1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   *	Linux INET6 implementation
4   *
5   *	Authors:
6   *	Pedro Roque		<roque@di.fc.ul.pt>
7   */
8  
9  #ifndef _NET_IPV6_H
10  #define _NET_IPV6_H
11  
12  #include <linux/ipv6.h>
13  #include <linux/hardirq.h>
14  #include <linux/jhash.h>
15  #include <linux/refcount.h>
16  #include <linux/jump_label_ratelimit.h>
17  #include <net/if_inet6.h>
18  #include <net/flow.h>
19  #include <net/flow_dissector.h>
20  #include <net/inet_dscp.h>
21  #include <net/snmp.h>
22  #include <net/netns/hash.h>
23  
24  struct ip_tunnel_info;
25  
26  #define SIN6_LEN_RFC2133	24
27  
28  #define IPV6_MAXPLEN		65535
29  
30  /*
31   *	NextHeader field of IPv6 header
32   */
33  
34  #define NEXTHDR_HOP		0	/* Hop-by-hop option header. */
35  #define NEXTHDR_IPV4		4	/* IPv4 in IPv6 */
36  #define NEXTHDR_TCP		6	/* TCP segment. */
37  #define NEXTHDR_UDP		17	/* UDP message. */
38  #define NEXTHDR_IPV6		41	/* IPv6 in IPv6 */
39  #define NEXTHDR_ROUTING		43	/* Routing header. */
40  #define NEXTHDR_FRAGMENT	44	/* Fragmentation/reassembly header. */
41  #define NEXTHDR_GRE		47	/* GRE header. */
42  #define NEXTHDR_ESP		50	/* Encapsulating security payload. */
43  #define NEXTHDR_AUTH		51	/* Authentication header. */
44  #define NEXTHDR_ICMP		58	/* ICMP for IPv6. */
45  #define NEXTHDR_NONE		59	/* No next header */
46  #define NEXTHDR_DEST		60	/* Destination options header. */
47  #define NEXTHDR_SCTP		132	/* SCTP message. */
48  #define NEXTHDR_MOBILITY	135	/* Mobility header. */
49  
50  #define NEXTHDR_MAX		255
51  
52  #define IPV6_DEFAULT_HOPLIMIT   64
53  #define IPV6_DEFAULT_MCASTHOPS	1
54  
55  /* Limits on Hop-by-Hop and Destination options.
56   *
57   * Per RFC8200 there is no limit on the maximum number or lengths of options in
58   * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
59   * We allow configurable limits in order to mitigate potential denial of
60   * service attacks.
61   *
62   * There are three limits that may be set:
63   *   - Limit the number of options in a Hop-by-Hop or Destination options
64   *     extension header
65   *   - Limit the byte length of a Hop-by-Hop or Destination options extension
66   *     header
67   *   - Disallow unknown options
68   *
69   * The limits are expressed in corresponding sysctls:
70   *
71   * ipv6.sysctl.max_dst_opts_cnt
72   * ipv6.sysctl.max_hbh_opts_cnt
73   * ipv6.sysctl.max_dst_opts_len
74   * ipv6.sysctl.max_hbh_opts_len
75   *
76   * max_*_opts_cnt is the number of TLVs that are allowed for Destination
77   * options or Hop-by-Hop options. If the number is less than zero then unknown
78   * TLVs are disallowed and the number of known options that are allowed is the
79   * absolute value. Setting the value to INT_MAX indicates no limit.
80   *
81   * max_*_opts_len is the length limit in bytes of a Destination or
82   * Hop-by-Hop options extension header. Setting the value to INT_MAX
83   * indicates no length limit.
84   *
85   * If a limit is exceeded when processing an extension header the packet is
86   * silently discarded.
87   */
88  
89  /* Default limits for Hop-by-Hop and Destination options */
90  #define IP6_DEFAULT_MAX_DST_OPTS_CNT	 8
91  #define IP6_DEFAULT_MAX_HBH_OPTS_CNT	 8
92  #define IP6_DEFAULT_MAX_DST_OPTS_LEN	 INT_MAX /* No limit */
93  #define IP6_DEFAULT_MAX_HBH_OPTS_LEN	 INT_MAX /* No limit */
94  
95  /*
96   *	Addr type
97   *
98   *	type	-	unicast | multicast
99   *	scope	-	local	| site	    | global
100   *	v4	-	compat
101   *	v4mapped
102   *	any
103   *	loopback
104   */
105  
106  #define IPV6_ADDR_ANY		0x0000U
107  
108  #define IPV6_ADDR_UNICAST	0x0001U
109  #define IPV6_ADDR_MULTICAST	0x0002U
110  
111  #define IPV6_ADDR_LOOPBACK	0x0010U
112  #define IPV6_ADDR_LINKLOCAL	0x0020U
113  #define IPV6_ADDR_SITELOCAL	0x0040U
114  
115  #define IPV6_ADDR_COMPATv4	0x0080U
116  
117  #define IPV6_ADDR_SCOPE_MASK	0x00f0U
118  
119  #define IPV6_ADDR_MAPPED	0x1000U
120  
121  /*
122   *	Addr scopes
123   */
124  #define IPV6_ADDR_MC_SCOPE(a)	\
125  	((a)->s6_addr[1] & 0x0f)	/* nonstandard */
126  #define __IPV6_ADDR_SCOPE_INVALID	-1
127  #define IPV6_ADDR_SCOPE_NODELOCAL	0x01
128  #define IPV6_ADDR_SCOPE_LINKLOCAL	0x02
129  #define IPV6_ADDR_SCOPE_SITELOCAL	0x05
130  #define IPV6_ADDR_SCOPE_ORGLOCAL	0x08
131  #define IPV6_ADDR_SCOPE_GLOBAL		0x0e
132  
133  /*
134   *	Addr flags
135   */
136  #define IPV6_ADDR_MC_FLAG_TRANSIENT(a)	\
137  	((a)->s6_addr[1] & 0x10)
138  #define IPV6_ADDR_MC_FLAG_PREFIX(a)	\
139  	((a)->s6_addr[1] & 0x20)
140  #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a)	\
141  	((a)->s6_addr[1] & 0x40)
142  
143  /*
144   *	fragmentation header
145   */
146  
147  struct frag_hdr {
148  	__u8	nexthdr;
149  	__u8	reserved;
150  	__be16	frag_off;
151  	__be32	identification;
152  };
153  
154  /*
155   * Jumbo payload option, as described in RFC 2675 2.
156   */
157  struct hop_jumbo_hdr {
158  	u8	nexthdr;
159  	u8	hdrlen;
160  	u8	tlv_type;	/* IPV6_TLV_JUMBO, 0xC2 */
161  	u8	tlv_len;	/* 4 */
162  	__be32	jumbo_payload_len;
163  };
164  
165  #define	IP6_MF		0x0001
166  #define	IP6_OFFSET	0xFFF8
167  
168  struct ip6_fraglist_iter {
169  	struct ipv6hdr	*tmp_hdr;
170  	struct sk_buff	*frag;
171  	int		offset;
172  	unsigned int	hlen;
173  	__be32		frag_id;
174  	u8		nexthdr;
175  };
176  
177  int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
178  		      u8 nexthdr, __be32 frag_id,
179  		      struct ip6_fraglist_iter *iter);
180  void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
181  
ip6_fraglist_next(struct ip6_fraglist_iter * iter)182  static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
183  {
184  	struct sk_buff *skb = iter->frag;
185  
186  	iter->frag = skb->next;
187  	skb_mark_not_on_list(skb);
188  
189  	return skb;
190  }
191  
192  struct ip6_frag_state {
193  	u8		*prevhdr;
194  	unsigned int	hlen;
195  	unsigned int	mtu;
196  	unsigned int	left;
197  	int		offset;
198  	int		ptr;
199  	int		hroom;
200  	int		troom;
201  	__be32		frag_id;
202  	u8		nexthdr;
203  };
204  
205  void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
206  		   unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
207  		   u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
208  struct sk_buff *ip6_frag_next(struct sk_buff *skb,
209  			      struct ip6_frag_state *state);
210  
211  #define IP6_REPLY_MARK(net, mark) \
212  	((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
213  
214  #include <net/sock.h>
215  
216  /* sysctls */
217  extern int sysctl_mld_max_msf;
218  extern int sysctl_mld_qrv;
219  
220  #define _DEVINC(net, statname, mod, idev, field)			\
221  ({									\
222  	struct inet6_dev *_idev = (idev);				\
223  	if (likely(_idev != NULL))					\
224  		mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
225  	mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
226  })
227  
228  /* per device counters are atomic_long_t */
229  #define _DEVINCATOMIC(net, statname, mod, idev, field)			\
230  ({									\
231  	struct inet6_dev *_idev = (idev);				\
232  	if (likely(_idev != NULL))					\
233  		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
234  	mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
235  })
236  
237  /* per device and per net counters are atomic_long_t */
238  #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field)		\
239  ({									\
240  	struct inet6_dev *_idev = (idev);				\
241  	if (likely(_idev != NULL))					\
242  		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
243  	SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
244  })
245  
246  #define _DEVADD(net, statname, mod, idev, field, val)			\
247  ({									\
248  	struct inet6_dev *_idev = (idev);				\
249  	if (likely(_idev != NULL))					\
250  		mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
251  	mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
252  })
253  
254  #define _DEVUPD(net, statname, mod, idev, field, val)			\
255  ({									\
256  	struct inet6_dev *_idev = (idev);				\
257  	if (likely(_idev != NULL))					\
258  		mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
259  	mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
260  })
261  
262  /* MIBs */
263  
264  #define IP6_INC_STATS(net, idev,field)		\
265  		_DEVINC(net, ipv6, , idev, field)
266  #define __IP6_INC_STATS(net, idev,field)	\
267  		_DEVINC(net, ipv6, __, idev, field)
268  #define IP6_ADD_STATS(net, idev,field,val)	\
269  		_DEVADD(net, ipv6, , idev, field, val)
270  #define __IP6_ADD_STATS(net, idev,field,val)	\
271  		_DEVADD(net, ipv6, __, idev, field, val)
272  #define IP6_UPD_PO_STATS(net, idev,field,val)   \
273  		_DEVUPD(net, ipv6, , idev, field, val)
274  #define __IP6_UPD_PO_STATS(net, idev,field,val)   \
275  		_DEVUPD(net, ipv6, __, idev, field, val)
276  #define ICMP6_INC_STATS(net, idev, field)	\
277  		_DEVINCATOMIC(net, icmpv6, , idev, field)
278  #define __ICMP6_INC_STATS(net, idev, field)	\
279  		_DEVINCATOMIC(net, icmpv6, __, idev, field)
280  
281  #define ICMP6MSGOUT_INC_STATS(net, idev, field)		\
282  	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
283  #define ICMP6MSGIN_INC_STATS(net, idev, field)	\
284  	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
285  
286  struct ip6_ra_chain {
287  	struct ip6_ra_chain	*next;
288  	struct sock		*sk;
289  	int			sel;
290  	void			(*destructor)(struct sock *);
291  };
292  
293  extern struct ip6_ra_chain	*ip6_ra_chain;
294  extern rwlock_t ip6_ra_lock;
295  
296  /*
297     This structure is prepared by protocol, when parsing
298     ancillary data and passed to IPv6.
299   */
300  
301  struct ipv6_txoptions {
302  	refcount_t		refcnt;
303  	/* Length of this structure */
304  	int			tot_len;
305  
306  	/* length of extension headers   */
307  
308  	__u16			opt_flen;	/* after fragment hdr */
309  	__u16			opt_nflen;	/* before fragment hdr */
310  
311  	struct ipv6_opt_hdr	*hopopt;
312  	struct ipv6_opt_hdr	*dst0opt;
313  	struct ipv6_rt_hdr	*srcrt;	/* Routing Header */
314  	struct ipv6_opt_hdr	*dst1opt;
315  	struct rcu_head		rcu;
316  	/* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
317  };
318  
319  /* flowlabel_reflect sysctl values */
320  enum flowlabel_reflect {
321  	FLOWLABEL_REFLECT_ESTABLISHED		= 1,
322  	FLOWLABEL_REFLECT_TCP_RESET		= 2,
323  	FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES	= 4,
324  };
325  
326  struct ip6_flowlabel {
327  	struct ip6_flowlabel __rcu *next;
328  	__be32			label;
329  	atomic_t		users;
330  	struct in6_addr		dst;
331  	struct ipv6_txoptions	*opt;
332  	unsigned long		linger;
333  	struct rcu_head		rcu;
334  	u8			share;
335  	union {
336  		struct pid *pid;
337  		kuid_t uid;
338  	} owner;
339  	unsigned long		lastuse;
340  	unsigned long		expires;
341  	struct net		*fl_net;
342  };
343  
344  #define IPV6_FLOWINFO_MASK		cpu_to_be32(0x0FFFFFFF)
345  #define IPV6_FLOWLABEL_MASK		cpu_to_be32(0x000FFFFF)
346  #define IPV6_FLOWLABEL_STATELESS_FLAG	cpu_to_be32(0x00080000)
347  
348  #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
349  #define IPV6_TCLASS_SHIFT	20
350  
351  struct ipv6_fl_socklist {
352  	struct ipv6_fl_socklist	__rcu	*next;
353  	struct ip6_flowlabel		*fl;
354  	struct rcu_head			rcu;
355  };
356  
357  struct ipcm6_cookie {
358  	struct sockcm_cookie sockc;
359  	__s16 hlimit;
360  	__s16 tclass;
361  	__u16 gso_size;
362  	__s8  dontfrag;
363  	struct ipv6_txoptions *opt;
364  };
365  
ipcm6_init(struct ipcm6_cookie * ipc6)366  static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
367  {
368  	*ipc6 = (struct ipcm6_cookie) {
369  		.hlimit = -1,
370  		.tclass = -1,
371  		.dontfrag = -1,
372  	};
373  }
374  
ipcm6_init_sk(struct ipcm6_cookie * ipc6,const struct sock * sk)375  static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
376  				 const struct sock *sk)
377  {
378  	*ipc6 = (struct ipcm6_cookie) {
379  		.hlimit = -1,
380  		.tclass = inet6_sk(sk)->tclass,
381  		.dontfrag = inet6_test_bit(DONTFRAG, sk),
382  	};
383  }
384  
txopt_get(const struct ipv6_pinfo * np)385  static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
386  {
387  	struct ipv6_txoptions *opt;
388  
389  	rcu_read_lock();
390  	opt = rcu_dereference(np->opt);
391  	if (opt) {
392  		if (!refcount_inc_not_zero(&opt->refcnt))
393  			opt = NULL;
394  		else
395  			opt = rcu_pointer_handoff(opt);
396  	}
397  	rcu_read_unlock();
398  	return opt;
399  }
400  
txopt_put(struct ipv6_txoptions * opt)401  static inline void txopt_put(struct ipv6_txoptions *opt)
402  {
403  	if (opt && refcount_dec_and_test(&opt->refcnt))
404  		kfree_rcu(opt, rcu);
405  }
406  
407  #if IS_ENABLED(CONFIG_IPV6)
408  struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
409  
410  extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
fl6_sock_lookup(struct sock * sk,__be32 label)411  static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
412  						    __be32 label)
413  {
414  	if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) &&
415  	    READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl))
416  		return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
417  
418  	return NULL;
419  }
420  #endif
421  
422  struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
423  					 struct ip6_flowlabel *fl,
424  					 struct ipv6_txoptions *fopt);
425  void fl6_free_socklist(struct sock *sk);
426  int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen);
427  int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
428  			   int flags);
429  int ip6_flowlabel_init(void);
430  void ip6_flowlabel_cleanup(void);
431  bool ip6_autoflowlabel(struct net *net, const struct sock *sk);
432  
fl6_sock_release(struct ip6_flowlabel * fl)433  static inline void fl6_sock_release(struct ip6_flowlabel *fl)
434  {
435  	if (fl)
436  		atomic_dec(&fl->users);
437  }
438  
439  enum skb_drop_reason icmpv6_notify(struct sk_buff *skb, u8 type,
440  				   u8 code, __be32 info);
441  
442  void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
443  				struct icmp6hdr *thdr, int len);
444  
445  int ip6_ra_control(struct sock *sk, int sel);
446  
447  int ipv6_parse_hopopts(struct sk_buff *skb);
448  
449  struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
450  					struct ipv6_txoptions *opt);
451  struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
452  					  struct ipv6_txoptions *opt,
453  					  int newtype,
454  					  struct ipv6_opt_hdr *newopt);
455  struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space,
456  					    struct ipv6_txoptions *opt);
457  
458  static inline struct ipv6_txoptions *
ipv6_fixup_options(struct ipv6_txoptions * opt_space,struct ipv6_txoptions * opt)459  ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt)
460  {
461  	if (!opt)
462  		return NULL;
463  	return __ipv6_fixup_options(opt_space, opt);
464  }
465  
466  bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
467  		       const struct inet6_skb_parm *opt);
468  struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
469  					   struct ipv6_txoptions *opt);
470  
471  /* This helper is specialized for BIG TCP needs.
472   * It assumes the hop_jumbo_hdr will immediately follow the IPV6 header.
473   * It assumes headers are already in skb->head.
474   * Returns 0, or IPPROTO_TCP if a BIG TCP packet is there.
475   */
ipv6_has_hopopt_jumbo(const struct sk_buff * skb)476  static inline int ipv6_has_hopopt_jumbo(const struct sk_buff *skb)
477  {
478  	const struct hop_jumbo_hdr *jhdr;
479  	const struct ipv6hdr *nhdr;
480  
481  	if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
482  		return 0;
483  
484  	if (skb->protocol != htons(ETH_P_IPV6))
485  		return 0;
486  
487  	if (skb_network_offset(skb) +
488  	    sizeof(struct ipv6hdr) +
489  	    sizeof(struct hop_jumbo_hdr) > skb_headlen(skb))
490  		return 0;
491  
492  	nhdr = ipv6_hdr(skb);
493  
494  	if (nhdr->nexthdr != NEXTHDR_HOP)
495  		return 0;
496  
497  	jhdr = (const struct hop_jumbo_hdr *) (nhdr + 1);
498  	if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
499  	    jhdr->nexthdr != IPPROTO_TCP)
500  		return 0;
501  	return jhdr->nexthdr;
502  }
503  
504  /* Return 0 if HBH header is successfully removed
505   * Or if HBH removal is unnecessary (packet is not big TCP)
506   * Return error to indicate dropping the packet
507   */
ipv6_hopopt_jumbo_remove(struct sk_buff * skb)508  static inline int ipv6_hopopt_jumbo_remove(struct sk_buff *skb)
509  {
510  	const int hophdr_len = sizeof(struct hop_jumbo_hdr);
511  	int nexthdr = ipv6_has_hopopt_jumbo(skb);
512  	struct ipv6hdr *h6;
513  
514  	if (!nexthdr)
515  		return 0;
516  
517  	if (skb_cow_head(skb, 0))
518  		return -1;
519  
520  	/* Remove the HBH header.
521  	 * Layout: [Ethernet header][IPv6 header][HBH][L4 Header]
522  	 */
523  	memmove(skb_mac_header(skb) + hophdr_len, skb_mac_header(skb),
524  		skb_network_header(skb) - skb_mac_header(skb) +
525  		sizeof(struct ipv6hdr));
526  
527  	__skb_pull(skb, hophdr_len);
528  	skb->network_header += hophdr_len;
529  	skb->mac_header += hophdr_len;
530  
531  	h6 = ipv6_hdr(skb);
532  	h6->nexthdr = nexthdr;
533  
534  	return 0;
535  }
536  
ipv6_accept_ra(const struct inet6_dev * idev)537  static inline bool ipv6_accept_ra(const struct inet6_dev *idev)
538  {
539  	s32 accept_ra = READ_ONCE(idev->cnf.accept_ra);
540  
541  	/* If forwarding is enabled, RA are not accepted unless the special
542  	 * hybrid mode (accept_ra=2) is enabled.
543  	 */
544  	return READ_ONCE(idev->cnf.forwarding) ? accept_ra == 2 :
545  		accept_ra;
546  }
547  
548  #define IPV6_FRAG_HIGH_THRESH	(4 * 1024*1024)	/* 4194304 */
549  #define IPV6_FRAG_LOW_THRESH	(3 * 1024*1024)	/* 3145728 */
550  #define IPV6_FRAG_TIMEOUT	(60 * HZ)	/* 60 seconds */
551  
552  int __ipv6_addr_type(const struct in6_addr *addr);
ipv6_addr_type(const struct in6_addr * addr)553  static inline int ipv6_addr_type(const struct in6_addr *addr)
554  {
555  	return __ipv6_addr_type(addr) & 0xffff;
556  }
557  
ipv6_addr_scope(const struct in6_addr * addr)558  static inline int ipv6_addr_scope(const struct in6_addr *addr)
559  {
560  	return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
561  }
562  
__ipv6_addr_src_scope(int type)563  static inline int __ipv6_addr_src_scope(int type)
564  {
565  	return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
566  }
567  
ipv6_addr_src_scope(const struct in6_addr * addr)568  static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
569  {
570  	return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
571  }
572  
__ipv6_addr_needs_scope_id(int type)573  static inline bool __ipv6_addr_needs_scope_id(int type)
574  {
575  	return type & IPV6_ADDR_LINKLOCAL ||
576  	       (type & IPV6_ADDR_MULTICAST &&
577  		(type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
578  }
579  
ipv6_iface_scope_id(const struct in6_addr * addr,int iface)580  static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
581  {
582  	return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
583  }
584  
ipv6_addr_cmp(const struct in6_addr * a1,const struct in6_addr * a2)585  static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
586  {
587  	return memcmp(a1, a2, sizeof(struct in6_addr));
588  }
589  
590  static inline bool
ipv6_masked_addr_cmp(const struct in6_addr * a1,const struct in6_addr * m,const struct in6_addr * a2)591  ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
592  		     const struct in6_addr *a2)
593  {
594  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
595  	const unsigned long *ul1 = (const unsigned long *)a1;
596  	const unsigned long *ulm = (const unsigned long *)m;
597  	const unsigned long *ul2 = (const unsigned long *)a2;
598  
599  	return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
600  		  ((ul1[1] ^ ul2[1]) & ulm[1]));
601  #else
602  	return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
603  		  ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
604  		  ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
605  		  ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
606  #endif
607  }
608  
ipv6_addr_prefix(struct in6_addr * pfx,const struct in6_addr * addr,int plen)609  static inline void ipv6_addr_prefix(struct in6_addr *pfx,
610  				    const struct in6_addr *addr,
611  				    int plen)
612  {
613  	/* caller must guarantee 0 <= plen <= 128 */
614  	int o = plen >> 3,
615  	    b = plen & 0x7;
616  
617  	memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
618  	memcpy(pfx->s6_addr, addr, o);
619  	if (b != 0)
620  		pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
621  }
622  
ipv6_addr_prefix_copy(struct in6_addr * addr,const struct in6_addr * pfx,int plen)623  static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
624  					 const struct in6_addr *pfx,
625  					 int plen)
626  {
627  	/* caller must guarantee 0 <= plen <= 128 */
628  	int o = plen >> 3,
629  	    b = plen & 0x7;
630  
631  	memcpy(addr->s6_addr, pfx, o);
632  	if (b != 0) {
633  		addr->s6_addr[o] &= ~(0xff00 >> b);
634  		addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
635  	}
636  }
637  
__ipv6_addr_set_half(__be32 * addr,__be32 wh,__be32 wl)638  static inline void __ipv6_addr_set_half(__be32 *addr,
639  					__be32 wh, __be32 wl)
640  {
641  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
642  #if defined(__BIG_ENDIAN)
643  	if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
644  		*(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
645  		return;
646  	}
647  #elif defined(__LITTLE_ENDIAN)
648  	if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
649  		*(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
650  		return;
651  	}
652  #endif
653  #endif
654  	addr[0] = wh;
655  	addr[1] = wl;
656  }
657  
ipv6_addr_set(struct in6_addr * addr,__be32 w1,__be32 w2,__be32 w3,__be32 w4)658  static inline void ipv6_addr_set(struct in6_addr *addr,
659  				     __be32 w1, __be32 w2,
660  				     __be32 w3, __be32 w4)
661  {
662  	__ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
663  	__ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
664  }
665  
ipv6_addr_equal(const struct in6_addr * a1,const struct in6_addr * a2)666  static inline bool ipv6_addr_equal(const struct in6_addr *a1,
667  				   const struct in6_addr *a2)
668  {
669  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
670  	const unsigned long *ul1 = (const unsigned long *)a1;
671  	const unsigned long *ul2 = (const unsigned long *)a2;
672  
673  	return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
674  #else
675  	return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
676  		(a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
677  		(a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
678  		(a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
679  #endif
680  }
681  
682  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_prefix_equal64_half(const __be64 * a1,const __be64 * a2,unsigned int len)683  static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
684  					      const __be64 *a2,
685  					      unsigned int len)
686  {
687  	if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
688  		return false;
689  	return true;
690  }
691  
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)692  static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
693  				     const struct in6_addr *addr2,
694  				     unsigned int prefixlen)
695  {
696  	const __be64 *a1 = (const __be64 *)addr1;
697  	const __be64 *a2 = (const __be64 *)addr2;
698  
699  	if (prefixlen >= 64) {
700  		if (a1[0] ^ a2[0])
701  			return false;
702  		return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
703  	}
704  	return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
705  }
706  #else
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)707  static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
708  				     const struct in6_addr *addr2,
709  				     unsigned int prefixlen)
710  {
711  	const __be32 *a1 = addr1->s6_addr32;
712  	const __be32 *a2 = addr2->s6_addr32;
713  	unsigned int pdw, pbi;
714  
715  	/* check complete u32 in prefix */
716  	pdw = prefixlen >> 5;
717  	if (pdw && memcmp(a1, a2, pdw << 2))
718  		return false;
719  
720  	/* check incomplete u32 in prefix */
721  	pbi = prefixlen & 0x1f;
722  	if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
723  		return false;
724  
725  	return true;
726  }
727  #endif
728  
ipv6_addr_any(const struct in6_addr * a)729  static inline bool ipv6_addr_any(const struct in6_addr *a)
730  {
731  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
732  	const unsigned long *ul = (const unsigned long *)a;
733  
734  	return (ul[0] | ul[1]) == 0UL;
735  #else
736  	return (a->s6_addr32[0] | a->s6_addr32[1] |
737  		a->s6_addr32[2] | a->s6_addr32[3]) == 0;
738  #endif
739  }
740  
ipv6_addr_hash(const struct in6_addr * a)741  static inline u32 ipv6_addr_hash(const struct in6_addr *a)
742  {
743  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
744  	const unsigned long *ul = (const unsigned long *)a;
745  	unsigned long x = ul[0] ^ ul[1];
746  
747  	return (u32)(x ^ (x >> 32));
748  #else
749  	return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
750  			     a->s6_addr32[2] ^ a->s6_addr32[3]);
751  #endif
752  }
753  
754  /* more secured version of ipv6_addr_hash() */
__ipv6_addr_jhash(const struct in6_addr * a,const u32 initval)755  static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
756  {
757  	return jhash2((__force const u32 *)a->s6_addr32,
758  		      ARRAY_SIZE(a->s6_addr32), initval);
759  }
760  
ipv6_addr_loopback(const struct in6_addr * a)761  static inline bool ipv6_addr_loopback(const struct in6_addr *a)
762  {
763  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
764  	const __be64 *be = (const __be64 *)a;
765  
766  	return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
767  #else
768  	return (a->s6_addr32[0] | a->s6_addr32[1] |
769  		a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
770  #endif
771  }
772  
773  /*
774   * Note that we must __force cast these to unsigned long to make sparse happy,
775   * since all of the endian-annotated types are fixed size regardless of arch.
776   */
ipv6_addr_v4mapped(const struct in6_addr * a)777  static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
778  {
779  	return (
780  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
781  		*(unsigned long *)a |
782  #else
783  		(__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
784  #endif
785  		(__force unsigned long)(a->s6_addr32[2] ^
786  					cpu_to_be32(0x0000ffff))) == 0UL;
787  }
788  
ipv6_addr_v4mapped_loopback(const struct in6_addr * a)789  static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a)
790  {
791  	return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]);
792  }
793  
ipv6_portaddr_hash(const struct net * net,const struct in6_addr * addr6,unsigned int port)794  static inline u32 ipv6_portaddr_hash(const struct net *net,
795  				     const struct in6_addr *addr6,
796  				     unsigned int port)
797  {
798  	unsigned int hash, mix = net_hash_mix(net);
799  
800  	if (ipv6_addr_any(addr6))
801  		hash = jhash_1word(0, mix);
802  	else if (ipv6_addr_v4mapped(addr6))
803  		hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
804  	else
805  		hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
806  
807  	return hash ^ port;
808  }
809  
810  /*
811   * Check for a RFC 4843 ORCHID address
812   * (Overlay Routable Cryptographic Hash Identifiers)
813   */
ipv6_addr_orchid(const struct in6_addr * a)814  static inline bool ipv6_addr_orchid(const struct in6_addr *a)
815  {
816  	return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
817  }
818  
ipv6_addr_is_multicast(const struct in6_addr * addr)819  static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
820  {
821  	return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
822  }
823  
ipv6_addr_set_v4mapped(const __be32 addr,struct in6_addr * v4mapped)824  static inline void ipv6_addr_set_v4mapped(const __be32 addr,
825  					  struct in6_addr *v4mapped)
826  {
827  	ipv6_addr_set(v4mapped,
828  			0, 0,
829  			htonl(0x0000FFFF),
830  			addr);
831  }
832  
833  /*
834   * find the first different bit between two addresses
835   * length of address must be a multiple of 32bits
836   */
__ipv6_addr_diff32(const void * token1,const void * token2,int addrlen)837  static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
838  {
839  	const __be32 *a1 = token1, *a2 = token2;
840  	int i;
841  
842  	addrlen >>= 2;
843  
844  	for (i = 0; i < addrlen; i++) {
845  		__be32 xb = a1[i] ^ a2[i];
846  		if (xb)
847  			return i * 32 + 31 - __fls(ntohl(xb));
848  	}
849  
850  	/*
851  	 *	we should *never* get to this point since that
852  	 *	would mean the addrs are equal
853  	 *
854  	 *	However, we do get to it 8) And exactly, when
855  	 *	addresses are equal 8)
856  	 *
857  	 *	ip route add 1111::/128 via ...
858  	 *	ip route add 1111::/64 via ...
859  	 *	and we are here.
860  	 *
861  	 *	Ideally, this function should stop comparison
862  	 *	at prefix length. It does not, but it is still OK,
863  	 *	if returned value is greater than prefix length.
864  	 *					--ANK (980803)
865  	 */
866  	return addrlen << 5;
867  }
868  
869  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_addr_diff64(const void * token1,const void * token2,int addrlen)870  static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
871  {
872  	const __be64 *a1 = token1, *a2 = token2;
873  	int i;
874  
875  	addrlen >>= 3;
876  
877  	for (i = 0; i < addrlen; i++) {
878  		__be64 xb = a1[i] ^ a2[i];
879  		if (xb)
880  			return i * 64 + 63 - __fls(be64_to_cpu(xb));
881  	}
882  
883  	return addrlen << 6;
884  }
885  #endif
886  
__ipv6_addr_diff(const void * token1,const void * token2,int addrlen)887  static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
888  {
889  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
890  	if (__builtin_constant_p(addrlen) && !(addrlen & 7))
891  		return __ipv6_addr_diff64(token1, token2, addrlen);
892  #endif
893  	return __ipv6_addr_diff32(token1, token2, addrlen);
894  }
895  
ipv6_addr_diff(const struct in6_addr * a1,const struct in6_addr * a2)896  static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
897  {
898  	return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
899  }
900  
901  __be32 ipv6_select_ident(struct net *net,
902  			 const struct in6_addr *daddr,
903  			 const struct in6_addr *saddr);
904  __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
905  
906  int ip6_dst_hoplimit(struct dst_entry *dst);
907  
ip6_sk_dst_hoplimit(struct ipv6_pinfo * np,struct flowi6 * fl6,struct dst_entry * dst)908  static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
909  				      struct dst_entry *dst)
910  {
911  	int hlimit;
912  
913  	if (ipv6_addr_is_multicast(&fl6->daddr))
914  		hlimit = READ_ONCE(np->mcast_hops);
915  	else
916  		hlimit = READ_ONCE(np->hop_limit);
917  	if (hlimit < 0)
918  		hlimit = ip6_dst_hoplimit(dst);
919  	return hlimit;
920  }
921  
922  /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
923   * Equivalent to :	flow->v6addrs.src = iph->saddr;
924   *			flow->v6addrs.dst = iph->daddr;
925   */
iph_to_flow_copy_v6addrs(struct flow_keys * flow,const struct ipv6hdr * iph)926  static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
927  					    const struct ipv6hdr *iph)
928  {
929  	BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
930  		     offsetof(typeof(flow->addrs), v6addrs.src) +
931  		     sizeof(flow->addrs.v6addrs.src));
932  	memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs));
933  	flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
934  }
935  
936  #if IS_ENABLED(CONFIG_IPV6)
937  
ipv6_can_nonlocal_bind(struct net * net,struct inet_sock * inet)938  static inline bool ipv6_can_nonlocal_bind(struct net *net,
939  					  struct inet_sock *inet)
940  {
941  	return net->ipv6.sysctl.ip_nonlocal_bind ||
942  		test_bit(INET_FLAGS_FREEBIND, &inet->inet_flags) ||
943  		test_bit(INET_FLAGS_TRANSPARENT, &inet->inet_flags);
944  }
945  
946  /* Sysctl settings for net ipv6.auto_flowlabels */
947  #define IP6_AUTO_FLOW_LABEL_OFF		0
948  #define IP6_AUTO_FLOW_LABEL_OPTOUT	1
949  #define IP6_AUTO_FLOW_LABEL_OPTIN	2
950  #define IP6_AUTO_FLOW_LABEL_FORCED	3
951  
952  #define IP6_AUTO_FLOW_LABEL_MAX		IP6_AUTO_FLOW_LABEL_FORCED
953  
954  #define IP6_DEFAULT_AUTO_FLOW_LABELS	IP6_AUTO_FLOW_LABEL_OPTOUT
955  
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)956  static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
957  					__be32 flowlabel, bool autolabel,
958  					struct flowi6 *fl6)
959  {
960  	u32 hash;
961  
962  	/* @flowlabel may include more than a flow label, eg, the traffic class.
963  	 * Here we want only the flow label value.
964  	 */
965  	flowlabel &= IPV6_FLOWLABEL_MASK;
966  
967  	if (flowlabel ||
968  	    net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
969  	    (!autolabel &&
970  	     net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
971  		return flowlabel;
972  
973  	hash = skb_get_hash_flowi6(skb, fl6);
974  
975  	/* Since this is being sent on the wire obfuscate hash a bit
976  	 * to minimize possibility that any useful information to an
977  	 * attacker is leaked. Only lower 20 bits are relevant.
978  	 */
979  	hash = rol32(hash, 16);
980  
981  	flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
982  
983  	if (net->ipv6.sysctl.flowlabel_state_ranges)
984  		flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
985  
986  	return flowlabel;
987  }
988  
ip6_default_np_autolabel(struct net * net)989  static inline int ip6_default_np_autolabel(struct net *net)
990  {
991  	switch (net->ipv6.sysctl.auto_flowlabels) {
992  	case IP6_AUTO_FLOW_LABEL_OFF:
993  	case IP6_AUTO_FLOW_LABEL_OPTIN:
994  	default:
995  		return 0;
996  	case IP6_AUTO_FLOW_LABEL_OPTOUT:
997  	case IP6_AUTO_FLOW_LABEL_FORCED:
998  		return 1;
999  	}
1000  }
1001  #else
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)1002  static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
1003  					__be32 flowlabel, bool autolabel,
1004  					struct flowi6 *fl6)
1005  {
1006  	return flowlabel;
1007  }
ip6_default_np_autolabel(struct net * net)1008  static inline int ip6_default_np_autolabel(struct net *net)
1009  {
1010  	return 0;
1011  }
1012  #endif
1013  
1014  #if IS_ENABLED(CONFIG_IPV6)
ip6_multipath_hash_policy(const struct net * net)1015  static inline int ip6_multipath_hash_policy(const struct net *net)
1016  {
1017  	return net->ipv6.sysctl.multipath_hash_policy;
1018  }
ip6_multipath_hash_fields(const struct net * net)1019  static inline u32 ip6_multipath_hash_fields(const struct net *net)
1020  {
1021  	return net->ipv6.sysctl.multipath_hash_fields;
1022  }
1023  #else
ip6_multipath_hash_policy(const struct net * net)1024  static inline int ip6_multipath_hash_policy(const struct net *net)
1025  {
1026  	return 0;
1027  }
ip6_multipath_hash_fields(const struct net * net)1028  static inline u32 ip6_multipath_hash_fields(const struct net *net)
1029  {
1030  	return 0;
1031  }
1032  #endif
1033  
1034  /*
1035   *	Header manipulation
1036   */
ip6_flow_hdr(struct ipv6hdr * hdr,unsigned int tclass,__be32 flowlabel)1037  static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
1038  				__be32 flowlabel)
1039  {
1040  	*(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
1041  }
1042  
ip6_flowinfo(const struct ipv6hdr * hdr)1043  static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
1044  {
1045  	return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
1046  }
1047  
ip6_flowlabel(const struct ipv6hdr * hdr)1048  static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
1049  {
1050  	return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
1051  }
1052  
ip6_tclass(__be32 flowinfo)1053  static inline u8 ip6_tclass(__be32 flowinfo)
1054  {
1055  	return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
1056  }
1057  
ip6_dscp(__be32 flowinfo)1058  static inline dscp_t ip6_dscp(__be32 flowinfo)
1059  {
1060  	return inet_dsfield_to_dscp(ip6_tclass(flowinfo));
1061  }
1062  
ip6_make_flowinfo(unsigned int tclass,__be32 flowlabel)1063  static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
1064  {
1065  	return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
1066  }
1067  
flowi6_get_flowlabel(const struct flowi6 * fl6)1068  static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
1069  {
1070  	return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
1071  }
1072  
1073  /*
1074   *	Prototypes exported by ipv6
1075   */
1076  
1077  /*
1078   *	rcv function (called from netdevice level)
1079   */
1080  
1081  int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
1082  	     struct packet_type *pt, struct net_device *orig_dev);
1083  void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
1084  		   struct net_device *orig_dev);
1085  
1086  int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
1087  
1088  /*
1089   *	upper-layer output functions
1090   */
1091  int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
1092  	     __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority);
1093  
1094  int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
1095  
1096  int ip6_append_data(struct sock *sk,
1097  		    int getfrag(void *from, char *to, int offset, int len,
1098  				int odd, struct sk_buff *skb),
1099  		    void *from, size_t length, int transhdrlen,
1100  		    struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1101  		    struct rt6_info *rt, unsigned int flags);
1102  
1103  int ip6_push_pending_frames(struct sock *sk);
1104  
1105  void ip6_flush_pending_frames(struct sock *sk);
1106  
1107  int ip6_send_skb(struct sk_buff *skb);
1108  
1109  struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
1110  			       struct inet_cork_full *cork,
1111  			       struct inet6_cork *v6_cork);
1112  struct sk_buff *ip6_make_skb(struct sock *sk,
1113  			     int getfrag(void *from, char *to, int offset,
1114  					 int len, int odd, struct sk_buff *skb),
1115  			     void *from, size_t length, int transhdrlen,
1116  			     struct ipcm6_cookie *ipc6,
1117  			     struct rt6_info *rt, unsigned int flags,
1118  			     struct inet_cork_full *cork);
1119  
ip6_finish_skb(struct sock * sk)1120  static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1121  {
1122  	return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1123  			      &inet6_sk(sk)->cork);
1124  }
1125  
1126  int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1127  		   struct flowi6 *fl6);
1128  struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
1129  				      const struct in6_addr *final_dst);
1130  struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1131  					 const struct in6_addr *final_dst,
1132  					 bool connected);
1133  struct dst_entry *ip6_blackhole_route(struct net *net,
1134  				      struct dst_entry *orig_dst);
1135  
1136  /*
1137   *	skb processing functions
1138   */
1139  
1140  int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1141  int ip6_forward(struct sk_buff *skb);
1142  int ip6_input(struct sk_buff *skb);
1143  int ip6_mc_input(struct sk_buff *skb);
1144  void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1145  			      bool have_final);
1146  
1147  int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1148  int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1149  
1150  /*
1151   *	Extension header (options) processing
1152   */
1153  
1154  void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1155  			  u8 *proto, struct in6_addr **daddr_p,
1156  			  struct in6_addr *saddr);
1157  void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1158  			 u8 *proto);
1159  
1160  int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1161  		     __be16 *frag_offp);
1162  
1163  bool ipv6_ext_hdr(u8 nexthdr);
1164  
1165  enum {
1166  	IP6_FH_F_FRAG		= (1 << 0),
1167  	IP6_FH_F_AUTH		= (1 << 1),
1168  	IP6_FH_F_SKIP_RH	= (1 << 2),
1169  };
1170  
1171  /* find specified header and get offset to it */
1172  int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1173  		  unsigned short *fragoff, int *fragflg);
1174  
1175  int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1176  
1177  struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1178  				const struct ipv6_txoptions *opt,
1179  				struct in6_addr *orig);
1180  
1181  /*
1182   *	socket options (ipv6_sockglue.c)
1183   */
1184  DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount);
1185  
1186  int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1187  		       unsigned int optlen);
1188  int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1189  		    unsigned int optlen);
1190  int do_ipv6_getsockopt(struct sock *sk, int level, int optname,
1191  		       sockptr_t optval, sockptr_t optlen);
1192  int ipv6_getsockopt(struct sock *sk, int level, int optname,
1193  		    char __user *optval, int __user *optlen);
1194  
1195  int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1196  			   int addr_len);
1197  int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1198  int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1199  				 int addr_len);
1200  int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1201  void ip6_datagram_release_cb(struct sock *sk);
1202  
1203  int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1204  		    int *addr_len);
1205  int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1206  		     int *addr_len);
1207  void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1208  		     u32 info, u8 *payload);
1209  void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1210  void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1211  
1212  void inet6_cleanup_sock(struct sock *sk);
1213  void inet6_sock_destruct(struct sock *sk);
1214  int inet6_release(struct socket *sock);
1215  int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1216  int inet6_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len);
1217  int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1218  		  int peer);
1219  int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1220  int inet6_compat_ioctl(struct socket *sock, unsigned int cmd,
1221  		unsigned long arg);
1222  
1223  int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1224  			      struct sock *sk);
1225  int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size);
1226  int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1227  		  int flags);
1228  
1229  /*
1230   * reassembly.c
1231   */
1232  extern const struct proto_ops inet6_stream_ops;
1233  extern const struct proto_ops inet6_dgram_ops;
1234  extern const struct proto_ops inet6_sockraw_ops;
1235  
1236  struct group_source_req;
1237  struct group_filter;
1238  
1239  int ip6_mc_source(int add, int omode, struct sock *sk,
1240  		  struct group_source_req *pgsr);
1241  int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf,
1242  		  struct sockaddr_storage *list);
1243  int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1244  		  sockptr_t optval, size_t ss_offset);
1245  
1246  #ifdef CONFIG_PROC_FS
1247  int ac6_proc_init(struct net *net);
1248  void ac6_proc_exit(struct net *net);
1249  int raw6_proc_init(void);
1250  void raw6_proc_exit(void);
1251  int tcp6_proc_init(struct net *net);
1252  void tcp6_proc_exit(struct net *net);
1253  int udp6_proc_init(struct net *net);
1254  void udp6_proc_exit(struct net *net);
1255  int udplite6_proc_init(void);
1256  void udplite6_proc_exit(void);
1257  int ipv6_misc_proc_init(void);
1258  void ipv6_misc_proc_exit(void);
1259  int snmp6_register_dev(struct inet6_dev *idev);
1260  int snmp6_unregister_dev(struct inet6_dev *idev);
1261  
1262  #else
ac6_proc_init(struct net * net)1263  static inline int ac6_proc_init(struct net *net) { return 0; }
ac6_proc_exit(struct net * net)1264  static inline void ac6_proc_exit(struct net *net) { }
snmp6_register_dev(struct inet6_dev * idev)1265  static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
snmp6_unregister_dev(struct inet6_dev * idev)1266  static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1267  #endif
1268  
1269  #ifdef CONFIG_SYSCTL
1270  struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1271  size_t ipv6_icmp_sysctl_table_size(void);
1272  struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1273  size_t ipv6_route_sysctl_table_size(struct net *net);
1274  int ipv6_sysctl_register(void);
1275  void ipv6_sysctl_unregister(void);
1276  #endif
1277  
1278  int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1279  		      const struct in6_addr *addr);
1280  int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1281  			  const struct in6_addr *addr, unsigned int mode);
1282  int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1283  		      const struct in6_addr *addr);
1284  
ip6_sock_set_v6only(struct sock * sk)1285  static inline int ip6_sock_set_v6only(struct sock *sk)
1286  {
1287  	if (inet_sk(sk)->inet_num)
1288  		return -EINVAL;
1289  	lock_sock(sk);
1290  	sk->sk_ipv6only = true;
1291  	release_sock(sk);
1292  	return 0;
1293  }
1294  
ip6_sock_set_recverr(struct sock * sk)1295  static inline void ip6_sock_set_recverr(struct sock *sk)
1296  {
1297  	inet6_set_bit(RECVERR6, sk);
1298  }
1299  
1300  #define IPV6_PREFER_SRC_MASK (IPV6_PREFER_SRC_TMP | IPV6_PREFER_SRC_PUBLIC | \
1301  			      IPV6_PREFER_SRC_COA)
1302  
ip6_sock_set_addr_preferences(struct sock * sk,int val)1303  static inline int ip6_sock_set_addr_preferences(struct sock *sk, int val)
1304  {
1305  	unsigned int prefmask = ~IPV6_PREFER_SRC_MASK;
1306  	unsigned int pref = 0;
1307  
1308  	/* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
1309  	switch (val & (IPV6_PREFER_SRC_PUBLIC |
1310  		       IPV6_PREFER_SRC_TMP |
1311  		       IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
1312  	case IPV6_PREFER_SRC_PUBLIC:
1313  		pref |= IPV6_PREFER_SRC_PUBLIC;
1314  		prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1315  			      IPV6_PREFER_SRC_TMP);
1316  		break;
1317  	case IPV6_PREFER_SRC_TMP:
1318  		pref |= IPV6_PREFER_SRC_TMP;
1319  		prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1320  			      IPV6_PREFER_SRC_TMP);
1321  		break;
1322  	case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
1323  		prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1324  			      IPV6_PREFER_SRC_TMP);
1325  		break;
1326  	case 0:
1327  		break;
1328  	default:
1329  		return -EINVAL;
1330  	}
1331  
1332  	/* check HOME/COA conflicts */
1333  	switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) {
1334  	case IPV6_PREFER_SRC_HOME:
1335  		prefmask &= ~IPV6_PREFER_SRC_COA;
1336  		break;
1337  	case IPV6_PREFER_SRC_COA:
1338  		pref |= IPV6_PREFER_SRC_COA;
1339  		break;
1340  	case 0:
1341  		break;
1342  	default:
1343  		return -EINVAL;
1344  	}
1345  
1346  	/* check CGA/NONCGA conflicts */
1347  	switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
1348  	case IPV6_PREFER_SRC_CGA:
1349  	case IPV6_PREFER_SRC_NONCGA:
1350  	case 0:
1351  		break;
1352  	default:
1353  		return -EINVAL;
1354  	}
1355  
1356  	WRITE_ONCE(inet6_sk(sk)->srcprefs,
1357  		   (READ_ONCE(inet6_sk(sk)->srcprefs) & prefmask) | pref);
1358  	return 0;
1359  }
1360  
ip6_sock_set_recvpktinfo(struct sock * sk)1361  static inline void ip6_sock_set_recvpktinfo(struct sock *sk)
1362  {
1363  	lock_sock(sk);
1364  	inet6_sk(sk)->rxopt.bits.rxinfo = true;
1365  	release_sock(sk);
1366  }
1367  
1368  #define IPV6_ADDR_WORDS 4
1369  
ipv6_addr_cpu_to_be32(__be32 * dst,const u32 * src)1370  static inline void ipv6_addr_cpu_to_be32(__be32 *dst, const u32 *src)
1371  {
1372  	cpu_to_be32_array(dst, src, IPV6_ADDR_WORDS);
1373  }
1374  
ipv6_addr_be32_to_cpu(u32 * dst,const __be32 * src)1375  static inline void ipv6_addr_be32_to_cpu(u32 *dst, const __be32 *src)
1376  {
1377  	be32_to_cpu_array(dst, src, IPV6_ADDR_WORDS);
1378  }
1379  
1380  #endif /* _NET_IPV6_H */
1381