1  /*
2   * Copyright (c) Yann Collet, Facebook, Inc.
3   * All rights reserved.
4   *
5   * This source code is licensed under both the BSD-style license (found in the
6   * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7   * in the COPYING file in the root directory of this source tree).
8   * You may select, at your option, one of the above-listed licenses.
9   */
10  
11   /*-*************************************
12   *  Dependencies
13   ***************************************/
14  #include "zstd_compress_sequences.h"
15  
16  /*
17   * -log2(x / 256) lookup table for x in [0, 256).
18   * If x == 0: Return 0
19   * Else: Return floor(-log2(x / 256) * 256)
20   */
21  static unsigned const kInverseProbabilityLog256[256] = {
22      0,    2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
23      1130, 1100, 1073, 1047, 1024, 1001, 980,  960,  941,  923,  906,  889,
24      874,  859,  844,  830,  817,  804,  791,  779,  768,  756,  745,  734,
25      724,  714,  704,  694,  685,  676,  667,  658,  650,  642,  633,  626,
26      618,  610,  603,  595,  588,  581,  574,  567,  561,  554,  548,  542,
27      535,  529,  523,  517,  512,  506,  500,  495,  489,  484,  478,  473,
28      468,  463,  458,  453,  448,  443,  438,  434,  429,  424,  420,  415,
29      411,  407,  402,  398,  394,  390,  386,  382,  377,  373,  370,  366,
30      362,  358,  354,  350,  347,  343,  339,  336,  332,  329,  325,  322,
31      318,  315,  311,  308,  305,  302,  298,  295,  292,  289,  286,  282,
32      279,  276,  273,  270,  267,  264,  261,  258,  256,  253,  250,  247,
33      244,  241,  239,  236,  233,  230,  228,  225,  222,  220,  217,  215,
34      212,  209,  207,  204,  202,  199,  197,  194,  192,  190,  187,  185,
35      182,  180,  178,  175,  173,  171,  168,  166,  164,  162,  159,  157,
36      155,  153,  151,  149,  146,  144,  142,  140,  138,  136,  134,  132,
37      130,  128,  126,  123,  121,  119,  117,  115,  114,  112,  110,  108,
38      106,  104,  102,  100,  98,   96,   94,   93,   91,   89,   87,   85,
39      83,   82,   80,   78,   76,   74,   73,   71,   69,   67,   66,   64,
40      62,   61,   59,   57,   55,   54,   52,   50,   49,   47,   46,   44,
41      42,   41,   39,   37,   36,   34,   33,   31,   30,   28,   26,   25,
42      23,   22,   20,   19,   17,   16,   14,   13,   11,   10,   8,    7,
43      5,    4,    2,    1,
44  };
45  
ZSTD_getFSEMaxSymbolValue(FSE_CTable const * ctable)46  static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
47    void const* ptr = ctable;
48    U16 const* u16ptr = (U16 const*)ptr;
49    U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
50    return maxSymbolValue;
51  }
52  
53  /*
54   * Returns true if we should use ncount=-1 else we should
55   * use ncount=1 for low probability symbols instead.
56   */
ZSTD_useLowProbCount(size_t const nbSeq)57  static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
58  {
59      /* Heuristic: This should cover most blocks <= 16K and
60       * start to fade out after 16K to about 32K depending on
61       * comprssibility.
62       */
63      return nbSeq >= 2048;
64  }
65  
66  /*
67   * Returns the cost in bytes of encoding the normalized count header.
68   * Returns an error if any of the helper functions return an error.
69   */
ZSTD_NCountCost(unsigned const * count,unsigned const max,size_t const nbSeq,unsigned const FSELog)70  static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
71                                size_t const nbSeq, unsigned const FSELog)
72  {
73      BYTE wksp[FSE_NCOUNTBOUND];
74      S16 norm[MaxSeq + 1];
75      const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
76      FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
77      return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
78  }
79  
80  /*
81   * Returns the cost in bits of encoding the distribution described by count
82   * using the entropy bound.
83   */
ZSTD_entropyCost(unsigned const * count,unsigned const max,size_t const total)84  static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
85  {
86      unsigned cost = 0;
87      unsigned s;
88  
89      assert(total > 0);
90      for (s = 0; s <= max; ++s) {
91          unsigned norm = (unsigned)((256 * count[s]) / total);
92          if (count[s] != 0 && norm == 0)
93              norm = 1;
94          assert(count[s] < total);
95          cost += count[s] * kInverseProbabilityLog256[norm];
96      }
97      return cost >> 8;
98  }
99  
100  /*
101   * Returns the cost in bits of encoding the distribution in count using ctable.
102   * Returns an error if ctable cannot represent all the symbols in count.
103   */
ZSTD_fseBitCost(FSE_CTable const * ctable,unsigned const * count,unsigned const max)104  size_t ZSTD_fseBitCost(
105      FSE_CTable const* ctable,
106      unsigned const* count,
107      unsigned const max)
108  {
109      unsigned const kAccuracyLog = 8;
110      size_t cost = 0;
111      unsigned s;
112      FSE_CState_t cstate;
113      FSE_initCState(&cstate, ctable);
114      if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
115          DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
116                      ZSTD_getFSEMaxSymbolValue(ctable), max);
117          return ERROR(GENERIC);
118      }
119      for (s = 0; s <= max; ++s) {
120          unsigned const tableLog = cstate.stateLog;
121          unsigned const badCost = (tableLog + 1) << kAccuracyLog;
122          unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
123          if (count[s] == 0)
124              continue;
125          if (bitCost >= badCost) {
126              DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
127              return ERROR(GENERIC);
128          }
129          cost += (size_t)count[s] * bitCost;
130      }
131      return cost >> kAccuracyLog;
132  }
133  
134  /*
135   * Returns the cost in bits of encoding the distribution in count using the
136   * table described by norm. The max symbol support by norm is assumed >= max.
137   * norm must be valid for every symbol with non-zero probability in count.
138   */
ZSTD_crossEntropyCost(short const * norm,unsigned accuracyLog,unsigned const * count,unsigned const max)139  size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
140                               unsigned const* count, unsigned const max)
141  {
142      unsigned const shift = 8 - accuracyLog;
143      size_t cost = 0;
144      unsigned s;
145      assert(accuracyLog <= 8);
146      for (s = 0; s <= max; ++s) {
147          unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
148          unsigned const norm256 = normAcc << shift;
149          assert(norm256 > 0);
150          assert(norm256 < 256);
151          cost += count[s] * kInverseProbabilityLog256[norm256];
152      }
153      return cost >> 8;
154  }
155  
156  symbolEncodingType_e
ZSTD_selectEncodingType(FSE_repeat * repeatMode,unsigned const * count,unsigned const max,size_t const mostFrequent,size_t nbSeq,unsigned const FSELog,FSE_CTable const * prevCTable,short const * defaultNorm,U32 defaultNormLog,ZSTD_defaultPolicy_e const isDefaultAllowed,ZSTD_strategy const strategy)157  ZSTD_selectEncodingType(
158          FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
159          size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
160          FSE_CTable const* prevCTable,
161          short const* defaultNorm, U32 defaultNormLog,
162          ZSTD_defaultPolicy_e const isDefaultAllowed,
163          ZSTD_strategy const strategy)
164  {
165      ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
166      if (mostFrequent == nbSeq) {
167          *repeatMode = FSE_repeat_none;
168          if (isDefaultAllowed && nbSeq <= 2) {
169              /* Prefer set_basic over set_rle when there are 2 or less symbols,
170               * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
171               * If basic encoding isn't possible, always choose RLE.
172               */
173              DEBUGLOG(5, "Selected set_basic");
174              return set_basic;
175          }
176          DEBUGLOG(5, "Selected set_rle");
177          return set_rle;
178      }
179      if (strategy < ZSTD_lazy) {
180          if (isDefaultAllowed) {
181              size_t const staticFse_nbSeq_max = 1000;
182              size_t const mult = 10 - strategy;
183              size_t const baseLog = 3;
184              size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog;  /* 28-36 for offset, 56-72 for lengths */
185              assert(defaultNormLog >= 5 && defaultNormLog <= 6);  /* xx_DEFAULTNORMLOG */
186              assert(mult <= 9 && mult >= 7);
187              if ( (*repeatMode == FSE_repeat_valid)
188                && (nbSeq < staticFse_nbSeq_max) ) {
189                  DEBUGLOG(5, "Selected set_repeat");
190                  return set_repeat;
191              }
192              if ( (nbSeq < dynamicFse_nbSeq_min)
193                || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
194                  DEBUGLOG(5, "Selected set_basic");
195                  /* The format allows default tables to be repeated, but it isn't useful.
196                   * When using simple heuristics to select encoding type, we don't want
197                   * to confuse these tables with dictionaries. When running more careful
198                   * analysis, we don't need to waste time checking both repeating tables
199                   * and default tables.
200                   */
201                  *repeatMode = FSE_repeat_none;
202                  return set_basic;
203              }
204          }
205      } else {
206          size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
207          size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
208          size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
209          size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
210  
211          if (isDefaultAllowed) {
212              assert(!ZSTD_isError(basicCost));
213              assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
214          }
215          assert(!ZSTD_isError(NCountCost));
216          assert(compressedCost < ERROR(maxCode));
217          DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
218                      (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
219          if (basicCost <= repeatCost && basicCost <= compressedCost) {
220              DEBUGLOG(5, "Selected set_basic");
221              assert(isDefaultAllowed);
222              *repeatMode = FSE_repeat_none;
223              return set_basic;
224          }
225          if (repeatCost <= compressedCost) {
226              DEBUGLOG(5, "Selected set_repeat");
227              assert(!ZSTD_isError(repeatCost));
228              return set_repeat;
229          }
230          assert(compressedCost < basicCost && compressedCost < repeatCost);
231      }
232      DEBUGLOG(5, "Selected set_compressed");
233      *repeatMode = FSE_repeat_check;
234      return set_compressed;
235  }
236  
237  typedef struct {
238      S16 norm[MaxSeq + 1];
239      U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
240  } ZSTD_BuildCTableWksp;
241  
242  size_t
ZSTD_buildCTable(void * dst,size_t dstCapacity,FSE_CTable * nextCTable,U32 FSELog,symbolEncodingType_e type,unsigned * count,U32 max,const BYTE * codeTable,size_t nbSeq,const S16 * defaultNorm,U32 defaultNormLog,U32 defaultMax,const FSE_CTable * prevCTable,size_t prevCTableSize,void * entropyWorkspace,size_t entropyWorkspaceSize)243  ZSTD_buildCTable(void* dst, size_t dstCapacity,
244                  FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
245                  unsigned* count, U32 max,
246                  const BYTE* codeTable, size_t nbSeq,
247                  const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
248                  const FSE_CTable* prevCTable, size_t prevCTableSize,
249                  void* entropyWorkspace, size_t entropyWorkspaceSize)
250  {
251      BYTE* op = (BYTE*)dst;
252      const BYTE* const oend = op + dstCapacity;
253      DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
254  
255      switch (type) {
256      case set_rle:
257          FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
258          RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
259          *op = codeTable[0];
260          return 1;
261      case set_repeat:
262          ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
263          return 0;
264      case set_basic:
265          FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), "");  /* note : could be pre-calculated */
266          return 0;
267      case set_compressed: {
268          ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
269          size_t nbSeq_1 = nbSeq;
270          const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
271          if (count[codeTable[nbSeq-1]] > 1) {
272              count[codeTable[nbSeq-1]]--;
273              nbSeq_1--;
274          }
275          assert(nbSeq_1 > 1);
276          assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
277          (void)entropyWorkspaceSize;
278          FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed");
279          assert(oend >= op);
280          {   size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog);   /* overflow protected */
281              FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
282              FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed");
283              return NCountSize;
284          }
285      }
286      default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
287      }
288  }
289  
290  FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets)291  ZSTD_encodeSequences_body(
292              void* dst, size_t dstCapacity,
293              FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
294              FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
295              FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
296              seqDef const* sequences, size_t nbSeq, int longOffsets)
297  {
298      BIT_CStream_t blockStream;
299      FSE_CState_t  stateMatchLength;
300      FSE_CState_t  stateOffsetBits;
301      FSE_CState_t  stateLitLength;
302  
303      RETURN_ERROR_IF(
304          ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
305          dstSize_tooSmall, "not enough space remaining");
306      DEBUGLOG(6, "available space for bitstream : %i  (dstCapacity=%u)",
307                  (int)(blockStream.endPtr - blockStream.startPtr),
308                  (unsigned)dstCapacity);
309  
310      /* first symbols */
311      FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
312      FSE_initCState2(&stateOffsetBits,  CTable_OffsetBits,  ofCodeTable[nbSeq-1]);
313      FSE_initCState2(&stateLitLength,   CTable_LitLength,   llCodeTable[nbSeq-1]);
314      BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
315      if (MEM_32bits()) BIT_flushBits(&blockStream);
316      BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]);
317      if (MEM_32bits()) BIT_flushBits(&blockStream);
318      if (longOffsets) {
319          U32 const ofBits = ofCodeTable[nbSeq-1];
320          unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
321          if (extraBits) {
322              BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits);
323              BIT_flushBits(&blockStream);
324          }
325          BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits,
326                      ofBits - extraBits);
327      } else {
328          BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]);
329      }
330      BIT_flushBits(&blockStream);
331  
332      {   size_t n;
333          for (n=nbSeq-2 ; n<nbSeq ; n--) {      /* intentional underflow */
334              BYTE const llCode = llCodeTable[n];
335              BYTE const ofCode = ofCodeTable[n];
336              BYTE const mlCode = mlCodeTable[n];
337              U32  const llBits = LL_bits[llCode];
338              U32  const ofBits = ofCode;
339              U32  const mlBits = ML_bits[mlCode];
340              DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
341                          (unsigned)sequences[n].litLength,
342                          (unsigned)sequences[n].mlBase + MINMATCH,
343                          (unsigned)sequences[n].offBase);
344                                                                              /* 32b*/  /* 64b*/
345                                                                              /* (7)*/  /* (7)*/
346              FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode);       /* 15 */  /* 15 */
347              FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode);      /* 24 */  /* 24 */
348              if (MEM_32bits()) BIT_flushBits(&blockStream);                  /* (7)*/
349              FSE_encodeSymbol(&blockStream, &stateLitLength, llCode);        /* 16 */  /* 33 */
350              if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
351                  BIT_flushBits(&blockStream);                                /* (7)*/
352              BIT_addBits(&blockStream, sequences[n].litLength, llBits);
353              if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
354              BIT_addBits(&blockStream, sequences[n].mlBase, mlBits);
355              if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
356              if (longOffsets) {
357                  unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
358                  if (extraBits) {
359                      BIT_addBits(&blockStream, sequences[n].offBase, extraBits);
360                      BIT_flushBits(&blockStream);                            /* (7)*/
361                  }
362                  BIT_addBits(&blockStream, sequences[n].offBase >> extraBits,
363                              ofBits - extraBits);                            /* 31 */
364              } else {
365                  BIT_addBits(&blockStream, sequences[n].offBase, ofBits);     /* 31 */
366              }
367              BIT_flushBits(&blockStream);                                    /* (7)*/
368              DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
369      }   }
370  
371      DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
372      FSE_flushCState(&blockStream, &stateMatchLength);
373      DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
374      FSE_flushCState(&blockStream, &stateOffsetBits);
375      DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
376      FSE_flushCState(&blockStream, &stateLitLength);
377  
378      {   size_t const streamSize = BIT_closeCStream(&blockStream);
379          RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
380          return streamSize;
381      }
382  }
383  
384  static size_t
ZSTD_encodeSequences_default(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets)385  ZSTD_encodeSequences_default(
386              void* dst, size_t dstCapacity,
387              FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
388              FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
389              FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
390              seqDef const* sequences, size_t nbSeq, int longOffsets)
391  {
392      return ZSTD_encodeSequences_body(dst, dstCapacity,
393                                      CTable_MatchLength, mlCodeTable,
394                                      CTable_OffsetBits, ofCodeTable,
395                                      CTable_LitLength, llCodeTable,
396                                      sequences, nbSeq, longOffsets);
397  }
398  
399  
400  #if DYNAMIC_BMI2
401  
402  static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_encodeSequences_bmi2(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets)403  ZSTD_encodeSequences_bmi2(
404              void* dst, size_t dstCapacity,
405              FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
406              FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
407              FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
408              seqDef const* sequences, size_t nbSeq, int longOffsets)
409  {
410      return ZSTD_encodeSequences_body(dst, dstCapacity,
411                                      CTable_MatchLength, mlCodeTable,
412                                      CTable_OffsetBits, ofCodeTable,
413                                      CTable_LitLength, llCodeTable,
414                                      sequences, nbSeq, longOffsets);
415  }
416  
417  #endif
418  
ZSTD_encodeSequences(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets,int bmi2)419  size_t ZSTD_encodeSequences(
420              void* dst, size_t dstCapacity,
421              FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
422              FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
423              FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
424              seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
425  {
426      DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
427  #if DYNAMIC_BMI2
428      if (bmi2) {
429          return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
430                                           CTable_MatchLength, mlCodeTable,
431                                           CTable_OffsetBits, ofCodeTable,
432                                           CTable_LitLength, llCodeTable,
433                                           sequences, nbSeq, longOffsets);
434      }
435  #endif
436      (void)bmi2;
437      return ZSTD_encodeSequences_default(dst, dstCapacity,
438                                          CTable_MatchLength, mlCodeTable,
439                                          CTable_OffsetBits, ofCodeTable,
440                                          CTable_LitLength, llCodeTable,
441                                          sequences, nbSeq, longOffsets);
442  }
443