma_iommu(dev))
574 return DMA_BIT_MASK(32);
575
576 if (ops->get_required_mask)
577 return ops->get_required_mask(dev);
578
579 /*
580 * We require every DMA ops implementation to at least support a 32-bit
581 * DMA mask (and use bounce buffering if that isn't supported in
582 * hardware). As the direct mapping code has its own routine to
583 * actually report an optimal mask we default to 32-bit here as that
584 * is the right thing for most IOMMUs, and at least not actively
585 * harmful in general.
586 */
587 return DMA_BIT_MASK(32);
588 }
589 EXPORT_SYMBOL_GPL(dma_get_required_mask);
590
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)591 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
592 gfp_t flag, unsigned long attrs)
593 {
594 const struct dma_map_ops *ops = get_dma_ops(dev);
595 void *cpu_addr;
596
597 WARN_ON_ONCE(!dev->coherent_dma_mask);
598
599 /*
600 * DMA allocations can never be turned back into a page pointer, so
601 * requesting compound pages doesn't make sense (and can't even be
602 * supported at all by various backends).
603 */
604 if (WARN_ON_ONCE(flag & __GFP_COMP))
605 return NULL;
606
607 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
608 return cpu_addr;
609
610 /* let the implementation decide on the zone to allocate from: */
611 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
612
613 if (dma_alloc_direct(dev, ops))
614 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
615 else if (use_dma_iommu(dev))
616 cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
617 else if (ops->alloc)
618 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
619 else
620 return NULL;
621
622 trace_dma_alloc(dev, cpu_addr, *dma_handle, size, flag, attrs);
623 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
624 return cpu_addr;
625 }
626 EXPORT_SYMBOL(dma_alloc_attrs);
627
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)628 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
629 dma_addr_t dma_handle, unsigned long attrs)
630 {
631 const struct dma_map_ops *ops = get_dma_ops(dev);
632
633 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
634 return;
635 /*
636 * On non-coherent platforms which implement DMA-coherent buffers via
637 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
638 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
639 * sleep on some machines, and b) an indication that the driver is
640 * probably misusing the coherent API anyway.
641 */
642 WARN_ON(irqs_disabled());
643
644 if (!cpu_addr)
645 return;
646
647 trace_dma_free(dev, cpu_addr, dma_handle, size, attrs);
648 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
649 if (dma_alloc_direct(dev, ops))
650 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
651 else if (use_dma_iommu(dev))
652 iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
653 else if (ops->free)
654 ops->free(dev, size, cpu_addr, dma_handle, attrs);
655 }
656 EXPORT_SYMBOL(dma_free_attrs);
657
__dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)658 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
659 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
660 {
661 const struct dma_map_ops *ops = get_dma_ops(dev);
662
663 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
664 return NULL;
665 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
666 return NULL;
667 if (WARN_ON_ONCE(gfp & __GFP_COMP))
668 return NULL;
669
670 size = PAGE_ALIGN(size);
671 if (dma_alloc_direct(dev, ops))
672 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
673 if (use_dma_iommu(dev))
674 return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
675 if (!ops->alloc_pages_op)
676 return NULL;
677 return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
678 }
679
dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)680 struct page *dma_alloc_pages(struct device *dev, size_t size,
681 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
682 {
683 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
684
685 if (page) {
686 trace_dma_map_page(dev, page_to_phys(page), *dma_handle, size,
687 dir, 0);
688 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
689 }
690 return page;
691 }
692 EXPORT_SYMBOL_GPL(dma_alloc_pages);
693
__dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)694 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
695 dma_addr_t dma_handle, enum dma_data_direction dir)
696 {
697 const struct dma_map_ops *ops = get_dma_ops(dev);
698
699 size = PAGE_ALIGN(size);
700 if (dma_alloc_direct(dev, ops))
701 dma_direct_free_pages(dev, size, page, dma_handle, dir);
702 else if (use_dma_iommu(dev))
703 dma_common_free_pages(dev, size, page, dma_handle, dir);
704 else if (ops->free_pages)
705 ops->free_pages(dev, size, page, dma_handle, dir);
706 }
707
dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)708 void dma_free_pages(struct device *dev, size_t size, struct page *page,
709 dma_addr_t dma_handle, enum dma_data_direction dir)
710 {
711 trace_dma_unmap_page(dev, dma_handle, size, dir, 0);
712 debug_dma_unmap_page(dev, dma_handle, size, dir);
713 __dma_free_pages(dev, size, page, dma_handle, dir);
714 }
715 EXPORT_SYMBOL_GPL(dma_free_pages);
716
dma_mmap_pages(struct device * dev,struct vm_area_struct * vma,size_t size,struct page * page)717 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
718 size_t size, struct page *page)
719 {
720 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
721
722 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
723 return -ENXIO;
724 return remap_pfn_range(vma, vma->vm_start,
725 page_to_pfn(page) + vma->vm_pgoff,
726 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
727 }
728 EXPORT_SYMBOL_GPL(dma_mmap_pages);
729
alloc_single_sgt(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp)730 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
731 enum dma_data_direction dir, gfp_t gfp)
732 {
733 struct sg_table *sgt;
734 struct page *page;
735
736 sgt = kmalloc(sizeof(*sgt), gfp);
737 if (!sgt)
738 return NULL;
739 if (sg_alloc_table(sgt, 1, gfp))
740 goto out_free_sgt;
741 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
742 if (!page)
743 goto out_free_table;
744 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
745 sg_dma_len(sgt->sgl) = sgt->sgl->length;
746 return sgt;
747 out_free_table:
748 sg_free_table(sgt);
749 out_free_sgt:
750 kfree(sgt);
751 return NULL;
752 }
753
dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)754 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
755 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
756 {
757 struct sg_table *sgt;
758
759 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
760 return NULL;
761 if (WARN_ON_ONCE(gfp & __GFP_COMP))
762 return NULL;
763
764 if (use_dma_iommu(dev))
765 sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
766 else
767 sgt = alloc_single_sgt(dev, size, dir, gfp);
768
769 if (sgt) {
770 sgt->nents = 1;
771 trace_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
772 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
773 }
774 return sgt;
775 }
776 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
777
free_single_sgt(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)778 static void free_single_sgt(struct device *dev, size_t size,
779 struct sg_table *sgt, enum dma_data_direction dir)
780 {
781 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
782 dir);
783 sg_free_table(sgt);
784 kfree(sgt);
785 }
786
dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)787 void dma_free_noncontiguous(struct device *dev, size_t size,
788 struct sg_table *sgt, enum dma_data_direction dir)
789 {
790 trace_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir, 0);
791 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
792
793 if (use_dma_iommu(dev))
794 iommu_dma_free_noncontiguous(dev, size, sgt, dir);
795 else
796 free_single_sgt(dev, size, sgt, dir);
797 }
798 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
799
dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)800 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
801 struct sg_table *sgt)
802 {
803
804 if (use_dma_iommu(dev))
805 return iommu_dma_vmap_noncontiguous(dev, size, sgt);
806
807 return page_address(sg_page(sgt->sgl));
808 }
809 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
810
dma_vunmap_noncontiguous(struct device * dev,void * vaddr)811 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
812 {
813 if (use_dma_iommu(dev))
814 iommu_dma_vunmap_noncontiguous(dev, vaddr);
815 }
816 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
817
dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)818 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
819 size_t size, struct sg_table *sgt)
820 {
821 if (use_dma_iommu(dev))
822 return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
823 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
824 }
825 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
826
dma_supported(struct device * dev,u64 mask)827 static int dma_supported(struct device *dev, u64 mask)
828 {
829 const struct dma_map_ops *ops = get_dma_ops(dev);
830
831 if (use_dma_iommu(dev)) {
832 if (WARN_ON(ops))
833 return false;
834 return true;
835 }
836
837 /*
838 * ->dma_supported sets and clears the bypass flag, so ignore it here
839 * and always call into the method if there is one.
840 */
841 if (ops) {
842 if (!ops->dma_supported)
843 return true;
844 return ops->dma_supported(dev, mask);
845 }
846
847 return dma_direct_supported(dev, mask);
848 }
849
dma_pci_p2pdma_supported(struct device * dev)850 bool dma_pci_p2pdma_supported(struct device *dev)
851 {
852 const struct dma_map_ops *ops = get_dma_ops(dev);
853
854 /*
855 * Note: dma_ops_bypass is not checked here because P2PDMA should
856 * not be used with dma mapping ops that do not have support even
857 * if the specific device is bypassing them.
858 */
859
860 /* if ops is not set, dma direct and default IOMMU support P2PDMA */
861 return !ops;
862 }
863 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
864
dma_set_mask(struct device * dev,u64 mask)865 int dma_set_mask(struct device *dev, u64 mask)
866 {
867 /*
868 * Truncate the mask to the actually supported dma_addr_t width to
869 * avoid generating unsupportable addresses.
870 */
871 mask = (dma_addr_t)mask;
872
873 if (!dev->dma_mask || !dma_supported(dev, mask))
874 return -EIO;
875
876 arch_dma_set_mask(dev, mask);
877 *dev->dma_mask = mask;
878 dma_setup_need_sync(dev);
879
880 return 0;
881 }
882 EXPORT_SYMBOL(dma_set_mask);
883
dma_set_coherent_mask(struct device * dev,u64 mask)884 int dma_set_coherent_mask(struct device *dev, u64 mask)
885 {
886 /*
887 * Truncate the mask to the actually supported dma_addr_t width to
888 * avoid generating unsupportable addresses.
889 */
890 mask = (dma_addr_t)mask;
891
892 if (!dma_supported(dev, mask))
893 return -EIO;
894
895 dev->coherent_dma_mask = mask;
896 return 0;
897 }
898 EXPORT_SYMBOL(dma_set_coherent_mask);
899
900 /**
901 * dma_addressing_limited - return if the device is addressing limited
902 * @dev: device to check
903 *
904 * Return %true if the devices DMA mask is too small to address all memory in
905 * the system, else %false. Lack of addressing bits is the prime reason for
906 * bounce buffering, but might not be the only one.
907 */
dma_addressing_limited(struct device * dev)908 bool dma_addressing_limited(struct device *dev)
909 {
910 const struct dma_map_ops *ops = get_dma_ops(dev);
911
912 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
913 dma_get_required_mask(dev))
914 return true;
915
916 if (unlikely(ops) || use_dma_iommu(dev))
917 return false;
918 return !dma_direct_all_ram_mapped(dev);
919 }
920 EXPORT_SYMBOL_GPL(dma_addressing_limited);
921
dma_max_mapping_size(struct device * dev)922 size_t dma_max_mapping_size(struct device *dev)
923 {
924 const struct dma_map_ops *ops = get_dma_ops(dev);
925 size_t size = SIZE_MAX;
926
927 if (dma_map_direct(dev, ops))
928 size = dma_direct_max_mapping_size(dev);
929 else if (use_dma_iommu(dev))
930 size = iommu_dma_max_mapping_size(dev);
931 else if (ops && ops->max_mapping_size)
932 size = ops->max_mapping_size(dev);
933
934 return size;
935 }
936 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
937
dma_opt_mapping_size(struct device * dev)938 size_t dma_opt_mapping_size(struct device *dev)
939 {
940 const struct dma_map_ops *ops = get_dma_ops(dev);
941 size_t size = SIZE_MAX;
942
943 if (use_dma_iommu(dev))
944 size = iommu_dma_opt_mapping_size();
945 else if (ops && ops->opt_mapping_size)
946 size = ops->opt_mapping_size();
947
948 return min(dma_max_mapping_size(dev), size);
949 }
950 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
951
dma_get_merge_boundary(struct device * dev)952 unsigned long dma_get_merge_boundary(struct device *dev)
953 {
954 const struct dma_map_ops *ops = get_dma_ops(dev);
955
956 if (use_dma_iommu(dev))
957 return iommu_dma_get_merge_boundary(dev);
958
959 if (!ops || !ops->get_merge_boundary)
960 return 0; /* can't merge */
961
962 return ops->get_merge_boundary(dev);
963 }
964 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
965