1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /* auditsc.c -- System-call auditing support
3   * Handles all system-call specific auditing features.
4   *
5   * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6   * Copyright 2005 Hewlett-Packard Development Company, L.P.
7   * Copyright (C) 2005, 2006 IBM Corporation
8   * All Rights Reserved.
9   *
10   * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11   *
12   * Many of the ideas implemented here are from Stephen C. Tweedie,
13   * especially the idea of avoiding a copy by using getname.
14   *
15   * The method for actual interception of syscall entry and exit (not in
16   * this file -- see entry.S) is based on a GPL'd patch written by
17   * okir@suse.de and Copyright 2003 SuSE Linux AG.
18   *
19   * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20   * 2006.
21   *
22   * The support of additional filter rules compares (>, <, >=, <=) was
23   * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24   *
25   * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26   * filesystem information.
27   *
28   * Subject and object context labeling support added by <danjones@us.ibm.com>
29   * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
30   */
31  
32  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33  
34  #include <linux/init.h>
35  #include <asm/types.h>
36  #include <linux/atomic.h>
37  #include <linux/fs.h>
38  #include <linux/namei.h>
39  #include <linux/mm.h>
40  #include <linux/export.h>
41  #include <linux/slab.h>
42  #include <linux/mount.h>
43  #include <linux/socket.h>
44  #include <linux/mqueue.h>
45  #include <linux/audit.h>
46  #include <linux/personality.h>
47  #include <linux/time.h>
48  #include <linux/netlink.h>
49  #include <linux/compiler.h>
50  #include <asm/unistd.h>
51  #include <linux/security.h>
52  #include <linux/list.h>
53  #include <linux/binfmts.h>
54  #include <linux/highmem.h>
55  #include <linux/syscalls.h>
56  #include <asm/syscall.h>
57  #include <linux/capability.h>
58  #include <linux/fs_struct.h>
59  #include <linux/compat.h>
60  #include <linux/ctype.h>
61  #include <linux/string.h>
62  #include <linux/uaccess.h>
63  #include <linux/fsnotify_backend.h>
64  #include <uapi/linux/limits.h>
65  #include <uapi/linux/netfilter/nf_tables.h>
66  #include <uapi/linux/openat2.h> // struct open_how
67  #include <uapi/linux/fanotify.h>
68  
69  #include "audit.h"
70  
71  /* flags stating the success for a syscall */
72  #define AUDITSC_INVALID 0
73  #define AUDITSC_SUCCESS 1
74  #define AUDITSC_FAILURE 2
75  
76  /* no execve audit message should be longer than this (userspace limits),
77   * see the note near the top of audit_log_execve_info() about this value */
78  #define MAX_EXECVE_AUDIT_LEN 7500
79  
80  /* max length to print of cmdline/proctitle value during audit */
81  #define MAX_PROCTITLE_AUDIT_LEN 128
82  
83  /* number of audit rules */
84  int audit_n_rules;
85  
86  /* determines whether we collect data for signals sent */
87  int audit_signals;
88  
89  struct audit_aux_data {
90  	struct audit_aux_data	*next;
91  	int			type;
92  };
93  
94  /* Number of target pids per aux struct. */
95  #define AUDIT_AUX_PIDS	16
96  
97  struct audit_aux_data_pids {
98  	struct audit_aux_data	d;
99  	pid_t			target_pid[AUDIT_AUX_PIDS];
100  	kuid_t			target_auid[AUDIT_AUX_PIDS];
101  	kuid_t			target_uid[AUDIT_AUX_PIDS];
102  	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
103  	u32			target_sid[AUDIT_AUX_PIDS];
104  	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
105  	int			pid_count;
106  };
107  
108  struct audit_aux_data_bprm_fcaps {
109  	struct audit_aux_data	d;
110  	struct audit_cap_data	fcap;
111  	unsigned int		fcap_ver;
112  	struct audit_cap_data	old_pcap;
113  	struct audit_cap_data	new_pcap;
114  };
115  
116  struct audit_tree_refs {
117  	struct audit_tree_refs *next;
118  	struct audit_chunk *c[31];
119  };
120  
121  struct audit_nfcfgop_tab {
122  	enum audit_nfcfgop	op;
123  	const char		*s;
124  };
125  
126  static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
127  	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
128  	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
129  	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
130  	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
131  	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
132  	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
133  	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
134  	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
135  	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
136  	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
137  	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
138  	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
139  	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
140  	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
141  	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
142  	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
143  	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
144  	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
145  	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
146  	{ AUDIT_NFT_OP_SETELEM_RESET,		"nft_reset_setelem"        },
147  	{ AUDIT_NFT_OP_RULE_RESET,		"nft_reset_rule"           },
148  	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
149  };
150  
audit_match_perm(struct audit_context * ctx,int mask)151  static int audit_match_perm(struct audit_context *ctx, int mask)
152  {
153  	unsigned n;
154  
155  	if (unlikely(!ctx))
156  		return 0;
157  	n = ctx->major;
158  
159  	switch (audit_classify_syscall(ctx->arch, n)) {
160  	case AUDITSC_NATIVE:
161  		if ((mask & AUDIT_PERM_WRITE) &&
162  		     audit_match_class(AUDIT_CLASS_WRITE, n))
163  			return 1;
164  		if ((mask & AUDIT_PERM_READ) &&
165  		     audit_match_class(AUDIT_CLASS_READ, n))
166  			return 1;
167  		if ((mask & AUDIT_PERM_ATTR) &&
168  		     audit_match_class(AUDIT_CLASS_CHATTR, n))
169  			return 1;
170  		return 0;
171  	case AUDITSC_COMPAT: /* 32bit on biarch */
172  		if ((mask & AUDIT_PERM_WRITE) &&
173  		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
174  			return 1;
175  		if ((mask & AUDIT_PERM_READ) &&
176  		     audit_match_class(AUDIT_CLASS_READ_32, n))
177  			return 1;
178  		if ((mask & AUDIT_PERM_ATTR) &&
179  		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
180  			return 1;
181  		return 0;
182  	case AUDITSC_OPEN:
183  		return mask & ACC_MODE(ctx->argv[1]);
184  	case AUDITSC_OPENAT:
185  		return mask & ACC_MODE(ctx->argv[2]);
186  	case AUDITSC_SOCKETCALL:
187  		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
188  	case AUDITSC_EXECVE:
189  		return mask & AUDIT_PERM_EXEC;
190  	case AUDITSC_OPENAT2:
191  		return mask & ACC_MODE((u32)ctx->openat2.flags);
192  	default:
193  		return 0;
194  	}
195  }
196  
audit_match_filetype(struct audit_context * ctx,int val)197  static int audit_match_filetype(struct audit_context *ctx, int val)
198  {
199  	struct audit_names *n;
200  	umode_t mode = (umode_t)val;
201  
202  	if (unlikely(!ctx))
203  		return 0;
204  
205  	list_for_each_entry(n, &ctx->names_list, list) {
206  		if ((n->ino != AUDIT_INO_UNSET) &&
207  		    ((n->mode & S_IFMT) == mode))
208  			return 1;
209  	}
210  
211  	return 0;
212  }
213  
214  /*
215   * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
216   * ->first_trees points to its beginning, ->trees - to the current end of data.
217   * ->tree_count is the number of free entries in array pointed to by ->trees.
218   * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
219   * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
220   * it's going to remain 1-element for almost any setup) until we free context itself.
221   * References in it _are_ dropped - at the same time we free/drop aux stuff.
222   */
223  
audit_set_auditable(struct audit_context * ctx)224  static void audit_set_auditable(struct audit_context *ctx)
225  {
226  	if (!ctx->prio) {
227  		ctx->prio = 1;
228  		ctx->current_state = AUDIT_STATE_RECORD;
229  	}
230  }
231  
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)232  static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
233  {
234  	struct audit_tree_refs *p = ctx->trees;
235  	int left = ctx->tree_count;
236  
237  	if (likely(left)) {
238  		p->c[--left] = chunk;
239  		ctx->tree_count = left;
240  		return 1;
241  	}
242  	if (!p)
243  		return 0;
244  	p = p->next;
245  	if (p) {
246  		p->c[30] = chunk;
247  		ctx->trees = p;
248  		ctx->tree_count = 30;
249  		return 1;
250  	}
251  	return 0;
252  }
253  
grow_tree_refs(struct audit_context * ctx)254  static int grow_tree_refs(struct audit_context *ctx)
255  {
256  	struct audit_tree_refs *p = ctx->trees;
257  
258  	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
259  	if (!ctx->trees) {
260  		ctx->trees = p;
261  		return 0;
262  	}
263  	if (p)
264  		p->next = ctx->trees;
265  	else
266  		ctx->first_trees = ctx->trees;
267  	ctx->tree_count = 31;
268  	return 1;
269  }
270  
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)271  static void unroll_tree_refs(struct audit_context *ctx,
272  		      struct audit_tree_refs *p, int count)
273  {
274  	struct audit_tree_refs *q;
275  	int n;
276  
277  	if (!p) {
278  		/* we started with empty chain */
279  		p = ctx->first_trees;
280  		count = 31;
281  		/* if the very first allocation has failed, nothing to do */
282  		if (!p)
283  			return;
284  	}
285  	n = count;
286  	for (q = p; q != ctx->trees; q = q->next, n = 31) {
287  		while (n--) {
288  			audit_put_chunk(q->c[n]);
289  			q->c[n] = NULL;
290  		}
291  	}
292  	while (n-- > ctx->tree_count) {
293  		audit_put_chunk(q->c[n]);
294  		q->c[n] = NULL;
295  	}
296  	ctx->trees = p;
297  	ctx->tree_count = count;
298  }
299  
free_tree_refs(struct audit_context * ctx)300  static void free_tree_refs(struct audit_context *ctx)
301  {
302  	struct audit_tree_refs *p, *q;
303  
304  	for (p = ctx->first_trees; p; p = q) {
305  		q = p->next;
306  		kfree(p);
307  	}
308  }
309  
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)310  static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
311  {
312  	struct audit_tree_refs *p;
313  	int n;
314  
315  	if (!tree)
316  		return 0;
317  	/* full ones */
318  	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
319  		for (n = 0; n < 31; n++)
320  			if (audit_tree_match(p->c[n], tree))
321  				return 1;
322  	}
323  	/* partial */
324  	if (p) {
325  		for (n = ctx->tree_count; n < 31; n++)
326  			if (audit_tree_match(p->c[n], tree))
327  				return 1;
328  	}
329  	return 0;
330  }
331  
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)332  static int audit_compare_uid(kuid_t uid,
333  			     struct audit_names *name,
334  			     struct audit_field *f,
335  			     struct audit_context *ctx)
336  {
337  	struct audit_names *n;
338  	int rc;
339  
340  	if (name) {
341  		rc = audit_uid_comparator(uid, f->op, name->uid);
342  		if (rc)
343  			return rc;
344  	}
345  
346  	if (ctx) {
347  		list_for_each_entry(n, &ctx->names_list, list) {
348  			rc = audit_uid_comparator(uid, f->op, n->uid);
349  			if (rc)
350  				return rc;
351  		}
352  	}
353  	return 0;
354  }
355  
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)356  static int audit_compare_gid(kgid_t gid,
357  			     struct audit_names *name,
358  			     struct audit_field *f,
359  			     struct audit_context *ctx)
360  {
361  	struct audit_names *n;
362  	int rc;
363  
364  	if (name) {
365  		rc = audit_gid_comparator(gid, f->op, name->gid);
366  		if (rc)
367  			return rc;
368  	}
369  
370  	if (ctx) {
371  		list_for_each_entry(n, &ctx->names_list, list) {
372  			rc = audit_gid_comparator(gid, f->op, n->gid);
373  			if (rc)
374  				return rc;
375  		}
376  	}
377  	return 0;
378  }
379  
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)380  static int audit_field_compare(struct task_struct *tsk,
381  			       const struct cred *cred,
382  			       struct audit_field *f,
383  			       struct audit_context *ctx,
384  			       struct audit_names *name)
385  {
386  	switch (f->val) {
387  	/* process to file object comparisons */
388  	case AUDIT_COMPARE_UID_TO_OBJ_UID:
389  		return audit_compare_uid(cred->uid, name, f, ctx);
390  	case AUDIT_COMPARE_GID_TO_OBJ_GID:
391  		return audit_compare_gid(cred->gid, name, f, ctx);
392  	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
393  		return audit_compare_uid(cred->euid, name, f, ctx);
394  	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
395  		return audit_compare_gid(cred->egid, name, f, ctx);
396  	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
397  		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
398  	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
399  		return audit_compare_uid(cred->suid, name, f, ctx);
400  	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
401  		return audit_compare_gid(cred->sgid, name, f, ctx);
402  	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
403  		return audit_compare_uid(cred->fsuid, name, f, ctx);
404  	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
405  		return audit_compare_gid(cred->fsgid, name, f, ctx);
406  	/* uid comparisons */
407  	case AUDIT_COMPARE_UID_TO_AUID:
408  		return audit_uid_comparator(cred->uid, f->op,
409  					    audit_get_loginuid(tsk));
410  	case AUDIT_COMPARE_UID_TO_EUID:
411  		return audit_uid_comparator(cred->uid, f->op, cred->euid);
412  	case AUDIT_COMPARE_UID_TO_SUID:
413  		return audit_uid_comparator(cred->uid, f->op, cred->suid);
414  	case AUDIT_COMPARE_UID_TO_FSUID:
415  		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
416  	/* auid comparisons */
417  	case AUDIT_COMPARE_AUID_TO_EUID:
418  		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419  					    cred->euid);
420  	case AUDIT_COMPARE_AUID_TO_SUID:
421  		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422  					    cred->suid);
423  	case AUDIT_COMPARE_AUID_TO_FSUID:
424  		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425  					    cred->fsuid);
426  	/* euid comparisons */
427  	case AUDIT_COMPARE_EUID_TO_SUID:
428  		return audit_uid_comparator(cred->euid, f->op, cred->suid);
429  	case AUDIT_COMPARE_EUID_TO_FSUID:
430  		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
431  	/* suid comparisons */
432  	case AUDIT_COMPARE_SUID_TO_FSUID:
433  		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
434  	/* gid comparisons */
435  	case AUDIT_COMPARE_GID_TO_EGID:
436  		return audit_gid_comparator(cred->gid, f->op, cred->egid);
437  	case AUDIT_COMPARE_GID_TO_SGID:
438  		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
439  	case AUDIT_COMPARE_GID_TO_FSGID:
440  		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
441  	/* egid comparisons */
442  	case AUDIT_COMPARE_EGID_TO_SGID:
443  		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
444  	case AUDIT_COMPARE_EGID_TO_FSGID:
445  		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
446  	/* sgid comparison */
447  	case AUDIT_COMPARE_SGID_TO_FSGID:
448  		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
449  	default:
450  		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
451  		return 0;
452  	}
453  	return 0;
454  }
455  
456  /* Determine if any context name data matches a rule's watch data */
457  /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
458   * otherwise.
459   *
460   * If task_creation is true, this is an explicit indication that we are
461   * filtering a task rule at task creation time.  This and tsk == current are
462   * the only situations where tsk->cred may be accessed without an rcu read lock.
463   */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)464  static int audit_filter_rules(struct task_struct *tsk,
465  			      struct audit_krule *rule,
466  			      struct audit_context *ctx,
467  			      struct audit_names *name,
468  			      enum audit_state *state,
469  			      bool task_creation)
470  {
471  	const struct cred *cred;
472  	int i, need_sid = 1;
473  	u32 sid;
474  	unsigned int sessionid;
475  
476  	if (ctx && rule->prio <= ctx->prio)
477  		return 0;
478  
479  	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480  
481  	for (i = 0; i < rule->field_count; i++) {
482  		struct audit_field *f = &rule->fields[i];
483  		struct audit_names *n;
484  		int result = 0;
485  		pid_t pid;
486  
487  		switch (f->type) {
488  		case AUDIT_PID:
489  			pid = task_tgid_nr(tsk);
490  			result = audit_comparator(pid, f->op, f->val);
491  			break;
492  		case AUDIT_PPID:
493  			if (ctx) {
494  				if (!ctx->ppid)
495  					ctx->ppid = task_ppid_nr(tsk);
496  				result = audit_comparator(ctx->ppid, f->op, f->val);
497  			}
498  			break;
499  		case AUDIT_EXE:
500  			result = audit_exe_compare(tsk, rule->exe);
501  			if (f->op == Audit_not_equal)
502  				result = !result;
503  			break;
504  		case AUDIT_UID:
505  			result = audit_uid_comparator(cred->uid, f->op, f->uid);
506  			break;
507  		case AUDIT_EUID:
508  			result = audit_uid_comparator(cred->euid, f->op, f->uid);
509  			break;
510  		case AUDIT_SUID:
511  			result = audit_uid_comparator(cred->suid, f->op, f->uid);
512  			break;
513  		case AUDIT_FSUID:
514  			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515  			break;
516  		case AUDIT_GID:
517  			result = audit_gid_comparator(cred->gid, f->op, f->gid);
518  			if (f->op == Audit_equal) {
519  				if (!result)
520  					result = groups_search(cred->group_info, f->gid);
521  			} else if (f->op == Audit_not_equal) {
522  				if (result)
523  					result = !groups_search(cred->group_info, f->gid);
524  			}
525  			break;
526  		case AUDIT_EGID:
527  			result = audit_gid_comparator(cred->egid, f->op, f->gid);
528  			if (f->op == Audit_equal) {
529  				if (!result)
530  					result = groups_search(cred->group_info, f->gid);
531  			} else if (f->op == Audit_not_equal) {
532  				if (result)
533  					result = !groups_search(cred->group_info, f->gid);
534  			}
535  			break;
536  		case AUDIT_SGID:
537  			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538  			break;
539  		case AUDIT_FSGID:
540  			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
541  			break;
542  		case AUDIT_SESSIONID:
543  			sessionid = audit_get_sessionid(tsk);
544  			result = audit_comparator(sessionid, f->op, f->val);
545  			break;
546  		case AUDIT_PERS:
547  			result = audit_comparator(tsk->personality, f->op, f->val);
548  			break;
549  		case AUDIT_ARCH:
550  			if (ctx)
551  				result = audit_comparator(ctx->arch, f->op, f->val);
552  			break;
553  
554  		case AUDIT_EXIT:
555  			if (ctx && ctx->return_valid != AUDITSC_INVALID)
556  				result = audit_comparator(ctx->return_code, f->op, f->val);
557  			break;
558  		case AUDIT_SUCCESS:
559  			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
560  				if (f->val)
561  					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
562  				else
563  					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
564  			}
565  			break;
566  		case AUDIT_DEVMAJOR:
567  			if (name) {
568  				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569  				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
570  					++result;
571  			} else if (ctx) {
572  				list_for_each_entry(n, &ctx->names_list, list) {
573  					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574  					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
575  						++result;
576  						break;
577  					}
578  				}
579  			}
580  			break;
581  		case AUDIT_DEVMINOR:
582  			if (name) {
583  				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584  				    audit_comparator(MINOR(name->rdev), f->op, f->val))
585  					++result;
586  			} else if (ctx) {
587  				list_for_each_entry(n, &ctx->names_list, list) {
588  					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589  					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
590  						++result;
591  						break;
592  					}
593  				}
594  			}
595  			break;
596  		case AUDIT_INODE:
597  			if (name)
598  				result = audit_comparator(name->ino, f->op, f->val);
599  			else if (ctx) {
600  				list_for_each_entry(n, &ctx->names_list, list) {
601  					if (audit_comparator(n->ino, f->op, f->val)) {
602  						++result;
603  						break;
604  					}
605  				}
606  			}
607  			break;
608  		case AUDIT_OBJ_UID:
609  			if (name) {
610  				result = audit_uid_comparator(name->uid, f->op, f->uid);
611  			} else if (ctx) {
612  				list_for_each_entry(n, &ctx->names_list, list) {
613  					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
614  						++result;
615  						break;
616  					}
617  				}
618  			}
619  			break;
620  		case AUDIT_OBJ_GID:
621  			if (name) {
622  				result = audit_gid_comparator(name->gid, f->op, f->gid);
623  			} else if (ctx) {
624  				list_for_each_entry(n, &ctx->names_list, list) {
625  					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
626  						++result;
627  						break;
628  					}
629  				}
630  			}
631  			break;
632  		case AUDIT_WATCH:
633  			if (name) {
634  				result = audit_watch_compare(rule->watch,
635  							     name->ino,
636  							     name->dev);
637  				if (f->op == Audit_not_equal)
638  					result = !result;
639  			}
640  			break;
641  		case AUDIT_DIR:
642  			if (ctx) {
643  				result = match_tree_refs(ctx, rule->tree);
644  				if (f->op == Audit_not_equal)
645  					result = !result;
646  			}
647  			break;
648  		case AUDIT_LOGINUID:
649  			result = audit_uid_comparator(audit_get_loginuid(tsk),
650  						      f->op, f->uid);
651  			break;
652  		case AUDIT_LOGINUID_SET:
653  			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654  			break;
655  		case AUDIT_SADDR_FAM:
656  			if (ctx && ctx->sockaddr)
657  				result = audit_comparator(ctx->sockaddr->ss_family,
658  							  f->op, f->val);
659  			break;
660  		case AUDIT_SUBJ_USER:
661  		case AUDIT_SUBJ_ROLE:
662  		case AUDIT_SUBJ_TYPE:
663  		case AUDIT_SUBJ_SEN:
664  		case AUDIT_SUBJ_CLR:
665  			/* NOTE: this may return negative values indicating
666  			   a temporary error.  We simply treat this as a
667  			   match for now to avoid losing information that
668  			   may be wanted.   An error message will also be
669  			   logged upon error */
670  			if (f->lsm_rule) {
671  				if (need_sid) {
672  					/* @tsk should always be equal to
673  					 * @current with the exception of
674  					 * fork()/copy_process() in which case
675  					 * the new @tsk creds are still a dup
676  					 * of @current's creds so we can still
677  					 * use security_current_getsecid_subj()
678  					 * here even though it always refs
679  					 * @current's creds
680  					 */
681  					security_current_getsecid_subj(&sid);
682  					need_sid = 0;
683  				}
684  				result = security_audit_rule_match(sid, f->type,
685  								   f->op,
686  								   f->lsm_rule);
687  			}
688  			break;
689  		case AUDIT_OBJ_USER:
690  		case AUDIT_OBJ_ROLE:
691  		case AUDIT_OBJ_TYPE:
692  		case AUDIT_OBJ_LEV_LOW:
693  		case AUDIT_OBJ_LEV_HIGH:
694  			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
695  			   also applies here */
696  			if (f->lsm_rule) {
697  				/* Find files that match */
698  				if (name) {
699  					result = security_audit_rule_match(
700  								name->osid,
701  								f->type,
702  								f->op,
703  								f->lsm_rule);
704  				} else if (ctx) {
705  					list_for_each_entry(n, &ctx->names_list, list) {
706  						if (security_audit_rule_match(
707  								n->osid,
708  								f->type,
709  								f->op,
710  								f->lsm_rule)) {
711  							++result;
712  							break;
713  						}
714  					}
715  				}
716  				/* Find ipc objects that match */
717  				if (!ctx || ctx->type != AUDIT_IPC)
718  					break;
719  				if (security_audit_rule_match(ctx->ipc.osid,
720  							      f->type, f->op,
721  							      f->lsm_rule))
722  					++result;
723  			}
724  			break;
725  		case AUDIT_ARG0:
726  		case AUDIT_ARG1:
727  		case AUDIT_ARG2:
728  		case AUDIT_ARG3:
729  			if (ctx)
730  				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
731  			break;
732  		case AUDIT_FILTERKEY:
733  			/* ignore this field for filtering */
734  			result = 1;
735  			break;
736  		case AUDIT_PERM:
737  			result = audit_match_perm(ctx, f->val);
738  			if (f->op == Audit_not_equal)
739  				result = !result;
740  			break;
741  		case AUDIT_FILETYPE:
742  			result = audit_match_filetype(ctx, f->val);
743  			if (f->op == Audit_not_equal)
744  				result = !result;
745  			break;
746  		case AUDIT_FIELD_COMPARE:
747  			result = audit_field_compare(tsk, cred, f, ctx, name);
748  			break;
749  		}
750  		if (!result)
751  			return 0;
752  	}
753  
754  	if (ctx) {
755  		if (rule->filterkey) {
756  			kfree(ctx->filterkey);
757  			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
758  		}
759  		ctx->prio = rule->prio;
760  	}
761  	switch (rule->action) {
762  	case AUDIT_NEVER:
763  		*state = AUDIT_STATE_DISABLED;
764  		break;
765  	case AUDIT_ALWAYS:
766  		*state = AUDIT_STATE_RECORD;
767  		break;
768  	}
769  	return 1;
770  }
771  
772  /* At process creation time, we can determine if system-call auditing is
773   * completely disabled for this task.  Since we only have the task
774   * structure at this point, we can only check uid and gid.
775   */
audit_filter_task(struct task_struct * tsk,char ** key)776  static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
777  {
778  	struct audit_entry *e;
779  	enum audit_state   state;
780  
781  	rcu_read_lock();
782  	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
783  		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
784  				       &state, true)) {
785  			if (state == AUDIT_STATE_RECORD)
786  				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
787  			rcu_read_unlock();
788  			return state;
789  		}
790  	}
791  	rcu_read_unlock();
792  	return AUDIT_STATE_BUILD;
793  }
794  
audit_in_mask(const struct audit_krule * rule,unsigned long val)795  static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
796  {
797  	int word, bit;
798  
799  	if (val > 0xffffffff)
800  		return false;
801  
802  	word = AUDIT_WORD(val);
803  	if (word >= AUDIT_BITMASK_SIZE)
804  		return false;
805  
806  	bit = AUDIT_BIT(val);
807  
808  	return rule->mask[word] & bit;
809  }
810  
811  /**
812   * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
813   * @tsk: associated task
814   * @ctx: audit context
815   * @list: audit filter list
816   * @name: audit_name (can be NULL)
817   * @op: current syscall/uring_op
818   *
819   * Run the udit filters specified in @list against @tsk using @ctx,
820   * @name, and @op, as necessary; the caller is responsible for ensuring
821   * that the call is made while the RCU read lock is held. The @name
822   * parameter can be NULL, but all others must be specified.
823   * Returns 1/true if the filter finds a match, 0/false if none are found.
824   */
__audit_filter_op(struct task_struct * tsk,struct audit_context * ctx,struct list_head * list,struct audit_names * name,unsigned long op)825  static int __audit_filter_op(struct task_struct *tsk,
826  			   struct audit_context *ctx,
827  			   struct list_head *list,
828  			   struct audit_names *name,
829  			   unsigned long op)
830  {
831  	struct audit_entry *e;
832  	enum audit_state state;
833  
834  	list_for_each_entry_rcu(e, list, list) {
835  		if (audit_in_mask(&e->rule, op) &&
836  		    audit_filter_rules(tsk, &e->rule, ctx, name,
837  				       &state, false)) {
838  			ctx->current_state = state;
839  			return 1;
840  		}
841  	}
842  	return 0;
843  }
844  
845  /**
846   * audit_filter_uring - apply filters to an io_uring operation
847   * @tsk: associated task
848   * @ctx: audit context
849   */
audit_filter_uring(struct task_struct * tsk,struct audit_context * ctx)850  static void audit_filter_uring(struct task_struct *tsk,
851  			       struct audit_context *ctx)
852  {
853  	if (auditd_test_task(tsk))
854  		return;
855  
856  	rcu_read_lock();
857  	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
858  			NULL, ctx->uring_op);
859  	rcu_read_unlock();
860  }
861  
862  /* At syscall exit time, this filter is called if the audit_state is
863   * not low enough that auditing cannot take place, but is also not
864   * high enough that we already know we have to write an audit record
865   * (i.e., the state is AUDIT_STATE_BUILD).
866   */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx)867  static void audit_filter_syscall(struct task_struct *tsk,
868  				 struct audit_context *ctx)
869  {
870  	if (auditd_test_task(tsk))
871  		return;
872  
873  	rcu_read_lock();
874  	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
875  			NULL, ctx->major);
876  	rcu_read_unlock();
877  }
878  
879  /*
880   * Given an audit_name check the inode hash table to see if they match.
881   * Called holding the rcu read lock to protect the use of audit_inode_hash
882   */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)883  static int audit_filter_inode_name(struct task_struct *tsk,
884  				   struct audit_names *n,
885  				   struct audit_context *ctx)
886  {
887  	int h = audit_hash_ino((u32)n->ino);
888  	struct list_head *list = &audit_inode_hash[h];
889  
890  	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
891  }
892  
893  /* At syscall exit time, this filter is called if any audit_names have been
894   * collected during syscall processing.  We only check rules in sublists at hash
895   * buckets applicable to the inode numbers in audit_names.
896   * Regarding audit_state, same rules apply as for audit_filter_syscall().
897   */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)898  void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
899  {
900  	struct audit_names *n;
901  
902  	if (auditd_test_task(tsk))
903  		return;
904  
905  	rcu_read_lock();
906  
907  	list_for_each_entry(n, &ctx->names_list, list) {
908  		if (audit_filter_inode_name(tsk, n, ctx))
909  			break;
910  	}
911  	rcu_read_unlock();
912  }
913  
audit_proctitle_free(struct audit_context * context)914  static inline void audit_proctitle_free(struct audit_context *context)
915  {
916  	kfree(context->proctitle.value);
917  	context->proctitle.value = NULL;
918  	context->proctitle.len = 0;
919  }
920  
audit_free_module(struct audit_context * context)921  static inline void audit_free_module(struct audit_context *context)
922  {
923  	if (context->type == AUDIT_KERN_MODULE) {
924  		kfree(context->module.name);
925  		context->module.name = NULL;
926  	}
927  }
audit_free_names(struct audit_context * context)928  static inline void audit_free_names(struct audit_context *context)
929  {
930  	struct audit_names *n, *next;
931  
932  	list_for_each_entry_safe(n, next, &context->names_list, list) {
933  		list_del(&n->list);
934  		if (n->name)
935  			putname(n->name);
936  		if (n->should_free)
937  			kfree(n);
938  	}
939  	context->name_count = 0;
940  	path_put(&context->pwd);
941  	context->pwd.dentry = NULL;
942  	context->pwd.mnt = NULL;
943  }
944  
audit_free_aux(struct audit_context * context)945  static inline void audit_free_aux(struct audit_context *context)
946  {
947  	struct audit_aux_data *aux;
948  
949  	while ((aux = context->aux)) {
950  		context->aux = aux->next;
951  		kfree(aux);
952  	}
953  	context->aux = NULL;
954  	while ((aux = context->aux_pids)) {
955  		context->aux_pids = aux->next;
956  		kfree(aux);
957  	}
958  	context->aux_pids = NULL;
959  }
960  
961  /**
962   * audit_reset_context - reset a audit_context structure
963   * @ctx: the audit_context to reset
964   *
965   * All fields in the audit_context will be reset to an initial state, all
966   * references held by fields will be dropped, and private memory will be
967   * released.  When this function returns the audit_context will be suitable
968   * for reuse, so long as the passed context is not NULL or a dummy context.
969   */
audit_reset_context(struct audit_context * ctx)970  static void audit_reset_context(struct audit_context *ctx)
971  {
972  	if (!ctx)
973  		return;
974  
975  	/* if ctx is non-null, reset the "ctx->context" regardless */
976  	ctx->context = AUDIT_CTX_UNUSED;
977  	if (ctx->dummy)
978  		return;
979  
980  	/*
981  	 * NOTE: It shouldn't matter in what order we release the fields, so
982  	 *       release them in the order in which they appear in the struct;
983  	 *       this gives us some hope of quickly making sure we are
984  	 *       resetting the audit_context properly.
985  	 *
986  	 *       Other things worth mentioning:
987  	 *       - we don't reset "dummy"
988  	 *       - we don't reset "state", we do reset "current_state"
989  	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
990  	 *       - much of this is likely overkill, but play it safe for now
991  	 *       - we really need to work on improving the audit_context struct
992  	 */
993  
994  	ctx->current_state = ctx->state;
995  	ctx->serial = 0;
996  	ctx->major = 0;
997  	ctx->uring_op = 0;
998  	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
999  	memset(ctx->argv, 0, sizeof(ctx->argv));
1000  	ctx->return_code = 0;
1001  	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1002  	ctx->return_valid = AUDITSC_INVALID;
1003  	audit_free_names(ctx);
1004  	if (ctx->state != AUDIT_STATE_RECORD) {
1005  		kfree(ctx->filterkey);
1006  		ctx->filterkey = NULL;
1007  	}
1008  	audit_free_aux(ctx);
1009  	kfree(ctx->sockaddr);
1010  	ctx->sockaddr = NULL;
1011  	ctx->sockaddr_len = 0;
1012  	ctx->ppid = 0;
1013  	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1014  	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1015  	ctx->personality = 0;
1016  	ctx->arch = 0;
1017  	ctx->target_pid = 0;
1018  	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1019  	ctx->target_sessionid = 0;
1020  	ctx->target_sid = 0;
1021  	ctx->target_comm[0] = '\0';
1022  	unroll_tree_refs(ctx, NULL, 0);
1023  	WARN_ON(!list_empty(&ctx->killed_trees));
1024  	audit_free_module(ctx);
1025  	ctx->fds[0] = -1;
1026  	ctx->type = 0; /* reset last for audit_free_*() */
1027  }
1028  
audit_alloc_context(enum audit_state state)1029  static inline struct audit_context *audit_alloc_context(enum audit_state state)
1030  {
1031  	struct audit_context *context;
1032  
1033  	context = kzalloc(sizeof(*context), GFP_KERNEL);
1034  	if (!context)
1035  		return NULL;
1036  	context->context = AUDIT_CTX_UNUSED;
1037  	context->state = state;
1038  	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1039  	INIT_LIST_HEAD(&context->killed_trees);
1040  	INIT_LIST_HEAD(&context->names_list);
1041  	context->fds[0] = -1;
1042  	context->return_valid = AUDITSC_INVALID;
1043  	return context;
1044  }
1045  
1046  /**
1047   * audit_alloc - allocate an audit context block for a task
1048   * @tsk: task
1049   *
1050   * Filter on the task information and allocate a per-task audit context
1051   * if necessary.  Doing so turns on system call auditing for the
1052   * specified task.  This is called from copy_process, so no lock is
1053   * needed.
1054   */
audit_alloc(struct task_struct * tsk)1055  int audit_alloc(struct task_struct *tsk)
1056  {
1057  	struct audit_context *context;
1058  	enum audit_state     state;
1059  	char *key = NULL;
1060  
1061  	if (likely(!audit_ever_enabled))
1062  		return 0;
1063  
1064  	state = audit_filter_task(tsk, &key);
1065  	if (state == AUDIT_STATE_DISABLED) {
1066  		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1067  		return 0;
1068  	}
1069  
1070  	context = audit_alloc_context(state);
1071  	if (!context) {
1072  		kfree(key);
1073  		audit_log_lost("out of memory in audit_alloc");
1074  		return -ENOMEM;
1075  	}
1076  	context->filterkey = key;
1077  
1078  	audit_set_context(tsk, context);
1079  	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1080  	return 0;
1081  }
1082  
audit_free_context(struct audit_context * context)1083  static inline void audit_free_context(struct audit_context *context)
1084  {
1085  	/* resetting is extra work, but it is likely just noise */
1086  	audit_reset_context(context);
1087  	audit_proctitle_free(context);
1088  	free_tree_refs(context);
1089  	kfree(context->filterkey);
1090  	kfree(context);
1091  }
1092  
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,u32 sid,char * comm)1093  static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1094  				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1095  				 u32 sid, char *comm)
1096  {
1097  	struct audit_buffer *ab;
1098  	char *ctx = NULL;
1099  	u32 len;
1100  	int rc = 0;
1101  
1102  	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1103  	if (!ab)
1104  		return rc;
1105  
1106  	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1107  			 from_kuid(&init_user_ns, auid),
1108  			 from_kuid(&init_user_ns, uid), sessionid);
1109  	if (sid) {
1110  		if (security_secid_to_secctx(sid, &ctx, &len)) {
1111  			audit_log_format(ab, " obj=(none)");
1112  			rc = 1;
1113  		} else {
1114  			audit_log_format(ab, " obj=%s", ctx);
1115  			security_release_secctx(ctx, len);
1116  		}
1117  	}
1118  	audit_log_format(ab, " ocomm=");
1119  	audit_log_untrustedstring(ab, comm);
1120  	audit_log_end(ab);
1121  
1122  	return rc;
1123  }
1124  
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)1125  static void audit_log_execve_info(struct audit_context *context,
1126  				  struct audit_buffer **ab)
1127  {
1128  	long len_max;
1129  	long len_rem;
1130  	long len_full;
1131  	long len_buf;
1132  	long len_abuf = 0;
1133  	long len_tmp;
1134  	bool require_data;
1135  	bool encode;
1136  	unsigned int iter;
1137  	unsigned int arg;
1138  	char *buf_head;
1139  	char *buf;
1140  	const char __user *p = (const char __user *)current->mm->arg_start;
1141  
1142  	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1143  	 *       data we put in the audit record for this argument (see the
1144  	 *       code below) ... at this point in time 96 is plenty */
1145  	char abuf[96];
1146  
1147  	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1148  	 *       current value of 7500 is not as important as the fact that it
1149  	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1150  	 *       room if we go over a little bit in the logging below */
1151  	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1152  	len_max = MAX_EXECVE_AUDIT_LEN;
1153  
1154  	/* scratch buffer to hold the userspace args */
1155  	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1156  	if (!buf_head) {
1157  		audit_panic("out of memory for argv string");
1158  		return;
1159  	}
1160  	buf = buf_head;
1161  
1162  	audit_log_format(*ab, "argc=%d", context->execve.argc);
1163  
1164  	len_rem = len_max;
1165  	len_buf = 0;
1166  	len_full = 0;
1167  	require_data = true;
1168  	encode = false;
1169  	iter = 0;
1170  	arg = 0;
1171  	do {
1172  		/* NOTE: we don't ever want to trust this value for anything
1173  		 *       serious, but the audit record format insists we
1174  		 *       provide an argument length for really long arguments,
1175  		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1176  		 *       to use strncpy_from_user() to obtain this value for
1177  		 *       recording in the log, although we don't use it
1178  		 *       anywhere here to avoid a double-fetch problem */
1179  		if (len_full == 0)
1180  			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1181  
1182  		/* read more data from userspace */
1183  		if (require_data) {
1184  			/* can we make more room in the buffer? */
1185  			if (buf != buf_head) {
1186  				memmove(buf_head, buf, len_buf);
1187  				buf = buf_head;
1188  			}
1189  
1190  			/* fetch as much as we can of the argument */
1191  			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1192  						    len_max - len_buf);
1193  			if (len_tmp == -EFAULT) {
1194  				/* unable to copy from userspace */
1195  				send_sig(SIGKILL, current, 0);
1196  				goto out;
1197  			} else if (len_tmp == (len_max - len_buf)) {
1198  				/* buffer is not large enough */
1199  				require_data = true;
1200  				/* NOTE: if we are going to span multiple
1201  				 *       buffers force the encoding so we stand
1202  				 *       a chance at a sane len_full value and
1203  				 *       consistent record encoding */
1204  				encode = true;
1205  				len_full = len_full * 2;
1206  				p += len_tmp;
1207  			} else {
1208  				require_data = false;
1209  				if (!encode)
1210  					encode = audit_string_contains_control(
1211  								buf, len_tmp);
1212  				/* try to use a trusted value for len_full */
1213  				if (len_full < len_max)
1214  					len_full = (encode ?
1215  						    len_tmp * 2 : len_tmp);
1216  				p += len_tmp + 1;
1217  			}
1218  			len_buf += len_tmp;
1219  			buf_head[len_buf] = '\0';
1220  
1221  			/* length of the buffer in the audit record? */
1222  			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1223  		}
1224  
1225  		/* write as much as we can to the audit log */
1226  		if (len_buf >= 0) {
1227  			/* NOTE: some magic numbers here - basically if we
1228  			 *       can't fit a reasonable amount of data into the
1229  			 *       existing audit buffer, flush it and start with
1230  			 *       a new buffer */
1231  			if ((sizeof(abuf) + 8) > len_rem) {
1232  				len_rem = len_max;
1233  				audit_log_end(*ab);
1234  				*ab = audit_log_start(context,
1235  						      GFP_KERNEL, AUDIT_EXECVE);
1236  				if (!*ab)
1237  					goto out;
1238  			}
1239  
1240  			/* create the non-arg portion of the arg record */
1241  			len_tmp = 0;
1242  			if (require_data || (iter > 0) ||
1243  			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1244  				if (iter == 0) {
1245  					len_tmp += snprintf(&abuf[len_tmp],
1246  							sizeof(abuf) - len_tmp,
1247  							" a%d_len=%lu",
1248  							arg, len_full);
1249  				}
1250  				len_tmp += snprintf(&abuf[len_tmp],
1251  						    sizeof(abuf) - len_tmp,
1252  						    " a%d[%d]=", arg, iter++);
1253  			} else
1254  				len_tmp += snprintf(&abuf[len_tmp],
1255  						    sizeof(abuf) - len_tmp,
1256  						    " a%d=", arg);
1257  			WARN_ON(len_tmp >= sizeof(abuf));
1258  			abuf[sizeof(abuf) - 1] = '\0';
1259  
1260  			/* log the arg in the audit record */
1261  			audit_log_format(*ab, "%s", abuf);
1262  			len_rem -= len_tmp;
1263  			len_tmp = len_buf;
1264  			if (encode) {
1265  				if (len_abuf > len_rem)
1266  					len_tmp = len_rem / 2; /* encoding */
1267  				audit_log_n_hex(*ab, buf, len_tmp);
1268  				len_rem -= len_tmp * 2;
1269  				len_abuf -= len_tmp * 2;
1270  			} else {
1271  				if (len_abuf > len_rem)
1272  					len_tmp = len_rem - 2; /* quotes */
1273  				audit_log_n_string(*ab, buf, len_tmp);
1274  				len_rem -= len_tmp + 2;
1275  				/* don't subtract the "2" because we still need
1276  				 * to add quotes to the remaining string */
1277  				len_abuf -= len_tmp;
1278  			}
1279  			len_buf -= len_tmp;
1280  			buf += len_tmp;
1281  		}
1282  
1283  		/* ready to move to the next argument? */
1284  		if ((len_buf == 0) && !require_data) {
1285  			arg++;
1286  			iter = 0;
1287  			len_full = 0;
1288  			require_data = true;
1289  			encode = false;
1290  		}
1291  	} while (arg < context->execve.argc);
1292  
1293  	/* NOTE: the caller handles the final audit_log_end() call */
1294  
1295  out:
1296  	kfree(buf_head);
1297  }
1298  
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1299  static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1300  			  kernel_cap_t *cap)
1301  {
1302  	if (cap_isclear(*cap)) {
1303  		audit_log_format(ab, " %s=0", prefix);
1304  		return;
1305  	}
1306  	audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1307  }
1308  
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1309  static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1310  {
1311  	if (name->fcap_ver == -1) {
1312  		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1313  		return;
1314  	}
1315  	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1316  	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1317  	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1318  			 name->fcap.fE, name->fcap_ver,
1319  			 from_kuid(&init_user_ns, name->fcap.rootid));
1320  }
1321  
audit_log_time(struct audit_context * context,struct audit_buffer ** ab)1322  static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1323  {
1324  	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1325  	const struct timespec64 *tk = &context->time.tk_injoffset;
1326  	static const char * const ntp_name[] = {
1327  		"offset",
1328  		"freq",
1329  		"status",
1330  		"tai",
1331  		"tick",
1332  		"adjust",
1333  	};
1334  	int type;
1335  
1336  	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1337  		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1338  			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1339  				if (!*ab) {
1340  					*ab = audit_log_start(context,
1341  							GFP_KERNEL,
1342  							AUDIT_TIME_ADJNTPVAL);
1343  					if (!*ab)
1344  						return;
1345  				}
1346  				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1347  						 ntp_name[type],
1348  						 ntp->vals[type].oldval,
1349  						 ntp->vals[type].newval);
1350  				audit_log_end(*ab);
1351  				*ab = NULL;
1352  			}
1353  		}
1354  	}
1355  	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1356  		if (!*ab) {
1357  			*ab = audit_log_start(context, GFP_KERNEL,
1358  					      AUDIT_TIME_INJOFFSET);
1359  			if (!*ab)
1360  				return;
1361  		}
1362  		audit_log_format(*ab, "sec=%lli nsec=%li",
1363  				 (long long)tk->tv_sec, tk->tv_nsec);
1364  		audit_log_end(*ab);
1365  		*ab = NULL;
1366  	}
1367  }
1368  
show_special(struct audit_context * context,int * call_panic)1369  static void show_special(struct audit_context *context, int *call_panic)
1370  {
1371  	struct audit_buffer *ab;
1372  	int i;
1373  
1374  	ab = audit_log_start(context, GFP_KERNEL, context->type);
1375  	if (!ab)
1376  		return;
1377  
1378  	switch (context->type) {
1379  	case AUDIT_SOCKETCALL: {
1380  		int nargs = context->socketcall.nargs;
1381  
1382  		audit_log_format(ab, "nargs=%d", nargs);
1383  		for (i = 0; i < nargs; i++)
1384  			audit_log_format(ab, " a%d=%lx", i,
1385  				context->socketcall.args[i]);
1386  		break; }
1387  	case AUDIT_IPC: {
1388  		u32 osid = context->ipc.osid;
1389  
1390  		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1391  				 from_kuid(&init_user_ns, context->ipc.uid),
1392  				 from_kgid(&init_user_ns, context->ipc.gid),
1393  				 context->ipc.mode);
1394  		if (osid) {
1395  			char *ctx = NULL;
1396  			u32 len;
1397  
1398  			if (security_secid_to_secctx(osid, &ctx, &len)) {
1399  				audit_log_format(ab, " osid=%u", osid);
1400  				*call_panic = 1;
1401  			} else {
1402  				audit_log_format(ab, " obj=%s", ctx);
1403  				security_release_secctx(ctx, len);
1404  			}
1405  		}
1406  		if (context->ipc.has_perm) {
1407  			audit_log_end(ab);
1408  			ab = audit_log_start(context, GFP_KERNEL,
1409  					     AUDIT_IPC_SET_PERM);
1410  			if (unlikely(!ab))
1411  				return;
1412  			audit_log_format(ab,
1413  				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1414  				context->ipc.qbytes,
1415  				context->ipc.perm_uid,
1416  				context->ipc.perm_gid,
1417  				context->ipc.perm_mode);
1418  		}
1419  		break; }
1420  	case AUDIT_MQ_OPEN:
1421  		audit_log_format(ab,
1422  			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1423  			"mq_msgsize=%ld mq_curmsgs=%ld",
1424  			context->mq_open.oflag, context->mq_open.mode,
1425  			context->mq_open.attr.mq_flags,
1426  			context->mq_open.attr.mq_maxmsg,
1427  			context->mq_open.attr.mq_msgsize,
1428  			context->mq_open.attr.mq_curmsgs);
1429  		break;
1430  	case AUDIT_MQ_SENDRECV:
1431  		audit_log_format(ab,
1432  			"mqdes=%d msg_len=%zd msg_prio=%u "
1433  			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1434  			context->mq_sendrecv.mqdes,
1435  			context->mq_sendrecv.msg_len,
1436  			context->mq_sendrecv.msg_prio,
1437  			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1438  			context->mq_sendrecv.abs_timeout.tv_nsec);
1439  		break;
1440  	case AUDIT_MQ_NOTIFY:
1441  		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1442  				context->mq_notify.mqdes,
1443  				context->mq_notify.sigev_signo);
1444  		break;
1445  	case AUDIT_MQ_GETSETATTR: {
1446  		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1447  
1448  		audit_log_format(ab,
1449  			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1450  			"mq_curmsgs=%ld ",
1451  			context->mq_getsetattr.mqdes,
1452  			attr->mq_flags, attr->mq_maxmsg,
1453  			attr->mq_msgsize, attr->mq_curmsgs);
1454  		break; }
1455  	case AUDIT_CAPSET:
1456  		audit_log_format(ab, "pid=%d", context->capset.pid);
1457  		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1458  		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1459  		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1460  		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1461  		break;
1462  	case AUDIT_MMAP:
1463  		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1464  				 context->mmap.flags);
1465  		break;
1466  	case AUDIT_OPENAT2:
1467  		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1468  				 context->openat2.flags,
1469  				 context->openat2.mode,
1470  				 context->openat2.resolve);
1471  		break;
1472  	case AUDIT_EXECVE:
1473  		audit_log_execve_info(context, &ab);
1474  		break;
1475  	case AUDIT_KERN_MODULE:
1476  		audit_log_format(ab, "name=");
1477  		if (context->module.name) {
1478  			audit_log_untrustedstring(ab, context->module.name);
1479  		} else
1480  			audit_log_format(ab, "(null)");
1481  
1482  		break;
1483  	case AUDIT_TIME_ADJNTPVAL:
1484  	case AUDIT_TIME_INJOFFSET:
1485  		/* this call deviates from the rest, eating the buffer */
1486  		audit_log_time(context, &ab);
1487  		break;
1488  	}
1489  	audit_log_end(ab);
1490  }
1491  
audit_proctitle_rtrim(char * proctitle,int len)1492  static inline int audit_proctitle_rtrim(char *proctitle, int len)
1493  {
1494  	char *end = proctitle + len - 1;
1495  
1496  	while (end > proctitle && !isprint(*end))
1497  		end--;
1498  
1499  	/* catch the case where proctitle is only 1 non-print character */
1500  	len = end - proctitle + 1;
1501  	len -= isprint(proctitle[len-1]) == 0;
1502  	return len;
1503  }
1504  
1505  /*
1506   * audit_log_name - produce AUDIT_PATH record from struct audit_names
1507   * @context: audit_context for the task
1508   * @n: audit_names structure with reportable details
1509   * @path: optional path to report instead of audit_names->name
1510   * @record_num: record number to report when handling a list of names
1511   * @call_panic: optional pointer to int that will be updated if secid fails
1512   */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)1513  static void audit_log_name(struct audit_context *context, struct audit_names *n,
1514  		    const struct path *path, int record_num, int *call_panic)
1515  {
1516  	struct audit_buffer *ab;
1517  
1518  	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1519  	if (!ab)
1520  		return;
1521  
1522  	audit_log_format(ab, "item=%d", record_num);
1523  
1524  	if (path)
1525  		audit_log_d_path(ab, " name=", path);
1526  	else if (n->name) {
1527  		switch (n->name_len) {
1528  		case AUDIT_NAME_FULL:
1529  			/* log the full path */
1530  			audit_log_format(ab, " name=");
1531  			audit_log_untrustedstring(ab, n->name->name);
1532  			break;
1533  		case 0:
1534  			/* name was specified as a relative path and the
1535  			 * directory component is the cwd
1536  			 */
1537  			if (context->pwd.dentry && context->pwd.mnt)
1538  				audit_log_d_path(ab, " name=", &context->pwd);
1539  			else
1540  				audit_log_format(ab, " name=(null)");
1541  			break;
1542  		default:
1543  			/* log the name's directory component */
1544  			audit_log_format(ab, " name=");
1545  			audit_log_n_untrustedstring(ab, n->name->name,
1546  						    n->name_len);
1547  		}
1548  	} else
1549  		audit_log_format(ab, " name=(null)");
1550  
1551  	if (n->ino != AUDIT_INO_UNSET)
1552  		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1553  				 n->ino,
1554  				 MAJOR(n->dev),
1555  				 MINOR(n->dev),
1556  				 n->mode,
1557  				 from_kuid(&init_user_ns, n->uid),
1558  				 from_kgid(&init_user_ns, n->gid),
1559  				 MAJOR(n->rdev),
1560  				 MINOR(n->rdev));
1561  	if (n->osid != 0) {
1562  		char *ctx = NULL;
1563  		u32 len;
1564  
1565  		if (security_secid_to_secctx(
1566  			n->osid, &ctx, &len)) {
1567  			audit_log_format(ab, " osid=%u", n->osid);
1568  			if (call_panic)
1569  				*call_panic = 2;
1570  		} else {
1571  			audit_log_format(ab, " obj=%s", ctx);
1572  			security_release_secctx(ctx, len);
1573  		}
1574  	}
1575  
1576  	/* log the audit_names record type */
1577  	switch (n->type) {
1578  	case AUDIT_TYPE_NORMAL:
1579  		audit_log_format(ab, " nametype=NORMAL");
1580  		break;
1581  	case AUDIT_TYPE_PARENT:
1582  		audit_log_format(ab, " nametype=PARENT");
1583  		break;
1584  	case AUDIT_TYPE_CHILD_DELETE:
1585  		audit_log_format(ab, " nametype=DELETE");
1586  		break;
1587  	case AUDIT_TYPE_CHILD_CREATE:
1588  		audit_log_format(ab, " nametype=CREATE");
1589  		break;
1590  	default:
1591  		audit_log_format(ab, " nametype=UNKNOWN");
1592  		break;
1593  	}
1594  
1595  	audit_log_fcaps(ab, n);
1596  	audit_log_end(ab);
1597  }
1598  
audit_log_proctitle(void)1599  static void audit_log_proctitle(void)
1600  {
1601  	int res;
1602  	char *buf;
1603  	char *msg = "(null)";
1604  	int len = strlen(msg);
1605  	struct audit_context *context = audit_context();
1606  	struct audit_buffer *ab;
1607  
1608  	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1609  	if (!ab)
1610  		return;	/* audit_panic or being filtered */
1611  
1612  	audit_log_format(ab, "proctitle=");
1613  
1614  	/* Not  cached */
1615  	if (!context->proctitle.value) {
1616  		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1617  		if (!buf)
1618  			goto out;
1619  		/* Historically called this from procfs naming */
1620  		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1621  		if (res == 0) {
1622  			kfree(buf);
1623  			goto out;
1624  		}
1625  		res = audit_proctitle_rtrim(buf, res);
1626  		if (res == 0) {
1627  			kfree(buf);
1628  			goto out;
1629  		}
1630  		context->proctitle.value = buf;
1631  		context->proctitle.len = res;
1632  	}
1633  	msg = context->proctitle.value;
1634  	len = context->proctitle.len;
1635  out:
1636  	audit_log_n_untrustedstring(ab, msg, len);
1637  	audit_log_end(ab);
1638  }
1639  
1640  /**
1641   * audit_log_uring - generate a AUDIT_URINGOP record
1642   * @ctx: the audit context
1643   */
audit_log_uring(struct audit_context * ctx)1644  static void audit_log_uring(struct audit_context *ctx)
1645  {
1646  	struct audit_buffer *ab;
1647  	const struct cred *cred;
1648  
1649  	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1650  	if (!ab)
1651  		return;
1652  	cred = current_cred();
1653  	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1654  	if (ctx->return_valid != AUDITSC_INVALID)
1655  		audit_log_format(ab, " success=%s exit=%ld",
1656  				 (ctx->return_valid == AUDITSC_SUCCESS ?
1657  				  "yes" : "no"),
1658  				 ctx->return_code);
1659  	audit_log_format(ab,
1660  			 " items=%d"
1661  			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1662  			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1663  			 ctx->name_count,
1664  			 task_ppid_nr(current), task_tgid_nr(current),
1665  			 from_kuid(&init_user_ns, cred->uid),
1666  			 from_kgid(&init_user_ns, cred->gid),
1667  			 from_kuid(&init_user_ns, cred->euid),
1668  			 from_kuid(&init_user_ns, cred->suid),
1669  			 from_kuid(&init_user_ns, cred->fsuid),
1670  			 from_kgid(&init_user_ns, cred->egid),
1671  			 from_kgid(&init_user_ns, cred->sgid),
1672  			 from_kgid(&init_user_ns, cred->fsgid));
1673  	audit_log_task_context(ab);
1674  	audit_log_key(ab, ctx->filterkey);
1675  	audit_log_end(ab);
1676  }
1677  
audit_log_exit(void)1678  static void audit_log_exit(void)
1679  {
1680  	int i, call_panic = 0;
1681  	struct audit_context *context = audit_context();
1682  	struct audit_buffer *ab;
1683  	struct audit_aux_data *aux;
1684  	struct audit_names *n;
1685  
1686  	context->personality = current->personality;
1687  
1688  	switch (context->context) {
1689  	case AUDIT_CTX_SYSCALL:
1690  		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1691  		if (!ab)
1692  			return;
1693  		audit_log_format(ab, "arch=%x syscall=%d",
1694  				 context->arch, context->major);
1695  		if (context->personality != PER_LINUX)
1696  			audit_log_format(ab, " per=%lx", context->personality);
1697  		if (context->return_valid != AUDITSC_INVALID)
1698  			audit_log_format(ab, " success=%s exit=%ld",
1699  					 (context->return_valid == AUDITSC_SUCCESS ?
1700  					  "yes" : "no"),
1701  					 context->return_code);
1702  		audit_log_format(ab,
1703  				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1704  				 context->argv[0],
1705  				 context->argv[1],
1706  				 context->argv[2],
1707  				 context->argv[3],
1708  				 context->name_count);
1709  		audit_log_task_info(ab);
1710  		audit_log_key(ab, context->filterkey);
1711  		audit_log_end(ab);
1712  		break;
1713  	case AUDIT_CTX_URING:
1714  		audit_log_uring(context);
1715  		break;
1716  	default:
1717  		BUG();
1718  		break;
1719  	}
1720  
1721  	for (aux = context->aux; aux; aux = aux->next) {
1722  
1723  		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1724  		if (!ab)
1725  			continue; /* audit_panic has been called */
1726  
1727  		switch (aux->type) {
1728  
1729  		case AUDIT_BPRM_FCAPS: {
1730  			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1731  
1732  			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1733  			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1734  			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1735  			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1736  			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1737  			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1738  			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1739  			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1740  			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1741  			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1742  			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1743  			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1744  			audit_log_format(ab, " frootid=%d",
1745  					 from_kuid(&init_user_ns,
1746  						   axs->fcap.rootid));
1747  			break; }
1748  
1749  		}
1750  		audit_log_end(ab);
1751  	}
1752  
1753  	if (context->type)
1754  		show_special(context, &call_panic);
1755  
1756  	if (context->fds[0] >= 0) {
1757  		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1758  		if (ab) {
1759  			audit_log_format(ab, "fd0=%d fd1=%d",
1760  					context->fds[0], context->fds[1]);
1761  			audit_log_end(ab);
1762  		}
1763  	}
1764  
1765  	if (context->sockaddr_len) {
1766  		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1767  		if (ab) {
1768  			audit_log_format(ab, "saddr=");
1769  			audit_log_n_hex(ab, (void *)context->sockaddr,
1770  					context->sockaddr_len);
1771  			audit_log_end(ab);
1772  		}
1773  	}
1774  
1775  	for (aux = context->aux_pids; aux; aux = aux->next) {
1776  		struct audit_aux_data_pids *axs = (void *)aux;
1777  
1778  		for (i = 0; i < axs->pid_count; i++)
1779  			if (audit_log_pid_context(context, axs->target_pid[i],
1780  						  axs->target_auid[i],
1781  						  axs->target_uid[i],
1782  						  axs->target_sessionid[i],
1783  						  axs->target_sid[i],
1784  						  axs->target_comm[i]))
1785  				call_panic = 1;
1786  	}
1787  
1788  	if (context->target_pid &&
1789  	    audit_log_pid_context(context, context->target_pid,
1790  				  context->target_auid, context->target_uid,
1791  				  context->target_sessionid,
1792  				  context->target_sid, context->target_comm))
1793  			call_panic = 1;
1794  
1795  	if (context->pwd.dentry && context->pwd.mnt) {
1796  		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1797  		if (ab) {
1798  			audit_log_d_path(ab, "cwd=", &context->pwd);
1799  			audit_log_end(ab);
1800  		}
1801  	}
1802  
1803  	i = 0;
1804  	list_for_each_entry(n, &context->names_list, list) {
1805  		if (n->hidden)
1806  			continue;
1807  		audit_log_name(context, n, NULL, i++, &call_panic);
1808  	}
1809  
1810  	if (context->context == AUDIT_CTX_SYSCALL)
1811  		audit_log_proctitle();
1812  
1813  	/* Send end of event record to help user space know we are finished */
1814  	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1815  	if (ab)
1816  		audit_log_end(ab);
1817  	if (call_panic)
1818  		audit_panic("error in audit_log_exit()");
1819  }
1820  
1821  /**
1822   * __audit_free - free a per-task audit context
1823   * @tsk: task whose audit context block to free
1824   *
1825   * Called from copy_process, do_exit, and the io_uring code
1826   */
__audit_free(struct task_struct * tsk)1827  void __audit_free(struct task_struct *tsk)
1828  {
1829  	struct audit_context *context = tsk->audit_context;
1830  
1831  	if (!context)
1832  		return;
1833  
1834  	/* this may generate CONFIG_CHANGE records */
1835  	if (!list_empty(&context->killed_trees))
1836  		audit_kill_trees(context);
1837  
1838  	/* We are called either by do_exit() or the fork() error handling code;
1839  	 * in the former case tsk == current and in the latter tsk is a
1840  	 * random task_struct that doesn't have any meaningful data we
1841  	 * need to log via audit_log_exit().
1842  	 */
1843  	if (tsk == current && !context->dummy) {
1844  		context->return_valid = AUDITSC_INVALID;
1845  		context->return_code = 0;
1846  		if (context->context == AUDIT_CTX_SYSCALL) {
1847  			audit_filter_syscall(tsk, context);
1848  			audit_filter_inodes(tsk, context);
1849  			if (context->current_state == AUDIT_STATE_RECORD)
1850  				audit_log_exit();
1851  		} else if (context->context == AUDIT_CTX_URING) {
1852  			/* TODO: verify this case is real and valid */
1853  			audit_filter_uring(tsk, context);
1854  			audit_filter_inodes(tsk, context);
1855  			if (context->current_state == AUDIT_STATE_RECORD)
1856  				audit_log_uring(context);
1857  		}
1858  	}
1859  
1860  	audit_set_context(tsk, NULL);
1861  	audit_free_context(context);
1862  }
1863  
1864  /**
1865   * audit_return_fixup - fixup the return codes in the audit_context
1866   * @ctx: the audit_context
1867   * @success: true/false value to indicate if the operation succeeded or not
1868   * @code: operation return code
1869   *
1870   * We need to fixup the return code in the audit logs if the actual return
1871   * codes are later going to be fixed by the arch specific signal handlers.
1872   */
audit_return_fixup(struct audit_context * ctx,int success,long code)1873  static void audit_return_fixup(struct audit_context *ctx,
1874  			       int success, long code)
1875  {
1876  	/*
1877  	 * This is actually a test for:
1878  	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1879  	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1880  	 *
1881  	 * but is faster than a bunch of ||
1882  	 */
1883  	if (unlikely(code <= -ERESTARTSYS) &&
1884  	    (code >= -ERESTART_RESTARTBLOCK) &&
1885  	    (code != -ENOIOCTLCMD))
1886  		ctx->return_code = -EINTR;
1887  	else
1888  		ctx->return_code  = code;
1889  	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1890  }
1891  
1892  /**
1893   * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1894   * @op: the io_uring opcode
1895   *
1896   * This is similar to audit_syscall_entry() but is intended for use by io_uring
1897   * operations.  This function should only ever be called from
1898   * audit_uring_entry() as we rely on the audit context checking present in that
1899   * function.
1900   */
__audit_uring_entry(u8 op)1901  void __audit_uring_entry(u8 op)
1902  {
1903  	struct audit_context *ctx = audit_context();
1904  
1905  	if (ctx->state == AUDIT_STATE_DISABLED)
1906  		return;
1907  
1908  	/*
1909  	 * NOTE: It's possible that we can be called from the process' context
1910  	 *       before it returns to userspace, and before audit_syscall_exit()
1911  	 *       is called.  In this case there is not much to do, just record
1912  	 *       the io_uring details and return.
1913  	 */
1914  	ctx->uring_op = op;
1915  	if (ctx->context == AUDIT_CTX_SYSCALL)
1916  		return;
1917  
1918  	ctx->dummy = !audit_n_rules;
1919  	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1920  		ctx->prio = 0;
1921  
1922  	ctx->context = AUDIT_CTX_URING;
1923  	ctx->current_state = ctx->state;
1924  	ktime_get_coarse_real_ts64(&ctx->ctime);
1925  }
1926  
1927  /**
1928   * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1929   * @success: true/false value to indicate if the operation succeeded or not
1930   * @code: operation return code
1931   *
1932   * This is similar to audit_syscall_exit() but is intended for use by io_uring
1933   * operations.  This function should only ever be called from
1934   * audit_uring_exit() as we rely on the audit context checking present in that
1935   * function.
1936   */
__audit_uring_exit(int success,long code)1937  void __audit_uring_exit(int success, long code)
1938  {
1939  	struct audit_context *ctx = audit_context();
1940  
1941  	if (ctx->dummy) {
1942  		if (ctx->context != AUDIT_CTX_URING)
1943  			return;
1944  		goto out;
1945  	}
1946  
1947  	audit_return_fixup(ctx, success, code);
1948  	if (ctx->context == AUDIT_CTX_SYSCALL) {
1949  		/*
1950  		 * NOTE: See the note in __audit_uring_entry() about the case
1951  		 *       where we may be called from process context before we
1952  		 *       return to userspace via audit_syscall_exit().  In this
1953  		 *       case we simply emit a URINGOP record and bail, the
1954  		 *       normal syscall exit handling will take care of
1955  		 *       everything else.
1956  		 *       It is also worth mentioning that when we are called,
1957  		 *       the current process creds may differ from the creds
1958  		 *       used during the normal syscall processing; keep that
1959  		 *       in mind if/when we move the record generation code.
1960  		 */
1961  
1962  		/*
1963  		 * We need to filter on the syscall info here to decide if we
1964  		 * should emit a URINGOP record.  I know it seems odd but this
1965  		 * solves the problem where users have a filter to block *all*
1966  		 * syscall records in the "exit" filter; we want to preserve
1967  		 * the behavior here.
1968  		 */
1969  		audit_filter_syscall(current, ctx);
1970  		if (ctx->current_state != AUDIT_STATE_RECORD)
1971  			audit_filter_uring(current, ctx);
1972  		audit_filter_inodes(current, ctx);
1973  		if (ctx->current_state != AUDIT_STATE_RECORD)
1974  			return;
1975  
1976  		audit_log_uring(ctx);
1977  		return;
1978  	}
1979  
1980  	/* this may generate CONFIG_CHANGE records */
1981  	if (!list_empty(&ctx->killed_trees))
1982  		audit_kill_trees(ctx);
1983  
1984  	/* run through both filters to ensure we set the filterkey properly */
1985  	audit_filter_uring(current, ctx);
1986  	audit_filter_inodes(current, ctx);
1987  	if (ctx->current_state != AUDIT_STATE_RECORD)
1988  		goto out;
1989  	audit_log_exit();
1990  
1991  out:
1992  	audit_reset_context(ctx);
1993  }
1994  
1995  /**
1996   * __audit_syscall_entry - fill in an audit record at syscall entry
1997   * @major: major syscall type (function)
1998   * @a1: additional syscall register 1
1999   * @a2: additional syscall register 2
2000   * @a3: additional syscall register 3
2001   * @a4: additional syscall register 4
2002   *
2003   * Fill in audit context at syscall entry.  This only happens if the
2004   * audit context was created when the task was created and the state or
2005   * filters demand the audit context be built.  If the state from the
2006   * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2007   * then the record will be written at syscall exit time (otherwise, it
2008   * will only be written if another part of the kernel requests that it
2009   * be written).
2010   */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)2011  void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2012  			   unsigned long a3, unsigned long a4)
2013  {
2014  	struct audit_context *context = audit_context();
2015  	enum audit_state     state;
2016  
2017  	if (!audit_enabled || !context)
2018  		return;
2019  
2020  	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2021  	WARN_ON(context->name_count);
2022  	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2023  		audit_panic("unrecoverable error in audit_syscall_entry()");
2024  		return;
2025  	}
2026  
2027  	state = context->state;
2028  	if (state == AUDIT_STATE_DISABLED)
2029  		return;
2030  
2031  	context->dummy = !audit_n_rules;
2032  	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2033  		context->prio = 0;
2034  		if (auditd_test_task(current))
2035  			return;
2036  	}
2037  
2038  	context->arch	    = syscall_get_arch(current);
2039  	context->major      = major;
2040  	context->argv[0]    = a1;
2041  	context->argv[1]    = a2;
2042  	context->argv[2]    = a3;
2043  	context->argv[3]    = a4;
2044  	context->context = AUDIT_CTX_SYSCALL;
2045  	context->current_state  = state;
2046  	ktime_get_coarse_real_ts64(&context->ctime);
2047  }
2048  
2049  /**
2050   * __audit_syscall_exit - deallocate audit context after a system call
2051   * @success: success value of the syscall
2052   * @return_code: return value of the syscall
2053   *
2054   * Tear down after system call.  If the audit context has been marked as
2055   * auditable (either because of the AUDIT_STATE_RECORD state from
2056   * filtering, or because some other part of the kernel wrote an audit
2057   * message), then write out the syscall information.  In call cases,
2058   * free the names stored from getname().
2059   */
__audit_syscall_exit(int success,long return_code)2060  void __audit_syscall_exit(int success, long return_code)
2061  {
2062  	struct audit_context *context = audit_context();
2063  
2064  	if (!context || context->dummy ||
2065  	    context->context != AUDIT_CTX_SYSCALL)
2066  		goto out;
2067  
2068  	/* this may generate CONFIG_CHANGE records */
2069  	if (!list_empty(&context->killed_trees))
2070  		audit_kill_trees(context);
2071  
2072  	audit_return_fixup(context, success, return_code);
2073  	/* run through both filters to ensure we set the filterkey properly */
2074  	audit_filter_syscall(current, context);
2075  	audit_filter_inodes(current, context);
2076  	if (context->current_state != AUDIT_STATE_RECORD)
2077  		goto out;
2078  
2079  	audit_log_exit();
2080  
2081  out:
2082  	audit_reset_context(context);
2083  }
2084  
handle_one(const struct inode * inode)2085  static inline void handle_one(const struct inode *inode)
2086  {
2087  	struct audit_context *context;
2088  	struct audit_tree_refs *p;
2089  	struct audit_chunk *chunk;
2090  	int count;
2091  
2092  	if (likely(!inode->i_fsnotify_marks))
2093  		return;
2094  	context = audit_context();
2095  	p = context->trees;
2096  	count = context->tree_count;
2097  	rcu_read_lock();
2098  	chunk = audit_tree_lookup(inode);
2099  	rcu_read_unlock();
2100  	if (!chunk)
2101  		return;
2102  	if (likely(put_tree_ref(context, chunk)))
2103  		return;
2104  	if (unlikely(!grow_tree_refs(context))) {
2105  		pr_warn("out of memory, audit has lost a tree reference\n");
2106  		audit_set_auditable(context);
2107  		audit_put_chunk(chunk);
2108  		unroll_tree_refs(context, p, count);
2109  		return;
2110  	}
2111  	put_tree_ref(context, chunk);
2112  }
2113  
handle_path(const struct dentry * dentry)2114  static void handle_path(const struct dentry *dentry)
2115  {
2116  	struct audit_context *context;
2117  	struct audit_tree_refs *p;
2118  	const struct dentry *d, *parent;
2119  	struct audit_chunk *drop;
2120  	unsigned long seq;
2121  	int count;
2122  
2123  	context = audit_context();
2124  	p = context->trees;
2125  	count = context->tree_count;
2126  retry:
2127  	drop = NULL;
2128  	d = dentry;
2129  	rcu_read_lock();
2130  	seq = read_seqbegin(&rename_lock);
2131  	for (;;) {
2132  		struct inode *inode = d_backing_inode(d);
2133  
2134  		if (inode && unlikely(inode->i_fsnotify_marks)) {
2135  			struct audit_chunk *chunk;
2136  
2137  			chunk = audit_tree_lookup(inode);
2138  			if (chunk) {
2139  				if (unlikely(!put_tree_ref(context, chunk))) {
2140  					drop = chunk;
2141  					break;
2142  				}
2143  			}
2144  		}
2145  		parent = d->d_parent;
2146  		if (parent == d)
2147  			break;
2148  		d = parent;
2149  	}
2150  	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2151  		rcu_read_unlock();
2152  		if (!drop) {
2153  			/* just a race with rename */
2154  			unroll_tree_refs(context, p, count);
2155  			goto retry;
2156  		}
2157  		audit_put_chunk(drop);
2158  		if (grow_tree_refs(context)) {
2159  			/* OK, got more space */
2160  			unroll_tree_refs(context, p, count);
2161  			goto retry;
2162  		}
2163  		/* too bad */
2164  		pr_warn("out of memory, audit has lost a tree reference\n");
2165  		unroll_tree_refs(context, p, count);
2166  		audit_set_auditable(context);
2167  		return;
2168  	}
2169  	rcu_read_unlock();
2170  }
2171  
audit_alloc_name(struct audit_context * context,unsigned char type)2172  static struct audit_names *audit_alloc_name(struct audit_context *context,
2173  						unsigned char type)
2174  {
2175  	struct audit_names *aname;
2176  
2177  	if (context->name_count < AUDIT_NAMES) {
2178  		aname = &context->preallocated_names[context->name_count];
2179  		memset(aname, 0, sizeof(*aname));
2180  	} else {
2181  		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2182  		if (!aname)
2183  			return NULL;
2184  		aname->should_free = true;
2185  	}
2186  
2187  	aname->ino = AUDIT_INO_UNSET;
2188  	aname->type = type;
2189  	list_add_tail(&aname->list, &context->names_list);
2190  
2191  	context->name_count++;
2192  	if (!context->pwd.dentry)
2193  		get_fs_pwd(current->fs, &context->pwd);
2194  	return aname;
2195  }
2196  
2197  /**
2198   * __audit_reusename - fill out filename with info from existing entry
2199   * @uptr: userland ptr to pathname
2200   *
2201   * Search the audit_names list for the current audit context. If there is an
2202   * existing entry with a matching "uptr" then return the filename
2203   * associated with that audit_name. If not, return NULL.
2204   */
2205  struct filename *
__audit_reusename(const __user char * uptr)2206  __audit_reusename(const __user char *uptr)
2207  {
2208  	struct audit_context *context = audit_context();
2209  	struct audit_names *n;
2210  
2211  	list_for_each_entry(n, &context->names_list, list) {
2212  		if (!n->name)
2213  			continue;
2214  		if (n->name->uptr == uptr) {
2215  			atomic_inc(&n->name->refcnt);
2216  			return n->name;
2217  		}
2218  	}
2219  	return NULL;
2220  }
2221  
2222  /**
2223   * __audit_getname - add a name to the list
2224   * @name: name to add
2225   *
2226   * Add a name to the list of audit names for this context.
2227   * Called from fs/namei.c:getname().
2228   */
__audit_getname(struct filename * name)2229  void __audit_getname(struct filename *name)
2230  {
2231  	struct audit_context *context = audit_context();
2232  	struct audit_names *n;
2233  
2234  	if (context->context == AUDIT_CTX_UNUSED)
2235  		return;
2236  
2237  	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2238  	if (!n)
2239  		return;
2240  
2241  	n->name = name;
2242  	n->name_len = AUDIT_NAME_FULL;
2243  	name->aname = n;
2244  	atomic_inc(&name->refcnt);
2245  }
2246  
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)2247  static inline int audit_copy_fcaps(struct audit_names *name,
2248  				   const struct dentry *dentry)
2249  {
2250  	struct cpu_vfs_cap_data caps;
2251  	int rc;
2252  
2253  	if (!dentry)
2254  		return 0;
2255  
2256  	rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2257  	if (rc)
2258  		return rc;
2259  
2260  	name->fcap.permitted = caps.permitted;
2261  	name->fcap.inheritable = caps.inheritable;
2262  	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2263  	name->fcap.rootid = caps.rootid;
2264  	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2265  				VFS_CAP_REVISION_SHIFT;
2266  
2267  	return 0;
2268  }
2269  
2270  /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode,unsigned int flags)2271  static void audit_copy_inode(struct audit_names *name,
2272  			     const struct dentry *dentry,
2273  			     struct inode *inode, unsigned int flags)
2274  {
2275  	name->ino   = inode->i_ino;
2276  	name->dev   = inode->i_sb->s_dev;
2277  	name->mode  = inode->i_mode;
2278  	name->uid   = inode->i_uid;
2279  	name->gid   = inode->i_gid;
2280  	name->rdev  = inode->i_rdev;
2281  	security_inode_getsecid(inode, &name->osid);
2282  	if (flags & AUDIT_INODE_NOEVAL) {
2283  		name->fcap_ver = -1;
2284  		return;
2285  	}
2286  	audit_copy_fcaps(name, dentry);
2287  }
2288  
2289  /**
2290   * __audit_inode - store the inode and device from a lookup
2291   * @name: name being audited
2292   * @dentry: dentry being audited
2293   * @flags: attributes for this particular entry
2294   */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)2295  void __audit_inode(struct filename *name, const struct dentry *dentry,
2296  		   unsigned int flags)
2297  {
2298  	struct audit_context *context = audit_context();
2299  	struct inode *inode = d_backing_inode(dentry);
2300  	struct audit_names *n;
2301  	bool parent = flags & AUDIT_INODE_PARENT;
2302  	struct audit_entry *e;
2303  	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2304  	int i;
2305  
2306  	if (context->context == AUDIT_CTX_UNUSED)
2307  		return;
2308  
2309  	rcu_read_lock();
2310  	list_for_each_entry_rcu(e, list, list) {
2311  		for (i = 0; i < e->rule.field_count; i++) {
2312  			struct audit_field *f = &e->rule.fields[i];
2313  
2314  			if (f->type == AUDIT_FSTYPE
2315  			    && audit_comparator(inode->i_sb->s_magic,
2316  						f->op, f->val)
2317  			    && e->rule.action == AUDIT_NEVER) {
2318  				rcu_read_unlock();
2319  				return;
2320  			}
2321  		}
2322  	}
2323  	rcu_read_unlock();
2324  
2325  	if (!name)
2326  		goto out_alloc;
2327  
2328  	/*
2329  	 * If we have a pointer to an audit_names entry already, then we can
2330  	 * just use it directly if the type is correct.
2331  	 */
2332  	n = name->aname;
2333  	if (n) {
2334  		if (parent) {
2335  			if (n->type == AUDIT_TYPE_PARENT ||
2336  			    n->type == AUDIT_TYPE_UNKNOWN)
2337  				goto out;
2338  		} else {
2339  			if (n->type != AUDIT_TYPE_PARENT)
2340  				goto out;
2341  		}
2342  	}
2343  
2344  	list_for_each_entry_reverse(n, &context->names_list, list) {
2345  		if (n->ino) {
2346  			/* valid inode number, use that for the comparison */
2347  			if (n->ino != inode->i_ino ||
2348  			    n->dev != inode->i_sb->s_dev)
2349  				continue;
2350  		} else if (n->name) {
2351  			/* inode number has not been set, check the name */
2352  			if (strcmp(n->name->name, name->name))
2353  				continue;
2354  		} else
2355  			/* no inode and no name (?!) ... this is odd ... */
2356  			continue;
2357  
2358  		/* match the correct record type */
2359  		if (parent) {
2360  			if (n->type == AUDIT_TYPE_PARENT ||
2361  			    n->type == AUDIT_TYPE_UNKNOWN)
2362  				goto out;
2363  		} else {
2364  			if (n->type != AUDIT_TYPE_PARENT)
2365  				goto out;
2366  		}
2367  	}
2368  
2369  out_alloc:
2370  	/* unable to find an entry with both a matching name and type */
2371  	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2372  	if (!n)
2373  		return;
2374  	if (name) {
2375  		n->name = name;
2376  		atomic_inc(&name->refcnt);
2377  	}
2378  
2379  out:
2380  	if (parent) {
2381  		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2382  		n->type = AUDIT_TYPE_PARENT;
2383  		if (flags & AUDIT_INODE_HIDDEN)
2384  			n->hidden = true;
2385  	} else {
2386  		n->name_len = AUDIT_NAME_FULL;
2387  		n->type = AUDIT_TYPE_NORMAL;
2388  	}
2389  	handle_path(dentry);
2390  	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2391  }
2392  
__audit_file(const struct file * file)2393  void __audit_file(const struct file *file)
2394  {
2395  	__audit_inode(NULL, file->f_path.dentry, 0);
2396  }
2397  
2398  /**
2399   * __audit_inode_child - collect inode info for created/removed objects
2400   * @parent: inode of dentry parent
2401   * @dentry: dentry being audited
2402   * @type:   AUDIT_TYPE_* value that we're looking for
2403   *
2404   * For syscalls that create or remove filesystem objects, audit_inode
2405   * can only collect information for the filesystem object's parent.
2406   * This call updates the audit context with the child's information.
2407   * Syscalls that create a new filesystem object must be hooked after
2408   * the object is created.  Syscalls that remove a filesystem object
2409   * must be hooked prior, in order to capture the target inode during
2410   * unsuccessful attempts.
2411   */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)2412  void __audit_inode_child(struct inode *parent,
2413  			 const struct dentry *dentry,
2414  			 const unsigned char type)
2415  {
2416  	struct audit_context *context = audit_context();
2417  	struct inode *inode = d_backing_inode(dentry);
2418  	const struct qstr *dname = &dentry->d_name;
2419  	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2420  	struct audit_entry *e;
2421  	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2422  	int i;
2423  
2424  	if (context->context == AUDIT_CTX_UNUSED)
2425  		return;
2426  
2427  	rcu_read_lock();
2428  	list_for_each_entry_rcu(e, list, list) {
2429  		for (i = 0; i < e->rule.field_count; i++) {
2430  			struct audit_field *f = &e->rule.fields[i];
2431  
2432  			if (f->type == AUDIT_FSTYPE
2433  			    && audit_comparator(parent->i_sb->s_magic,
2434  						f->op, f->val)
2435  			    && e->rule.action == AUDIT_NEVER) {
2436  				rcu_read_unlock();
2437  				return;
2438  			}
2439  		}
2440  	}
2441  	rcu_read_unlock();
2442  
2443  	if (inode)
2444  		handle_one(inode);
2445  
2446  	/* look for a parent entry first */
2447  	list_for_each_entry(n, &context->names_list, list) {
2448  		if (!n->name ||
2449  		    (n->type != AUDIT_TYPE_PARENT &&
2450  		     n->type != AUDIT_TYPE_UNKNOWN))
2451  			continue;
2452  
2453  		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2454  		    !audit_compare_dname_path(dname,
2455  					      n->name->name, n->name_len)) {
2456  			if (n->type == AUDIT_TYPE_UNKNOWN)
2457  				n->type = AUDIT_TYPE_PARENT;
2458  			found_parent = n;
2459  			break;
2460  		}
2461  	}
2462  
2463  	cond_resched();
2464  
2465  	/* is there a matching child entry? */
2466  	list_for_each_entry(n, &context->names_list, list) {
2467  		/* can only match entries that have a name */
2468  		if (!n->name ||
2469  		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2470  			continue;
2471  
2472  		if (!strcmp(dname->name, n->name->name) ||
2473  		    !audit_compare_dname_path(dname, n->name->name,
2474  						found_parent ?
2475  						found_parent->name_len :
2476  						AUDIT_NAME_FULL)) {
2477  			if (n->type == AUDIT_TYPE_UNKNOWN)
2478  				n->type = type;
2479  			found_child = n;
2480  			break;
2481  		}
2482  	}
2483  
2484  	if (!found_parent) {
2485  		/* create a new, "anonymous" parent record */
2486  		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2487  		if (!n)
2488  			return;
2489  		audit_copy_inode(n, NULL, parent, 0);
2490  	}
2491  
2492  	if (!found_child) {
2493  		found_child = audit_alloc_name(context, type);
2494  		if (!found_child)
2495  			return;
2496  
2497  		/* Re-use the name belonging to the slot for a matching parent
2498  		 * directory. All names for this context are relinquished in
2499  		 * audit_free_names() */
2500  		if (found_parent) {
2501  			found_child->name = found_parent->name;
2502  			found_child->name_len = AUDIT_NAME_FULL;
2503  			atomic_inc(&found_child->name->refcnt);
2504  		}
2505  	}
2506  
2507  	if (inode)
2508  		audit_copy_inode(found_child, dentry, inode, 0);
2509  	else
2510  		found_child->ino = AUDIT_INO_UNSET;
2511  }
2512  EXPORT_SYMBOL_GPL(__audit_inode_child);
2513  
2514  /**
2515   * auditsc_get_stamp - get local copies of audit_context values
2516   * @ctx: audit_context for the task
2517   * @t: timespec64 to store time recorded in the audit_context
2518   * @serial: serial value that is recorded in the audit_context
2519   *
2520   * Also sets the context as auditable.
2521   */
auditsc_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)2522  int auditsc_get_stamp(struct audit_context *ctx,
2523  		       struct timespec64 *t, unsigned int *serial)
2524  {
2525  	if (ctx->context == AUDIT_CTX_UNUSED)
2526  		return 0;
2527  	if (!ctx->serial)
2528  		ctx->serial = audit_serial();
2529  	t->tv_sec  = ctx->ctime.tv_sec;
2530  	t->tv_nsec = ctx->ctime.tv_nsec;
2531  	*serial    = ctx->serial;
2532  	if (!ctx->prio) {
2533  		ctx->prio = 1;
2534  		ctx->current_state = AUDIT_STATE_RECORD;
2535  	}
2536  	return 1;
2537  }
2538  
2539  /**
2540   * __audit_mq_open - record audit data for a POSIX MQ open
2541   * @oflag: open flag
2542   * @mode: mode bits
2543   * @attr: queue attributes
2544   *
2545   */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2546  void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2547  {
2548  	struct audit_context *context = audit_context();
2549  
2550  	if (attr)
2551  		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2552  	else
2553  		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2554  
2555  	context->mq_open.oflag = oflag;
2556  	context->mq_open.mode = mode;
2557  
2558  	context->type = AUDIT_MQ_OPEN;
2559  }
2560  
2561  /**
2562   * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2563   * @mqdes: MQ descriptor
2564   * @msg_len: Message length
2565   * @msg_prio: Message priority
2566   * @abs_timeout: Message timeout in absolute time
2567   *
2568   */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2569  void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2570  			const struct timespec64 *abs_timeout)
2571  {
2572  	struct audit_context *context = audit_context();
2573  	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2574  
2575  	if (abs_timeout)
2576  		memcpy(p, abs_timeout, sizeof(*p));
2577  	else
2578  		memset(p, 0, sizeof(*p));
2579  
2580  	context->mq_sendrecv.mqdes = mqdes;
2581  	context->mq_sendrecv.msg_len = msg_len;
2582  	context->mq_sendrecv.msg_prio = msg_prio;
2583  
2584  	context->type = AUDIT_MQ_SENDRECV;
2585  }
2586  
2587  /**
2588   * __audit_mq_notify - record audit data for a POSIX MQ notify
2589   * @mqdes: MQ descriptor
2590   * @notification: Notification event
2591   *
2592   */
2593  
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2594  void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2595  {
2596  	struct audit_context *context = audit_context();
2597  
2598  	if (notification)
2599  		context->mq_notify.sigev_signo = notification->sigev_signo;
2600  	else
2601  		context->mq_notify.sigev_signo = 0;
2602  
2603  	context->mq_notify.mqdes = mqdes;
2604  	context->type = AUDIT_MQ_NOTIFY;
2605  }
2606  
2607  /**
2608   * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2609   * @mqdes: MQ descriptor
2610   * @mqstat: MQ flags
2611   *
2612   */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2613  void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2614  {
2615  	struct audit_context *context = audit_context();
2616  
2617  	context->mq_getsetattr.mqdes = mqdes;
2618  	context->mq_getsetattr.mqstat = *mqstat;
2619  	context->type = AUDIT_MQ_GETSETATTR;
2620  }
2621  
2622  /**
2623   * __audit_ipc_obj - record audit data for ipc object
2624   * @ipcp: ipc permissions
2625   *
2626   */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2627  void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2628  {
2629  	struct audit_context *context = audit_context();
2630  
2631  	context->ipc.uid = ipcp->uid;
2632  	context->ipc.gid = ipcp->gid;
2633  	context->ipc.mode = ipcp->mode;
2634  	context->ipc.has_perm = 0;
2635  	security_ipc_getsecid(ipcp, &context->ipc.osid);
2636  	context->type = AUDIT_IPC;
2637  }
2638  
2639  /**
2640   * __audit_ipc_set_perm - record audit data for new ipc permissions
2641   * @qbytes: msgq bytes
2642   * @uid: msgq user id
2643   * @gid: msgq group id
2644   * @mode: msgq mode (permissions)
2645   *
2646   * Called only after audit_ipc_obj().
2647   */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2648  void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2649  {
2650  	struct audit_context *context = audit_context();
2651  
2652  	context->ipc.qbytes = qbytes;
2653  	context->ipc.perm_uid = uid;
2654  	context->ipc.perm_gid = gid;
2655  	context->ipc.perm_mode = mode;
2656  	context->ipc.has_perm = 1;
2657  }
2658  
__audit_bprm(struct linux_binprm * bprm)2659  void __audit_bprm(struct linux_binprm *bprm)
2660  {
2661  	struct audit_context *context = audit_context();
2662  
2663  	context->type = AUDIT_EXECVE;
2664  	context->execve.argc = bprm->argc;
2665  }
2666  
2667  
2668  /**
2669   * __audit_socketcall - record audit data for sys_socketcall
2670   * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2671   * @args: args array
2672   *
2673   */
__audit_socketcall(int nargs,unsigned long * args)2674  int __audit_socketcall(int nargs, unsigned long *args)
2675  {
2676  	struct audit_context *context = audit_context();
2677  
2678  	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2679  		return -EINVAL;
2680  	context->type = AUDIT_SOCKETCALL;
2681  	context->socketcall.nargs = nargs;
2682  	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2683  	return 0;
2684  }
2685  
2686  /**
2687   * __audit_fd_pair - record audit data for pipe and socketpair
2688   * @fd1: the first file descriptor
2689   * @fd2: the second file descriptor
2690   *
2691   */
__audit_fd_pair(int fd1,int fd2)2692  void __audit_fd_pair(int fd1, int fd2)
2693  {
2694  	struct audit_context *context = audit_context();
2695  
2696  	context->fds[0] = fd1;
2697  	context->fds[1] = fd2;
2698  }
2699  
2700  /**
2701   * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2702   * @len: data length in user space
2703   * @a: data address in kernel space
2704   *
2705   * Returns 0 for success or NULL context or < 0 on error.
2706   */
__audit_sockaddr(int len,void * a)2707  int __audit_sockaddr(int len, void *a)
2708  {
2709  	struct audit_context *context = audit_context();
2710  
2711  	if (!context->sockaddr) {
2712  		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2713  
2714  		if (!p)
2715  			return -ENOMEM;
2716  		context->sockaddr = p;
2717  	}
2718  
2719  	context->sockaddr_len = len;
2720  	memcpy(context->sockaddr, a, len);
2721  	return 0;
2722  }
2723  
__audit_ptrace(struct task_struct * t)2724  void __audit_ptrace(struct task_struct *t)
2725  {
2726  	struct audit_context *context = audit_context();
2727  
2728  	context->target_pid = task_tgid_nr(t);
2729  	context->target_auid = audit_get_loginuid(t);
2730  	context->target_uid = task_uid(t);
2731  	context->target_sessionid = audit_get_sessionid(t);
2732  	security_task_getsecid_obj(t, &context->target_sid);
2733  	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2734  }
2735  
2736  /**
2737   * audit_signal_info_syscall - record signal info for syscalls
2738   * @t: task being signaled
2739   *
2740   * If the audit subsystem is being terminated, record the task (pid)
2741   * and uid that is doing that.
2742   */
audit_signal_info_syscall(struct task_struct * t)2743  int audit_signal_info_syscall(struct task_struct *t)
2744  {
2745  	struct audit_aux_data_pids *axp;
2746  	struct audit_context *ctx = audit_context();
2747  	kuid_t t_uid = task_uid(t);
2748  
2749  	if (!audit_signals || audit_dummy_context())
2750  		return 0;
2751  
2752  	/* optimize the common case by putting first signal recipient directly
2753  	 * in audit_context */
2754  	if (!ctx->target_pid) {
2755  		ctx->target_pid = task_tgid_nr(t);
2756  		ctx->target_auid = audit_get_loginuid(t);
2757  		ctx->target_uid = t_uid;
2758  		ctx->target_sessionid = audit_get_sessionid(t);
2759  		security_task_getsecid_obj(t, &ctx->target_sid);
2760  		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2761  		return 0;
2762  	}
2763  
2764  	axp = (void *)ctx->aux_pids;
2765  	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2766  		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2767  		if (!axp)
2768  			return -ENOMEM;
2769  
2770  		axp->d.type = AUDIT_OBJ_PID;
2771  		axp->d.next = ctx->aux_pids;
2772  		ctx->aux_pids = (void *)axp;
2773  	}
2774  	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2775  
2776  	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2777  	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2778  	axp->target_uid[axp->pid_count] = t_uid;
2779  	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2780  	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2781  	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2782  	axp->pid_count++;
2783  
2784  	return 0;
2785  }
2786  
2787  /**
2788   * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2789   * @bprm: pointer to the bprm being processed
2790   * @new: the proposed new credentials
2791   * @old: the old credentials
2792   *
2793   * Simply check if the proc already has the caps given by the file and if not
2794   * store the priv escalation info for later auditing at the end of the syscall
2795   *
2796   * -Eric
2797   */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2798  int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2799  			   const struct cred *new, const struct cred *old)
2800  {
2801  	struct audit_aux_data_bprm_fcaps *ax;
2802  	struct audit_context *context = audit_context();
2803  	struct cpu_vfs_cap_data vcaps;
2804  
2805  	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2806  	if (!ax)
2807  		return -ENOMEM;
2808  
2809  	ax->d.type = AUDIT_BPRM_FCAPS;
2810  	ax->d.next = context->aux;
2811  	context->aux = (void *)ax;
2812  
2813  	get_vfs_caps_from_disk(&nop_mnt_idmap,
2814  			       bprm->file->f_path.dentry, &vcaps);
2815  
2816  	ax->fcap.permitted = vcaps.permitted;
2817  	ax->fcap.inheritable = vcaps.inheritable;
2818  	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2819  	ax->fcap.rootid = vcaps.rootid;
2820  	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2821  
2822  	ax->old_pcap.permitted   = old->cap_permitted;
2823  	ax->old_pcap.inheritable = old->cap_inheritable;
2824  	ax->old_pcap.effective   = old->cap_effective;
2825  	ax->old_pcap.ambient     = old->cap_ambient;
2826  
2827  	ax->new_pcap.permitted   = new->cap_permitted;
2828  	ax->new_pcap.inheritable = new->cap_inheritable;
2829  	ax->new_pcap.effective   = new->cap_effective;
2830  	ax->new_pcap.ambient     = new->cap_ambient;
2831  	return 0;
2832  }
2833  
2834  /**
2835   * __audit_log_capset - store information about the arguments to the capset syscall
2836   * @new: the new credentials
2837   * @old: the old (current) credentials
2838   *
2839   * Record the arguments userspace sent to sys_capset for later printing by the
2840   * audit system if applicable
2841   */
__audit_log_capset(const struct cred * new,const struct cred * old)2842  void __audit_log_capset(const struct cred *new, const struct cred *old)
2843  {
2844  	struct audit_context *context = audit_context();
2845  
2846  	context->capset.pid = task_tgid_nr(current);
2847  	context->capset.cap.effective   = new->cap_effective;
2848  	context->capset.cap.inheritable = new->cap_effective;
2849  	context->capset.cap.permitted   = new->cap_permitted;
2850  	context->capset.cap.ambient     = new->cap_ambient;
2851  	context->type = AUDIT_CAPSET;
2852  }
2853  
__audit_mmap_fd(int fd,int flags)2854  void __audit_mmap_fd(int fd, int flags)
2855  {
2856  	struct audit_context *context = audit_context();
2857  
2858  	context->mmap.fd = fd;
2859  	context->mmap.flags = flags;
2860  	context->type = AUDIT_MMAP;
2861  }
2862  
__audit_openat2_how(struct open_how * how)2863  void __audit_openat2_how(struct open_how *how)
2864  {
2865  	struct audit_context *context = audit_context();
2866  
2867  	context->openat2.flags = how->flags;
2868  	context->openat2.mode = how->mode;
2869  	context->openat2.resolve = how->resolve;
2870  	context->type = AUDIT_OPENAT2;
2871  }
2872  
__audit_log_kern_module(char * name)2873  void __audit_log_kern_module(char *name)
2874  {
2875  	struct audit_context *context = audit_context();
2876  
2877  	context->module.name = kstrdup(name, GFP_KERNEL);
2878  	if (!context->module.name)
2879  		audit_log_lost("out of memory in __audit_log_kern_module");
2880  	context->type = AUDIT_KERN_MODULE;
2881  }
2882  
__audit_fanotify(u32 response,struct fanotify_response_info_audit_rule * friar)2883  void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2884  {
2885  	/* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2886  	switch (friar->hdr.type) {
2887  	case FAN_RESPONSE_INFO_NONE:
2888  		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2889  			  "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2890  			  response, FAN_RESPONSE_INFO_NONE);
2891  		break;
2892  	case FAN_RESPONSE_INFO_AUDIT_RULE:
2893  		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2894  			  "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2895  			  response, friar->hdr.type, friar->rule_number,
2896  			  friar->subj_trust, friar->obj_trust);
2897  	}
2898  }
2899  
__audit_tk_injoffset(struct timespec64 offset)2900  void __audit_tk_injoffset(struct timespec64 offset)
2901  {
2902  	struct audit_context *context = audit_context();
2903  
2904  	/* only set type if not already set by NTP */
2905  	if (!context->type)
2906  		context->type = AUDIT_TIME_INJOFFSET;
2907  	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2908  }
2909  
__audit_ntp_log(const struct audit_ntp_data * ad)2910  void __audit_ntp_log(const struct audit_ntp_data *ad)
2911  {
2912  	struct audit_context *context = audit_context();
2913  	int type;
2914  
2915  	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2916  		if (ad->vals[type].newval != ad->vals[type].oldval) {
2917  			/* unconditionally set type, overwriting TK */
2918  			context->type = AUDIT_TIME_ADJNTPVAL;
2919  			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2920  			break;
2921  		}
2922  }
2923  
__audit_log_nfcfg(const char * name,u8 af,unsigned int nentries,enum audit_nfcfgop op,gfp_t gfp)2924  void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2925  		       enum audit_nfcfgop op, gfp_t gfp)
2926  {
2927  	struct audit_buffer *ab;
2928  	char comm[sizeof(current->comm)];
2929  
2930  	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2931  	if (!ab)
2932  		return;
2933  	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2934  			 name, af, nentries, audit_nfcfgs[op].s);
2935  
2936  	audit_log_format(ab, " pid=%u", task_tgid_nr(current));
2937  	audit_log_task_context(ab); /* subj= */
2938  	audit_log_format(ab, " comm=");
2939  	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2940  	audit_log_end(ab);
2941  }
2942  EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2943  
audit_log_task(struct audit_buffer * ab)2944  static void audit_log_task(struct audit_buffer *ab)
2945  {
2946  	kuid_t auid, uid;
2947  	kgid_t gid;
2948  	unsigned int sessionid;
2949  	char comm[sizeof(current->comm)];
2950  
2951  	auid = audit_get_loginuid(current);
2952  	sessionid = audit_get_sessionid(current);
2953  	current_uid_gid(&uid, &gid);
2954  
2955  	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2956  			 from_kuid(&init_user_ns, auid),
2957  			 from_kuid(&init_user_ns, uid),
2958  			 from_kgid(&init_user_ns, gid),
2959  			 sessionid);
2960  	audit_log_task_context(ab);
2961  	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2962  	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2963  	audit_log_d_path_exe(ab, current->mm);
2964  }
2965  
2966  /**
2967   * audit_core_dumps - record information about processes that end abnormally
2968   * @signr: signal value
2969   *
2970   * If a process ends with a core dump, something fishy is going on and we
2971   * should record the event for investigation.
2972   */
audit_core_dumps(long signr)2973  void audit_core_dumps(long signr)
2974  {
2975  	struct audit_buffer *ab;
2976  
2977  	if (!audit_enabled)
2978  		return;
2979  
2980  	if (signr == SIGQUIT)	/* don't care for those */
2981  		return;
2982  
2983  	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2984  	if (unlikely(!ab))
2985  		return;
2986  	audit_log_task(ab);
2987  	audit_log_format(ab, " sig=%ld res=1", signr);
2988  	audit_log_end(ab);
2989  }
2990  
2991  /**
2992   * audit_seccomp - record information about a seccomp action
2993   * @syscall: syscall number
2994   * @signr: signal value
2995   * @code: the seccomp action
2996   *
2997   * Record the information associated with a seccomp action. Event filtering for
2998   * seccomp actions that are not to be logged is done in seccomp_log().
2999   * Therefore, this function forces auditing independent of the audit_enabled
3000   * and dummy context state because seccomp actions should be logged even when
3001   * audit is not in use.
3002   */
audit_seccomp(unsigned long syscall,long signr,int code)3003  void audit_seccomp(unsigned long syscall, long signr, int code)
3004  {
3005  	struct audit_buffer *ab;
3006  
3007  	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3008  	if (unlikely(!ab))
3009  		return;
3010  	audit_log_task(ab);
3011  	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3012  			 signr, syscall_get_arch(current), syscall,
3013  			 in_compat_syscall(), KSTK_EIP(current), code);
3014  	audit_log_end(ab);
3015  }
3016  
audit_seccomp_actions_logged(const char * names,const char * old_names,int res)3017  void audit_seccomp_actions_logged(const char *names, const char *old_names,
3018  				  int res)
3019  {
3020  	struct audit_buffer *ab;
3021  
3022  	if (!audit_enabled)
3023  		return;
3024  
3025  	ab = audit_log_start(audit_context(), GFP_KERNEL,
3026  			     AUDIT_CONFIG_CHANGE);
3027  	if (unlikely(!ab))
3028  		return;
3029  
3030  	audit_log_format(ab,
3031  			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3032  			 names, old_names, res);
3033  	audit_log_end(ab);
3034  }
3035  
audit_killed_trees(void)3036  struct list_head *audit_killed_trees(void)
3037  {
3038  	struct audit_context *ctx = audit_context();
3039  	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3040  		return NULL;
3041  	return &ctx->killed_trees;
3042  }
3043