1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef __LINUX_COMPILER_H
3  #define __LINUX_COMPILER_H
4  
5  #include <linux/compiler_types.h>
6  
7  #ifndef __ASSEMBLY__
8  
9  #ifdef __KERNEL__
10  
11  /*
12   * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13   * to disable branch tracing on a per file basis.
14   */
15  void ftrace_likely_update(struct ftrace_likely_data *f, int val,
16  			  int expect, int is_constant);
17  #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
18      && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
19  #define likely_notrace(x)	__builtin_expect(!!(x), 1)
20  #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
21  
22  #define __branch_check__(x, expect, is_constant) ({			\
23  			long ______r;					\
24  			static struct ftrace_likely_data		\
25  				__aligned(4)				\
26  				__section("_ftrace_annotated_branch")	\
27  				______f = {				\
28  				.data.func = __func__,			\
29  				.data.file = __FILE__,			\
30  				.data.line = __LINE__,			\
31  			};						\
32  			______r = __builtin_expect(!!(x), expect);	\
33  			ftrace_likely_update(&______f, ______r,		\
34  					     expect, is_constant);	\
35  			______r;					\
36  		})
37  
38  /*
39   * Using __builtin_constant_p(x) to ignore cases where the return
40   * value is always the same.  This idea is taken from a similar patch
41   * written by Daniel Walker.
42   */
43  # ifndef likely
44  #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
45  # endif
46  # ifndef unlikely
47  #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
48  # endif
49  
50  #ifdef CONFIG_PROFILE_ALL_BRANCHES
51  /*
52   * "Define 'is'", Bill Clinton
53   * "Define 'if'", Steven Rostedt
54   */
55  #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) )
56  
57  #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond))
58  
59  #define __trace_if_value(cond) ({			\
60  	static struct ftrace_branch_data		\
61  		__aligned(4)				\
62  		__section("_ftrace_branch")		\
63  		__if_trace = {				\
64  			.func = __func__,		\
65  			.file = __FILE__,		\
66  			.line = __LINE__,		\
67  		};					\
68  	(cond) ?					\
69  		(__if_trace.miss_hit[1]++,1) :		\
70  		(__if_trace.miss_hit[0]++,0);		\
71  })
72  
73  #endif /* CONFIG_PROFILE_ALL_BRANCHES */
74  
75  #else
76  # define likely(x)	__builtin_expect(!!(x), 1)
77  # define unlikely(x)	__builtin_expect(!!(x), 0)
78  # define likely_notrace(x)	likely(x)
79  # define unlikely_notrace(x)	unlikely(x)
80  #endif
81  
82  /* Optimization barrier */
83  #ifndef barrier
84  /* The "volatile" is due to gcc bugs */
85  # define barrier() __asm__ __volatile__("": : :"memory")
86  #endif
87  
88  #ifndef barrier_data
89  /*
90   * This version is i.e. to prevent dead stores elimination on @ptr
91   * where gcc and llvm may behave differently when otherwise using
92   * normal barrier(): while gcc behavior gets along with a normal
93   * barrier(), llvm needs an explicit input variable to be assumed
94   * clobbered. The issue is as follows: while the inline asm might
95   * access any memory it wants, the compiler could have fit all of
96   * @ptr into memory registers instead, and since @ptr never escaped
97   * from that, it proved that the inline asm wasn't touching any of
98   * it. This version works well with both compilers, i.e. we're telling
99   * the compiler that the inline asm absolutely may see the contents
100   * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495
101   */
102  # define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory")
103  #endif
104  
105  /* workaround for GCC PR82365 if needed */
106  #ifndef barrier_before_unreachable
107  # define barrier_before_unreachable() do { } while (0)
108  #endif
109  
110  /* Unreachable code */
111  #ifdef CONFIG_OBJTOOL
112  /*
113   * These macros help objtool understand GCC code flow for unreachable code.
114   * The __COUNTER__ based labels are a hack to make each instance of the macros
115   * unique, to convince GCC not to merge duplicate inline asm statements.
116   */
117  #define __stringify_label(n) #n
118  
119  #define __annotate_reachable(c) ({					\
120  	asm volatile(__stringify_label(c) ":\n\t"			\
121  			".pushsection .discard.reachable\n\t"		\
122  			".long " __stringify_label(c) "b - .\n\t"	\
123  			".popsection\n\t");				\
124  })
125  #define annotate_reachable() __annotate_reachable(__COUNTER__)
126  
127  #define __annotate_unreachable(c) ({					\
128  	asm volatile(__stringify_label(c) ":\n\t"			\
129  		     ".pushsection .discard.unreachable\n\t"		\
130  		     ".long " __stringify_label(c) "b - .\n\t"		\
131  		     ".popsection\n\t" : : "i" (c));			\
132  })
133  #define annotate_unreachable() __annotate_unreachable(__COUNTER__)
134  
135  /* Annotate a C jump table to allow objtool to follow the code flow */
136  #define __annotate_jump_table __section(".rodata..c_jump_table,\"a\",@progbits #")
137  
138  #else /* !CONFIG_OBJTOOL */
139  #define annotate_reachable()
140  #define annotate_unreachable()
141  #define __annotate_jump_table
142  #endif /* CONFIG_OBJTOOL */
143  
144  #ifndef unreachable
145  # define unreachable() do {		\
146  	annotate_unreachable();		\
147  	__builtin_unreachable();	\
148  } while (0)
149  #endif
150  
151  /*
152   * KENTRY - kernel entry point
153   * This can be used to annotate symbols (functions or data) that are used
154   * without their linker symbol being referenced explicitly. For example,
155   * interrupt vector handlers, or functions in the kernel image that are found
156   * programatically.
157   *
158   * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
159   * are handled in their own way (with KEEP() in linker scripts).
160   *
161   * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
162   * linker script. For example an architecture could KEEP() its entire
163   * boot/exception vector code rather than annotate each function and data.
164   */
165  #ifndef KENTRY
166  # define KENTRY(sym)						\
167  	extern typeof(sym) sym;					\
168  	static const unsigned long __kentry_##sym		\
169  	__used							\
170  	__attribute__((__section__("___kentry+" #sym)))		\
171  	= (unsigned long)&sym;
172  #endif
173  
174  #ifndef RELOC_HIDE
175  # define RELOC_HIDE(ptr, off)					\
176    ({ unsigned long __ptr;					\
177       __ptr = (unsigned long) (ptr);				\
178      (typeof(ptr)) (__ptr + (off)); })
179  #endif
180  
181  #define absolute_pointer(val)	RELOC_HIDE((void *)(val), 0)
182  
183  #ifndef OPTIMIZER_HIDE_VAR
184  /* Make the optimizer believe the variable can be manipulated arbitrarily. */
185  #define OPTIMIZER_HIDE_VAR(var)						\
186  	__asm__ ("" : "=r" (var) : "0" (var))
187  #endif
188  
189  #define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)
190  
191  /**
192   * data_race - mark an expression as containing intentional data races
193   *
194   * This data_race() macro is useful for situations in which data races
195   * should be forgiven.  One example is diagnostic code that accesses
196   * shared variables but is not a part of the core synchronization design.
197   * For example, if accesses to a given variable are protected by a lock,
198   * except for diagnostic code, then the accesses under the lock should
199   * be plain C-language accesses and those in the diagnostic code should
200   * use data_race().  This way, KCSAN will complain if buggy lockless
201   * accesses to that variable are introduced, even if the buggy accesses
202   * are protected by READ_ONCE() or WRITE_ONCE().
203   *
204   * This macro *does not* affect normal code generation, but is a hint
205   * to tooling that data races here are to be ignored.  If the access must
206   * be atomic *and* KCSAN should ignore the access, use both data_race()
207   * and READ_ONCE(), for example, data_race(READ_ONCE(x)).
208   */
209  #define data_race(expr)							\
210  ({									\
211  	__kcsan_disable_current();					\
212  	__auto_type __v = (expr);					\
213  	__kcsan_enable_current();					\
214  	__v;								\
215  })
216  
217  #endif /* __KERNEL__ */
218  
219  /*
220   * Force the compiler to emit 'sym' as a symbol, so that we can reference
221   * it from inline assembler. Necessary in case 'sym' could be inlined
222   * otherwise, or eliminated entirely due to lack of references that are
223   * visible to the compiler.
224   */
225  #define ___ADDRESSABLE(sym, __attrs) \
226  	static void * __used __attrs \
227  	__UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym;
228  #define __ADDRESSABLE(sym) \
229  	___ADDRESSABLE(sym, __section(".discard.addressable"))
230  
231  /**
232   * offset_to_ptr - convert a relative memory offset to an absolute pointer
233   * @off:	the address of the 32-bit offset value
234   */
offset_to_ptr(const int * off)235  static inline void *offset_to_ptr(const int *off)
236  {
237  	return (void *)((unsigned long)off + *off);
238  }
239  
240  #endif /* __ASSEMBLY__ */
241  
242  /* &a[0] degrades to a pointer: a different type from an array */
243  #define __must_be_array(a)	BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
244  
245  /* Require C Strings (i.e. NUL-terminated) lack the "nonstring" attribute. */
246  #define __must_be_cstr(p)	BUILD_BUG_ON_ZERO(__annotated(p, nonstring))
247  
248  /*
249   * This returns a constant expression while determining if an argument is
250   * a constant expression, most importantly without evaluating the argument.
251   * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
252   *
253   * Details:
254   * - sizeof() return an integer constant expression, and does not evaluate
255   *   the value of its operand; it only examines the type of its operand.
256   * - The results of comparing two integer constant expressions is also
257   *   an integer constant expression.
258   * - The first literal "8" isn't important. It could be any literal value.
259   * - The second literal "8" is to avoid warnings about unaligned pointers;
260   *   this could otherwise just be "1".
261   * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit
262   *   architectures.
263   * - The C Standard defines "null pointer constant", "(void *)0", as
264   *   distinct from other void pointers.
265   * - If (x) is an integer constant expression, then the "* 0l" resolves
266   *   it into an integer constant expression of value 0. Since it is cast to
267   *   "void *", this makes the second operand a null pointer constant.
268   * - If (x) is not an integer constant expression, then the second operand
269   *   resolves to a void pointer (but not a null pointer constant: the value
270   *   is not an integer constant 0).
271   * - The conditional operator's third operand, "(int *)8", is an object
272   *   pointer (to type "int").
273   * - The behavior (including the return type) of the conditional operator
274   *   ("operand1 ? operand2 : operand3") depends on the kind of expressions
275   *   given for the second and third operands. This is the central mechanism
276   *   of the macro:
277   *   - When one operand is a null pointer constant (i.e. when x is an integer
278   *     constant expression) and the other is an object pointer (i.e. our
279   *     third operand), the conditional operator returns the type of the
280   *     object pointer operand (i.e. "int *"). Here, within the sizeof(), we
281   *     would then get:
282   *       sizeof(*((int *)(...))  == sizeof(int)  == 4
283   *   - When one operand is a void pointer (i.e. when x is not an integer
284   *     constant expression) and the other is an object pointer (i.e. our
285   *     third operand), the conditional operator returns a "void *" type.
286   *     Here, within the sizeof(), we would then get:
287   *       sizeof(*((void *)(...)) == sizeof(void) == 1
288   * - The equality comparison to "sizeof(int)" therefore depends on (x):
289   *     sizeof(int) == sizeof(int)     (x) was a constant expression
290   *     sizeof(int) != sizeof(void)    (x) was not a constant expression
291   */
292  #define __is_constexpr(x) \
293  	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
294  
295  /*
296   * Whether 'type' is a signed type or an unsigned type. Supports scalar types,
297   * bool and also pointer types.
298   */
299  #define is_signed_type(type) (((type)(-1)) < (__force type)1)
300  #define is_unsigned_type(type) (!is_signed_type(type))
301  
302  /*
303   * Useful shorthand for "is this condition known at compile-time?"
304   *
305   * Note that the condition may involve non-constant values,
306   * but the compiler may know enough about the details of the
307   * values to determine that the condition is statically true.
308   */
309  #define statically_true(x) (__builtin_constant_p(x) && (x))
310  
311  /*
312   * This is needed in functions which generate the stack canary, see
313   * arch/x86/kernel/smpboot.c::start_secondary() for an example.
314   */
315  #define prevent_tail_call_optimization()	mb()
316  
317  #include <asm/rwonce.h>
318  
319  #endif /* __LINUX_COMPILER_H */
320