1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   * Hash: Hash algorithms under the crypto API
4   *
5   * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6   */
7  
8  #ifndef _CRYPTO_HASH_H
9  #define _CRYPTO_HASH_H
10  
11  #include <linux/atomic.h>
12  #include <linux/crypto.h>
13  #include <linux/string.h>
14  
15  struct crypto_ahash;
16  
17  /**
18   * DOC: Message Digest Algorithm Definitions
19   *
20   * These data structures define modular message digest algorithm
21   * implementations, managed via crypto_register_ahash(),
22   * crypto_register_shash(), crypto_unregister_ahash() and
23   * crypto_unregister_shash().
24   */
25  
26  /*
27   * struct hash_alg_common - define properties of message digest
28   * @digestsize: Size of the result of the transformation. A buffer of this size
29   *	        must be available to the @final and @finup calls, so they can
30   *	        store the resulting hash into it. For various predefined sizes,
31   *	        search include/crypto/ using
32   *	        git grep _DIGEST_SIZE include/crypto.
33   * @statesize: Size of the block for partial state of the transformation. A
34   *	       buffer of this size must be passed to the @export function as it
35   *	       will save the partial state of the transformation into it. On the
36   *	       other side, the @import function will load the state from a
37   *	       buffer of this size as well.
38   * @base: Start of data structure of cipher algorithm. The common data
39   *	  structure of crypto_alg contains information common to all ciphers.
40   *	  The hash_alg_common data structure now adds the hash-specific
41   *	  information.
42   */
43  #define HASH_ALG_COMMON {		\
44  	unsigned int digestsize;	\
45  	unsigned int statesize;		\
46  					\
47  	struct crypto_alg base;		\
48  }
49  struct hash_alg_common HASH_ALG_COMMON;
50  
51  struct ahash_request {
52  	struct crypto_async_request base;
53  
54  	unsigned int nbytes;
55  	struct scatterlist *src;
56  	u8 *result;
57  
58  	/* This field may only be used by the ahash API code. */
59  	void *priv;
60  
61  	void *__ctx[] CRYPTO_MINALIGN_ATTR;
62  };
63  
64  /**
65   * struct ahash_alg - asynchronous message digest definition
66   * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
67   *	  state of the HASH transformation at the beginning. This shall fill in
68   *	  the internal structures used during the entire duration of the whole
69   *	  transformation. No data processing happens at this point. Driver code
70   *	  implementation must not use req->result.
71   * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
72   *	   function actually pushes blocks of data from upper layers into the
73   *	   driver, which then passes those to the hardware as seen fit. This
74   *	   function must not finalize the HASH transformation by calculating the
75   *	   final message digest as this only adds more data into the
76   *	   transformation. This function shall not modify the transformation
77   *	   context, as this function may be called in parallel with the same
78   *	   transformation object. Data processing can happen synchronously
79   *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
80   *	   req->result.
81   * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
82   *	   transformation and retrieves the resulting hash from the driver and
83   *	   pushes it back to upper layers. No data processing happens at this
84   *	   point unless hardware requires it to finish the transformation
85   *	   (then the data buffered by the device driver is processed).
86   * @finup: **[optional]** Combination of @update and @final. This function is effectively a
87   *	   combination of @update and @final calls issued in sequence. As some
88   *	   hardware cannot do @update and @final separately, this callback was
89   *	   added to allow such hardware to be used at least by IPsec. Data
90   *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
91   *	   at this point.
92   * @digest: Combination of @init and @update and @final. This function
93   *	    effectively behaves as the entire chain of operations, @init,
94   *	    @update and @final issued in sequence. Just like @finup, this was
95   *	    added for hardware which cannot do even the @finup, but can only do
96   *	    the whole transformation in one run. Data processing can happen
97   *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
98   * @setkey: Set optional key used by the hashing algorithm. Intended to push
99   *	    optional key used by the hashing algorithm from upper layers into
100   *	    the driver. This function can store the key in the transformation
101   *	    context or can outright program it into the hardware. In the former
102   *	    case, one must be careful to program the key into the hardware at
103   *	    appropriate time and one must be careful that .setkey() can be
104   *	    called multiple times during the existence of the transformation
105   *	    object. Not  all hashing algorithms do implement this function as it
106   *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
107   *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
108   *	    this function. This function must be called before any other of the
109   *	    @init, @update, @final, @finup, @digest is called. No data
110   *	    processing happens at this point.
111   * @export: Export partial state of the transformation. This function dumps the
112   *	    entire state of the ongoing transformation into a provided block of
113   *	    data so it can be @import 'ed back later on. This is useful in case
114   *	    you want to save partial result of the transformation after
115   *	    processing certain amount of data and reload this partial result
116   *	    multiple times later on for multiple re-use. No data processing
117   *	    happens at this point. Driver must not use req->result.
118   * @import: Import partial state of the transformation. This function loads the
119   *	    entire state of the ongoing transformation from a provided block of
120   *	    data so the transformation can continue from this point onward. No
121   *	    data processing happens at this point. Driver must not use
122   *	    req->result.
123   * @init_tfm: Initialize the cryptographic transformation object.
124   *	      This function is called only once at the instantiation
125   *	      time, right after the transformation context was
126   *	      allocated. In case the cryptographic hardware has
127   *	      some special requirements which need to be handled
128   *	      by software, this function shall check for the precise
129   *	      requirement of the transformation and put any software
130   *	      fallbacks in place.
131   * @exit_tfm: Deinitialize the cryptographic transformation object.
132   *	      This is a counterpart to @init_tfm, used to remove
133   *	      various changes set in @init_tfm.
134   * @clone_tfm: Copy transform into new object, may allocate memory.
135   * @halg: see struct hash_alg_common
136   */
137  struct ahash_alg {
138  	int (*init)(struct ahash_request *req);
139  	int (*update)(struct ahash_request *req);
140  	int (*final)(struct ahash_request *req);
141  	int (*finup)(struct ahash_request *req);
142  	int (*digest)(struct ahash_request *req);
143  	int (*export)(struct ahash_request *req, void *out);
144  	int (*import)(struct ahash_request *req, const void *in);
145  	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
146  		      unsigned int keylen);
147  	int (*init_tfm)(struct crypto_ahash *tfm);
148  	void (*exit_tfm)(struct crypto_ahash *tfm);
149  	int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
150  
151  	struct hash_alg_common halg;
152  };
153  
154  struct shash_desc {
155  	struct crypto_shash *tfm;
156  	void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
157  };
158  
159  #define HASH_MAX_DIGESTSIZE	 64
160  
161  /*
162   * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
163   * containing a 'struct sha3_state'.
164   */
165  #define HASH_MAX_DESCSIZE	(sizeof(struct shash_desc) + 360)
166  
167  #define SHASH_DESC_ON_STACK(shash, ctx)					     \
168  	char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
169  		__aligned(__alignof__(struct shash_desc));		     \
170  	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
171  
172  /**
173   * struct shash_alg - synchronous message digest definition
174   * @init: see struct ahash_alg
175   * @update: see struct ahash_alg
176   * @final: see struct ahash_alg
177   * @finup: see struct ahash_alg
178   * @digest: see struct ahash_alg
179   * @export: see struct ahash_alg
180   * @import: see struct ahash_alg
181   * @setkey: see struct ahash_alg
182   * @init_tfm: Initialize the cryptographic transformation object.
183   *	      This function is called only once at the instantiation
184   *	      time, right after the transformation context was
185   *	      allocated. In case the cryptographic hardware has
186   *	      some special requirements which need to be handled
187   *	      by software, this function shall check for the precise
188   *	      requirement of the transformation and put any software
189   *	      fallbacks in place.
190   * @exit_tfm: Deinitialize the cryptographic transformation object.
191   *	      This is a counterpart to @init_tfm, used to remove
192   *	      various changes set in @init_tfm.
193   * @clone_tfm: Copy transform into new object, may allocate memory.
194   * @descsize: Size of the operational state for the message digest. This state
195   * 	      size is the memory size that needs to be allocated for
196   *	      shash_desc.__ctx
197   * @halg: see struct hash_alg_common
198   * @HASH_ALG_COMMON: see struct hash_alg_common
199   */
200  struct shash_alg {
201  	int (*init)(struct shash_desc *desc);
202  	int (*update)(struct shash_desc *desc, const u8 *data,
203  		      unsigned int len);
204  	int (*final)(struct shash_desc *desc, u8 *out);
205  	int (*finup)(struct shash_desc *desc, const u8 *data,
206  		     unsigned int len, u8 *out);
207  	int (*digest)(struct shash_desc *desc, const u8 *data,
208  		      unsigned int len, u8 *out);
209  	int (*export)(struct shash_desc *desc, void *out);
210  	int (*import)(struct shash_desc *desc, const void *in);
211  	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
212  		      unsigned int keylen);
213  	int (*init_tfm)(struct crypto_shash *tfm);
214  	void (*exit_tfm)(struct crypto_shash *tfm);
215  	int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
216  
217  	unsigned int descsize;
218  
219  	union {
220  		struct HASH_ALG_COMMON;
221  		struct hash_alg_common halg;
222  	};
223  };
224  #undef HASH_ALG_COMMON
225  
226  struct crypto_ahash {
227  	bool using_shash; /* Underlying algorithm is shash, not ahash */
228  	unsigned int statesize;
229  	unsigned int reqsize;
230  	struct crypto_tfm base;
231  };
232  
233  struct crypto_shash {
234  	unsigned int descsize;
235  	struct crypto_tfm base;
236  };
237  
238  /**
239   * DOC: Asynchronous Message Digest API
240   *
241   * The asynchronous message digest API is used with the ciphers of type
242   * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
243   *
244   * The asynchronous cipher operation discussion provided for the
245   * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
246   */
247  
__crypto_ahash_cast(struct crypto_tfm * tfm)248  static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
249  {
250  	return container_of(tfm, struct crypto_ahash, base);
251  }
252  
253  /**
254   * crypto_alloc_ahash() - allocate ahash cipher handle
255   * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
256   *	      ahash cipher
257   * @type: specifies the type of the cipher
258   * @mask: specifies the mask for the cipher
259   *
260   * Allocate a cipher handle for an ahash. The returned struct
261   * crypto_ahash is the cipher handle that is required for any subsequent
262   * API invocation for that ahash.
263   *
264   * Return: allocated cipher handle in case of success; IS_ERR() is true in case
265   *	   of an error, PTR_ERR() returns the error code.
266   */
267  struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
268  					u32 mask);
269  
270  struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
271  
crypto_ahash_tfm(struct crypto_ahash * tfm)272  static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
273  {
274  	return &tfm->base;
275  }
276  
277  /**
278   * crypto_free_ahash() - zeroize and free the ahash handle
279   * @tfm: cipher handle to be freed
280   *
281   * If @tfm is a NULL or error pointer, this function does nothing.
282   */
crypto_free_ahash(struct crypto_ahash * tfm)283  static inline void crypto_free_ahash(struct crypto_ahash *tfm)
284  {
285  	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
286  }
287  
288  /**
289   * crypto_has_ahash() - Search for the availability of an ahash.
290   * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
291   *	      ahash
292   * @type: specifies the type of the ahash
293   * @mask: specifies the mask for the ahash
294   *
295   * Return: true when the ahash is known to the kernel crypto API; false
296   *	   otherwise
297   */
298  int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
299  
crypto_ahash_alg_name(struct crypto_ahash * tfm)300  static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
301  {
302  	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
303  }
304  
crypto_ahash_driver_name(struct crypto_ahash * tfm)305  static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
306  {
307  	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
308  }
309  
310  /**
311   * crypto_ahash_blocksize() - obtain block size for cipher
312   * @tfm: cipher handle
313   *
314   * The block size for the message digest cipher referenced with the cipher
315   * handle is returned.
316   *
317   * Return: block size of cipher
318   */
crypto_ahash_blocksize(struct crypto_ahash * tfm)319  static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
320  {
321  	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
322  }
323  
__crypto_hash_alg_common(struct crypto_alg * alg)324  static inline struct hash_alg_common *__crypto_hash_alg_common(
325  	struct crypto_alg *alg)
326  {
327  	return container_of(alg, struct hash_alg_common, base);
328  }
329  
crypto_hash_alg_common(struct crypto_ahash * tfm)330  static inline struct hash_alg_common *crypto_hash_alg_common(
331  	struct crypto_ahash *tfm)
332  {
333  	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
334  }
335  
336  /**
337   * crypto_ahash_digestsize() - obtain message digest size
338   * @tfm: cipher handle
339   *
340   * The size for the message digest created by the message digest cipher
341   * referenced with the cipher handle is returned.
342   *
343   *
344   * Return: message digest size of cipher
345   */
crypto_ahash_digestsize(struct crypto_ahash * tfm)346  static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
347  {
348  	return crypto_hash_alg_common(tfm)->digestsize;
349  }
350  
351  /**
352   * crypto_ahash_statesize() - obtain size of the ahash state
353   * @tfm: cipher handle
354   *
355   * Return the size of the ahash state. With the crypto_ahash_export()
356   * function, the caller can export the state into a buffer whose size is
357   * defined with this function.
358   *
359   * Return: size of the ahash state
360   */
crypto_ahash_statesize(struct crypto_ahash * tfm)361  static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
362  {
363  	return tfm->statesize;
364  }
365  
crypto_ahash_get_flags(struct crypto_ahash * tfm)366  static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
367  {
368  	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
369  }
370  
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)371  static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
372  {
373  	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
374  }
375  
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)376  static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
377  {
378  	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
379  }
380  
381  /**
382   * crypto_ahash_reqtfm() - obtain cipher handle from request
383   * @req: asynchronous request handle that contains the reference to the ahash
384   *	 cipher handle
385   *
386   * Return the ahash cipher handle that is registered with the asynchronous
387   * request handle ahash_request.
388   *
389   * Return: ahash cipher handle
390   */
crypto_ahash_reqtfm(struct ahash_request * req)391  static inline struct crypto_ahash *crypto_ahash_reqtfm(
392  	struct ahash_request *req)
393  {
394  	return __crypto_ahash_cast(req->base.tfm);
395  }
396  
397  /**
398   * crypto_ahash_reqsize() - obtain size of the request data structure
399   * @tfm: cipher handle
400   *
401   * Return: size of the request data
402   */
crypto_ahash_reqsize(struct crypto_ahash * tfm)403  static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
404  {
405  	return tfm->reqsize;
406  }
407  
ahash_request_ctx(struct ahash_request * req)408  static inline void *ahash_request_ctx(struct ahash_request *req)
409  {
410  	return req->__ctx;
411  }
412  
413  /**
414   * crypto_ahash_setkey - set key for cipher handle
415   * @tfm: cipher handle
416   * @key: buffer holding the key
417   * @keylen: length of the key in bytes
418   *
419   * The caller provided key is set for the ahash cipher. The cipher
420   * handle must point to a keyed hash in order for this function to succeed.
421   *
422   * Return: 0 if the setting of the key was successful; < 0 if an error occurred
423   */
424  int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
425  			unsigned int keylen);
426  
427  /**
428   * crypto_ahash_finup() - update and finalize message digest
429   * @req: reference to the ahash_request handle that holds all information
430   *	 needed to perform the cipher operation
431   *
432   * This function is a "short-hand" for the function calls of
433   * crypto_ahash_update and crypto_ahash_final. The parameters have the same
434   * meaning as discussed for those separate functions.
435   *
436   * Return: see crypto_ahash_final()
437   */
438  int crypto_ahash_finup(struct ahash_request *req);
439  
440  /**
441   * crypto_ahash_final() - calculate message digest
442   * @req: reference to the ahash_request handle that holds all information
443   *	 needed to perform the cipher operation
444   *
445   * Finalize the message digest operation and create the message digest
446   * based on all data added to the cipher handle. The message digest is placed
447   * into the output buffer registered with the ahash_request handle.
448   *
449   * Return:
450   * 0		if the message digest was successfully calculated;
451   * -EINPROGRESS	if data is fed into hardware (DMA) or queued for later;
452   * -EBUSY	if queue is full and request should be resubmitted later;
453   * other < 0	if an error occurred
454   */
455  int crypto_ahash_final(struct ahash_request *req);
456  
457  /**
458   * crypto_ahash_digest() - calculate message digest for a buffer
459   * @req: reference to the ahash_request handle that holds all information
460   *	 needed to perform the cipher operation
461   *
462   * This function is a "short-hand" for the function calls of crypto_ahash_init,
463   * crypto_ahash_update and crypto_ahash_final. The parameters have the same
464   * meaning as discussed for those separate three functions.
465   *
466   * Return: see crypto_ahash_final()
467   */
468  int crypto_ahash_digest(struct ahash_request *req);
469  
470  /**
471   * crypto_ahash_export() - extract current message digest state
472   * @req: reference to the ahash_request handle whose state is exported
473   * @out: output buffer of sufficient size that can hold the hash state
474   *
475   * This function exports the hash state of the ahash_request handle into the
476   * caller-allocated output buffer out which must have sufficient size (e.g. by
477   * calling crypto_ahash_statesize()).
478   *
479   * Return: 0 if the export was successful; < 0 if an error occurred
480   */
481  int crypto_ahash_export(struct ahash_request *req, void *out);
482  
483  /**
484   * crypto_ahash_import() - import message digest state
485   * @req: reference to ahash_request handle the state is imported into
486   * @in: buffer holding the state
487   *
488   * This function imports the hash state into the ahash_request handle from the
489   * input buffer. That buffer should have been generated with the
490   * crypto_ahash_export function.
491   *
492   * Return: 0 if the import was successful; < 0 if an error occurred
493   */
494  int crypto_ahash_import(struct ahash_request *req, const void *in);
495  
496  /**
497   * crypto_ahash_init() - (re)initialize message digest handle
498   * @req: ahash_request handle that already is initialized with all necessary
499   *	 data using the ahash_request_* API functions
500   *
501   * The call (re-)initializes the message digest referenced by the ahash_request
502   * handle. Any potentially existing state created by previous operations is
503   * discarded.
504   *
505   * Return: see crypto_ahash_final()
506   */
507  int crypto_ahash_init(struct ahash_request *req);
508  
509  /**
510   * crypto_ahash_update() - add data to message digest for processing
511   * @req: ahash_request handle that was previously initialized with the
512   *	 crypto_ahash_init call.
513   *
514   * Updates the message digest state of the &ahash_request handle. The input data
515   * is pointed to by the scatter/gather list registered in the &ahash_request
516   * handle
517   *
518   * Return: see crypto_ahash_final()
519   */
520  int crypto_ahash_update(struct ahash_request *req);
521  
522  /**
523   * DOC: Asynchronous Hash Request Handle
524   *
525   * The &ahash_request data structure contains all pointers to data
526   * required for the asynchronous cipher operation. This includes the cipher
527   * handle (which can be used by multiple &ahash_request instances), pointer
528   * to plaintext and the message digest output buffer, asynchronous callback
529   * function, etc. It acts as a handle to the ahash_request_* API calls in a
530   * similar way as ahash handle to the crypto_ahash_* API calls.
531   */
532  
533  /**
534   * ahash_request_set_tfm() - update cipher handle reference in request
535   * @req: request handle to be modified
536   * @tfm: cipher handle that shall be added to the request handle
537   *
538   * Allow the caller to replace the existing ahash handle in the request
539   * data structure with a different one.
540   */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)541  static inline void ahash_request_set_tfm(struct ahash_request *req,
542  					 struct crypto_ahash *tfm)
543  {
544  	req->base.tfm = crypto_ahash_tfm(tfm);
545  }
546  
547  /**
548   * ahash_request_alloc() - allocate request data structure
549   * @tfm: cipher handle to be registered with the request
550   * @gfp: memory allocation flag that is handed to kmalloc by the API call.
551   *
552   * Allocate the request data structure that must be used with the ahash
553   * message digest API calls. During
554   * the allocation, the provided ahash handle
555   * is registered in the request data structure.
556   *
557   * Return: allocated request handle in case of success, or NULL if out of memory
558   */
ahash_request_alloc_noprof(struct crypto_ahash * tfm,gfp_t gfp)559  static inline struct ahash_request *ahash_request_alloc_noprof(
560  	struct crypto_ahash *tfm, gfp_t gfp)
561  {
562  	struct ahash_request *req;
563  
564  	req = kmalloc_noprof(sizeof(struct ahash_request) +
565  			     crypto_ahash_reqsize(tfm), gfp);
566  
567  	if (likely(req))
568  		ahash_request_set_tfm(req, tfm);
569  
570  	return req;
571  }
572  #define ahash_request_alloc(...)	alloc_hooks(ahash_request_alloc_noprof(__VA_ARGS__))
573  
574  /**
575   * ahash_request_free() - zeroize and free the request data structure
576   * @req: request data structure cipher handle to be freed
577   */
ahash_request_free(struct ahash_request * req)578  static inline void ahash_request_free(struct ahash_request *req)
579  {
580  	kfree_sensitive(req);
581  }
582  
ahash_request_zero(struct ahash_request * req)583  static inline void ahash_request_zero(struct ahash_request *req)
584  {
585  	memzero_explicit(req, sizeof(*req) +
586  			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
587  }
588  
ahash_request_cast(struct crypto_async_request * req)589  static inline struct ahash_request *ahash_request_cast(
590  	struct crypto_async_request *req)
591  {
592  	return container_of(req, struct ahash_request, base);
593  }
594  
595  /**
596   * ahash_request_set_callback() - set asynchronous callback function
597   * @req: request handle
598   * @flags: specify zero or an ORing of the flags
599   *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
600   *	   increase the wait queue beyond the initial maximum size;
601   *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
602   * @compl: callback function pointer to be registered with the request handle
603   * @data: The data pointer refers to memory that is not used by the kernel
604   *	  crypto API, but provided to the callback function for it to use. Here,
605   *	  the caller can provide a reference to memory the callback function can
606   *	  operate on. As the callback function is invoked asynchronously to the
607   *	  related functionality, it may need to access data structures of the
608   *	  related functionality which can be referenced using this pointer. The
609   *	  callback function can access the memory via the "data" field in the
610   *	  &crypto_async_request data structure provided to the callback function.
611   *
612   * This function allows setting the callback function that is triggered once
613   * the cipher operation completes.
614   *
615   * The callback function is registered with the &ahash_request handle and
616   * must comply with the following template::
617   *
618   *	void callback_function(struct crypto_async_request *req, int error)
619   */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)620  static inline void ahash_request_set_callback(struct ahash_request *req,
621  					      u32 flags,
622  					      crypto_completion_t compl,
623  					      void *data)
624  {
625  	req->base.complete = compl;
626  	req->base.data = data;
627  	req->base.flags = flags;
628  }
629  
630  /**
631   * ahash_request_set_crypt() - set data buffers
632   * @req: ahash_request handle to be updated
633   * @src: source scatter/gather list
634   * @result: buffer that is filled with the message digest -- the caller must
635   *	    ensure that the buffer has sufficient space by, for example, calling
636   *	    crypto_ahash_digestsize()
637   * @nbytes: number of bytes to process from the source scatter/gather list
638   *
639   * By using this call, the caller references the source scatter/gather list.
640   * The source scatter/gather list points to the data the message digest is to
641   * be calculated for.
642   */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)643  static inline void ahash_request_set_crypt(struct ahash_request *req,
644  					   struct scatterlist *src, u8 *result,
645  					   unsigned int nbytes)
646  {
647  	req->src = src;
648  	req->nbytes = nbytes;
649  	req->result = result;
650  }
651  
652  /**
653   * DOC: Synchronous Message Digest API
654   *
655   * The synchronous message digest API is used with the ciphers of type
656   * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
657   *
658   * The message digest API is able to maintain state information for the
659   * caller.
660   *
661   * The synchronous message digest API can store user-related context in its
662   * shash_desc request data structure.
663   */
664  
665  /**
666   * crypto_alloc_shash() - allocate message digest handle
667   * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
668   *	      message digest cipher
669   * @type: specifies the type of the cipher
670   * @mask: specifies the mask for the cipher
671   *
672   * Allocate a cipher handle for a message digest. The returned &struct
673   * crypto_shash is the cipher handle that is required for any subsequent
674   * API invocation for that message digest.
675   *
676   * Return: allocated cipher handle in case of success; IS_ERR() is true in case
677   *	   of an error, PTR_ERR() returns the error code.
678   */
679  struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
680  					u32 mask);
681  
682  struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
683  
684  int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
685  
crypto_shash_tfm(struct crypto_shash * tfm)686  static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
687  {
688  	return &tfm->base;
689  }
690  
691  /**
692   * crypto_free_shash() - zeroize and free the message digest handle
693   * @tfm: cipher handle to be freed
694   *
695   * If @tfm is a NULL or error pointer, this function does nothing.
696   */
crypto_free_shash(struct crypto_shash * tfm)697  static inline void crypto_free_shash(struct crypto_shash *tfm)
698  {
699  	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
700  }
701  
crypto_shash_alg_name(struct crypto_shash * tfm)702  static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
703  {
704  	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
705  }
706  
crypto_shash_driver_name(struct crypto_shash * tfm)707  static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
708  {
709  	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
710  }
711  
712  /**
713   * crypto_shash_blocksize() - obtain block size for cipher
714   * @tfm: cipher handle
715   *
716   * The block size for the message digest cipher referenced with the cipher
717   * handle is returned.
718   *
719   * Return: block size of cipher
720   */
crypto_shash_blocksize(struct crypto_shash * tfm)721  static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
722  {
723  	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
724  }
725  
__crypto_shash_alg(struct crypto_alg * alg)726  static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
727  {
728  	return container_of(alg, struct shash_alg, base);
729  }
730  
crypto_shash_alg(struct crypto_shash * tfm)731  static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
732  {
733  	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
734  }
735  
736  /**
737   * crypto_shash_digestsize() - obtain message digest size
738   * @tfm: cipher handle
739   *
740   * The size for the message digest created by the message digest cipher
741   * referenced with the cipher handle is returned.
742   *
743   * Return: digest size of cipher
744   */
crypto_shash_digestsize(struct crypto_shash * tfm)745  static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
746  {
747  	return crypto_shash_alg(tfm)->digestsize;
748  }
749  
crypto_shash_statesize(struct crypto_shash * tfm)750  static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
751  {
752  	return crypto_shash_alg(tfm)->statesize;
753  }
754  
crypto_shash_get_flags(struct crypto_shash * tfm)755  static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
756  {
757  	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
758  }
759  
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)760  static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
761  {
762  	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
763  }
764  
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)765  static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
766  {
767  	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
768  }
769  
770  /**
771   * crypto_shash_descsize() - obtain the operational state size
772   * @tfm: cipher handle
773   *
774   * The size of the operational state the cipher needs during operation is
775   * returned for the hash referenced with the cipher handle. This size is
776   * required to calculate the memory requirements to allow the caller allocating
777   * sufficient memory for operational state.
778   *
779   * The operational state is defined with struct shash_desc where the size of
780   * that data structure is to be calculated as
781   * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
782   *
783   * Return: size of the operational state
784   */
crypto_shash_descsize(struct crypto_shash * tfm)785  static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
786  {
787  	return tfm->descsize;
788  }
789  
shash_desc_ctx(struct shash_desc * desc)790  static inline void *shash_desc_ctx(struct shash_desc *desc)
791  {
792  	return desc->__ctx;
793  }
794  
795  /**
796   * crypto_shash_setkey() - set key for message digest
797   * @tfm: cipher handle
798   * @key: buffer holding the key
799   * @keylen: length of the key in bytes
800   *
801   * The caller provided key is set for the keyed message digest cipher. The
802   * cipher handle must point to a keyed message digest cipher in order for this
803   * function to succeed.
804   *
805   * Context: Any context.
806   * Return: 0 if the setting of the key was successful; < 0 if an error occurred
807   */
808  int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
809  			unsigned int keylen);
810  
811  /**
812   * crypto_shash_digest() - calculate message digest for buffer
813   * @desc: see crypto_shash_final()
814   * @data: see crypto_shash_update()
815   * @len: see crypto_shash_update()
816   * @out: see crypto_shash_final()
817   *
818   * This function is a "short-hand" for the function calls of crypto_shash_init,
819   * crypto_shash_update and crypto_shash_final. The parameters have the same
820   * meaning as discussed for those separate three functions.
821   *
822   * Context: Any context.
823   * Return: 0 if the message digest creation was successful; < 0 if an error
824   *	   occurred
825   */
826  int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
827  			unsigned int len, u8 *out);
828  
829  /**
830   * crypto_shash_tfm_digest() - calculate message digest for buffer
831   * @tfm: hash transformation object
832   * @data: see crypto_shash_update()
833   * @len: see crypto_shash_update()
834   * @out: see crypto_shash_final()
835   *
836   * This is a simplified version of crypto_shash_digest() for users who don't
837   * want to allocate their own hash descriptor (shash_desc).  Instead,
838   * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
839   * directly, and it allocates a hash descriptor on the stack internally.
840   * Note that this stack allocation may be fairly large.
841   *
842   * Context: Any context.
843   * Return: 0 on success; < 0 if an error occurred.
844   */
845  int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
846  			    unsigned int len, u8 *out);
847  
848  /**
849   * crypto_shash_export() - extract operational state for message digest
850   * @desc: reference to the operational state handle whose state is exported
851   * @out: output buffer of sufficient size that can hold the hash state
852   *
853   * This function exports the hash state of the operational state handle into the
854   * caller-allocated output buffer out which must have sufficient size (e.g. by
855   * calling crypto_shash_descsize).
856   *
857   * Context: Any context.
858   * Return: 0 if the export creation was successful; < 0 if an error occurred
859   */
860  int crypto_shash_export(struct shash_desc *desc, void *out);
861  
862  /**
863   * crypto_shash_import() - import operational state
864   * @desc: reference to the operational state handle the state imported into
865   * @in: buffer holding the state
866   *
867   * This function imports the hash state into the operational state handle from
868   * the input buffer. That buffer should have been generated with the
869   * crypto_ahash_export function.
870   *
871   * Context: Any context.
872   * Return: 0 if the import was successful; < 0 if an error occurred
873   */
874  int crypto_shash_import(struct shash_desc *desc, const void *in);
875  
876  /**
877   * crypto_shash_init() - (re)initialize message digest
878   * @desc: operational state handle that is already filled
879   *
880   * The call (re-)initializes the message digest referenced by the
881   * operational state handle. Any potentially existing state created by
882   * previous operations is discarded.
883   *
884   * Context: Any context.
885   * Return: 0 if the message digest initialization was successful; < 0 if an
886   *	   error occurred
887   */
crypto_shash_init(struct shash_desc * desc)888  static inline int crypto_shash_init(struct shash_desc *desc)
889  {
890  	struct crypto_shash *tfm = desc->tfm;
891  
892  	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
893  		return -ENOKEY;
894  
895  	return crypto_shash_alg(tfm)->init(desc);
896  }
897  
898  /**
899   * crypto_shash_update() - add data to message digest for processing
900   * @desc: operational state handle that is already initialized
901   * @data: input data to be added to the message digest
902   * @len: length of the input data
903   *
904   * Updates the message digest state of the operational state handle.
905   *
906   * Context: Any context.
907   * Return: 0 if the message digest update was successful; < 0 if an error
908   *	   occurred
909   */
910  int crypto_shash_update(struct shash_desc *desc, const u8 *data,
911  			unsigned int len);
912  
913  /**
914   * crypto_shash_final() - calculate message digest
915   * @desc: operational state handle that is already filled with data
916   * @out: output buffer filled with the message digest
917   *
918   * Finalize the message digest operation and create the message digest
919   * based on all data added to the cipher handle. The message digest is placed
920   * into the output buffer. The caller must ensure that the output buffer is
921   * large enough by using crypto_shash_digestsize.
922   *
923   * Context: Any context.
924   * Return: 0 if the message digest creation was successful; < 0 if an error
925   *	   occurred
926   */
927  int crypto_shash_final(struct shash_desc *desc, u8 *out);
928  
929  /**
930   * crypto_shash_finup() - calculate message digest of buffer
931   * @desc: see crypto_shash_final()
932   * @data: see crypto_shash_update()
933   * @len: see crypto_shash_update()
934   * @out: see crypto_shash_final()
935   *
936   * This function is a "short-hand" for the function calls of
937   * crypto_shash_update and crypto_shash_final. The parameters have the same
938   * meaning as discussed for those separate functions.
939   *
940   * Context: Any context.
941   * Return: 0 if the message digest creation was successful; < 0 if an error
942   *	   occurred
943   */
944  int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
945  		       unsigned int len, u8 *out);
946  
shash_desc_zero(struct shash_desc * desc)947  static inline void shash_desc_zero(struct shash_desc *desc)
948  {
949  	memzero_explicit(desc,
950  			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
951  }
952  
953  #endif	/* _CRYPTO_HASH_H */
954