1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * Linux Socket Filter Data Structures
4   */
5  #ifndef __LINUX_FILTER_H__
6  #define __LINUX_FILTER_H__
7  
8  #include <linux/atomic.h>
9  #include <linux/bpf.h>
10  #include <linux/refcount.h>
11  #include <linux/compat.h>
12  #include <linux/skbuff.h>
13  #include <linux/linkage.h>
14  #include <linux/printk.h>
15  #include <linux/workqueue.h>
16  #include <linux/sched.h>
17  #include <linux/sched/clock.h>
18  #include <linux/capability.h>
19  #include <linux/set_memory.h>
20  #include <linux/kallsyms.h>
21  #include <linux/if_vlan.h>
22  #include <linux/vmalloc.h>
23  #include <linux/sockptr.h>
24  #include <crypto/sha1.h>
25  #include <linux/u64_stats_sync.h>
26  
27  #include <net/sch_generic.h>
28  
29  #include <asm/byteorder.h>
30  #include <uapi/linux/filter.h>
31  
32  struct sk_buff;
33  struct sock;
34  struct seccomp_data;
35  struct bpf_prog_aux;
36  struct xdp_rxq_info;
37  struct xdp_buff;
38  struct sock_reuseport;
39  struct ctl_table;
40  struct ctl_table_header;
41  
42  /* ArgX, context and stack frame pointer register positions. Note,
43   * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44   * calls in BPF_CALL instruction.
45   */
46  #define BPF_REG_ARG1	BPF_REG_1
47  #define BPF_REG_ARG2	BPF_REG_2
48  #define BPF_REG_ARG3	BPF_REG_3
49  #define BPF_REG_ARG4	BPF_REG_4
50  #define BPF_REG_ARG5	BPF_REG_5
51  #define BPF_REG_CTX	BPF_REG_6
52  #define BPF_REG_FP	BPF_REG_10
53  
54  /* Additional register mappings for converted user programs. */
55  #define BPF_REG_A	BPF_REG_0
56  #define BPF_REG_X	BPF_REG_7
57  #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58  #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59  #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60  
61  /* Kernel hidden auxiliary/helper register. */
62  #define BPF_REG_AX		MAX_BPF_REG
63  #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64  #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65  
66  /* unused opcode to mark special call to bpf_tail_call() helper */
67  #define BPF_TAIL_CALL	0xf0
68  
69  /* unused opcode to mark special load instruction. Same as BPF_ABS */
70  #define BPF_PROBE_MEM	0x20
71  
72  /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73  #define BPF_PROBE_MEMSX	0x40
74  
75  /* unused opcode to mark special load instruction. Same as BPF_MSH */
76  #define BPF_PROBE_MEM32	0xa0
77  
78  /* unused opcode to mark special atomic instruction */
79  #define BPF_PROBE_ATOMIC 0xe0
80  
81  /* unused opcode to mark call to interpreter with arguments */
82  #define BPF_CALL_ARGS	0xe0
83  
84  /* unused opcode to mark speculation barrier for mitigating
85   * Speculative Store Bypass
86   */
87  #define BPF_NOSPEC	0xc0
88  
89  /* As per nm, we expose JITed images as text (code) section for
90   * kallsyms. That way, tools like perf can find it to match
91   * addresses.
92   */
93  #define BPF_SYM_ELF_TYPE	't'
94  
95  /* BPF program can access up to 512 bytes of stack space. */
96  #define MAX_BPF_STACK	512
97  
98  /* Helper macros for filter block array initializers. */
99  
100  /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
101  
102  #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
103  	((struct bpf_insn) {					\
104  		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
105  		.dst_reg = DST,					\
106  		.src_reg = SRC,					\
107  		.off   = OFF,					\
108  		.imm   = 0 })
109  
110  #define BPF_ALU64_REG(OP, DST, SRC)				\
111  	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
112  
113  #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
114  	((struct bpf_insn) {					\
115  		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
116  		.dst_reg = DST,					\
117  		.src_reg = SRC,					\
118  		.off   = OFF,					\
119  		.imm   = 0 })
120  
121  #define BPF_ALU32_REG(OP, DST, SRC)				\
122  	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
123  
124  /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
125  
126  #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
127  	((struct bpf_insn) {					\
128  		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
129  		.dst_reg = DST,					\
130  		.src_reg = 0,					\
131  		.off   = OFF,					\
132  		.imm   = IMM })
133  #define BPF_ALU64_IMM(OP, DST, IMM)				\
134  	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
135  
136  #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
137  	((struct bpf_insn) {					\
138  		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
139  		.dst_reg = DST,					\
140  		.src_reg = 0,					\
141  		.off   = OFF,					\
142  		.imm   = IMM })
143  #define BPF_ALU32_IMM(OP, DST, IMM)				\
144  	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
145  
146  /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
147  
148  #define BPF_ENDIAN(TYPE, DST, LEN)				\
149  	((struct bpf_insn) {					\
150  		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
151  		.dst_reg = DST,					\
152  		.src_reg = 0,					\
153  		.off   = 0,					\
154  		.imm   = LEN })
155  
156  /* Byte Swap, bswap16/32/64 */
157  
158  #define BPF_BSWAP(DST, LEN)					\
159  	((struct bpf_insn) {					\
160  		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
161  		.dst_reg = DST,					\
162  		.src_reg = 0,					\
163  		.off   = 0,					\
164  		.imm   = LEN })
165  
166  /* Short form of mov, dst_reg = src_reg */
167  
168  #define BPF_MOV64_REG(DST, SRC)					\
169  	((struct bpf_insn) {					\
170  		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
171  		.dst_reg = DST,					\
172  		.src_reg = SRC,					\
173  		.off   = 0,					\
174  		.imm   = 0 })
175  
176  #define BPF_MOV32_REG(DST, SRC)					\
177  	((struct bpf_insn) {					\
178  		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
179  		.dst_reg = DST,					\
180  		.src_reg = SRC,					\
181  		.off   = 0,					\
182  		.imm   = 0 })
183  
184  /* Special (internal-only) form of mov, used to resolve per-CPU addrs:
185   * dst_reg = src_reg + <percpu_base_off>
186   * BPF_ADDR_PERCPU is used as a special insn->off value.
187   */
188  #define BPF_ADDR_PERCPU	(-1)
189  
190  #define BPF_MOV64_PERCPU_REG(DST, SRC)				\
191  	((struct bpf_insn) {					\
192  		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
193  		.dst_reg = DST,					\
194  		.src_reg = SRC,					\
195  		.off   = BPF_ADDR_PERCPU,			\
196  		.imm   = 0 })
197  
insn_is_mov_percpu_addr(const struct bpf_insn * insn)198  static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
199  {
200  	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
201  }
202  
203  /* Short form of mov, dst_reg = imm32 */
204  
205  #define BPF_MOV64_IMM(DST, IMM)					\
206  	((struct bpf_insn) {					\
207  		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
208  		.dst_reg = DST,					\
209  		.src_reg = 0,					\
210  		.off   = 0,					\
211  		.imm   = IMM })
212  
213  #define BPF_MOV32_IMM(DST, IMM)					\
214  	((struct bpf_insn) {					\
215  		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
216  		.dst_reg = DST,					\
217  		.src_reg = 0,					\
218  		.off   = 0,					\
219  		.imm   = IMM })
220  
221  /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
222  
223  #define BPF_MOVSX64_REG(DST, SRC, OFF)				\
224  	((struct bpf_insn) {					\
225  		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
226  		.dst_reg = DST,					\
227  		.src_reg = SRC,					\
228  		.off   = OFF,					\
229  		.imm   = 0 })
230  
231  #define BPF_MOVSX32_REG(DST, SRC, OFF)				\
232  	((struct bpf_insn) {					\
233  		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
234  		.dst_reg = DST,					\
235  		.src_reg = SRC,					\
236  		.off   = OFF,					\
237  		.imm   = 0 })
238  
239  /* Special form of mov32, used for doing explicit zero extension on dst. */
240  #define BPF_ZEXT_REG(DST)					\
241  	((struct bpf_insn) {					\
242  		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
243  		.dst_reg = DST,					\
244  		.src_reg = DST,					\
245  		.off   = 0,					\
246  		.imm   = 1 })
247  
insn_is_zext(const struct bpf_insn * insn)248  static inline bool insn_is_zext(const struct bpf_insn *insn)
249  {
250  	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
251  }
252  
253  /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
254   * to pointers in user vma.
255   */
insn_is_cast_user(const struct bpf_insn * insn)256  static inline bool insn_is_cast_user(const struct bpf_insn *insn)
257  {
258  	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
259  			      insn->off == BPF_ADDR_SPACE_CAST &&
260  			      insn->imm == 1U << 16;
261  }
262  
263  /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
264  #define BPF_LD_IMM64(DST, IMM)					\
265  	BPF_LD_IMM64_RAW(DST, 0, IMM)
266  
267  #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
268  	((struct bpf_insn) {					\
269  		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
270  		.dst_reg = DST,					\
271  		.src_reg = SRC,					\
272  		.off   = 0,					\
273  		.imm   = (__u32) (IMM) }),			\
274  	((struct bpf_insn) {					\
275  		.code  = 0, /* zero is reserved opcode */	\
276  		.dst_reg = 0,					\
277  		.src_reg = 0,					\
278  		.off   = 0,					\
279  		.imm   = ((__u64) (IMM)) >> 32 })
280  
281  /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
282  #define BPF_LD_MAP_FD(DST, MAP_FD)				\
283  	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
284  
285  /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
286  
287  #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
288  	((struct bpf_insn) {					\
289  		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
290  		.dst_reg = DST,					\
291  		.src_reg = SRC,					\
292  		.off   = 0,					\
293  		.imm   = IMM })
294  
295  #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
296  	((struct bpf_insn) {					\
297  		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
298  		.dst_reg = DST,					\
299  		.src_reg = SRC,					\
300  		.off   = 0,					\
301  		.imm   = IMM })
302  
303  /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
304  
305  #define BPF_LD_ABS(SIZE, IMM)					\
306  	((struct bpf_insn) {					\
307  		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
308  		.dst_reg = 0,					\
309  		.src_reg = 0,					\
310  		.off   = 0,					\
311  		.imm   = IMM })
312  
313  /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
314  
315  #define BPF_LD_IND(SIZE, SRC, IMM)				\
316  	((struct bpf_insn) {					\
317  		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
318  		.dst_reg = 0,					\
319  		.src_reg = SRC,					\
320  		.off   = 0,					\
321  		.imm   = IMM })
322  
323  /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
324  
325  #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
326  	((struct bpf_insn) {					\
327  		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
328  		.dst_reg = DST,					\
329  		.src_reg = SRC,					\
330  		.off   = OFF,					\
331  		.imm   = 0 })
332  
333  /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
334  
335  #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
336  	((struct bpf_insn) {					\
337  		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
338  		.dst_reg = DST,					\
339  		.src_reg = SRC,					\
340  		.off   = OFF,					\
341  		.imm   = 0 })
342  
343  /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
344  
345  #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
346  	((struct bpf_insn) {					\
347  		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
348  		.dst_reg = DST,					\
349  		.src_reg = SRC,					\
350  		.off   = OFF,					\
351  		.imm   = 0 })
352  
353  
354  /*
355   * Atomic operations:
356   *
357   *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
358   *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
359   *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
360   *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
361   *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
362   *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
363   *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
364   *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
365   *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
366   *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
367   */
368  
369  #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
370  	((struct bpf_insn) {					\
371  		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
372  		.dst_reg = DST,					\
373  		.src_reg = SRC,					\
374  		.off   = OFF,					\
375  		.imm   = OP })
376  
377  /* Legacy alias */
378  #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
379  
380  /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
381  
382  #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
383  	((struct bpf_insn) {					\
384  		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
385  		.dst_reg = DST,					\
386  		.src_reg = 0,					\
387  		.off   = OFF,					\
388  		.imm   = IMM })
389  
390  /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
391  
392  #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
393  	((struct bpf_insn) {					\
394  		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
395  		.dst_reg = DST,					\
396  		.src_reg = SRC,					\
397  		.off   = OFF,					\
398  		.imm   = 0 })
399  
400  /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
401  
402  #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
403  	((struct bpf_insn) {					\
404  		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
405  		.dst_reg = DST,					\
406  		.src_reg = 0,					\
407  		.off   = OFF,					\
408  		.imm   = IMM })
409  
410  /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
411  
412  #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
413  	((struct bpf_insn) {					\
414  		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
415  		.dst_reg = DST,					\
416  		.src_reg = SRC,					\
417  		.off   = OFF,					\
418  		.imm   = 0 })
419  
420  /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
421  
422  #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
423  	((struct bpf_insn) {					\
424  		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
425  		.dst_reg = DST,					\
426  		.src_reg = 0,					\
427  		.off   = OFF,					\
428  		.imm   = IMM })
429  
430  /* Unconditional jumps, goto pc + off16 */
431  
432  #define BPF_JMP_A(OFF)						\
433  	((struct bpf_insn) {					\
434  		.code  = BPF_JMP | BPF_JA,			\
435  		.dst_reg = 0,					\
436  		.src_reg = 0,					\
437  		.off   = OFF,					\
438  		.imm   = 0 })
439  
440  /* Unconditional jumps, gotol pc + imm32 */
441  
442  #define BPF_JMP32_A(IMM)					\
443  	((struct bpf_insn) {					\
444  		.code  = BPF_JMP32 | BPF_JA,			\
445  		.dst_reg = 0,					\
446  		.src_reg = 0,					\
447  		.off   = 0,					\
448  		.imm   = IMM })
449  
450  /* Relative call */
451  
452  #define BPF_CALL_REL(TGT)					\
453  	((struct bpf_insn) {					\
454  		.code  = BPF_JMP | BPF_CALL,			\
455  		.dst_reg = 0,					\
456  		.src_reg = BPF_PSEUDO_CALL,			\
457  		.off   = 0,					\
458  		.imm   = TGT })
459  
460  /* Convert function address to BPF immediate */
461  
462  #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
463  
464  #define BPF_EMIT_CALL(FUNC)					\
465  	((struct bpf_insn) {					\
466  		.code  = BPF_JMP | BPF_CALL,			\
467  		.dst_reg = 0,					\
468  		.src_reg = 0,					\
469  		.off   = 0,					\
470  		.imm   = BPF_CALL_IMM(FUNC) })
471  
472  /* Raw code statement block */
473  
474  #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
475  	((struct bpf_insn) {					\
476  		.code  = CODE,					\
477  		.dst_reg = DST,					\
478  		.src_reg = SRC,					\
479  		.off   = OFF,					\
480  		.imm   = IMM })
481  
482  /* Program exit */
483  
484  #define BPF_EXIT_INSN()						\
485  	((struct bpf_insn) {					\
486  		.code  = BPF_JMP | BPF_EXIT,			\
487  		.dst_reg = 0,					\
488  		.src_reg = 0,					\
489  		.off   = 0,					\
490  		.imm   = 0 })
491  
492  /* Speculation barrier */
493  
494  #define BPF_ST_NOSPEC()						\
495  	((struct bpf_insn) {					\
496  		.code  = BPF_ST | BPF_NOSPEC,			\
497  		.dst_reg = 0,					\
498  		.src_reg = 0,					\
499  		.off   = 0,					\
500  		.imm   = 0 })
501  
502  /* Internal classic blocks for direct assignment */
503  
504  #define __BPF_STMT(CODE, K)					\
505  	((struct sock_filter) BPF_STMT(CODE, K))
506  
507  #define __BPF_JUMP(CODE, K, JT, JF)				\
508  	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
509  
510  #define bytes_to_bpf_size(bytes)				\
511  ({								\
512  	int bpf_size = -EINVAL;					\
513  								\
514  	if (bytes == sizeof(u8))				\
515  		bpf_size = BPF_B;				\
516  	else if (bytes == sizeof(u16))				\
517  		bpf_size = BPF_H;				\
518  	else if (bytes == sizeof(u32))				\
519  		bpf_size = BPF_W;				\
520  	else if (bytes == sizeof(u64))				\
521  		bpf_size = BPF_DW;				\
522  								\
523  	bpf_size;						\
524  })
525  
526  #define bpf_size_to_bytes(bpf_size)				\
527  ({								\
528  	int bytes = -EINVAL;					\
529  								\
530  	if (bpf_size == BPF_B)					\
531  		bytes = sizeof(u8);				\
532  	else if (bpf_size == BPF_H)				\
533  		bytes = sizeof(u16);				\
534  	else if (bpf_size == BPF_W)				\
535  		bytes = sizeof(u32);				\
536  	else if (bpf_size == BPF_DW)				\
537  		bytes = sizeof(u64);				\
538  								\
539  	bytes;							\
540  })
541  
542  #define BPF_SIZEOF(type)					\
543  	({							\
544  		const int __size = bytes_to_bpf_size(sizeof(type)); \
545  		BUILD_BUG_ON(__size < 0);			\
546  		__size;						\
547  	})
548  
549  #define BPF_FIELD_SIZEOF(type, field)				\
550  	({							\
551  		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
552  		BUILD_BUG_ON(__size < 0);			\
553  		__size;						\
554  	})
555  
556  #define BPF_LDST_BYTES(insn)					\
557  	({							\
558  		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
559  		WARN_ON(__size < 0);				\
560  		__size;						\
561  	})
562  
563  #define __BPF_MAP_0(m, v, ...) v
564  #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
565  #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
566  #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
567  #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
568  #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
569  
570  #define __BPF_REG_0(...) __BPF_PAD(5)
571  #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
572  #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
573  #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
574  #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
575  #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
576  
577  #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
578  #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
579  
580  #define __BPF_CAST(t, a)						       \
581  	(__force t)							       \
582  	(__force							       \
583  	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
584  				      (unsigned long)0, (t)0))) a
585  #define __BPF_V void
586  #define __BPF_N
587  
588  #define __BPF_DECL_ARGS(t, a) t   a
589  #define __BPF_DECL_REGS(t, a) u64 a
590  
591  #define __BPF_PAD(n)							       \
592  	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
593  		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
594  
595  #define BPF_CALL_x(x, attr, name, ...)					       \
596  	static __always_inline						       \
597  	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
598  	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
599  	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
600  	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
601  	{								       \
602  		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
603  	}								       \
604  	static __always_inline						       \
605  	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
606  
607  #define __NOATTR
608  #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
609  #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
610  #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
611  #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
612  #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
613  #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
614  
615  #define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)
616  
617  #define bpf_ctx_range(TYPE, MEMBER)						\
618  	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
619  #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
620  	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
621  #if BITS_PER_LONG == 64
622  # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
623  	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
624  #else
625  # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
626  	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
627  #endif /* BITS_PER_LONG == 64 */
628  
629  #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
630  	({									\
631  		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
632  		*(PTR_SIZE) = (SIZE);						\
633  		offsetof(TYPE, MEMBER);						\
634  	})
635  
636  /* A struct sock_filter is architecture independent. */
637  struct compat_sock_fprog {
638  	u16		len;
639  	compat_uptr_t	filter;	/* struct sock_filter * */
640  };
641  
642  struct sock_fprog_kern {
643  	u16			len;
644  	struct sock_filter	*filter;
645  };
646  
647  /* Some arches need doubleword alignment for their instructions and/or data */
648  #define BPF_IMAGE_ALIGNMENT 8
649  
650  struct bpf_binary_header {
651  	u32 size;
652  	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
653  };
654  
655  struct bpf_prog_stats {
656  	u64_stats_t cnt;
657  	u64_stats_t nsecs;
658  	u64_stats_t misses;
659  	struct u64_stats_sync syncp;
660  } __aligned(2 * sizeof(u64));
661  
662  struct sk_filter {
663  	refcount_t	refcnt;
664  	struct rcu_head	rcu;
665  	struct bpf_prog	*prog;
666  };
667  
668  DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
669  
670  extern struct mutex nf_conn_btf_access_lock;
671  extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
672  				     const struct bpf_reg_state *reg,
673  				     int off, int size);
674  
675  typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
676  					  const struct bpf_insn *insnsi,
677  					  unsigned int (*bpf_func)(const void *,
678  								   const struct bpf_insn *));
679  
__bpf_prog_run(const struct bpf_prog * prog,const void * ctx,bpf_dispatcher_fn dfunc)680  static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
681  					  const void *ctx,
682  					  bpf_dispatcher_fn dfunc)
683  {
684  	u32 ret;
685  
686  	cant_migrate();
687  	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
688  		struct bpf_prog_stats *stats;
689  		u64 duration, start = sched_clock();
690  		unsigned long flags;
691  
692  		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
693  
694  		duration = sched_clock() - start;
695  		stats = this_cpu_ptr(prog->stats);
696  		flags = u64_stats_update_begin_irqsave(&stats->syncp);
697  		u64_stats_inc(&stats->cnt);
698  		u64_stats_add(&stats->nsecs, duration);
699  		u64_stats_update_end_irqrestore(&stats->syncp, flags);
700  	} else {
701  		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
702  	}
703  	return ret;
704  }
705  
bpf_prog_run(const struct bpf_prog * prog,const void * ctx)706  static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
707  {
708  	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
709  }
710  
711  /*
712   * Use in preemptible and therefore migratable context to make sure that
713   * the execution of the BPF program runs on one CPU.
714   *
715   * This uses migrate_disable/enable() explicitly to document that the
716   * invocation of a BPF program does not require reentrancy protection
717   * against a BPF program which is invoked from a preempting task.
718   */
bpf_prog_run_pin_on_cpu(const struct bpf_prog * prog,const void * ctx)719  static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
720  					  const void *ctx)
721  {
722  	u32 ret;
723  
724  	migrate_disable();
725  	ret = bpf_prog_run(prog, ctx);
726  	migrate_enable();
727  	return ret;
728  }
729  
730  #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
731  
732  struct bpf_skb_data_end {
733  	struct qdisc_skb_cb qdisc_cb;
734  	void *data_meta;
735  	void *data_end;
736  };
737  
738  struct bpf_nh_params {
739  	u32 nh_family;
740  	union {
741  		u32 ipv4_nh;
742  		struct in6_addr ipv6_nh;
743  	};
744  };
745  
746  /* flags for bpf_redirect_info kern_flags */
747  #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
748  #define BPF_RI_F_RI_INIT	BIT(1)
749  #define BPF_RI_F_CPU_MAP_INIT	BIT(2)
750  #define BPF_RI_F_DEV_MAP_INIT	BIT(3)
751  #define BPF_RI_F_XSK_MAP_INIT	BIT(4)
752  
753  struct bpf_redirect_info {
754  	u64 tgt_index;
755  	void *tgt_value;
756  	struct bpf_map *map;
757  	u32 flags;
758  	u32 map_id;
759  	enum bpf_map_type map_type;
760  	struct bpf_nh_params nh;
761  	u32 kern_flags;
762  };
763  
764  struct bpf_net_context {
765  	struct bpf_redirect_info ri;
766  	struct list_head cpu_map_flush_list;
767  	struct list_head dev_map_flush_list;
768  	struct list_head xskmap_map_flush_list;
769  };
770  
bpf_net_ctx_set(struct bpf_net_context * bpf_net_ctx)771  static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx)
772  {
773  	struct task_struct *tsk = current;
774  
775  	if (tsk->bpf_net_context != NULL)
776  		return NULL;
777  	bpf_net_ctx->ri.kern_flags = 0;
778  
779  	tsk->bpf_net_context = bpf_net_ctx;
780  	return bpf_net_ctx;
781  }
782  
bpf_net_ctx_clear(struct bpf_net_context * bpf_net_ctx)783  static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx)
784  {
785  	if (bpf_net_ctx)
786  		current->bpf_net_context = NULL;
787  }
788  
bpf_net_ctx_get(void)789  static inline struct bpf_net_context *bpf_net_ctx_get(void)
790  {
791  	return current->bpf_net_context;
792  }
793  
bpf_net_ctx_get_ri(void)794  static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void)
795  {
796  	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
797  
798  	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) {
799  		memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh));
800  		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT;
801  	}
802  
803  	return &bpf_net_ctx->ri;
804  }
805  
bpf_net_ctx_get_cpu_map_flush_list(void)806  static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void)
807  {
808  	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
809  
810  	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) {
811  		INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list);
812  		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT;
813  	}
814  
815  	return &bpf_net_ctx->cpu_map_flush_list;
816  }
817  
bpf_net_ctx_get_dev_flush_list(void)818  static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void)
819  {
820  	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
821  
822  	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) {
823  		INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list);
824  		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT;
825  	}
826  
827  	return &bpf_net_ctx->dev_map_flush_list;
828  }
829  
bpf_net_ctx_get_xskmap_flush_list(void)830  static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void)
831  {
832  	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
833  
834  	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) {
835  		INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list);
836  		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT;
837  	}
838  
839  	return &bpf_net_ctx->xskmap_map_flush_list;
840  }
841  
bpf_net_ctx_get_all_used_flush_lists(struct list_head ** lh_map,struct list_head ** lh_dev,struct list_head ** lh_xsk)842  static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map,
843  							struct list_head **lh_dev,
844  							struct list_head **lh_xsk)
845  {
846  	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
847  	u32 kern_flags = bpf_net_ctx->ri.kern_flags;
848  	struct list_head *lh;
849  
850  	*lh_map = *lh_dev = *lh_xsk = NULL;
851  
852  	if (!IS_ENABLED(CONFIG_BPF_SYSCALL))
853  		return;
854  
855  	lh = &bpf_net_ctx->dev_map_flush_list;
856  	if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh))
857  		*lh_dev = lh;
858  
859  	lh = &bpf_net_ctx->cpu_map_flush_list;
860  	if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh))
861  		*lh_map = lh;
862  
863  	lh = &bpf_net_ctx->xskmap_map_flush_list;
864  	if (IS_ENABLED(CONFIG_XDP_SOCKETS) &&
865  	    kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh))
866  		*lh_xsk = lh;
867  }
868  
869  /* Compute the linear packet data range [data, data_end) which
870   * will be accessed by various program types (cls_bpf, act_bpf,
871   * lwt, ...). Subsystems allowing direct data access must (!)
872   * ensure that cb[] area can be written to when BPF program is
873   * invoked (otherwise cb[] save/restore is necessary).
874   */
bpf_compute_data_pointers(struct sk_buff * skb)875  static inline void bpf_compute_data_pointers(struct sk_buff *skb)
876  {
877  	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
878  
879  	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
880  	cb->data_meta = skb->data - skb_metadata_len(skb);
881  	cb->data_end  = skb->data + skb_headlen(skb);
882  }
883  
884  /* Similar to bpf_compute_data_pointers(), except that save orginal
885   * data in cb->data and cb->meta_data for restore.
886   */
bpf_compute_and_save_data_end(struct sk_buff * skb,void ** saved_data_end)887  static inline void bpf_compute_and_save_data_end(
888  	struct sk_buff *skb, void **saved_data_end)
889  {
890  	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
891  
892  	*saved_data_end = cb->data_end;
893  	cb->data_end  = skb->data + skb_headlen(skb);
894  }
895  
896  /* Restore data saved by bpf_compute_and_save_data_end(). */
bpf_restore_data_end(struct sk_buff * skb,void * saved_data_end)897  static inline void bpf_restore_data_end(
898  	struct sk_buff *skb, void *saved_data_end)
899  {
900  	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
901  
902  	cb->data_end = saved_data_end;
903  }
904  
bpf_skb_cb(const struct sk_buff * skb)905  static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
906  {
907  	/* eBPF programs may read/write skb->cb[] area to transfer meta
908  	 * data between tail calls. Since this also needs to work with
909  	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
910  	 *
911  	 * In some socket filter cases, the cb unfortunately needs to be
912  	 * saved/restored so that protocol specific skb->cb[] data won't
913  	 * be lost. In any case, due to unpriviledged eBPF programs
914  	 * attached to sockets, we need to clear the bpf_skb_cb() area
915  	 * to not leak previous contents to user space.
916  	 */
917  	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
918  	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
919  		     sizeof_field(struct qdisc_skb_cb, data));
920  
921  	return qdisc_skb_cb(skb)->data;
922  }
923  
924  /* Must be invoked with migration disabled */
__bpf_prog_run_save_cb(const struct bpf_prog * prog,const void * ctx)925  static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
926  					 const void *ctx)
927  {
928  	const struct sk_buff *skb = ctx;
929  	u8 *cb_data = bpf_skb_cb(skb);
930  	u8 cb_saved[BPF_SKB_CB_LEN];
931  	u32 res;
932  
933  	if (unlikely(prog->cb_access)) {
934  		memcpy(cb_saved, cb_data, sizeof(cb_saved));
935  		memset(cb_data, 0, sizeof(cb_saved));
936  	}
937  
938  	res = bpf_prog_run(prog, skb);
939  
940  	if (unlikely(prog->cb_access))
941  		memcpy(cb_data, cb_saved, sizeof(cb_saved));
942  
943  	return res;
944  }
945  
bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)946  static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
947  				       struct sk_buff *skb)
948  {
949  	u32 res;
950  
951  	migrate_disable();
952  	res = __bpf_prog_run_save_cb(prog, skb);
953  	migrate_enable();
954  	return res;
955  }
956  
bpf_prog_run_clear_cb(const struct bpf_prog * prog,struct sk_buff * skb)957  static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
958  					struct sk_buff *skb)
959  {
960  	u8 *cb_data = bpf_skb_cb(skb);
961  	u32 res;
962  
963  	if (unlikely(prog->cb_access))
964  		memset(cb_data, 0, BPF_SKB_CB_LEN);
965  
966  	res = bpf_prog_run_pin_on_cpu(prog, skb);
967  	return res;
968  }
969  
970  DECLARE_BPF_DISPATCHER(xdp)
971  
972  DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
973  
974  u32 xdp_master_redirect(struct xdp_buff *xdp);
975  
976  void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
977  
bpf_prog_insn_size(const struct bpf_prog * prog)978  static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
979  {
980  	return prog->len * sizeof(struct bpf_insn);
981  }
982  
bpf_prog_tag_scratch_size(const struct bpf_prog * prog)983  static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
984  {
985  	return round_up(bpf_prog_insn_size(prog) +
986  			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
987  }
988  
bpf_prog_size(unsigned int proglen)989  static inline unsigned int bpf_prog_size(unsigned int proglen)
990  {
991  	return max(sizeof(struct bpf_prog),
992  		   offsetof(struct bpf_prog, insns[proglen]));
993  }
994  
bpf_prog_was_classic(const struct bpf_prog * prog)995  static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
996  {
997  	/* When classic BPF programs have been loaded and the arch
998  	 * does not have a classic BPF JIT (anymore), they have been
999  	 * converted via bpf_migrate_filter() to eBPF and thus always
1000  	 * have an unspec program type.
1001  	 */
1002  	return prog->type == BPF_PROG_TYPE_UNSPEC;
1003  }
1004  
bpf_ctx_off_adjust_machine(u32 size)1005  static inline u32 bpf_ctx_off_adjust_machine(u32 size)
1006  {
1007  	const u32 size_machine = sizeof(unsigned long);
1008  
1009  	if (size > size_machine && size % size_machine == 0)
1010  		size = size_machine;
1011  
1012  	return size;
1013  }
1014  
1015  static inline bool
bpf_ctx_narrow_access_ok(u32 off,u32 size,u32 size_default)1016  bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
1017  {
1018  	return size <= size_default && (size & (size - 1)) == 0;
1019  }
1020  
1021  static inline u8
bpf_ctx_narrow_access_offset(u32 off,u32 size,u32 size_default)1022  bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
1023  {
1024  	u8 access_off = off & (size_default - 1);
1025  
1026  #ifdef __LITTLE_ENDIAN
1027  	return access_off;
1028  #else
1029  	return size_default - (access_off + size);
1030  #endif
1031  }
1032  
1033  #define bpf_ctx_wide_access_ok(off, size, type, field)			\
1034  	(size == sizeof(__u64) &&					\
1035  	off >= offsetof(type, field) &&					\
1036  	off + sizeof(__u64) <= offsetofend(type, field) &&		\
1037  	off % sizeof(__u64) == 0)
1038  
1039  #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
1040  
bpf_prog_lock_ro(struct bpf_prog * fp)1041  static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
1042  {
1043  #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1044  	if (!fp->jited) {
1045  		set_vm_flush_reset_perms(fp);
1046  		return set_memory_ro((unsigned long)fp, fp->pages);
1047  	}
1048  #endif
1049  	return 0;
1050  }
1051  
1052  static inline int __must_check
bpf_jit_binary_lock_ro(struct bpf_binary_header * hdr)1053  bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
1054  {
1055  	set_vm_flush_reset_perms(hdr);
1056  	return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
1057  }
1058  
1059  int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
sk_filter(struct sock * sk,struct sk_buff * skb)1060  static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
1061  {
1062  	return sk_filter_trim_cap(sk, skb, 1);
1063  }
1064  
1065  struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
1066  void bpf_prog_free(struct bpf_prog *fp);
1067  
1068  bool bpf_opcode_in_insntable(u8 code);
1069  
1070  void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
1071  			       const u32 *insn_to_jit_off);
1072  int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
1073  void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
1074  
1075  struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
1076  struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
1077  struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
1078  				  gfp_t gfp_extra_flags);
1079  void __bpf_prog_free(struct bpf_prog *fp);
1080  
bpf_prog_unlock_free(struct bpf_prog * fp)1081  static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
1082  {
1083  	__bpf_prog_free(fp);
1084  }
1085  
1086  typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
1087  				       unsigned int flen);
1088  
1089  int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
1090  int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1091  			      bpf_aux_classic_check_t trans, bool save_orig);
1092  void bpf_prog_destroy(struct bpf_prog *fp);
1093  
1094  int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1095  int sk_attach_bpf(u32 ufd, struct sock *sk);
1096  int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1097  int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
1098  void sk_reuseport_prog_free(struct bpf_prog *prog);
1099  int sk_detach_filter(struct sock *sk);
1100  int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
1101  
1102  bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
1103  void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
1104  
1105  u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
1106  #define __bpf_call_base_args \
1107  	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
1108  	 (void *)__bpf_call_base)
1109  
1110  struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
1111  void bpf_jit_compile(struct bpf_prog *prog);
1112  bool bpf_jit_needs_zext(void);
1113  bool bpf_jit_inlines_helper_call(s32 imm);
1114  bool bpf_jit_supports_subprog_tailcalls(void);
1115  bool bpf_jit_supports_percpu_insn(void);
1116  bool bpf_jit_supports_kfunc_call(void);
1117  bool bpf_jit_supports_far_kfunc_call(void);
1118  bool bpf_jit_supports_exceptions(void);
1119  bool bpf_jit_supports_ptr_xchg(void);
1120  bool bpf_jit_supports_arena(void);
1121  bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
1122  u64 bpf_arch_uaddress_limit(void);
1123  void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
1124  bool bpf_helper_changes_pkt_data(void *func);
1125  
bpf_dump_raw_ok(const struct cred * cred)1126  static inline bool bpf_dump_raw_ok(const struct cred *cred)
1127  {
1128  	/* Reconstruction of call-sites is dependent on kallsyms,
1129  	 * thus make dump the same restriction.
1130  	 */
1131  	return kallsyms_show_value(cred);
1132  }
1133  
1134  struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
1135  				       const struct bpf_insn *patch, u32 len);
1136  int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
1137  
xdp_return_frame_no_direct(void)1138  static inline bool xdp_return_frame_no_direct(void)
1139  {
1140  	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1141  
1142  	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1143  }
1144  
xdp_set_return_frame_no_direct(void)1145  static inline void xdp_set_return_frame_no_direct(void)
1146  {
1147  	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1148  
1149  	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1150  }
1151  
xdp_clear_return_frame_no_direct(void)1152  static inline void xdp_clear_return_frame_no_direct(void)
1153  {
1154  	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1155  
1156  	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1157  }
1158  
xdp_ok_fwd_dev(const struct net_device * fwd,unsigned int pktlen)1159  static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1160  				 unsigned int pktlen)
1161  {
1162  	unsigned int len;
1163  
1164  	if (unlikely(!(fwd->flags & IFF_UP)))
1165  		return -ENETDOWN;
1166  
1167  	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1168  	if (pktlen > len)
1169  		return -EMSGSIZE;
1170  
1171  	return 0;
1172  }
1173  
1174  /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1175   * same cpu context. Further for best results no more than a single map
1176   * for the do_redirect/do_flush pair should be used. This limitation is
1177   * because we only track one map and force a flush when the map changes.
1178   * This does not appear to be a real limitation for existing software.
1179   */
1180  int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1181  			    struct xdp_buff *xdp, struct bpf_prog *prog);
1182  int xdp_do_redirect(struct net_device *dev,
1183  		    struct xdp_buff *xdp,
1184  		    struct bpf_prog *prog);
1185  int xdp_do_redirect_frame(struct net_device *dev,
1186  			  struct xdp_buff *xdp,
1187  			  struct xdp_frame *xdpf,
1188  			  struct bpf_prog *prog);
1189  void xdp_do_flush(void);
1190  
1191  void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1192  
1193  #ifdef CONFIG_INET
1194  struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1195  				  struct bpf_prog *prog, struct sk_buff *skb,
1196  				  struct sock *migrating_sk,
1197  				  u32 hash);
1198  #else
1199  static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)1200  bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1201  		     struct bpf_prog *prog, struct sk_buff *skb,
1202  		     struct sock *migrating_sk,
1203  		     u32 hash)
1204  {
1205  	return NULL;
1206  }
1207  #endif
1208  
1209  #ifdef CONFIG_BPF_JIT
1210  extern int bpf_jit_enable;
1211  extern int bpf_jit_harden;
1212  extern int bpf_jit_kallsyms;
1213  extern long bpf_jit_limit;
1214  extern long bpf_jit_limit_max;
1215  
1216  typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1217  
1218  void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1219  
1220  struct bpf_binary_header *
1221  bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1222  		     unsigned int alignment,
1223  		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1224  void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1225  u64 bpf_jit_alloc_exec_limit(void);
1226  void *bpf_jit_alloc_exec(unsigned long size);
1227  void bpf_jit_free_exec(void *addr);
1228  void bpf_jit_free(struct bpf_prog *fp);
1229  struct bpf_binary_header *
1230  bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1231  
1232  void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1233  void bpf_prog_pack_free(void *ptr, u32 size);
1234  
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)1235  static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1236  {
1237  	return list_empty(&fp->aux->ksym.lnode) ||
1238  	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1239  }
1240  
1241  struct bpf_binary_header *
1242  bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1243  			  unsigned int alignment,
1244  			  struct bpf_binary_header **rw_hdr,
1245  			  u8 **rw_image,
1246  			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1247  int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1248  				 struct bpf_binary_header *rw_header);
1249  void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1250  			      struct bpf_binary_header *rw_header);
1251  
1252  int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1253  				struct bpf_jit_poke_descriptor *poke);
1254  
1255  int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1256  			  const struct bpf_insn *insn, bool extra_pass,
1257  			  u64 *func_addr, bool *func_addr_fixed);
1258  
1259  struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1260  void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1261  
bpf_jit_dump(unsigned int flen,unsigned int proglen,u32 pass,void * image)1262  static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1263  				u32 pass, void *image)
1264  {
1265  	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1266  	       proglen, pass, image, current->comm, task_pid_nr(current));
1267  
1268  	if (image)
1269  		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1270  			       16, 1, image, proglen, false);
1271  }
1272  
bpf_jit_is_ebpf(void)1273  static inline bool bpf_jit_is_ebpf(void)
1274  {
1275  # ifdef CONFIG_HAVE_EBPF_JIT
1276  	return true;
1277  # else
1278  	return false;
1279  # endif
1280  }
1281  
ebpf_jit_enabled(void)1282  static inline bool ebpf_jit_enabled(void)
1283  {
1284  	return bpf_jit_enable && bpf_jit_is_ebpf();
1285  }
1286  
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1287  static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1288  {
1289  	return fp->jited && bpf_jit_is_ebpf();
1290  }
1291  
bpf_jit_blinding_enabled(struct bpf_prog * prog)1292  static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1293  {
1294  	/* These are the prerequisites, should someone ever have the
1295  	 * idea to call blinding outside of them, we make sure to
1296  	 * bail out.
1297  	 */
1298  	if (!bpf_jit_is_ebpf())
1299  		return false;
1300  	if (!prog->jit_requested)
1301  		return false;
1302  	if (!bpf_jit_harden)
1303  		return false;
1304  	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1305  		return false;
1306  
1307  	return true;
1308  }
1309  
bpf_jit_kallsyms_enabled(void)1310  static inline bool bpf_jit_kallsyms_enabled(void)
1311  {
1312  	/* There are a couple of corner cases where kallsyms should
1313  	 * not be enabled f.e. on hardening.
1314  	 */
1315  	if (bpf_jit_harden)
1316  		return false;
1317  	if (!bpf_jit_kallsyms)
1318  		return false;
1319  	if (bpf_jit_kallsyms == 1)
1320  		return true;
1321  
1322  	return false;
1323  }
1324  
1325  int __bpf_address_lookup(unsigned long addr, unsigned long *size,
1326  				 unsigned long *off, char *sym);
1327  bool is_bpf_text_address(unsigned long addr);
1328  int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1329  		    char *sym);
1330  struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1331  
1332  static inline int
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1333  bpf_address_lookup(unsigned long addr, unsigned long *size,
1334  		   unsigned long *off, char **modname, char *sym)
1335  {
1336  	int ret = __bpf_address_lookup(addr, size, off, sym);
1337  
1338  	if (ret && modname)
1339  		*modname = NULL;
1340  	return ret;
1341  }
1342  
1343  void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1344  void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1345  
1346  #else /* CONFIG_BPF_JIT */
1347  
ebpf_jit_enabled(void)1348  static inline bool ebpf_jit_enabled(void)
1349  {
1350  	return false;
1351  }
1352  
bpf_jit_blinding_enabled(struct bpf_prog * prog)1353  static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1354  {
1355  	return false;
1356  }
1357  
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1358  static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1359  {
1360  	return false;
1361  }
1362  
1363  static inline int
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)1364  bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1365  			    struct bpf_jit_poke_descriptor *poke)
1366  {
1367  	return -ENOTSUPP;
1368  }
1369  
bpf_jit_free(struct bpf_prog * fp)1370  static inline void bpf_jit_free(struct bpf_prog *fp)
1371  {
1372  	bpf_prog_unlock_free(fp);
1373  }
1374  
bpf_jit_kallsyms_enabled(void)1375  static inline bool bpf_jit_kallsyms_enabled(void)
1376  {
1377  	return false;
1378  }
1379  
1380  static inline int
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)1381  __bpf_address_lookup(unsigned long addr, unsigned long *size,
1382  		     unsigned long *off, char *sym)
1383  {
1384  	return 0;
1385  }
1386  
is_bpf_text_address(unsigned long addr)1387  static inline bool is_bpf_text_address(unsigned long addr)
1388  {
1389  	return false;
1390  }
1391  
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)1392  static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1393  				  char *type, char *sym)
1394  {
1395  	return -ERANGE;
1396  }
1397  
bpf_prog_ksym_find(unsigned long addr)1398  static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1399  {
1400  	return NULL;
1401  }
1402  
1403  static inline int
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1404  bpf_address_lookup(unsigned long addr, unsigned long *size,
1405  		   unsigned long *off, char **modname, char *sym)
1406  {
1407  	return 0;
1408  }
1409  
bpf_prog_kallsyms_add(struct bpf_prog * fp)1410  static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1411  {
1412  }
1413  
bpf_prog_kallsyms_del(struct bpf_prog * fp)1414  static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1415  {
1416  }
1417  
1418  #endif /* CONFIG_BPF_JIT */
1419  
1420  void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1421  
1422  #define BPF_ANC		BIT(15)
1423  
bpf_needs_clear_a(const struct sock_filter * first)1424  static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1425  {
1426  	switch (first->code) {
1427  	case BPF_RET | BPF_K:
1428  	case BPF_LD | BPF_W | BPF_LEN:
1429  		return false;
1430  
1431  	case BPF_LD | BPF_W | BPF_ABS:
1432  	case BPF_LD | BPF_H | BPF_ABS:
1433  	case BPF_LD | BPF_B | BPF_ABS:
1434  		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1435  			return true;
1436  		return false;
1437  
1438  	default:
1439  		return true;
1440  	}
1441  }
1442  
bpf_anc_helper(const struct sock_filter * ftest)1443  static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1444  {
1445  	BUG_ON(ftest->code & BPF_ANC);
1446  
1447  	switch (ftest->code) {
1448  	case BPF_LD | BPF_W | BPF_ABS:
1449  	case BPF_LD | BPF_H | BPF_ABS:
1450  	case BPF_LD | BPF_B | BPF_ABS:
1451  #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1452  				return BPF_ANC | SKF_AD_##CODE
1453  		switch (ftest->k) {
1454  		BPF_ANCILLARY(PROTOCOL);
1455  		BPF_ANCILLARY(PKTTYPE);
1456  		BPF_ANCILLARY(IFINDEX);
1457  		BPF_ANCILLARY(NLATTR);
1458  		BPF_ANCILLARY(NLATTR_NEST);
1459  		BPF_ANCILLARY(MARK);
1460  		BPF_ANCILLARY(QUEUE);
1461  		BPF_ANCILLARY(HATYPE);
1462  		BPF_ANCILLARY(RXHASH);
1463  		BPF_ANCILLARY(CPU);
1464  		BPF_ANCILLARY(ALU_XOR_X);
1465  		BPF_ANCILLARY(VLAN_TAG);
1466  		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1467  		BPF_ANCILLARY(PAY_OFFSET);
1468  		BPF_ANCILLARY(RANDOM);
1469  		BPF_ANCILLARY(VLAN_TPID);
1470  		}
1471  		fallthrough;
1472  	default:
1473  		return ftest->code;
1474  	}
1475  }
1476  
1477  void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1478  					   int k, unsigned int size);
1479  
bpf_tell_extensions(void)1480  static inline int bpf_tell_extensions(void)
1481  {
1482  	return SKF_AD_MAX;
1483  }
1484  
1485  struct bpf_sock_addr_kern {
1486  	struct sock *sk;
1487  	struct sockaddr *uaddr;
1488  	/* Temporary "register" to make indirect stores to nested structures
1489  	 * defined above. We need three registers to make such a store, but
1490  	 * only two (src and dst) are available at convert_ctx_access time
1491  	 */
1492  	u64 tmp_reg;
1493  	void *t_ctx;	/* Attach type specific context. */
1494  	u32 uaddrlen;
1495  };
1496  
1497  struct bpf_sock_ops_kern {
1498  	struct	sock *sk;
1499  	union {
1500  		u32 args[4];
1501  		u32 reply;
1502  		u32 replylong[4];
1503  	};
1504  	struct sk_buff	*syn_skb;
1505  	struct sk_buff	*skb;
1506  	void	*skb_data_end;
1507  	u8	op;
1508  	u8	is_fullsock;
1509  	u8	remaining_opt_len;
1510  	u64	temp;			/* temp and everything after is not
1511  					 * initialized to 0 before calling
1512  					 * the BPF program. New fields that
1513  					 * should be initialized to 0 should
1514  					 * be inserted before temp.
1515  					 * temp is scratch storage used by
1516  					 * sock_ops_convert_ctx_access
1517  					 * as temporary storage of a register.
1518  					 */
1519  };
1520  
1521  struct bpf_sysctl_kern {
1522  	struct ctl_table_header *head;
1523  	const struct ctl_table *table;
1524  	void *cur_val;
1525  	size_t cur_len;
1526  	void *new_val;
1527  	size_t new_len;
1528  	int new_updated;
1529  	int write;
1530  	loff_t *ppos;
1531  	/* Temporary "register" for indirect stores to ppos. */
1532  	u64 tmp_reg;
1533  };
1534  
1535  #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1536  struct bpf_sockopt_buf {
1537  	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1538  };
1539  
1540  struct bpf_sockopt_kern {
1541  	struct sock	*sk;
1542  	u8		*optval;
1543  	u8		*optval_end;
1544  	s32		level;
1545  	s32		optname;
1546  	s32		optlen;
1547  	/* for retval in struct bpf_cg_run_ctx */
1548  	struct task_struct *current_task;
1549  	/* Temporary "register" for indirect stores to ppos. */
1550  	u64		tmp_reg;
1551  };
1552  
1553  int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1554  
1555  struct bpf_sk_lookup_kern {
1556  	u16		family;
1557  	u16		protocol;
1558  	__be16		sport;
1559  	u16		dport;
1560  	struct {
1561  		__be32 saddr;
1562  		__be32 daddr;
1563  	} v4;
1564  	struct {
1565  		const struct in6_addr *saddr;
1566  		const struct in6_addr *daddr;
1567  	} v6;
1568  	struct sock	*selected_sk;
1569  	u32		ingress_ifindex;
1570  	bool		no_reuseport;
1571  };
1572  
1573  extern struct static_key_false bpf_sk_lookup_enabled;
1574  
1575  /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1576   *
1577   * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1578   * SK_DROP. Their meaning is as follows:
1579   *
1580   *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1581   *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1582   *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1583   *
1584   * This macro aggregates return values and selected sockets from
1585   * multiple BPF programs according to following rules in order:
1586   *
1587   *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1588   *     macro result is SK_PASS and last ctx.selected_sk is used.
1589   *  2. If any program returned SK_DROP return value,
1590   *     macro result is SK_DROP.
1591   *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1592   *
1593   * Caller must ensure that the prog array is non-NULL, and that the
1594   * array as well as the programs it contains remain valid.
1595   */
1596  #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1597  	({								\
1598  		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1599  		struct bpf_prog_array_item *_item;			\
1600  		struct sock *_selected_sk = NULL;			\
1601  		bool _no_reuseport = false;				\
1602  		struct bpf_prog *_prog;					\
1603  		bool _all_pass = true;					\
1604  		u32 _ret;						\
1605  									\
1606  		migrate_disable();					\
1607  		_item = &(array)->items[0];				\
1608  		while ((_prog = READ_ONCE(_item->prog))) {		\
1609  			/* restore most recent selection */		\
1610  			_ctx->selected_sk = _selected_sk;		\
1611  			_ctx->no_reuseport = _no_reuseport;		\
1612  									\
1613  			_ret = func(_prog, _ctx);			\
1614  			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1615  				/* remember last non-NULL socket */	\
1616  				_selected_sk = _ctx->selected_sk;	\
1617  				_no_reuseport = _ctx->no_reuseport;	\
1618  			} else if (_ret == SK_DROP && _all_pass) {	\
1619  				_all_pass = false;			\
1620  			}						\
1621  			_item++;					\
1622  		}							\
1623  		_ctx->selected_sk = _selected_sk;			\
1624  		_ctx->no_reuseport = _no_reuseport;			\
1625  		migrate_enable();					\
1626  		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1627  	 })
1628  
bpf_sk_lookup_run_v4(const struct net * net,int protocol,const __be32 saddr,const __be16 sport,const __be32 daddr,const u16 dport,const int ifindex,struct sock ** psk)1629  static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol,
1630  					const __be32 saddr, const __be16 sport,
1631  					const __be32 daddr, const u16 dport,
1632  					const int ifindex, struct sock **psk)
1633  {
1634  	struct bpf_prog_array *run_array;
1635  	struct sock *selected_sk = NULL;
1636  	bool no_reuseport = false;
1637  
1638  	rcu_read_lock();
1639  	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1640  	if (run_array) {
1641  		struct bpf_sk_lookup_kern ctx = {
1642  			.family		= AF_INET,
1643  			.protocol	= protocol,
1644  			.v4.saddr	= saddr,
1645  			.v4.daddr	= daddr,
1646  			.sport		= sport,
1647  			.dport		= dport,
1648  			.ingress_ifindex	= ifindex,
1649  		};
1650  		u32 act;
1651  
1652  		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1653  		if (act == SK_PASS) {
1654  			selected_sk = ctx.selected_sk;
1655  			no_reuseport = ctx.no_reuseport;
1656  		} else {
1657  			selected_sk = ERR_PTR(-ECONNREFUSED);
1658  		}
1659  	}
1660  	rcu_read_unlock();
1661  	*psk = selected_sk;
1662  	return no_reuseport;
1663  }
1664  
1665  #if IS_ENABLED(CONFIG_IPV6)
bpf_sk_lookup_run_v6(const struct net * net,int protocol,const struct in6_addr * saddr,const __be16 sport,const struct in6_addr * daddr,const u16 dport,const int ifindex,struct sock ** psk)1666  static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol,
1667  					const struct in6_addr *saddr,
1668  					const __be16 sport,
1669  					const struct in6_addr *daddr,
1670  					const u16 dport,
1671  					const int ifindex, struct sock **psk)
1672  {
1673  	struct bpf_prog_array *run_array;
1674  	struct sock *selected_sk = NULL;
1675  	bool no_reuseport = false;
1676  
1677  	rcu_read_lock();
1678  	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1679  	if (run_array) {
1680  		struct bpf_sk_lookup_kern ctx = {
1681  			.family		= AF_INET6,
1682  			.protocol	= protocol,
1683  			.v6.saddr	= saddr,
1684  			.v6.daddr	= daddr,
1685  			.sport		= sport,
1686  			.dport		= dport,
1687  			.ingress_ifindex	= ifindex,
1688  		};
1689  		u32 act;
1690  
1691  		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1692  		if (act == SK_PASS) {
1693  			selected_sk = ctx.selected_sk;
1694  			no_reuseport = ctx.no_reuseport;
1695  		} else {
1696  			selected_sk = ERR_PTR(-ECONNREFUSED);
1697  		}
1698  	}
1699  	rcu_read_unlock();
1700  	*psk = selected_sk;
1701  	return no_reuseport;
1702  }
1703  #endif /* IS_ENABLED(CONFIG_IPV6) */
1704  
__bpf_xdp_redirect_map(struct bpf_map * map,u64 index,u64 flags,const u64 flag_mask,void * lookup_elem (struct bpf_map * map,u32 key))1705  static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1706  						   u64 flags, const u64 flag_mask,
1707  						   void *lookup_elem(struct bpf_map *map, u32 key))
1708  {
1709  	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1710  	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1711  
1712  	/* Lower bits of the flags are used as return code on lookup failure */
1713  	if (unlikely(flags & ~(action_mask | flag_mask)))
1714  		return XDP_ABORTED;
1715  
1716  	ri->tgt_value = lookup_elem(map, index);
1717  	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1718  		/* If the lookup fails we want to clear out the state in the
1719  		 * redirect_info struct completely, so that if an eBPF program
1720  		 * performs multiple lookups, the last one always takes
1721  		 * precedence.
1722  		 */
1723  		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1724  		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1725  		return flags & action_mask;
1726  	}
1727  
1728  	ri->tgt_index = index;
1729  	ri->map_id = map->id;
1730  	ri->map_type = map->map_type;
1731  
1732  	if (flags & BPF_F_BROADCAST) {
1733  		WRITE_ONCE(ri->map, map);
1734  		ri->flags = flags;
1735  	} else {
1736  		WRITE_ONCE(ri->map, NULL);
1737  		ri->flags = 0;
1738  	}
1739  
1740  	return XDP_REDIRECT;
1741  }
1742  
1743  #ifdef CONFIG_NET
1744  int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1745  int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1746  			  u32 len, u64 flags);
1747  int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1748  int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1749  void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1750  void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1751  		      void *buf, unsigned long len, bool flush);
1752  #else /* CONFIG_NET */
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1753  static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1754  				       void *to, u32 len)
1755  {
1756  	return -EOPNOTSUPP;
1757  }
1758  
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1759  static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1760  					const void *from, u32 len, u64 flags)
1761  {
1762  	return -EOPNOTSUPP;
1763  }
1764  
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1765  static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1766  				       void *buf, u32 len)
1767  {
1768  	return -EOPNOTSUPP;
1769  }
1770  
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1771  static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1772  					void *buf, u32 len)
1773  {
1774  	return -EOPNOTSUPP;
1775  }
1776  
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)1777  static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1778  {
1779  	return NULL;
1780  }
1781  
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)1782  static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1783  				    unsigned long len, bool flush)
1784  {
1785  }
1786  #endif /* CONFIG_NET */
1787  
1788  #endif /* __LINUX_FILTER_H__ */
1789