1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * IEEE 802.11 defines
4  *
5  * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6  * <jkmaline@cc.hut.fi>
7  * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8  * Copyright (c) 2005, Devicescape Software, Inc.
9  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10  * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11  * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12  * Copyright (c) 2018 - 2024 Intel Corporation
13  */
14 
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17 
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <linux/unaligned.h>
24 
25 /*
26  * DS bit usage
27  *
28  * TA = transmitter address
29  * RA = receiver address
30  * DA = destination address
31  * SA = source address
32  *
33  * ToDS    FromDS  A1(RA)  A2(TA)  A3      A4      Use
34  * -----------------------------------------------------------------
35  *  0       0       DA      SA      BSSID   -       IBSS/DLS
36  *  0       1       DA      BSSID   SA      -       AP -> STA
37  *  1       0       BSSID   SA      DA      -       AP <- STA
38  *  1       1       RA      TA      DA      SA      unspecified (WDS)
39  */
40 
41 #define FCS_LEN 4
42 
43 #define IEEE80211_FCTL_VERS		0x0003
44 #define IEEE80211_FCTL_FTYPE		0x000c
45 #define IEEE80211_FCTL_STYPE		0x00f0
46 #define IEEE80211_FCTL_TODS		0x0100
47 #define IEEE80211_FCTL_FROMDS		0x0200
48 #define IEEE80211_FCTL_MOREFRAGS	0x0400
49 #define IEEE80211_FCTL_RETRY		0x0800
50 #define IEEE80211_FCTL_PM		0x1000
51 #define IEEE80211_FCTL_MOREDATA		0x2000
52 #define IEEE80211_FCTL_PROTECTED	0x4000
53 #define IEEE80211_FCTL_ORDER		0x8000
54 #define IEEE80211_FCTL_CTL_EXT		0x0f00
55 
56 #define IEEE80211_SCTL_FRAG		0x000F
57 #define IEEE80211_SCTL_SEQ		0xFFF0
58 
59 #define IEEE80211_FTYPE_MGMT		0x0000
60 #define IEEE80211_FTYPE_CTL		0x0004
61 #define IEEE80211_FTYPE_DATA		0x0008
62 #define IEEE80211_FTYPE_EXT		0x000c
63 
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ	0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP	0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ	0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP	0x0030
69 #define IEEE80211_STYPE_PROBE_REQ	0x0040
70 #define IEEE80211_STYPE_PROBE_RESP	0x0050
71 #define IEEE80211_STYPE_BEACON		0x0080
72 #define IEEE80211_STYPE_ATIM		0x0090
73 #define IEEE80211_STYPE_DISASSOC	0x00A0
74 #define IEEE80211_STYPE_AUTH		0x00B0
75 #define IEEE80211_STYPE_DEAUTH		0x00C0
76 #define IEEE80211_STYPE_ACTION		0x00D0
77 
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER		0x0020
80 #define IEEE80211_STYPE_CTL_EXT		0x0060
81 #define IEEE80211_STYPE_BACK_REQ	0x0080
82 #define IEEE80211_STYPE_BACK		0x0090
83 #define IEEE80211_STYPE_PSPOLL		0x00A0
84 #define IEEE80211_STYPE_RTS		0x00B0
85 #define IEEE80211_STYPE_CTS		0x00C0
86 #define IEEE80211_STYPE_ACK		0x00D0
87 #define IEEE80211_STYPE_CFEND		0x00E0
88 #define IEEE80211_STYPE_CFENDACK	0x00F0
89 
90 /* data */
91 #define IEEE80211_STYPE_DATA			0x0000
92 #define IEEE80211_STYPE_DATA_CFACK		0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL		0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL		0x0030
95 #define IEEE80211_STYPE_NULLFUNC		0x0040
96 #define IEEE80211_STYPE_CFACK			0x0050
97 #define IEEE80211_STYPE_CFPOLL			0x0060
98 #define IEEE80211_STYPE_CFACKPOLL		0x0070
99 #define IEEE80211_STYPE_QOS_DATA		0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK		0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL		0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL	0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC		0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK		0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL		0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL		0x00F0
107 
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON		0x0000
110 #define IEEE80211_STYPE_S1G_BEACON		0x0010
111 
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT	0x100
114 
115 /* see 802.11ah-2016 9.9 NDP CMAC frames */
116 #define IEEE80211_S1G_1MHZ_NDP_BITS	25
117 #define IEEE80211_S1G_1MHZ_NDP_BYTES	4
118 #define IEEE80211_S1G_2MHZ_NDP_BITS	37
119 #define IEEE80211_S1G_2MHZ_NDP_BYTES	5
120 
121 #define IEEE80211_NDP_FTYPE_CTS			0
122 #define IEEE80211_NDP_FTYPE_CF_END		0
123 #define IEEE80211_NDP_FTYPE_PS_POLL		1
124 #define IEEE80211_NDP_FTYPE_ACK			2
125 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK		3
126 #define IEEE80211_NDP_FTYPE_BA			4
127 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL	5
128 #define IEEE80211_NDP_FTYPE_PAGING		6
129 #define IEEE80211_NDP_FTYPE_PREQ		7
130 
131 #define SM64(f, v)	((((u64)v) << f##_S) & f)
132 
133 /* NDP CMAC frame fields */
134 #define IEEE80211_NDP_FTYPE                    0x0000000000000007
135 #define IEEE80211_NDP_FTYPE_S                  0x0000000000000000
136 
137 /* 1M Probe Request 11ah 9.9.3.1.1 */
138 #define IEEE80211_NDP_1M_PREQ_ANO      0x0000000000000008
139 #define IEEE80211_NDP_1M_PREQ_ANO_S                     3
140 #define IEEE80211_NDP_1M_PREQ_CSSID    0x00000000000FFFF0
141 #define IEEE80211_NDP_1M_PREQ_CSSID_S                   4
142 #define IEEE80211_NDP_1M_PREQ_RTYPE    0x0000000000100000
143 #define IEEE80211_NDP_1M_PREQ_RTYPE_S                  20
144 #define IEEE80211_NDP_1M_PREQ_RSV      0x0000000001E00000
145 #define IEEE80211_NDP_1M_PREQ_RSV      0x0000000001E00000
146 /* 2M Probe Request 11ah 9.9.3.1.2 */
147 #define IEEE80211_NDP_2M_PREQ_ANO      0x0000000000000008
148 #define IEEE80211_NDP_2M_PREQ_ANO_S                     3
149 #define IEEE80211_NDP_2M_PREQ_CSSID    0x0000000FFFFFFFF0
150 #define IEEE80211_NDP_2M_PREQ_CSSID_S                   4
151 #define IEEE80211_NDP_2M_PREQ_RTYPE    0x0000001000000000
152 #define IEEE80211_NDP_2M_PREQ_RTYPE_S                  36
153 
154 #define IEEE80211_ANO_NETTYPE_WILD              15
155 
156 /* bits unique to S1G beacon */
157 #define IEEE80211_S1G_BCN_NEXT_TBTT    0x100
158 
159 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
160 #define IEEE80211_CTL_EXT_POLL		0x2000
161 #define IEEE80211_CTL_EXT_SPR		0x3000
162 #define IEEE80211_CTL_EXT_GRANT	0x4000
163 #define IEEE80211_CTL_EXT_DMG_CTS	0x5000
164 #define IEEE80211_CTL_EXT_DMG_DTS	0x6000
165 #define IEEE80211_CTL_EXT_SSW		0x8000
166 #define IEEE80211_CTL_EXT_SSW_FBACK	0x9000
167 #define IEEE80211_CTL_EXT_SSW_ACK	0xa000
168 
169 
170 #define IEEE80211_SN_MASK		((IEEE80211_SCTL_SEQ) >> 4)
171 #define IEEE80211_MAX_SN		IEEE80211_SN_MASK
172 #define IEEE80211_SN_MODULO		(IEEE80211_MAX_SN + 1)
173 
174 
175 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */
176 #define IEEE80211_PV1_FCTL_VERS		0x0003
177 #define IEEE80211_PV1_FCTL_FTYPE	0x001c
178 #define IEEE80211_PV1_FCTL_STYPE	0x00e0
179 #define IEEE80211_PV1_FCTL_FROMDS		0x0100
180 #define IEEE80211_PV1_FCTL_MOREFRAGS	0x0200
181 #define IEEE80211_PV1_FCTL_PM		0x0400
182 #define IEEE80211_PV1_FCTL_MOREDATA	0x0800
183 #define IEEE80211_PV1_FCTL_PROTECTED	0x1000
184 #define IEEE80211_PV1_FCTL_END_SP       0x2000
185 #define IEEE80211_PV1_FCTL_RELAYED      0x4000
186 #define IEEE80211_PV1_FCTL_ACK_POLICY   0x8000
187 #define IEEE80211_PV1_FCTL_CTL_EXT	0x0f00
188 
ieee80211_sn_less(u16 sn1,u16 sn2)189 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
190 {
191 	return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
192 }
193 
ieee80211_sn_less_eq(u16 sn1,u16 sn2)194 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2)
195 {
196 	return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1);
197 }
198 
ieee80211_sn_add(u16 sn1,u16 sn2)199 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
200 {
201 	return (sn1 + sn2) & IEEE80211_SN_MASK;
202 }
203 
ieee80211_sn_inc(u16 sn)204 static inline u16 ieee80211_sn_inc(u16 sn)
205 {
206 	return ieee80211_sn_add(sn, 1);
207 }
208 
ieee80211_sn_sub(u16 sn1,u16 sn2)209 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
210 {
211 	return (sn1 - sn2) & IEEE80211_SN_MASK;
212 }
213 
214 #define IEEE80211_SEQ_TO_SN(seq)	(((seq) & IEEE80211_SCTL_SEQ) >> 4)
215 #define IEEE80211_SN_TO_SEQ(ssn)	(((ssn) << 4) & IEEE80211_SCTL_SEQ)
216 
217 /* miscellaneous IEEE 802.11 constants */
218 #define IEEE80211_MAX_FRAG_THRESHOLD	2352
219 #define IEEE80211_MAX_RTS_THRESHOLD	2353
220 #define IEEE80211_MAX_AID		2007
221 #define IEEE80211_MAX_AID_S1G		8191
222 #define IEEE80211_MAX_TIM_LEN		251
223 #define IEEE80211_MAX_MESH_PEERINGS	63
224 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
225    6.2.1.1.2.
226 
227    802.11e clarifies the figure in section 7.1.2. The frame body is
228    up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
229 #define IEEE80211_MAX_DATA_LEN		2304
230 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
231  * to 7920 bytes, see 8.2.3 General frame format
232  */
233 #define IEEE80211_MAX_DATA_LEN_DMG	7920
234 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
235 #define IEEE80211_MAX_FRAME_LEN		2352
236 
237 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
238 #define IEEE80211_MAX_MPDU_LEN_HT_BA		4095
239 
240 /* Maximal size of an A-MSDU */
241 #define IEEE80211_MAX_MPDU_LEN_HT_3839		3839
242 #define IEEE80211_MAX_MPDU_LEN_HT_7935		7935
243 
244 #define IEEE80211_MAX_MPDU_LEN_VHT_3895		3895
245 #define IEEE80211_MAX_MPDU_LEN_VHT_7991		7991
246 #define IEEE80211_MAX_MPDU_LEN_VHT_11454	11454
247 
248 #define IEEE80211_MAX_SSID_LEN		32
249 
250 #define IEEE80211_MAX_MESH_ID_LEN	32
251 
252 #define IEEE80211_FIRST_TSPEC_TSID	8
253 #define IEEE80211_NUM_TIDS		16
254 
255 /* number of user priorities 802.11 uses */
256 #define IEEE80211_NUM_UPS		8
257 /* number of ACs */
258 #define IEEE80211_NUM_ACS		4
259 
260 #define IEEE80211_QOS_CTL_LEN		2
261 /* 1d tag mask */
262 #define IEEE80211_QOS_CTL_TAG1D_MASK		0x0007
263 /* TID mask */
264 #define IEEE80211_QOS_CTL_TID_MASK		0x000f
265 /* EOSP */
266 #define IEEE80211_QOS_CTL_EOSP			0x0010
267 /* ACK policy */
268 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL	0x0000
269 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK	0x0020
270 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL	0x0040
271 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK	0x0060
272 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK	0x0060
273 /* A-MSDU 802.11n */
274 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT	0x0080
275 /* Mesh Control 802.11s */
276 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT  0x0100
277 
278 /* Mesh Power Save Level */
279 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL		0x0200
280 /* Mesh Receiver Service Period Initiated */
281 #define IEEE80211_QOS_CTL_RSPI			0x0400
282 
283 /* U-APSD queue for WMM IEs sent by AP */
284 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD	(1<<7)
285 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK	0x0f
286 
287 /* U-APSD queues for WMM IEs sent by STA */
288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO	(1<<0)
289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI	(1<<1)
290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK	(1<<2)
291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE	(1<<3)
292 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK	0x0f
293 
294 /* U-APSD max SP length for WMM IEs sent by STA */
295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL	0x00
296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2	0x01
297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4	0x02
298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6	0x03
299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK	0x03
300 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT	5
301 
302 #define IEEE80211_HT_CTL_LEN		4
303 
304 /* trigger type within common_info of trigger frame */
305 #define IEEE80211_TRIGGER_TYPE_MASK		0xf
306 #define IEEE80211_TRIGGER_TYPE_BASIC		0x0
307 #define IEEE80211_TRIGGER_TYPE_BFRP		0x1
308 #define IEEE80211_TRIGGER_TYPE_MU_BAR		0x2
309 #define IEEE80211_TRIGGER_TYPE_MU_RTS		0x3
310 #define IEEE80211_TRIGGER_TYPE_BSRP		0x4
311 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR	0x5
312 #define IEEE80211_TRIGGER_TYPE_BQRP		0x6
313 #define IEEE80211_TRIGGER_TYPE_NFRP		0x7
314 
315 /* UL-bandwidth within common_info of trigger frame */
316 #define IEEE80211_TRIGGER_ULBW_MASK		0xc0000
317 #define IEEE80211_TRIGGER_ULBW_20MHZ		0x0
318 #define IEEE80211_TRIGGER_ULBW_40MHZ		0x1
319 #define IEEE80211_TRIGGER_ULBW_80MHZ		0x2
320 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ	0x3
321 
322 struct ieee80211_hdr {
323 	__le16 frame_control;
324 	__le16 duration_id;
325 	struct_group(addrs,
326 		u8 addr1[ETH_ALEN];
327 		u8 addr2[ETH_ALEN];
328 		u8 addr3[ETH_ALEN];
329 	);
330 	__le16 seq_ctrl;
331 	u8 addr4[ETH_ALEN];
332 } __packed __aligned(2);
333 
334 struct ieee80211_hdr_3addr {
335 	__le16 frame_control;
336 	__le16 duration_id;
337 	u8 addr1[ETH_ALEN];
338 	u8 addr2[ETH_ALEN];
339 	u8 addr3[ETH_ALEN];
340 	__le16 seq_ctrl;
341 } __packed __aligned(2);
342 
343 struct ieee80211_qos_hdr {
344 	__le16 frame_control;
345 	__le16 duration_id;
346 	u8 addr1[ETH_ALEN];
347 	u8 addr2[ETH_ALEN];
348 	u8 addr3[ETH_ALEN];
349 	__le16 seq_ctrl;
350 	__le16 qos_ctrl;
351 } __packed __aligned(2);
352 
353 struct ieee80211_qos_hdr_4addr {
354 	__le16 frame_control;
355 	__le16 duration_id;
356 	u8 addr1[ETH_ALEN];
357 	u8 addr2[ETH_ALEN];
358 	u8 addr3[ETH_ALEN];
359 	__le16 seq_ctrl;
360 	u8 addr4[ETH_ALEN];
361 	__le16 qos_ctrl;
362 } __packed __aligned(2);
363 
364 struct ieee80211_trigger {
365 	__le16 frame_control;
366 	__le16 duration;
367 	u8 ra[ETH_ALEN];
368 	u8 ta[ETH_ALEN];
369 	__le64 common_info;
370 	u8 variable[];
371 } __packed __aligned(2);
372 
373 /**
374  * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
375  * @fc: frame control bytes in little-endian byteorder
376  * Return: whether or not the frame has to-DS set
377  */
ieee80211_has_tods(__le16 fc)378 static inline bool ieee80211_has_tods(__le16 fc)
379 {
380 	return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
381 }
382 
383 /**
384  * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
385  * @fc: frame control bytes in little-endian byteorder
386  * Return: whether or not the frame has from-DS set
387  */
ieee80211_has_fromds(__le16 fc)388 static inline bool ieee80211_has_fromds(__le16 fc)
389 {
390 	return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
391 }
392 
393 /**
394  * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
395  * @fc: frame control bytes in little-endian byteorder
396  * Return: whether or not it's a 4-address frame (from-DS and to-DS set)
397  */
ieee80211_has_a4(__le16 fc)398 static inline bool ieee80211_has_a4(__le16 fc)
399 {
400 	__le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
401 	return (fc & tmp) == tmp;
402 }
403 
404 /**
405  * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
406  * @fc: frame control bytes in little-endian byteorder
407  * Return: whether or not the frame has more fragments (more frags bit set)
408  */
ieee80211_has_morefrags(__le16 fc)409 static inline bool ieee80211_has_morefrags(__le16 fc)
410 {
411 	return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
412 }
413 
414 /**
415  * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
416  * @fc: frame control bytes in little-endian byteorder
417  * Return: whether or not the retry flag is set
418  */
ieee80211_has_retry(__le16 fc)419 static inline bool ieee80211_has_retry(__le16 fc)
420 {
421 	return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
422 }
423 
424 /**
425  * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
426  * @fc: frame control bytes in little-endian byteorder
427  * Return: whether or not the power management flag is set
428  */
ieee80211_has_pm(__le16 fc)429 static inline bool ieee80211_has_pm(__le16 fc)
430 {
431 	return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
432 }
433 
434 /**
435  * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
436  * @fc: frame control bytes in little-endian byteorder
437  * Return: whether or not the more data flag is set
438  */
ieee80211_has_moredata(__le16 fc)439 static inline bool ieee80211_has_moredata(__le16 fc)
440 {
441 	return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
442 }
443 
444 /**
445  * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
446  * @fc: frame control bytes in little-endian byteorder
447  * Return: whether or not the protected flag is set
448  */
ieee80211_has_protected(__le16 fc)449 static inline bool ieee80211_has_protected(__le16 fc)
450 {
451 	return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
452 }
453 
454 /**
455  * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
456  * @fc: frame control bytes in little-endian byteorder
457  * Return: whether or not the order flag is set
458  */
ieee80211_has_order(__le16 fc)459 static inline bool ieee80211_has_order(__le16 fc)
460 {
461 	return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
462 }
463 
464 /**
465  * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
466  * @fc: frame control bytes in little-endian byteorder
467  * Return: whether or not the frame type is management
468  */
ieee80211_is_mgmt(__le16 fc)469 static inline bool ieee80211_is_mgmt(__le16 fc)
470 {
471 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
472 	       cpu_to_le16(IEEE80211_FTYPE_MGMT);
473 }
474 
475 /**
476  * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
477  * @fc: frame control bytes in little-endian byteorder
478  * Return: whether or not the frame type is control
479  */
ieee80211_is_ctl(__le16 fc)480 static inline bool ieee80211_is_ctl(__le16 fc)
481 {
482 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
483 	       cpu_to_le16(IEEE80211_FTYPE_CTL);
484 }
485 
486 /**
487  * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
488  * @fc: frame control bytes in little-endian byteorder
489  * Return: whether or not the frame is a data frame
490  */
ieee80211_is_data(__le16 fc)491 static inline bool ieee80211_is_data(__le16 fc)
492 {
493 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
494 	       cpu_to_le16(IEEE80211_FTYPE_DATA);
495 }
496 
497 /**
498  * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
499  * @fc: frame control bytes in little-endian byteorder
500  * Return: whether or not the frame type is extended
501  */
ieee80211_is_ext(__le16 fc)502 static inline bool ieee80211_is_ext(__le16 fc)
503 {
504 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
505 	       cpu_to_le16(IEEE80211_FTYPE_EXT);
506 }
507 
508 
509 /**
510  * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
511  * @fc: frame control bytes in little-endian byteorder
512  * Return: whether or not the frame is a QoS data frame
513  */
ieee80211_is_data_qos(__le16 fc)514 static inline bool ieee80211_is_data_qos(__le16 fc)
515 {
516 	/*
517 	 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
518 	 * to check the one bit
519 	 */
520 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
521 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
522 }
523 
524 /**
525  * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
526  * @fc: frame control bytes in little-endian byteorder
527  * Return: whether or not the frame is a QoS data frame that has data
528  *	(i.e. is not null data)
529  */
ieee80211_is_data_present(__le16 fc)530 static inline bool ieee80211_is_data_present(__le16 fc)
531 {
532 	/*
533 	 * mask with 0x40 and test that that bit is clear to only return true
534 	 * for the data-containing substypes.
535 	 */
536 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
537 	       cpu_to_le16(IEEE80211_FTYPE_DATA);
538 }
539 
540 /**
541  * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
542  * @fc: frame control bytes in little-endian byteorder
543  * Return: whether or not the frame is an association request
544  */
ieee80211_is_assoc_req(__le16 fc)545 static inline bool ieee80211_is_assoc_req(__le16 fc)
546 {
547 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
548 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
549 }
550 
551 /**
552  * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
553  * @fc: frame control bytes in little-endian byteorder
554  * Return: whether or not the frame is an association response
555  */
ieee80211_is_assoc_resp(__le16 fc)556 static inline bool ieee80211_is_assoc_resp(__le16 fc)
557 {
558 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
559 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
560 }
561 
562 /**
563  * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
564  * @fc: frame control bytes in little-endian byteorder
565  * Return: whether or not the frame is a reassociation request
566  */
ieee80211_is_reassoc_req(__le16 fc)567 static inline bool ieee80211_is_reassoc_req(__le16 fc)
568 {
569 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
570 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
571 }
572 
573 /**
574  * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
575  * @fc: frame control bytes in little-endian byteorder
576  * Return: whether or not the frame is a reassociation response
577  */
ieee80211_is_reassoc_resp(__le16 fc)578 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
579 {
580 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
581 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
582 }
583 
584 /**
585  * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
586  * @fc: frame control bytes in little-endian byteorder
587  * Return: whether or not the frame is a probe request
588  */
ieee80211_is_probe_req(__le16 fc)589 static inline bool ieee80211_is_probe_req(__le16 fc)
590 {
591 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
592 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
593 }
594 
595 /**
596  * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
597  * @fc: frame control bytes in little-endian byteorder
598  * Return: whether or not the frame is a probe response
599  */
ieee80211_is_probe_resp(__le16 fc)600 static inline bool ieee80211_is_probe_resp(__le16 fc)
601 {
602 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
603 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
604 }
605 
606 /**
607  * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
608  * @fc: frame control bytes in little-endian byteorder
609  * Return: whether or not the frame is a (regular, not S1G) beacon
610  */
ieee80211_is_beacon(__le16 fc)611 static inline bool ieee80211_is_beacon(__le16 fc)
612 {
613 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
614 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
615 }
616 
617 /**
618  * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
619  * IEEE80211_STYPE_S1G_BEACON
620  * @fc: frame control bytes in little-endian byteorder
621  * Return: whether or not the frame is an S1G beacon
622  */
ieee80211_is_s1g_beacon(__le16 fc)623 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
624 {
625 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
626 				 IEEE80211_FCTL_STYPE)) ==
627 	       cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
628 }
629 
630 /**
631  * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon
632  * @fc: frame control bytes in little-endian byteorder
633  * Return: whether or not the frame is an S1G short beacon,
634  *	i.e. it is an S1G beacon with 'next TBTT' flag set
635  */
ieee80211_is_s1g_short_beacon(__le16 fc)636 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc)
637 {
638 	return ieee80211_is_s1g_beacon(fc) &&
639 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
640 }
641 
642 /**
643  * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
644  * @fc: frame control bytes in little-endian byteorder
645  * Return: whether or not the frame is an ATIM frame
646  */
ieee80211_is_atim(__le16 fc)647 static inline bool ieee80211_is_atim(__le16 fc)
648 {
649 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
650 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
651 }
652 
653 /**
654  * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
655  * @fc: frame control bytes in little-endian byteorder
656  * Return: whether or not the frame is a disassociation frame
657  */
ieee80211_is_disassoc(__le16 fc)658 static inline bool ieee80211_is_disassoc(__le16 fc)
659 {
660 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
661 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
662 }
663 
664 /**
665  * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
666  * @fc: frame control bytes in little-endian byteorder
667  * Return: whether or not the frame is an authentication frame
668  */
ieee80211_is_auth(__le16 fc)669 static inline bool ieee80211_is_auth(__le16 fc)
670 {
671 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
672 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
673 }
674 
675 /**
676  * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
677  * @fc: frame control bytes in little-endian byteorder
678  * Return: whether or not the frame is a deauthentication frame
679  */
ieee80211_is_deauth(__le16 fc)680 static inline bool ieee80211_is_deauth(__le16 fc)
681 {
682 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
683 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
684 }
685 
686 /**
687  * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
688  * @fc: frame control bytes in little-endian byteorder
689  * Return: whether or not the frame is an action frame
690  */
ieee80211_is_action(__le16 fc)691 static inline bool ieee80211_is_action(__le16 fc)
692 {
693 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
694 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
695 }
696 
697 /**
698  * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
699  * @fc: frame control bytes in little-endian byteorder
700  * Return: whether or not the frame is a block-ACK request frame
701  */
ieee80211_is_back_req(__le16 fc)702 static inline bool ieee80211_is_back_req(__le16 fc)
703 {
704 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
705 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
706 }
707 
708 /**
709  * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
710  * @fc: frame control bytes in little-endian byteorder
711  * Return: whether or not the frame is a block-ACK frame
712  */
ieee80211_is_back(__le16 fc)713 static inline bool ieee80211_is_back(__le16 fc)
714 {
715 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
716 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
717 }
718 
719 /**
720  * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
721  * @fc: frame control bytes in little-endian byteorder
722  * Return: whether or not the frame is a PS-poll frame
723  */
ieee80211_is_pspoll(__le16 fc)724 static inline bool ieee80211_is_pspoll(__le16 fc)
725 {
726 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
727 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
728 }
729 
730 /**
731  * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
732  * @fc: frame control bytes in little-endian byteorder
733  * Return: whether or not the frame is an RTS frame
734  */
ieee80211_is_rts(__le16 fc)735 static inline bool ieee80211_is_rts(__le16 fc)
736 {
737 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
738 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
739 }
740 
741 /**
742  * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
743  * @fc: frame control bytes in little-endian byteorder
744  * Return: whether or not the frame is a CTS frame
745  */
ieee80211_is_cts(__le16 fc)746 static inline bool ieee80211_is_cts(__le16 fc)
747 {
748 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
749 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
750 }
751 
752 /**
753  * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
754  * @fc: frame control bytes in little-endian byteorder
755  * Return: whether or not the frame is an ACK frame
756  */
ieee80211_is_ack(__le16 fc)757 static inline bool ieee80211_is_ack(__le16 fc)
758 {
759 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
760 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
761 }
762 
763 /**
764  * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
765  * @fc: frame control bytes in little-endian byteorder
766  * Return: whether or not the frame is a CF-end frame
767  */
ieee80211_is_cfend(__le16 fc)768 static inline bool ieee80211_is_cfend(__le16 fc)
769 {
770 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
771 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
772 }
773 
774 /**
775  * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
776  * @fc: frame control bytes in little-endian byteorder
777  * Return: whether or not the frame is a CF-end-ack frame
778  */
ieee80211_is_cfendack(__le16 fc)779 static inline bool ieee80211_is_cfendack(__le16 fc)
780 {
781 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
782 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
783 }
784 
785 /**
786  * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
787  * @fc: frame control bytes in little-endian byteorder
788  * Return: whether or not the frame is a nullfunc frame
789  */
ieee80211_is_nullfunc(__le16 fc)790 static inline bool ieee80211_is_nullfunc(__le16 fc)
791 {
792 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
793 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
794 }
795 
796 /**
797  * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
798  * @fc: frame control bytes in little-endian byteorder
799  * Return: whether or not the frame is a QoS nullfunc frame
800  */
ieee80211_is_qos_nullfunc(__le16 fc)801 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
802 {
803 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
804 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
805 }
806 
807 /**
808  * ieee80211_is_trigger - check if frame is trigger frame
809  * @fc: frame control field in little-endian byteorder
810  * Return: whether or not the frame is a trigger frame
811  */
ieee80211_is_trigger(__le16 fc)812 static inline bool ieee80211_is_trigger(__le16 fc)
813 {
814 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
815 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
816 }
817 
818 /**
819  * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
820  * @fc: frame control bytes in little-endian byteorder
821  * Return: whether or not the frame is a nullfunc or QoS nullfunc frame
822  */
ieee80211_is_any_nullfunc(__le16 fc)823 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
824 {
825 	return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
826 }
827 
828 /**
829  * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
830  * @seq_ctrl: frame sequence control bytes in little-endian byteorder
831  * Return: whether or not the frame is the first fragment (also true if
832  *	it's not fragmented at all)
833  */
ieee80211_is_first_frag(__le16 seq_ctrl)834 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
835 {
836 	return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
837 }
838 
839 /**
840  * ieee80211_is_frag - check if a frame is a fragment
841  * @hdr: 802.11 header of the frame
842  * Return: whether or not the frame is a fragment
843  */
ieee80211_is_frag(struct ieee80211_hdr * hdr)844 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
845 {
846 	return ieee80211_has_morefrags(hdr->frame_control) ||
847 	       hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
848 }
849 
ieee80211_get_sn(struct ieee80211_hdr * hdr)850 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr)
851 {
852 	return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ);
853 }
854 
855 struct ieee80211s_hdr {
856 	u8 flags;
857 	u8 ttl;
858 	__le32 seqnum;
859 	u8 eaddr1[ETH_ALEN];
860 	u8 eaddr2[ETH_ALEN];
861 } __packed __aligned(2);
862 
863 /* Mesh flags */
864 #define MESH_FLAGS_AE_A4 	0x1
865 #define MESH_FLAGS_AE_A5_A6	0x2
866 #define MESH_FLAGS_AE		0x3
867 #define MESH_FLAGS_PS_DEEP	0x4
868 
869 /**
870  * enum ieee80211_preq_flags - mesh PREQ element flags
871  *
872  * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
873  */
874 enum ieee80211_preq_flags {
875 	IEEE80211_PREQ_PROACTIVE_PREP_FLAG	= 1<<2,
876 };
877 
878 /**
879  * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
880  *
881  * @IEEE80211_PREQ_TO_FLAG: target only subfield
882  * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
883  */
884 enum ieee80211_preq_target_flags {
885 	IEEE80211_PREQ_TO_FLAG	= 1<<0,
886 	IEEE80211_PREQ_USN_FLAG	= 1<<2,
887 };
888 
889 /**
890  * struct ieee80211_quiet_ie - Quiet element
891  * @count: Quiet Count
892  * @period: Quiet Period
893  * @duration: Quiet Duration
894  * @offset: Quiet Offset
895  *
896  * This structure represents the payload of the "Quiet element" as
897  * described in IEEE Std 802.11-2020 section 9.4.2.22.
898  */
899 struct ieee80211_quiet_ie {
900 	u8 count;
901 	u8 period;
902 	__le16 duration;
903 	__le16 offset;
904 } __packed;
905 
906 /**
907  * struct ieee80211_msrment_ie - Measurement element
908  * @token: Measurement Token
909  * @mode: Measurement Report Mode
910  * @type: Measurement Type
911  * @request: Measurement Request or Measurement Report
912  *
913  * This structure represents the payload of both the "Measurement
914  * Request element" and the "Measurement Report element" as described
915  * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
916  */
917 struct ieee80211_msrment_ie {
918 	u8 token;
919 	u8 mode;
920 	u8 type;
921 	u8 request[];
922 } __packed;
923 
924 /**
925  * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
926  * @mode: Channel Switch Mode
927  * @new_ch_num: New Channel Number
928  * @count: Channel Switch Count
929  *
930  * This structure represents the payload of the "Channel Switch
931  * Announcement element" as described in IEEE Std 802.11-2020 section
932  * 9.4.2.18.
933  */
934 struct ieee80211_channel_sw_ie {
935 	u8 mode;
936 	u8 new_ch_num;
937 	u8 count;
938 } __packed;
939 
940 /**
941  * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
942  * @mode: Channel Switch Mode
943  * @new_operating_class: New Operating Class
944  * @new_ch_num: New Channel Number
945  * @count: Channel Switch Count
946  *
947  * This structure represents the "Extended Channel Switch Announcement
948  * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
949  */
950 struct ieee80211_ext_chansw_ie {
951 	u8 mode;
952 	u8 new_operating_class;
953 	u8 new_ch_num;
954 	u8 count;
955 } __packed;
956 
957 /**
958  * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
959  * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
960  *	values here
961  * This structure represents the "Secondary Channel Offset element"
962  */
963 struct ieee80211_sec_chan_offs_ie {
964 	u8 sec_chan_offs;
965 } __packed;
966 
967 /**
968  * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
969  * @mesh_ttl: Time To Live
970  * @mesh_flags: Flags
971  * @mesh_reason: Reason Code
972  * @mesh_pre_value: Precedence Value
973  *
974  * This structure represents the payload of the "Mesh Channel Switch
975  * Parameters element" as described in IEEE Std 802.11-2020 section
976  * 9.4.2.102.
977  */
978 struct ieee80211_mesh_chansw_params_ie {
979 	u8 mesh_ttl;
980 	u8 mesh_flags;
981 	__le16 mesh_reason;
982 	__le16 mesh_pre_value;
983 } __packed;
984 
985 /**
986  * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
987  * @new_channel_width: New Channel Width
988  * @new_center_freq_seg0: New Channel Center Frequency Segment 0
989  * @new_center_freq_seg1: New Channel Center Frequency Segment 1
990  *
991  * This structure represents the payload of the "Wide Bandwidth
992  * Channel Switch element" as described in IEEE Std 802.11-2020
993  * section 9.4.2.160.
994  */
995 struct ieee80211_wide_bw_chansw_ie {
996 	u8 new_channel_width;
997 	u8 new_center_freq_seg0, new_center_freq_seg1;
998 } __packed;
999 
1000 /**
1001  * struct ieee80211_tim_ie - Traffic Indication Map information element
1002  * @dtim_count: DTIM Count
1003  * @dtim_period: DTIM Period
1004  * @bitmap_ctrl: Bitmap Control
1005  * @required_octet: "Syntatic sugar" to force the struct size to the
1006  *                  minimum valid size when carried in a non-S1G PPDU
1007  * @virtual_map: Partial Virtual Bitmap
1008  *
1009  * This structure represents the payload of the "TIM element" as
1010  * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this
1011  * definition is only applicable when the element is carried in a
1012  * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap
1013  * Control and Partial Virtual Bitmap may not be present.
1014  */
1015 struct ieee80211_tim_ie {
1016 	u8 dtim_count;
1017 	u8 dtim_period;
1018 	u8 bitmap_ctrl;
1019 	union {
1020 		u8 required_octet;
1021 		DECLARE_FLEX_ARRAY(u8, virtual_map);
1022 	};
1023 } __packed;
1024 
1025 /**
1026  * struct ieee80211_meshconf_ie - Mesh Configuration element
1027  * @meshconf_psel: Active Path Selection Protocol Identifier
1028  * @meshconf_pmetric: Active Path Selection Metric Identifier
1029  * @meshconf_congest: Congestion Control Mode Identifier
1030  * @meshconf_synch: Synchronization Method Identifier
1031  * @meshconf_auth: Authentication Protocol Identifier
1032  * @meshconf_form: Mesh Formation Info
1033  * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
1034  *
1035  * This structure represents the payload of the "Mesh Configuration
1036  * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
1037  */
1038 struct ieee80211_meshconf_ie {
1039 	u8 meshconf_psel;
1040 	u8 meshconf_pmetric;
1041 	u8 meshconf_congest;
1042 	u8 meshconf_synch;
1043 	u8 meshconf_auth;
1044 	u8 meshconf_form;
1045 	u8 meshconf_cap;
1046 } __packed;
1047 
1048 /**
1049  * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
1050  *
1051  * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
1052  *	additional mesh peerings with other mesh STAs
1053  * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
1054  * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
1055  *	is ongoing
1056  * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
1057  *	neighbors in deep sleep mode
1058  *
1059  * Enumerates the "Mesh Capability" as described in IEEE Std
1060  * 802.11-2020 section 9.4.2.97.7.
1061  */
1062 enum mesh_config_capab_flags {
1063 	IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS		= 0x01,
1064 	IEEE80211_MESHCONF_CAPAB_FORWARDING		= 0x08,
1065 	IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING		= 0x20,
1066 	IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL	= 0x40,
1067 };
1068 
1069 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1070 
1071 /*
1072  * mesh channel switch parameters element's flag indicator
1073  *
1074  */
1075 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1076 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1077 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1078 
1079 /**
1080  * struct ieee80211_rann_ie - RANN (root announcement) element
1081  * @rann_flags: Flags
1082  * @rann_hopcount: Hop Count
1083  * @rann_ttl: Element TTL
1084  * @rann_addr: Root Mesh STA Address
1085  * @rann_seq: HWMP Sequence Number
1086  * @rann_interval: Interval
1087  * @rann_metric: Metric
1088  *
1089  * This structure represents the payload of the "RANN element" as
1090  * described in IEEE Std 802.11-2020 section 9.4.2.111.
1091  */
1092 struct ieee80211_rann_ie {
1093 	u8 rann_flags;
1094 	u8 rann_hopcount;
1095 	u8 rann_ttl;
1096 	u8 rann_addr[ETH_ALEN];
1097 	__le32 rann_seq;
1098 	__le32 rann_interval;
1099 	__le32 rann_metric;
1100 } __packed;
1101 
1102 enum ieee80211_rann_flags {
1103 	RANN_FLAG_IS_GATE = 1 << 0,
1104 };
1105 
1106 enum ieee80211_ht_chanwidth_values {
1107 	IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1108 	IEEE80211_HT_CHANWIDTH_ANY = 1,
1109 };
1110 
1111 /**
1112  * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1113  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1114  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1115  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1116  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1117  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1118  * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1119  * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1120  *	(the NSS value is the value of this field + 1)
1121  * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1122  * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1123  *	using a beamforming steering matrix
1124  */
1125 enum ieee80211_vht_opmode_bits {
1126 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK	= 0x03,
1127 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ	= 0,
1128 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ	= 1,
1129 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ	= 2,
1130 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ	= 3,
1131 	IEEE80211_OPMODE_NOTIF_BW_160_80P80	= 0x04,
1132 	IEEE80211_OPMODE_NOTIF_RX_NSS_MASK	= 0x70,
1133 	IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT	= 4,
1134 	IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF	= 0x80,
1135 };
1136 
1137 /**
1138  * enum ieee80211_s1g_chanwidth - S1G channel widths
1139  * These are defined in IEEE802.11-2016ah Table 10-20
1140  * as BSS Channel Width
1141  *
1142  * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1143  * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1144  * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1145  * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1146  * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1147  */
1148 enum ieee80211_s1g_chanwidth {
1149 	IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1150 	IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1151 	IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1152 	IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1153 	IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1154 };
1155 
1156 #define WLAN_SA_QUERY_TR_ID_LEN 2
1157 #define WLAN_MEMBERSHIP_LEN 8
1158 #define WLAN_USER_POSITION_LEN 16
1159 
1160 /**
1161  * struct ieee80211_tpc_report_ie - TPC Report element
1162  * @tx_power: Transmit Power
1163  * @link_margin: Link Margin
1164  *
1165  * This structure represents the payload of the "TPC Report element" as
1166  * described in IEEE Std 802.11-2020 section 9.4.2.16.
1167  */
1168 struct ieee80211_tpc_report_ie {
1169 	u8 tx_power;
1170 	u8 link_margin;
1171 } __packed;
1172 
1173 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK	GENMASK(2, 1)
1174 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT	1
1175 #define IEEE80211_ADDBA_EXT_NO_FRAG		BIT(0)
1176 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK	GENMASK(7, 5)
1177 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT	10
1178 
1179 struct ieee80211_addba_ext_ie {
1180 	u8 data;
1181 } __packed;
1182 
1183 /**
1184  * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1185  * @compat_info: Compatibility Information
1186  * @beacon_int: Beacon Interval
1187  * @tsf_completion: TSF Completion
1188  *
1189  * This structure represents the payload of the "S1G Beacon
1190  * Compatibility element" as described in IEEE Std 802.11-2020 section
1191  * 9.4.2.196.
1192  */
1193 struct ieee80211_s1g_bcn_compat_ie {
1194 	__le16 compat_info;
1195 	__le16 beacon_int;
1196 	__le32 tsf_completion;
1197 } __packed;
1198 
1199 /**
1200  * struct ieee80211_s1g_oper_ie - S1G Operation element
1201  * @ch_width: S1G Operation Information Channel Width
1202  * @oper_class: S1G Operation Information Operating Class
1203  * @primary_ch: S1G Operation Information Primary Channel Number
1204  * @oper_ch: S1G Operation Information  Channel Center Frequency
1205  * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1206  *
1207  * This structure represents the payload of the "S1G Operation
1208  * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1209  */
1210 struct ieee80211_s1g_oper_ie {
1211 	u8 ch_width;
1212 	u8 oper_class;
1213 	u8 primary_ch;
1214 	u8 oper_ch;
1215 	__le16 basic_mcs_nss;
1216 } __packed;
1217 
1218 /**
1219  * struct ieee80211_aid_response_ie - AID Response element
1220  * @aid: AID/Group AID
1221  * @switch_count: AID Switch Count
1222  * @response_int: AID Response Interval
1223  *
1224  * This structure represents the payload of the "AID Response element"
1225  * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1226  */
1227 struct ieee80211_aid_response_ie {
1228 	__le16 aid;
1229 	u8 switch_count;
1230 	__le16 response_int;
1231 } __packed;
1232 
1233 struct ieee80211_s1g_cap {
1234 	u8 capab_info[10];
1235 	u8 supp_mcs_nss[5];
1236 } __packed;
1237 
1238 struct ieee80211_ext {
1239 	__le16 frame_control;
1240 	__le16 duration;
1241 	union {
1242 		struct {
1243 			u8 sa[ETH_ALEN];
1244 			__le32 timestamp;
1245 			u8 change_seq;
1246 			u8 variable[0];
1247 		} __packed s1g_beacon;
1248 		struct {
1249 			u8 sa[ETH_ALEN];
1250 			__le32 timestamp;
1251 			u8 change_seq;
1252 			u8 next_tbtt[3];
1253 			u8 variable[0];
1254 		} __packed s1g_short_beacon;
1255 	} u;
1256 } __packed __aligned(2);
1257 
1258 #define IEEE80211_TWT_CONTROL_NDP			BIT(0)
1259 #define IEEE80211_TWT_CONTROL_RESP_MODE			BIT(1)
1260 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST	BIT(3)
1261 #define IEEE80211_TWT_CONTROL_RX_DISABLED		BIT(4)
1262 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT		BIT(5)
1263 
1264 #define IEEE80211_TWT_REQTYPE_REQUEST			BIT(0)
1265 #define IEEE80211_TWT_REQTYPE_SETUP_CMD			GENMASK(3, 1)
1266 #define IEEE80211_TWT_REQTYPE_TRIGGER			BIT(4)
1267 #define IEEE80211_TWT_REQTYPE_IMPLICIT			BIT(5)
1268 #define IEEE80211_TWT_REQTYPE_FLOWTYPE			BIT(6)
1269 #define IEEE80211_TWT_REQTYPE_FLOWID			GENMASK(9, 7)
1270 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP		GENMASK(14, 10)
1271 #define IEEE80211_TWT_REQTYPE_PROTECTION		BIT(15)
1272 
1273 enum ieee80211_twt_setup_cmd {
1274 	TWT_SETUP_CMD_REQUEST,
1275 	TWT_SETUP_CMD_SUGGEST,
1276 	TWT_SETUP_CMD_DEMAND,
1277 	TWT_SETUP_CMD_GROUPING,
1278 	TWT_SETUP_CMD_ACCEPT,
1279 	TWT_SETUP_CMD_ALTERNATE,
1280 	TWT_SETUP_CMD_DICTATE,
1281 	TWT_SETUP_CMD_REJECT,
1282 };
1283 
1284 struct ieee80211_twt_params {
1285 	__le16 req_type;
1286 	__le64 twt;
1287 	u8 min_twt_dur;
1288 	__le16 mantissa;
1289 	u8 channel;
1290 } __packed;
1291 
1292 struct ieee80211_twt_setup {
1293 	u8 dialog_token;
1294 	u8 element_id;
1295 	u8 length;
1296 	u8 control;
1297 	u8 params[];
1298 } __packed;
1299 
1300 #define IEEE80211_TTLM_MAX_CNT				2
1301 #define IEEE80211_TTLM_CONTROL_DIRECTION		0x03
1302 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP		0x04
1303 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT	0x08
1304 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT	0x10
1305 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE		0x20
1306 
1307 #define IEEE80211_TTLM_DIRECTION_DOWN		0
1308 #define IEEE80211_TTLM_DIRECTION_UP		1
1309 #define IEEE80211_TTLM_DIRECTION_BOTH		2
1310 
1311 /**
1312  * struct ieee80211_ttlm_elem - TID-To-Link Mapping element
1313  *
1314  * Defined in section 9.4.2.314 in P802.11be_D4
1315  *
1316  * @control: the first part of control field
1317  * @optional: the second part of control field
1318  */
1319 struct ieee80211_ttlm_elem {
1320 	u8 control;
1321 	u8 optional[];
1322 } __packed;
1323 
1324 /**
1325  * struct ieee80211_bss_load_elem - BSS Load elemen
1326  *
1327  * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1
1328  *
1329  * @sta_count: total number of STAs currently associated with the AP.
1330  * @channel_util: Percentage of time that the access point sensed the channel
1331  *	was busy. This value is in range [0, 255], the highest value means
1332  *	100% busy.
1333  * @avail_admission_capa: remaining amount of medium time used for admission
1334  *	control.
1335  */
1336 struct ieee80211_bss_load_elem {
1337 	__le16 sta_count;
1338 	u8 channel_util;
1339 	__le16 avail_admission_capa;
1340 } __packed;
1341 
1342 struct ieee80211_mgmt {
1343 	__le16 frame_control;
1344 	__le16 duration;
1345 	u8 da[ETH_ALEN];
1346 	u8 sa[ETH_ALEN];
1347 	u8 bssid[ETH_ALEN];
1348 	__le16 seq_ctrl;
1349 	union {
1350 		struct {
1351 			__le16 auth_alg;
1352 			__le16 auth_transaction;
1353 			__le16 status_code;
1354 			/* possibly followed by Challenge text */
1355 			u8 variable[];
1356 		} __packed auth;
1357 		struct {
1358 			__le16 reason_code;
1359 		} __packed deauth;
1360 		struct {
1361 			__le16 capab_info;
1362 			__le16 listen_interval;
1363 			/* followed by SSID and Supported rates */
1364 			u8 variable[];
1365 		} __packed assoc_req;
1366 		struct {
1367 			__le16 capab_info;
1368 			__le16 status_code;
1369 			__le16 aid;
1370 			/* followed by Supported rates */
1371 			u8 variable[];
1372 		} __packed assoc_resp, reassoc_resp;
1373 		struct {
1374 			__le16 capab_info;
1375 			__le16 status_code;
1376 			u8 variable[];
1377 		} __packed s1g_assoc_resp, s1g_reassoc_resp;
1378 		struct {
1379 			__le16 capab_info;
1380 			__le16 listen_interval;
1381 			u8 current_ap[ETH_ALEN];
1382 			/* followed by SSID and Supported rates */
1383 			u8 variable[];
1384 		} __packed reassoc_req;
1385 		struct {
1386 			__le16 reason_code;
1387 		} __packed disassoc;
1388 		struct {
1389 			__le64 timestamp;
1390 			__le16 beacon_int;
1391 			__le16 capab_info;
1392 			/* followed by some of SSID, Supported rates,
1393 			 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1394 			u8 variable[];
1395 		} __packed beacon;
1396 		struct {
1397 			/* only variable items: SSID, Supported rates */
1398 			DECLARE_FLEX_ARRAY(u8, variable);
1399 		} __packed probe_req;
1400 		struct {
1401 			__le64 timestamp;
1402 			__le16 beacon_int;
1403 			__le16 capab_info;
1404 			/* followed by some of SSID, Supported rates,
1405 			 * FH Params, DS Params, CF Params, IBSS Params */
1406 			u8 variable[];
1407 		} __packed probe_resp;
1408 		struct {
1409 			u8 category;
1410 			union {
1411 				struct {
1412 					u8 action_code;
1413 					u8 dialog_token;
1414 					u8 status_code;
1415 					u8 variable[];
1416 				} __packed wme_action;
1417 				struct{
1418 					u8 action_code;
1419 					u8 variable[];
1420 				} __packed chan_switch;
1421 				struct{
1422 					u8 action_code;
1423 					struct ieee80211_ext_chansw_ie data;
1424 					u8 variable[];
1425 				} __packed ext_chan_switch;
1426 				struct{
1427 					u8 action_code;
1428 					u8 dialog_token;
1429 					u8 element_id;
1430 					u8 length;
1431 					struct ieee80211_msrment_ie msr_elem;
1432 				} __packed measurement;
1433 				struct{
1434 					u8 action_code;
1435 					u8 dialog_token;
1436 					__le16 capab;
1437 					__le16 timeout;
1438 					__le16 start_seq_num;
1439 					/* followed by BA Extension */
1440 					u8 variable[];
1441 				} __packed addba_req;
1442 				struct{
1443 					u8 action_code;
1444 					u8 dialog_token;
1445 					__le16 status;
1446 					__le16 capab;
1447 					__le16 timeout;
1448 				} __packed addba_resp;
1449 				struct{
1450 					u8 action_code;
1451 					__le16 params;
1452 					__le16 reason_code;
1453 				} __packed delba;
1454 				struct {
1455 					u8 action_code;
1456 					u8 variable[];
1457 				} __packed self_prot;
1458 				struct{
1459 					u8 action_code;
1460 					u8 variable[];
1461 				} __packed mesh_action;
1462 				struct {
1463 					u8 action;
1464 					u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1465 				} __packed sa_query;
1466 				struct {
1467 					u8 action;
1468 					u8 smps_control;
1469 				} __packed ht_smps;
1470 				struct {
1471 					u8 action_code;
1472 					u8 chanwidth;
1473 				} __packed ht_notify_cw;
1474 				struct {
1475 					u8 action_code;
1476 					u8 dialog_token;
1477 					__le16 capability;
1478 					u8 variable[0];
1479 				} __packed tdls_discover_resp;
1480 				struct {
1481 					u8 action_code;
1482 					u8 operating_mode;
1483 				} __packed vht_opmode_notif;
1484 				struct {
1485 					u8 action_code;
1486 					u8 membership[WLAN_MEMBERSHIP_LEN];
1487 					u8 position[WLAN_USER_POSITION_LEN];
1488 				} __packed vht_group_notif;
1489 				struct {
1490 					u8 action_code;
1491 					u8 dialog_token;
1492 					u8 tpc_elem_id;
1493 					u8 tpc_elem_length;
1494 					struct ieee80211_tpc_report_ie tpc;
1495 				} __packed tpc_report;
1496 				struct {
1497 					u8 action_code;
1498 					u8 dialog_token;
1499 					u8 follow_up;
1500 					u8 tod[6];
1501 					u8 toa[6];
1502 					__le16 tod_error;
1503 					__le16 toa_error;
1504 					u8 variable[];
1505 				} __packed ftm;
1506 				struct {
1507 					u8 action_code;
1508 					u8 variable[];
1509 				} __packed s1g;
1510 				struct {
1511 					u8 action_code;
1512 					u8 dialog_token;
1513 					u8 follow_up;
1514 					u32 tod;
1515 					u32 toa;
1516 					u8 max_tod_error;
1517 					u8 max_toa_error;
1518 				} __packed wnm_timing_msr;
1519 				struct {
1520 					u8 action_code;
1521 					u8 dialog_token;
1522 					u8 variable[];
1523 				} __packed ttlm_req;
1524 				struct {
1525 					u8 action_code;
1526 					u8 dialog_token;
1527 					u8 status_code;
1528 					u8 variable[];
1529 				} __packed ttlm_res;
1530 				struct {
1531 					u8 action_code;
1532 				} __packed ttlm_tear_down;
1533 			} u;
1534 		} __packed action;
1535 		DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1536 	} u;
1537 } __packed __aligned(2);
1538 
1539 /* Supported rates membership selectors */
1540 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY	127
1541 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY	126
1542 #define BSS_MEMBERSHIP_SELECTOR_GLK	125
1543 #define BSS_MEMBERSHIP_SELECTOR_EPS	124
1544 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1545 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY	122
1546 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY	121
1547 
1548 /* mgmt header + 1 byte category code */
1549 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1550 
1551 
1552 /* Management MIC information element (IEEE 802.11w) */
1553 struct ieee80211_mmie {
1554 	u8 element_id;
1555 	u8 length;
1556 	__le16 key_id;
1557 	u8 sequence_number[6];
1558 	u8 mic[8];
1559 } __packed;
1560 
1561 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1562 struct ieee80211_mmie_16 {
1563 	u8 element_id;
1564 	u8 length;
1565 	__le16 key_id;
1566 	u8 sequence_number[6];
1567 	u8 mic[16];
1568 } __packed;
1569 
1570 struct ieee80211_vendor_ie {
1571 	u8 element_id;
1572 	u8 len;
1573 	u8 oui[3];
1574 	u8 oui_type;
1575 } __packed;
1576 
1577 struct ieee80211_wmm_ac_param {
1578 	u8 aci_aifsn; /* AIFSN, ACM, ACI */
1579 	u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1580 	__le16 txop_limit;
1581 } __packed;
1582 
1583 struct ieee80211_wmm_param_ie {
1584 	u8 element_id; /* Element ID: 221 (0xdd); */
1585 	u8 len; /* Length: 24 */
1586 	/* required fields for WMM version 1 */
1587 	u8 oui[3]; /* 00:50:f2 */
1588 	u8 oui_type; /* 2 */
1589 	u8 oui_subtype; /* 1 */
1590 	u8 version; /* 1 for WMM version 1.0 */
1591 	u8 qos_info; /* AP/STA specific QoS info */
1592 	u8 reserved; /* 0 */
1593 	/* AC_BE, AC_BK, AC_VI, AC_VO */
1594 	struct ieee80211_wmm_ac_param ac[4];
1595 } __packed;
1596 
1597 /* Control frames */
1598 struct ieee80211_rts {
1599 	__le16 frame_control;
1600 	__le16 duration;
1601 	u8 ra[ETH_ALEN];
1602 	u8 ta[ETH_ALEN];
1603 } __packed __aligned(2);
1604 
1605 struct ieee80211_cts {
1606 	__le16 frame_control;
1607 	__le16 duration;
1608 	u8 ra[ETH_ALEN];
1609 } __packed __aligned(2);
1610 
1611 struct ieee80211_pspoll {
1612 	__le16 frame_control;
1613 	__le16 aid;
1614 	u8 bssid[ETH_ALEN];
1615 	u8 ta[ETH_ALEN];
1616 } __packed __aligned(2);
1617 
1618 /* TDLS */
1619 
1620 /* Channel switch timing */
1621 struct ieee80211_ch_switch_timing {
1622 	__le16 switch_time;
1623 	__le16 switch_timeout;
1624 } __packed;
1625 
1626 /* Link-id information element */
1627 struct ieee80211_tdls_lnkie {
1628 	u8 ie_type; /* Link Identifier IE */
1629 	u8 ie_len;
1630 	u8 bssid[ETH_ALEN];
1631 	u8 init_sta[ETH_ALEN];
1632 	u8 resp_sta[ETH_ALEN];
1633 } __packed;
1634 
1635 struct ieee80211_tdls_data {
1636 	u8 da[ETH_ALEN];
1637 	u8 sa[ETH_ALEN];
1638 	__be16 ether_type;
1639 	u8 payload_type;
1640 	u8 category;
1641 	u8 action_code;
1642 	union {
1643 		struct {
1644 			u8 dialog_token;
1645 			__le16 capability;
1646 			u8 variable[0];
1647 		} __packed setup_req;
1648 		struct {
1649 			__le16 status_code;
1650 			u8 dialog_token;
1651 			__le16 capability;
1652 			u8 variable[0];
1653 		} __packed setup_resp;
1654 		struct {
1655 			__le16 status_code;
1656 			u8 dialog_token;
1657 			u8 variable[0];
1658 		} __packed setup_cfm;
1659 		struct {
1660 			__le16 reason_code;
1661 			u8 variable[0];
1662 		} __packed teardown;
1663 		struct {
1664 			u8 dialog_token;
1665 			u8 variable[0];
1666 		} __packed discover_req;
1667 		struct {
1668 			u8 target_channel;
1669 			u8 oper_class;
1670 			u8 variable[0];
1671 		} __packed chan_switch_req;
1672 		struct {
1673 			__le16 status_code;
1674 			u8 variable[0];
1675 		} __packed chan_switch_resp;
1676 	} u;
1677 } __packed;
1678 
1679 /*
1680  * Peer-to-Peer IE attribute related definitions.
1681  */
1682 /*
1683  * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1684  */
1685 enum ieee80211_p2p_attr_id {
1686 	IEEE80211_P2P_ATTR_STATUS = 0,
1687 	IEEE80211_P2P_ATTR_MINOR_REASON,
1688 	IEEE80211_P2P_ATTR_CAPABILITY,
1689 	IEEE80211_P2P_ATTR_DEVICE_ID,
1690 	IEEE80211_P2P_ATTR_GO_INTENT,
1691 	IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1692 	IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1693 	IEEE80211_P2P_ATTR_GROUP_BSSID,
1694 	IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1695 	IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1696 	IEEE80211_P2P_ATTR_MANAGABILITY,
1697 	IEEE80211_P2P_ATTR_CHANNEL_LIST,
1698 	IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1699 	IEEE80211_P2P_ATTR_DEVICE_INFO,
1700 	IEEE80211_P2P_ATTR_GROUP_INFO,
1701 	IEEE80211_P2P_ATTR_GROUP_ID,
1702 	IEEE80211_P2P_ATTR_INTERFACE,
1703 	IEEE80211_P2P_ATTR_OPER_CHANNEL,
1704 	IEEE80211_P2P_ATTR_INVITE_FLAGS,
1705 	/* 19 - 220: Reserved */
1706 	IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1707 
1708 	IEEE80211_P2P_ATTR_MAX
1709 };
1710 
1711 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1712 /* Typical max value used here */
1713 #define IEEE80211_P2P_NOA_DESC_MAX	4
1714 
1715 struct ieee80211_p2p_noa_desc {
1716 	u8 count;
1717 	__le32 duration;
1718 	__le32 interval;
1719 	__le32 start_time;
1720 } __packed;
1721 
1722 struct ieee80211_p2p_noa_attr {
1723 	u8 index;
1724 	u8 oppps_ctwindow;
1725 	struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1726 } __packed;
1727 
1728 #define IEEE80211_P2P_OPPPS_ENABLE_BIT		BIT(7)
1729 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK	0x7F
1730 
1731 /**
1732  * struct ieee80211_bar - Block Ack Request frame format
1733  * @frame_control: Frame Control
1734  * @duration: Duration
1735  * @ra: RA
1736  * @ta: TA
1737  * @control: BAR Control
1738  * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1739  *
1740  * This structure represents the "BlockAckReq frame format"
1741  * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1742 */
1743 struct ieee80211_bar {
1744 	__le16 frame_control;
1745 	__le16 duration;
1746 	__u8 ra[ETH_ALEN];
1747 	__u8 ta[ETH_ALEN];
1748 	__le16 control;
1749 	__le16 start_seq_num;
1750 } __packed;
1751 
1752 /* 802.11 BAR control masks */
1753 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL	0x0000
1754 #define IEEE80211_BAR_CTRL_MULTI_TID		0x0002
1755 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA	0x0004
1756 #define IEEE80211_BAR_CTRL_TID_INFO_MASK	0xf000
1757 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT	12
1758 
1759 #define IEEE80211_HT_MCS_MASK_LEN		10
1760 
1761 /**
1762  * struct ieee80211_mcs_info - Supported MCS Set field
1763  * @rx_mask: RX mask
1764  * @rx_highest: highest supported RX rate. If set represents
1765  *	the highest supported RX data rate in units of 1 Mbps.
1766  *	If this field is 0 this value should not be used to
1767  *	consider the highest RX data rate supported.
1768  * @tx_params: TX parameters
1769  * @reserved: Reserved bits
1770  *
1771  * This structure represents the "Supported MCS Set field" as
1772  * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1773  */
1774 struct ieee80211_mcs_info {
1775 	u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1776 	__le16 rx_highest;
1777 	u8 tx_params;
1778 	u8 reserved[3];
1779 } __packed;
1780 
1781 /* 802.11n HT capability MSC set */
1782 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK	0x3ff
1783 #define IEEE80211_HT_MCS_TX_DEFINED		0x01
1784 #define IEEE80211_HT_MCS_TX_RX_DIFF		0x02
1785 /* value 0 == 1 stream etc */
1786 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK	0x0C
1787 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT	2
1788 #define		IEEE80211_HT_MCS_TX_MAX_STREAMS	4
1789 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION	0x10
1790 
1791 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3)))
1792 
1793 /*
1794  * 802.11n D5.0 20.3.5 / 20.6 says:
1795  * - indices 0 to 7 and 32 are single spatial stream
1796  * - 8 to 31 are multiple spatial streams using equal modulation
1797  *   [8..15 for two streams, 16..23 for three and 24..31 for four]
1798  * - remainder are multiple spatial streams using unequal modulation
1799  */
1800 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1801 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1802 	(IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1803 
1804 /**
1805  * struct ieee80211_ht_cap - HT capabilities element
1806  * @cap_info: HT Capability Information
1807  * @ampdu_params_info: A-MPDU Parameters
1808  * @mcs: Supported MCS Set
1809  * @extended_ht_cap_info: HT Extended Capabilities
1810  * @tx_BF_cap_info: Transmit Beamforming Capabilities
1811  * @antenna_selection_info: ASEL Capability
1812  *
1813  * This structure represents the payload of the "HT Capabilities
1814  * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1815  */
1816 struct ieee80211_ht_cap {
1817 	__le16 cap_info;
1818 	u8 ampdu_params_info;
1819 
1820 	/* 16 bytes MCS information */
1821 	struct ieee80211_mcs_info mcs;
1822 
1823 	__le16 extended_ht_cap_info;
1824 	__le32 tx_BF_cap_info;
1825 	u8 antenna_selection_info;
1826 } __packed;
1827 
1828 /* 802.11n HT capabilities masks (for cap_info) */
1829 #define IEEE80211_HT_CAP_LDPC_CODING		0x0001
1830 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40	0x0002
1831 #define IEEE80211_HT_CAP_SM_PS			0x000C
1832 #define		IEEE80211_HT_CAP_SM_PS_SHIFT	2
1833 #define IEEE80211_HT_CAP_GRN_FLD		0x0010
1834 #define IEEE80211_HT_CAP_SGI_20			0x0020
1835 #define IEEE80211_HT_CAP_SGI_40			0x0040
1836 #define IEEE80211_HT_CAP_TX_STBC		0x0080
1837 #define IEEE80211_HT_CAP_RX_STBC		0x0300
1838 #define		IEEE80211_HT_CAP_RX_STBC_SHIFT	8
1839 #define IEEE80211_HT_CAP_DELAY_BA		0x0400
1840 #define IEEE80211_HT_CAP_MAX_AMSDU		0x0800
1841 #define IEEE80211_HT_CAP_DSSSCCK40		0x1000
1842 #define IEEE80211_HT_CAP_RESERVED		0x2000
1843 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT	0x4000
1844 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT		0x8000
1845 
1846 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1847 #define IEEE80211_HT_EXT_CAP_PCO		0x0001
1848 #define IEEE80211_HT_EXT_CAP_PCO_TIME		0x0006
1849 #define		IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT	1
1850 #define IEEE80211_HT_EXT_CAP_MCS_FB		0x0300
1851 #define		IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT	8
1852 #define IEEE80211_HT_EXT_CAP_HTC_SUP		0x0400
1853 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER	0x0800
1854 
1855 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1856 #define IEEE80211_HT_AMPDU_PARM_FACTOR		0x03
1857 #define IEEE80211_HT_AMPDU_PARM_DENSITY		0x1C
1858 #define		IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT	2
1859 
1860 /*
1861  * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1862  * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1863  */
1864 enum ieee80211_max_ampdu_length_exp {
1865 	IEEE80211_HT_MAX_AMPDU_8K = 0,
1866 	IEEE80211_HT_MAX_AMPDU_16K = 1,
1867 	IEEE80211_HT_MAX_AMPDU_32K = 2,
1868 	IEEE80211_HT_MAX_AMPDU_64K = 3
1869 };
1870 
1871 /*
1872  * Maximum length of AMPDU that the STA can receive in VHT.
1873  * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1874  */
1875 enum ieee80211_vht_max_ampdu_length_exp {
1876 	IEEE80211_VHT_MAX_AMPDU_8K = 0,
1877 	IEEE80211_VHT_MAX_AMPDU_16K = 1,
1878 	IEEE80211_VHT_MAX_AMPDU_32K = 2,
1879 	IEEE80211_VHT_MAX_AMPDU_64K = 3,
1880 	IEEE80211_VHT_MAX_AMPDU_128K = 4,
1881 	IEEE80211_VHT_MAX_AMPDU_256K = 5,
1882 	IEEE80211_VHT_MAX_AMPDU_512K = 6,
1883 	IEEE80211_VHT_MAX_AMPDU_1024K = 7
1884 };
1885 
1886 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1887 
1888 /* Minimum MPDU start spacing */
1889 enum ieee80211_min_mpdu_spacing {
1890 	IEEE80211_HT_MPDU_DENSITY_NONE = 0,	/* No restriction */
1891 	IEEE80211_HT_MPDU_DENSITY_0_25 = 1,	/* 1/4 usec */
1892 	IEEE80211_HT_MPDU_DENSITY_0_5 = 2,	/* 1/2 usec */
1893 	IEEE80211_HT_MPDU_DENSITY_1 = 3,	/* 1 usec */
1894 	IEEE80211_HT_MPDU_DENSITY_2 = 4,	/* 2 usec */
1895 	IEEE80211_HT_MPDU_DENSITY_4 = 5,	/* 4 usec */
1896 	IEEE80211_HT_MPDU_DENSITY_8 = 6,	/* 8 usec */
1897 	IEEE80211_HT_MPDU_DENSITY_16 = 7	/* 16 usec */
1898 };
1899 
1900 /**
1901  * struct ieee80211_ht_operation - HT operation IE
1902  * @primary_chan: Primary Channel
1903  * @ht_param: HT Operation Information parameters
1904  * @operation_mode: HT Operation Information operation mode
1905  * @stbc_param: HT Operation Information STBC params
1906  * @basic_set: Basic HT-MCS Set
1907  *
1908  * This structure represents the payload of the "HT Operation
1909  * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1910  */
1911 struct ieee80211_ht_operation {
1912 	u8 primary_chan;
1913 	u8 ht_param;
1914 	__le16 operation_mode;
1915 	__le16 stbc_param;
1916 	u8 basic_set[16];
1917 } __packed;
1918 
1919 /* for ht_param */
1920 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET		0x03
1921 #define		IEEE80211_HT_PARAM_CHA_SEC_NONE		0x00
1922 #define		IEEE80211_HT_PARAM_CHA_SEC_ABOVE	0x01
1923 #define		IEEE80211_HT_PARAM_CHA_SEC_BELOW	0x03
1924 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY		0x04
1925 #define IEEE80211_HT_PARAM_RIFS_MODE			0x08
1926 
1927 /* for operation_mode */
1928 #define IEEE80211_HT_OP_MODE_PROTECTION			0x0003
1929 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONE		0
1930 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER	1
1931 #define		IEEE80211_HT_OP_MODE_PROTECTION_20MHZ		2
1932 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED	3
1933 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT		0x0004
1934 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT		0x0010
1935 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT		5
1936 #define IEEE80211_HT_OP_MODE_CCFS2_MASK			0x1fe0
1937 
1938 /* for stbc_param */
1939 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON		0x0040
1940 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT		0x0080
1941 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON		0x0100
1942 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT	0x0200
1943 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE		0x0400
1944 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE		0x0800
1945 
1946 
1947 /* block-ack parameters */
1948 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
1949 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
1950 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
1951 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
1952 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
1953 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
1954 
1955 /*
1956  * A-MPDU buffer sizes
1957  * According to HT size varies from 8 to 64 frames
1958  * HE adds the ability to have up to 256 frames.
1959  * EHT adds the ability to have up to 1K frames.
1960  */
1961 #define IEEE80211_MIN_AMPDU_BUF		0x8
1962 #define IEEE80211_MAX_AMPDU_BUF_HT	0x40
1963 #define IEEE80211_MAX_AMPDU_BUF_HE	0x100
1964 #define IEEE80211_MAX_AMPDU_BUF_EHT	0x400
1965 
1966 
1967 /* Spatial Multiplexing Power Save Modes (for capability) */
1968 #define WLAN_HT_CAP_SM_PS_STATIC	0
1969 #define WLAN_HT_CAP_SM_PS_DYNAMIC	1
1970 #define WLAN_HT_CAP_SM_PS_INVALID	2
1971 #define WLAN_HT_CAP_SM_PS_DISABLED	3
1972 
1973 /* for SM power control field lower two bits */
1974 #define WLAN_HT_SMPS_CONTROL_DISABLED	0
1975 #define WLAN_HT_SMPS_CONTROL_STATIC	1
1976 #define WLAN_HT_SMPS_CONTROL_DYNAMIC	3
1977 
1978 /**
1979  * struct ieee80211_vht_mcs_info - VHT MCS information
1980  * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
1981  * @rx_highest: Indicates highest long GI VHT PPDU data rate
1982  *	STA can receive. Rate expressed in units of 1 Mbps.
1983  *	If this field is 0 this value should not be used to
1984  *	consider the highest RX data rate supported.
1985  *	The top 3 bits of this field indicate the Maximum NSTS,total
1986  *	(a beamformee capability.)
1987  * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
1988  * @tx_highest: Indicates highest long GI VHT PPDU data rate
1989  *	STA can transmit. Rate expressed in units of 1 Mbps.
1990  *	If this field is 0 this value should not be used to
1991  *	consider the highest TX data rate supported.
1992  *	The top 2 bits of this field are reserved, the
1993  *	3rd bit from the top indiciates VHT Extended NSS BW
1994  *	Capability.
1995  */
1996 struct ieee80211_vht_mcs_info {
1997 	__le16 rx_mcs_map;
1998 	__le16 rx_highest;
1999 	__le16 tx_mcs_map;
2000 	__le16 tx_highest;
2001 } __packed;
2002 
2003 /* for rx_highest */
2004 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT	13
2005 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK	(7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
2006 
2007 /* for tx_highest */
2008 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE	(1 << 13)
2009 
2010 /**
2011  * enum ieee80211_vht_mcs_support - VHT MCS support definitions
2012  * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2013  *	number of streams
2014  * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
2015  * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2016  * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
2017  *
2018  * These definitions are used in each 2-bit subfield of the @rx_mcs_map
2019  * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
2020  * both split into 8 subfields by number of streams. These values indicate
2021  * which MCSes are supported for the number of streams the value appears
2022  * for.
2023  */
2024 enum ieee80211_vht_mcs_support {
2025 	IEEE80211_VHT_MCS_SUPPORT_0_7	= 0,
2026 	IEEE80211_VHT_MCS_SUPPORT_0_8	= 1,
2027 	IEEE80211_VHT_MCS_SUPPORT_0_9	= 2,
2028 	IEEE80211_VHT_MCS_NOT_SUPPORTED	= 3,
2029 };
2030 
2031 /**
2032  * struct ieee80211_vht_cap - VHT capabilities
2033  *
2034  * This structure is the "VHT capabilities element" as
2035  * described in 802.11ac D3.0 8.4.2.160
2036  * @vht_cap_info: VHT capability info
2037  * @supp_mcs: VHT MCS supported rates
2038  */
2039 struct ieee80211_vht_cap {
2040 	__le32 vht_cap_info;
2041 	struct ieee80211_vht_mcs_info supp_mcs;
2042 } __packed;
2043 
2044 /**
2045  * enum ieee80211_vht_chanwidth - VHT channel width
2046  * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
2047  *	determine the channel width (20 or 40 MHz)
2048  * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
2049  * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
2050  * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
2051  */
2052 enum ieee80211_vht_chanwidth {
2053 	IEEE80211_VHT_CHANWIDTH_USE_HT		= 0,
2054 	IEEE80211_VHT_CHANWIDTH_80MHZ		= 1,
2055 	IEEE80211_VHT_CHANWIDTH_160MHZ		= 2,
2056 	IEEE80211_VHT_CHANWIDTH_80P80MHZ	= 3,
2057 };
2058 
2059 /**
2060  * struct ieee80211_vht_operation - VHT operation IE
2061  *
2062  * This structure is the "VHT operation element" as
2063  * described in 802.11ac D3.0 8.4.2.161
2064  * @chan_width: Operating channel width
2065  * @center_freq_seg0_idx: center freq segment 0 index
2066  * @center_freq_seg1_idx: center freq segment 1 index
2067  * @basic_mcs_set: VHT Basic MCS rate set
2068  */
2069 struct ieee80211_vht_operation {
2070 	u8 chan_width;
2071 	u8 center_freq_seg0_idx;
2072 	u8 center_freq_seg1_idx;
2073 	__le16 basic_mcs_set;
2074 } __packed;
2075 
2076 /**
2077  * struct ieee80211_he_cap_elem - HE capabilities element
2078  * @mac_cap_info: HE MAC Capabilities Information
2079  * @phy_cap_info: HE PHY Capabilities Information
2080  *
2081  * This structure represents the fixed fields of the payload of the
2082  * "HE capabilities element" as described in IEEE Std 802.11ax-2021
2083  * sections 9.4.2.248.2 and 9.4.2.248.3.
2084  */
2085 struct ieee80211_he_cap_elem {
2086 	u8 mac_cap_info[6];
2087 	u8 phy_cap_info[11];
2088 } __packed;
2089 
2090 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN	5
2091 
2092 /**
2093  * enum ieee80211_he_mcs_support - HE MCS support definitions
2094  * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2095  *	number of streams
2096  * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2097  * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
2098  * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
2099  *
2100  * These definitions are used in each 2-bit subfield of the rx_mcs_*
2101  * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
2102  * both split into 8 subfields by number of streams. These values indicate
2103  * which MCSes are supported for the number of streams the value appears
2104  * for.
2105  */
2106 enum ieee80211_he_mcs_support {
2107 	IEEE80211_HE_MCS_SUPPORT_0_7	= 0,
2108 	IEEE80211_HE_MCS_SUPPORT_0_9	= 1,
2109 	IEEE80211_HE_MCS_SUPPORT_0_11	= 2,
2110 	IEEE80211_HE_MCS_NOT_SUPPORTED	= 3,
2111 };
2112 
2113 /**
2114  * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
2115  *
2116  * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2117  * described in P802.11ax_D2.0 section 9.4.2.237.4
2118  *
2119  * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2120  *     widths less than 80MHz.
2121  * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2122  *     widths less than 80MHz.
2123  * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2124  *     width 160MHz.
2125  * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2126  *     width 160MHz.
2127  * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2128  *     channel width 80p80MHz.
2129  * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2130  *     channel width 80p80MHz.
2131  */
2132 struct ieee80211_he_mcs_nss_supp {
2133 	__le16 rx_mcs_80;
2134 	__le16 tx_mcs_80;
2135 	__le16 rx_mcs_160;
2136 	__le16 tx_mcs_160;
2137 	__le16 rx_mcs_80p80;
2138 	__le16 tx_mcs_80p80;
2139 } __packed;
2140 
2141 /**
2142  * struct ieee80211_he_operation - HE Operation element
2143  * @he_oper_params: HE Operation Parameters + BSS Color Information
2144  * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2145  * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2146  *            BSSID Indicator, and 6 GHz Operation Information
2147  *
2148  * This structure represents the payload of the "HE Operation
2149  * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2150  */
2151 struct ieee80211_he_operation {
2152 	__le32 he_oper_params;
2153 	__le16 he_mcs_nss_set;
2154 	u8 optional[];
2155 } __packed;
2156 
2157 /**
2158  * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2159  * @he_sr_control: SR Control
2160  * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2161  *            Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2162  *            Bitmap, and SRG Partial BSSID Bitmap
2163  *
2164  * This structure represents the payload of the "Spatial Reuse
2165  * Parameter Set element" as described in IEEE Std 802.11ax-2021
2166  * section 9.4.2.252.
2167  */
2168 struct ieee80211_he_spr {
2169 	u8 he_sr_control;
2170 	u8 optional[];
2171 } __packed;
2172 
2173 /**
2174  * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2175  * @aifsn: ACI/AIFSN
2176  * @ecw_min_max: ECWmin/ECWmax
2177  * @mu_edca_timer: MU EDCA Timer
2178  *
2179  * This structure represents the "MU AC Parameter Record" as described
2180  * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2181  */
2182 struct ieee80211_he_mu_edca_param_ac_rec {
2183 	u8 aifsn;
2184 	u8 ecw_min_max;
2185 	u8 mu_edca_timer;
2186 } __packed;
2187 
2188 /**
2189  * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2190  * @mu_qos_info: QoS Info
2191  * @ac_be: MU AC_BE Parameter Record
2192  * @ac_bk: MU AC_BK Parameter Record
2193  * @ac_vi: MU AC_VI Parameter Record
2194  * @ac_vo: MU AC_VO Parameter Record
2195  *
2196  * This structure represents the payload of the "MU EDCA Parameter Set
2197  * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2198  */
2199 struct ieee80211_mu_edca_param_set {
2200 	u8 mu_qos_info;
2201 	struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2202 	struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2203 	struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2204 	struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2205 } __packed;
2206 
2207 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2208 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2209 
2210 /**
2211  * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2212  * supported NSS for per MCS.
2213  *
2214  * For each field below, bits 0 - 3 indicate the maximal number of spatial
2215  * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2216  * for Tx.
2217  *
2218  * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2219  *     supported for reception and the maximum number of spatial streams
2220  *     supported for transmission for MCS 0 - 7.
2221  * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2222  *     supported for reception and the maximum number of spatial streams
2223  *     supported for transmission for MCS 8 - 9.
2224  * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2225  *     supported for reception and the maximum number of spatial streams
2226  *     supported for transmission for MCS 10 - 11.
2227  * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2228  *     supported for reception and the maximum number of spatial streams
2229  *     supported for transmission for MCS 12 - 13.
2230  * @rx_tx_max_nss: array of the previous fields for easier loop access
2231  */
2232 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2233 	union {
2234 		struct {
2235 			u8 rx_tx_mcs7_max_nss;
2236 			u8 rx_tx_mcs9_max_nss;
2237 			u8 rx_tx_mcs11_max_nss;
2238 			u8 rx_tx_mcs13_max_nss;
2239 		};
2240 		u8 rx_tx_max_nss[4];
2241 	};
2242 };
2243 
2244 /**
2245  * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2246  * 20MHz only stations).
2247  *
2248  * For each field below, bits 0 - 3 indicate the maximal number of spatial
2249  * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2250  * for Tx.
2251  *
2252  * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2253  *     supported for reception and the maximum number of spatial streams
2254  *     supported for transmission for MCS 0 - 9.
2255  * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2256  *     supported for reception and the maximum number of spatial streams
2257  *     supported for transmission for MCS 10 - 11.
2258  * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2259  *     supported for reception and the maximum number of spatial streams
2260  *     supported for transmission for MCS 12 - 13.
2261  * @rx_tx_max_nss: array of the previous fields for easier loop access
2262  */
2263 struct ieee80211_eht_mcs_nss_supp_bw {
2264 	union {
2265 		struct {
2266 			u8 rx_tx_mcs9_max_nss;
2267 			u8 rx_tx_mcs11_max_nss;
2268 			u8 rx_tx_mcs13_max_nss;
2269 		};
2270 		u8 rx_tx_max_nss[3];
2271 	};
2272 };
2273 
2274 /**
2275  * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2276  *
2277  * This structure is the "EHT Capabilities element" fixed fields as
2278  * described in P802.11be_D2.0 section 9.4.2.313.
2279  *
2280  * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2281  * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2282  */
2283 struct ieee80211_eht_cap_elem_fixed {
2284 	u8 mac_cap_info[2];
2285 	u8 phy_cap_info[9];
2286 } __packed;
2287 
2288 /**
2289  * struct ieee80211_eht_cap_elem - EHT capabilities element
2290  * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2291  * @optional: optional parts
2292  */
2293 struct ieee80211_eht_cap_elem {
2294 	struct ieee80211_eht_cap_elem_fixed fixed;
2295 
2296 	/*
2297 	 * Followed by:
2298 	 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2299 	 * EHT PPE Thresholds field: variable length.
2300 	 */
2301 	u8 optional[];
2302 } __packed;
2303 
2304 #define IEEE80211_EHT_OPER_INFO_PRESENT	                        0x01
2305 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT	0x02
2306 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION	                0x04
2307 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT         0x08
2308 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK      0x30
2309 
2310 /**
2311  * struct ieee80211_eht_operation - eht operation element
2312  *
2313  * This structure is the "EHT Operation Element" fields as
2314  * described in P802.11be_D2.0 section 9.4.2.311
2315  *
2316  * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2317  * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2318  *     EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2319  *     receive.
2320  * @optional: optional parts
2321  */
2322 struct ieee80211_eht_operation {
2323 	u8 params;
2324 	struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2325 	u8 optional[];
2326 } __packed;
2327 
2328 /**
2329  * struct ieee80211_eht_operation_info - eht operation information
2330  *
2331  * @control: EHT operation information control.
2332  * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2333  *     EHT BSS.
2334  * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2335  * @optional: optional parts
2336  */
2337 struct ieee80211_eht_operation_info {
2338 	u8 control;
2339 	u8 ccfs0;
2340 	u8 ccfs1;
2341 	u8 optional[];
2342 } __packed;
2343 
2344 /* 802.11ac VHT Capabilities */
2345 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895			0x00000000
2346 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991			0x00000001
2347 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454			0x00000002
2348 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK				0x00000003
2349 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ		0x00000004
2350 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ	0x00000008
2351 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK			0x0000000C
2352 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT			2
2353 #define IEEE80211_VHT_CAP_RXLDPC				0x00000010
2354 #define IEEE80211_VHT_CAP_SHORT_GI_80				0x00000020
2355 #define IEEE80211_VHT_CAP_SHORT_GI_160				0x00000040
2356 #define IEEE80211_VHT_CAP_TXSTBC				0x00000080
2357 #define IEEE80211_VHT_CAP_RXSTBC_1				0x00000100
2358 #define IEEE80211_VHT_CAP_RXSTBC_2				0x00000200
2359 #define IEEE80211_VHT_CAP_RXSTBC_3				0x00000300
2360 #define IEEE80211_VHT_CAP_RXSTBC_4				0x00000400
2361 #define IEEE80211_VHT_CAP_RXSTBC_MASK				0x00000700
2362 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT				8
2363 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE			0x00000800
2364 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE			0x00001000
2365 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT                  13
2366 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK			\
2367 		(7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2368 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT		16
2369 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK		\
2370 		(7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2371 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE			0x00080000
2372 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE			0x00100000
2373 #define IEEE80211_VHT_CAP_VHT_TXOP_PS				0x00200000
2374 #define IEEE80211_VHT_CAP_HTC_VHT				0x00400000
2375 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT	23
2376 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK	\
2377 		(7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2378 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB	0x08000000
2379 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB	0x0c000000
2380 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN			0x10000000
2381 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN			0x20000000
2382 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT			30
2383 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK			0xc0000000
2384 
2385 /**
2386  * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2387  * @cap: VHT capabilities of the peer
2388  * @bw: bandwidth to use
2389  * @mcs: MCS index to use
2390  * @ext_nss_bw_capable: indicates whether or not the local transmitter
2391  *	(rate scaling algorithm) can deal with the new logic
2392  *	(dot11VHTExtendedNSSBWCapable)
2393  * @max_vht_nss: current maximum NSS as advertised by the STA in
2394  *	operating mode notification, can be 0 in which case the
2395  *	capability data will be used to derive this (from MCS support)
2396  * Return: The maximum NSS that can be used for the given bandwidth/MCS
2397  *	combination
2398  *
2399  * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2400  * vary for a given BW/MCS. This function parses the data.
2401  *
2402  * Note: This function is exported by cfg80211.
2403  */
2404 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2405 			      enum ieee80211_vht_chanwidth bw,
2406 			      int mcs, bool ext_nss_bw_capable,
2407 			      unsigned int max_vht_nss);
2408 
2409 /* 802.11ax HE MAC capabilities */
2410 #define IEEE80211_HE_MAC_CAP0_HTC_HE				0x01
2411 #define IEEE80211_HE_MAC_CAP0_TWT_REQ				0x02
2412 #define IEEE80211_HE_MAC_CAP0_TWT_RES				0x04
2413 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP		0x00
2414 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1		0x08
2415 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2		0x10
2416 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3		0x18
2417 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK			0x18
2418 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1		0x00
2419 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2		0x20
2420 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4		0x40
2421 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8		0x60
2422 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16		0x80
2423 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32		0xa0
2424 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64		0xc0
2425 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED	0xe0
2426 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK		0xe0
2427 
2428 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED		0x00
2429 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128			0x01
2430 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256			0x02
2431 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512			0x03
2432 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK		0x03
2433 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US		0x00
2434 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US		0x04
2435 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US		0x08
2436 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK		0x0c
2437 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1		0x00
2438 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2		0x10
2439 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3		0x20
2440 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4		0x30
2441 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5		0x40
2442 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6		0x50
2443 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7		0x60
2444 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8		0x70
2445 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK		0x70
2446 
2447 /* Link adaptation is split between byte HE_MAC_CAP1 and
2448  * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2449  * in which case the following values apply:
2450  * 0 = No feedback.
2451  * 1 = reserved.
2452  * 2 = Unsolicited feedback.
2453  * 3 = both
2454  */
2455 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION			0x80
2456 
2457 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION			0x01
2458 #define IEEE80211_HE_MAC_CAP2_ALL_ACK				0x02
2459 #define IEEE80211_HE_MAC_CAP2_TRS				0x04
2460 #define IEEE80211_HE_MAC_CAP2_BSR				0x08
2461 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT				0x10
2462 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP			0x20
2463 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING			0x40
2464 #define IEEE80211_HE_MAC_CAP2_ACK_EN				0x80
2465 
2466 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL			0x02
2467 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA				0x04
2468 
2469 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2470  * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2471  * same field in the HE capabilities.
2472  */
2473 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0		0x00
2474 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1		0x08
2475 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2		0x10
2476 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3		0x18
2477 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK		0x18
2478 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG			0x20
2479 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED			0x40
2480 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS		0x80
2481 
2482 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG		0x01
2483 #define IEEE80211_HE_MAC_CAP4_QTP				0x02
2484 #define IEEE80211_HE_MAC_CAP4_BQR				0x04
2485 #define IEEE80211_HE_MAC_CAP4_PSR_RESP				0x08
2486 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP			0x10
2487 #define IEEE80211_HE_MAC_CAP4_OPS				0x20
2488 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU			0x40
2489 /* Multi TID agg TX is split between byte #4 and #5
2490  * The value is a combination of B39,B40,B41
2491  */
2492 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39		0x80
2493 
2494 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40		0x01
2495 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41		0x02
2496 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION	0x04
2497 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU			0x08
2498 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX		0x10
2499 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS			0x20
2500 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING		0x40
2501 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX		0x80
2502 
2503 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR	20
2504 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR	16
2505 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR	13
2506 
2507 /* 802.11ax HE PHY capabilities */
2508 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G		0x02
2509 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G	0x04
2510 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G		0x08
2511 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G	0x10
2512 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL		0x1e
2513 
2514 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G	0x20
2515 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G	0x40
2516 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK			0xfe
2517 
2518 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ	0x01
2519 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ	0x02
2520 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ	0x04
2521 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ	0x08
2522 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK			0x0f
2523 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A				0x10
2524 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD			0x20
2525 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US		0x40
2526 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2527 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS			0x80
2528 
2529 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS			0x01
2530 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US			0x02
2531 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ			0x04
2532 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ			0x08
2533 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX				0x10
2534 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX				0x20
2535 
2536 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2537  * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2538  * case it indicates support for Tx.
2539  */
2540 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO			0x40
2541 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO			0x80
2542 
2543 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM			0x00
2544 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK			0x01
2545 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK			0x02
2546 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM			0x03
2547 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK			0x03
2548 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1				0x00
2549 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2				0x04
2550 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM			0x00
2551 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK			0x08
2552 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK			0x10
2553 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM			0x18
2554 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK			0x18
2555 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1				0x00
2556 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2				0x20
2557 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU		0x40
2558 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER				0x80
2559 
2560 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE				0x01
2561 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER				0x02
2562 
2563 /* Minimal allowed value of Max STS under 80MHz is 3 */
2564 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4		0x0c
2565 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5		0x10
2566 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6		0x14
2567 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7		0x18
2568 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8		0x1c
2569 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK	0x1c
2570 
2571 /* Minimal allowed value of Max STS above 80MHz is 3 */
2572 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4		0x60
2573 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5		0x80
2574 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6		0xa0
2575 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7		0xc0
2576 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8		0xe0
2577 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK	0xe0
2578 
2579 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1	0x00
2580 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2	0x01
2581 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3	0x02
2582 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4	0x03
2583 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5	0x04
2584 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6	0x05
2585 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7	0x06
2586 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8	0x07
2587 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK	0x07
2588 
2589 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1	0x00
2590 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2	0x08
2591 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3	0x10
2592 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4	0x18
2593 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5	0x20
2594 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6	0x28
2595 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7	0x30
2596 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8	0x38
2597 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK	0x38
2598 
2599 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK				0x40
2600 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK				0x80
2601 
2602 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU			0x01
2603 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU			0x02
2604 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB			0x04
2605 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB		0x08
2606 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB				0x10
2607 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE			0x20
2608 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO		0x40
2609 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT			0x80
2610 
2611 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR				0x01
2612 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP			0x02
2613 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI		0x04
2614 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1					0x08
2615 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2					0x10
2616 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3					0x18
2617 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4					0x20
2618 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5					0x28
2619 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6					0x30
2620 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7					0x38
2621 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK				0x38
2622 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ			0x40
2623 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ			0x80
2624 
2625 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI		0x01
2626 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G		0x02
2627 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU			0x04
2628 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU			0x08
2629 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI		0x10
2630 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF		0x20
2631 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242				0x00
2632 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484				0x40
2633 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996				0x80
2634 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996				0xc0
2635 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK				0xc0
2636 
2637 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM		0x01
2638 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK		0x02
2639 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU		0x04
2640 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU		0x08
2641 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB	0x10
2642 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB	0x20
2643 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US			0x0
2644 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US			0x1
2645 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US			0x2
2646 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED		0x3
2647 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS			6
2648 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK			0xc0
2649 
2650 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF			0x01
2651 
2652 /* 802.11ax HE TX/RX MCS NSS Support  */
2653 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS			(3)
2654 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS			(6)
2655 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS			(11)
2656 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK			0x07c0
2657 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK			0xf800
2658 
2659 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2660 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2661 	HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2662 	HIGHEST_MCS_SUPPORTED_MCS8,
2663 	HIGHEST_MCS_SUPPORTED_MCS9,
2664 	HIGHEST_MCS_SUPPORTED_MCS10,
2665 	HIGHEST_MCS_SUPPORTED_MCS11,
2666 };
2667 
2668 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2669 static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap)2670 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2671 {
2672 	u8 count = 4;
2673 
2674 	if (he_cap->phy_cap_info[0] &
2675 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2676 		count += 4;
2677 
2678 	if (he_cap->phy_cap_info[0] &
2679 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2680 		count += 4;
2681 
2682 	return count;
2683 }
2684 
2685 /* 802.11ax HE PPE Thresholds */
2686 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS			(1)
2687 #define IEEE80211_PPE_THRES_NSS_POS				(0)
2688 #define IEEE80211_PPE_THRES_NSS_MASK				(7)
2689 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU	\
2690 	(BIT(5) | BIT(6))
2691 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK		0x78
2692 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS		(3)
2693 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE			(3)
2694 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE			(7)
2695 
2696 /*
2697  * Calculate 802.11ax HE capabilities IE PPE field size
2698  * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2699  */
2700 static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr,const u8 * phy_cap_info)2701 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2702 {
2703 	u8 n;
2704 
2705 	if ((phy_cap_info[6] &
2706 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2707 		return 0;
2708 
2709 	n = hweight8(ppe_thres_hdr &
2710 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2711 	n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2712 		   IEEE80211_PPE_THRES_NSS_POS));
2713 
2714 	/*
2715 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2716 	 * total size.
2717 	 */
2718 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2719 	n = DIV_ROUND_UP(n, 8);
2720 
2721 	return n;
2722 }
2723 
ieee80211_he_capa_size_ok(const u8 * data,u8 len)2724 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2725 {
2726 	const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2727 	u8 needed = sizeof(*he_cap_ie_elem);
2728 
2729 	if (len < needed)
2730 		return false;
2731 
2732 	needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2733 	if (len < needed)
2734 		return false;
2735 
2736 	if (he_cap_ie_elem->phy_cap_info[6] &
2737 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2738 		if (len < needed + 1)
2739 			return false;
2740 		needed += ieee80211_he_ppe_size(data[needed],
2741 						he_cap_ie_elem->phy_cap_info);
2742 	}
2743 
2744 	return len >= needed;
2745 }
2746 
2747 /* HE Operation defines */
2748 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK		0x00000007
2749 #define IEEE80211_HE_OPERATION_TWT_REQUIRED			0x00000008
2750 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK		0x00003ff0
2751 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET		4
2752 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO			0x00004000
2753 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS			0x00008000
2754 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE			0x00010000
2755 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO			0x00020000
2756 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK			0x3f000000
2757 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET			24
2758 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR		0x40000000
2759 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED		0x80000000
2760 
2761 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP		0
2762 #define IEEE80211_6GHZ_CTRL_REG_SP_AP		1
2763 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP		2
2764 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP	3
2765 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP	4
2766 
2767 /**
2768  * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2769  * @primary: primary channel
2770  * @control: control flags
2771  * @ccfs0: channel center frequency segment 0
2772  * @ccfs1: channel center frequency segment 1
2773  * @minrate: minimum rate (in 1 Mbps units)
2774  */
2775 struct ieee80211_he_6ghz_oper {
2776 	u8 primary;
2777 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH	0x3
2778 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ	0
2779 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ	1
2780 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ	2
2781 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ	3
2782 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON	0x4
2783 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO	0x38
2784 	u8 control;
2785 	u8 ccfs0;
2786 	u8 ccfs1;
2787 	u8 minrate;
2788 } __packed;
2789 
2790 /* transmit power interpretation type of transmit power envelope element */
2791 enum ieee80211_tx_power_intrpt_type {
2792 	IEEE80211_TPE_LOCAL_EIRP,
2793 	IEEE80211_TPE_LOCAL_EIRP_PSD,
2794 	IEEE80211_TPE_REG_CLIENT_EIRP,
2795 	IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2796 };
2797 
2798 /* category type of transmit power envelope element */
2799 enum ieee80211_tx_power_category_6ghz {
2800 	IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0,
2801 	IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1,
2802 };
2803 
2804 /*
2805  * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP,
2806  * setting to 63.5 dBm means no constraint.
2807  */
2808 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT	127
2809 
2810 /*
2811  * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2812  * setting to 127 indicates no PSD limit for the 20 MHz channel.
2813  */
2814 #define IEEE80211_TPE_PSD_NO_LIMIT		127
2815 
2816 /**
2817  * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2818  * @info: Transmit Power Information field
2819  * @variable: Maximum Transmit Power field
2820  *
2821  * This structure represents the payload of the "Transmit Power
2822  * Envelope element" as described in IEEE Std 802.11ax-2021 section
2823  * 9.4.2.161
2824  */
2825 struct ieee80211_tx_pwr_env {
2826 	u8 info;
2827 	u8 variable[];
2828 } __packed;
2829 
2830 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2831 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2832 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2833 
2834 #define IEEE80211_TX_PWR_ENV_EXT_COUNT	0xF
2835 
ieee80211_valid_tpe_element(const u8 * data,u8 len)2836 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len)
2837 {
2838 	const struct ieee80211_tx_pwr_env *env = (const void *)data;
2839 	u8 count, interpret, category;
2840 	u8 needed = sizeof(*env);
2841 	u8 N; /* also called N in the spec */
2842 
2843 	if (len < needed)
2844 		return false;
2845 
2846 	count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT);
2847 	interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET);
2848 	category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY);
2849 
2850 	switch (category) {
2851 	case IEEE80211_TPE_CAT_6GHZ_DEFAULT:
2852 	case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE:
2853 		break;
2854 	default:
2855 		return false;
2856 	}
2857 
2858 	switch (interpret) {
2859 	case IEEE80211_TPE_LOCAL_EIRP:
2860 	case IEEE80211_TPE_REG_CLIENT_EIRP:
2861 		if (count > 3)
2862 			return false;
2863 
2864 		/* count == 0 encodes 1 value for 20 MHz, etc. */
2865 		needed += count + 1;
2866 
2867 		if (len < needed)
2868 			return false;
2869 
2870 		/* there can be extension fields not accounted for in 'count' */
2871 
2872 		return true;
2873 	case IEEE80211_TPE_LOCAL_EIRP_PSD:
2874 	case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
2875 		if (count > 4)
2876 			return false;
2877 
2878 		N = count ? 1 << (count - 1) : 1;
2879 		needed += N;
2880 
2881 		if (len < needed)
2882 			return false;
2883 
2884 		if (len > needed) {
2885 			u8 K = u8_get_bits(env->variable[N],
2886 					   IEEE80211_TX_PWR_ENV_EXT_COUNT);
2887 
2888 			needed += 1 + K;
2889 			if (len < needed)
2890 				return false;
2891 		}
2892 
2893 		return true;
2894 	}
2895 
2896 	return false;
2897 }
2898 
2899 /*
2900  * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
2901  * @he_oper_ie: byte data of the He Operations IE, stating from the byte
2902  *	after the ext ID byte. It is assumed that he_oper_ie has at least
2903  *	sizeof(struct ieee80211_he_operation) bytes, the caller must have
2904  *	validated this.
2905  * @return the actual size of the IE data (not including header), or 0 on error
2906  */
2907 static inline u8
ieee80211_he_oper_size(const u8 * he_oper_ie)2908 ieee80211_he_oper_size(const u8 *he_oper_ie)
2909 {
2910 	const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
2911 	u8 oper_len = sizeof(struct ieee80211_he_operation);
2912 	u32 he_oper_params;
2913 
2914 	/* Make sure the input is not NULL */
2915 	if (!he_oper_ie)
2916 		return 0;
2917 
2918 	/* Calc required length */
2919 	he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2920 	if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2921 		oper_len += 3;
2922 	if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2923 		oper_len++;
2924 	if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
2925 		oper_len += sizeof(struct ieee80211_he_6ghz_oper);
2926 
2927 	/* Add the first byte (extension ID) to the total length */
2928 	oper_len++;
2929 
2930 	return oper_len;
2931 }
2932 
2933 /**
2934  * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
2935  * @he_oper: HE operation element (must be pre-validated for size)
2936  *	but may be %NULL
2937  *
2938  * Return: a pointer to the 6 GHz operation field, or %NULL
2939  */
2940 static inline const struct ieee80211_he_6ghz_oper *
ieee80211_he_6ghz_oper(const struct ieee80211_he_operation * he_oper)2941 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
2942 {
2943 	const u8 *ret;
2944 	u32 he_oper_params;
2945 
2946 	if (!he_oper)
2947 		return NULL;
2948 
2949 	ret = (const void *)&he_oper->optional;
2950 
2951 	he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2952 
2953 	if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
2954 		return NULL;
2955 	if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2956 		ret += 3;
2957 	if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2958 		ret++;
2959 
2960 	return (const void *)ret;
2961 }
2962 
2963 /* HE Spatial Reuse defines */
2964 #define IEEE80211_HE_SPR_PSR_DISALLOWED				BIT(0)
2965 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED		BIT(1)
2966 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT			BIT(2)
2967 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT		BIT(3)
2968 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED		BIT(4)
2969 
2970 /*
2971  * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
2972  * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
2973  *	after the ext ID byte. It is assumed that he_spr_ie has at least
2974  *	sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
2975  *	this
2976  * @return the actual size of the IE data (not including header), or 0 on error
2977  */
2978 static inline u8
ieee80211_he_spr_size(const u8 * he_spr_ie)2979 ieee80211_he_spr_size(const u8 *he_spr_ie)
2980 {
2981 	const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
2982 	u8 spr_len = sizeof(struct ieee80211_he_spr);
2983 	u8 he_spr_params;
2984 
2985 	/* Make sure the input is not NULL */
2986 	if (!he_spr_ie)
2987 		return 0;
2988 
2989 	/* Calc required length */
2990 	he_spr_params = he_spr->he_sr_control;
2991 	if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
2992 		spr_len++;
2993 	if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
2994 		spr_len += 18;
2995 
2996 	/* Add the first byte (extension ID) to the total length */
2997 	spr_len++;
2998 
2999 	return spr_len;
3000 }
3001 
3002 /* S1G Capabilities Information field */
3003 #define IEEE80211_S1G_CAPABILITY_LEN	15
3004 
3005 #define S1G_CAP0_S1G_LONG	BIT(0)
3006 #define S1G_CAP0_SGI_1MHZ	BIT(1)
3007 #define S1G_CAP0_SGI_2MHZ	BIT(2)
3008 #define S1G_CAP0_SGI_4MHZ	BIT(3)
3009 #define S1G_CAP0_SGI_8MHZ	BIT(4)
3010 #define S1G_CAP0_SGI_16MHZ	BIT(5)
3011 #define S1G_CAP0_SUPP_CH_WIDTH	GENMASK(7, 6)
3012 
3013 #define S1G_SUPP_CH_WIDTH_2	0
3014 #define S1G_SUPP_CH_WIDTH_4	1
3015 #define S1G_SUPP_CH_WIDTH_8	2
3016 #define S1G_SUPP_CH_WIDTH_16	3
3017 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
3018 						    cap[0])) << 1)
3019 
3020 #define S1G_CAP1_RX_LDPC	BIT(0)
3021 #define S1G_CAP1_TX_STBC	BIT(1)
3022 #define S1G_CAP1_RX_STBC	BIT(2)
3023 #define S1G_CAP1_SU_BFER	BIT(3)
3024 #define S1G_CAP1_SU_BFEE	BIT(4)
3025 #define S1G_CAP1_BFEE_STS	GENMASK(7, 5)
3026 
3027 #define S1G_CAP2_SOUNDING_DIMENSIONS	GENMASK(2, 0)
3028 #define S1G_CAP2_MU_BFER		BIT(3)
3029 #define S1G_CAP2_MU_BFEE		BIT(4)
3030 #define S1G_CAP2_PLUS_HTC_VHT		BIT(5)
3031 #define S1G_CAP2_TRAVELING_PILOT	GENMASK(7, 6)
3032 
3033 #define S1G_CAP3_RD_RESPONDER		BIT(0)
3034 #define S1G_CAP3_HT_DELAYED_BA		BIT(1)
3035 #define S1G_CAP3_MAX_MPDU_LEN		BIT(2)
3036 #define S1G_CAP3_MAX_AMPDU_LEN_EXP	GENMASK(4, 3)
3037 #define S1G_CAP3_MIN_MPDU_START		GENMASK(7, 5)
3038 
3039 #define S1G_CAP4_UPLINK_SYNC	BIT(0)
3040 #define S1G_CAP4_DYNAMIC_AID	BIT(1)
3041 #define S1G_CAP4_BAT		BIT(2)
3042 #define S1G_CAP4_TIME_ADE	BIT(3)
3043 #define S1G_CAP4_NON_TIM	BIT(4)
3044 #define S1G_CAP4_GROUP_AID	BIT(5)
3045 #define S1G_CAP4_STA_TYPE	GENMASK(7, 6)
3046 
3047 #define S1G_CAP5_CENT_AUTH_CONTROL	BIT(0)
3048 #define S1G_CAP5_DIST_AUTH_CONTROL	BIT(1)
3049 #define S1G_CAP5_AMSDU			BIT(2)
3050 #define S1G_CAP5_AMPDU			BIT(3)
3051 #define S1G_CAP5_ASYMMETRIC_BA		BIT(4)
3052 #define S1G_CAP5_FLOW_CONTROL		BIT(5)
3053 #define S1G_CAP5_SECTORIZED_BEAM	GENMASK(7, 6)
3054 
3055 #define S1G_CAP6_OBSS_MITIGATION	BIT(0)
3056 #define S1G_CAP6_FRAGMENT_BA		BIT(1)
3057 #define S1G_CAP6_NDP_PS_POLL		BIT(2)
3058 #define S1G_CAP6_RAW_OPERATION		BIT(3)
3059 #define S1G_CAP6_PAGE_SLICING		BIT(4)
3060 #define S1G_CAP6_TXOP_SHARING_IMP_ACK	BIT(5)
3061 #define S1G_CAP6_VHT_LINK_ADAPT		GENMASK(7, 6)
3062 
3063 #define S1G_CAP7_TACK_AS_PS_POLL		BIT(0)
3064 #define S1G_CAP7_DUP_1MHZ			BIT(1)
3065 #define S1G_CAP7_MCS_NEGOTIATION		BIT(2)
3066 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE	BIT(3)
3067 #define S1G_CAP7_NDP_BFING_REPORT_POLL		BIT(4)
3068 #define S1G_CAP7_UNSOLICITED_DYN_AID		BIT(5)
3069 #define S1G_CAP7_SECTOR_TRAINING_OPERATION	BIT(6)
3070 #define S1G_CAP7_TEMP_PS_MODE_SWITCH		BIT(7)
3071 
3072 #define S1G_CAP8_TWT_GROUPING	BIT(0)
3073 #define S1G_CAP8_BDT		BIT(1)
3074 #define S1G_CAP8_COLOR		GENMASK(4, 2)
3075 #define S1G_CAP8_TWT_REQUEST	BIT(5)
3076 #define S1G_CAP8_TWT_RESPOND	BIT(6)
3077 #define S1G_CAP8_PV1_FRAME	BIT(7)
3078 
3079 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
3080 
3081 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ	BIT(0)
3082 #define S1G_OPER_CH_WIDTH_OPER		GENMASK(4, 1)
3083 
3084 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
3085 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS			0x01
3086 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL			0x02
3087 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1		0x04
3088 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2		0x08
3089 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT			0x10
3090 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC			0x20
3091 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK		0xc0
3092 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895	        0
3093 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991	        1
3094 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454	        2
3095 
3096 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK		0x01
3097 
3098 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
3099 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ			0x02
3100 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ		0x04
3101 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI		0x08
3102 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO		0x10
3103 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER			0x20
3104 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE			0x40
3105 
3106 /* EHT beamformee number of spatial streams <= 80MHz is split */
3107 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK		0x80
3108 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK		0x03
3109 
3110 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK	0x1c
3111 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK	0xe0
3112 
3113 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK		0x07
3114 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK		0x38
3115 
3116 /* EHT number of sounding dimensions for 320MHz is split */
3117 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK		0xc0
3118 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK		0x01
3119 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK		0x02
3120 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK		0x04
3121 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK		0x08
3122 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK		0x10
3123 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK			0x20
3124 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK		0x40
3125 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK			0x80
3126 
3127 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO		0x01
3128 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP			0x02
3129 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP		0x04
3130 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI	0x08
3131 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK			0xf0
3132 
3133 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK		0x01
3134 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP		0x02
3135 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP		0x04
3136 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT		0x08
3137 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK	0x30
3138 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US	0
3139 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US	1
3140 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US	2
3141 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US	3
3142 
3143 /* Maximum number of supported EHT LTF is split */
3144 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK	0xc0
3145 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF		0x40
3146 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK	0x07
3147 
3148 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ			0x08
3149 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ		0x30
3150 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ		0x40
3151 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK			0x78
3152 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP		0x80
3153 
3154 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW	0x01
3155 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ	0x02
3156 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ	0x04
3157 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ	0x08
3158 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ		0x10
3159 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ		0x20
3160 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ		0x40
3161 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT	0x80
3162 
3163 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA	0x01
3164 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA	0x02
3165 
3166 /*
3167  * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3168  */
3169 #define IEEE80211_EHT_OPER_CHAN_WIDTH		0x7
3170 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ	0
3171 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ	1
3172 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ	2
3173 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ	3
3174 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ	4
3175 
3176 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3177 static inline u8
ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap,const struct ieee80211_eht_cap_elem_fixed * eht_cap,bool from_ap)3178 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3179 			   const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3180 			   bool from_ap)
3181 {
3182 	u8 count = 0;
3183 
3184 	/* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3185 	if (he_cap->phy_cap_info[0] &
3186 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3187 		return 3;
3188 
3189 	/* on 2.4 GHz, these three bits are reserved, so should be 0 */
3190 	if (he_cap->phy_cap_info[0] &
3191 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3192 		count += 3;
3193 
3194 	if (he_cap->phy_cap_info[0] &
3195 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3196 		count += 3;
3197 
3198 	if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3199 		count += 3;
3200 
3201 	if (count)
3202 		return count;
3203 
3204 	return from_ap ? 3 : 4;
3205 }
3206 
3207 /* 802.11be EHT PPE Thresholds */
3208 #define IEEE80211_EHT_PPE_THRES_NSS_POS			0
3209 #define IEEE80211_EHT_PPE_THRES_NSS_MASK		0xf
3210 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK	0x1f0
3211 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE		3
3212 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE	9
3213 
3214 /*
3215  * Calculate 802.11be EHT capabilities IE EHT field size
3216  */
3217 static inline u8
ieee80211_eht_ppe_size(u16 ppe_thres_hdr,const u8 * phy_cap_info)3218 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3219 {
3220 	u32 n;
3221 
3222 	if (!(phy_cap_info[5] &
3223 	      IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3224 		return 0;
3225 
3226 	n = hweight16(ppe_thres_hdr &
3227 		      IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3228 	n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3229 
3230 	/*
3231 	 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3232 	 * total size.
3233 	 */
3234 	n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3235 	    IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3236 	return DIV_ROUND_UP(n, 8);
3237 }
3238 
3239 static inline bool
ieee80211_eht_capa_size_ok(const u8 * he_capa,const u8 * data,u8 len,bool from_ap)3240 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3241 			   bool from_ap)
3242 {
3243 	const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3244 	u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3245 
3246 	if (len < needed || !he_capa)
3247 		return false;
3248 
3249 	needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3250 					     (const void *)data,
3251 					     from_ap);
3252 	if (len < needed)
3253 		return false;
3254 
3255 	if (elem->phy_cap_info[5] &
3256 			IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3257 		u16 ppe_thres_hdr;
3258 
3259 		if (len < needed + sizeof(ppe_thres_hdr))
3260 			return false;
3261 
3262 		ppe_thres_hdr = get_unaligned_le16(data + needed);
3263 		needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3264 						 elem->phy_cap_info);
3265 	}
3266 
3267 	return len >= needed;
3268 }
3269 
3270 static inline bool
ieee80211_eht_oper_size_ok(const u8 * data,u8 len)3271 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3272 {
3273 	const struct ieee80211_eht_operation *elem = (const void *)data;
3274 	u8 needed = sizeof(*elem);
3275 
3276 	if (len < needed)
3277 		return false;
3278 
3279 	if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3280 		needed += 3;
3281 
3282 		if (elem->params &
3283 		    IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3284 			needed += 2;
3285 	}
3286 
3287 	return len >= needed;
3288 }
3289 
3290 /* must validate ieee80211_eht_oper_size_ok() first */
3291 static inline u16
ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation * eht_oper)3292 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper)
3293 {
3294 	const struct ieee80211_eht_operation_info *info =
3295 		(const void *)eht_oper->optional;
3296 
3297 	if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT))
3298 		return 0;
3299 
3300 	if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT))
3301 		return 0;
3302 
3303 	return get_unaligned_le16(info->optional);
3304 }
3305 
3306 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT	BIT(1)
3307 
3308 struct ieee80211_bandwidth_indication {
3309 	u8 params;
3310 	struct ieee80211_eht_operation_info info;
3311 } __packed;
3312 
3313 static inline bool
ieee80211_bandwidth_indication_size_ok(const u8 * data,u8 len)3314 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len)
3315 {
3316 	const struct ieee80211_bandwidth_indication *bwi = (const void *)data;
3317 
3318 	if (len < sizeof(*bwi))
3319 		return false;
3320 
3321 	if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT &&
3322 	    len < sizeof(*bwi) + 2)
3323 		return false;
3324 
3325 	return true;
3326 }
3327 
3328 #define LISTEN_INT_USF	GENMASK(15, 14)
3329 #define LISTEN_INT_UI	GENMASK(13, 0)
3330 
3331 #define IEEE80211_MAX_USF	FIELD_MAX(LISTEN_INT_USF)
3332 #define IEEE80211_MAX_UI	FIELD_MAX(LISTEN_INT_UI)
3333 
3334 /* Authentication algorithms */
3335 #define WLAN_AUTH_OPEN 0
3336 #define WLAN_AUTH_SHARED_KEY 1
3337 #define WLAN_AUTH_FT 2
3338 #define WLAN_AUTH_SAE 3
3339 #define WLAN_AUTH_FILS_SK 4
3340 #define WLAN_AUTH_FILS_SK_PFS 5
3341 #define WLAN_AUTH_FILS_PK 6
3342 #define WLAN_AUTH_LEAP 128
3343 
3344 #define WLAN_AUTH_CHALLENGE_LEN 128
3345 
3346 #define WLAN_CAPABILITY_ESS		(1<<0)
3347 #define WLAN_CAPABILITY_IBSS		(1<<1)
3348 
3349 /*
3350  * A mesh STA sets the ESS and IBSS capability bits to zero.
3351  * however, this holds true for p2p probe responses (in the p2p_find
3352  * phase) as well.
3353  */
3354 #define WLAN_CAPABILITY_IS_STA_BSS(cap)	\
3355 	(!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3356 
3357 #define WLAN_CAPABILITY_CF_POLLABLE	(1<<2)
3358 #define WLAN_CAPABILITY_CF_POLL_REQUEST	(1<<3)
3359 #define WLAN_CAPABILITY_PRIVACY		(1<<4)
3360 #define WLAN_CAPABILITY_SHORT_PREAMBLE	(1<<5)
3361 #define WLAN_CAPABILITY_PBCC		(1<<6)
3362 #define WLAN_CAPABILITY_CHANNEL_AGILITY	(1<<7)
3363 
3364 /* 802.11h */
3365 #define WLAN_CAPABILITY_SPECTRUM_MGMT	(1<<8)
3366 #define WLAN_CAPABILITY_QOS		(1<<9)
3367 #define WLAN_CAPABILITY_SHORT_SLOT_TIME	(1<<10)
3368 #define WLAN_CAPABILITY_APSD		(1<<11)
3369 #define WLAN_CAPABILITY_RADIO_MEASURE	(1<<12)
3370 #define WLAN_CAPABILITY_DSSS_OFDM	(1<<13)
3371 #define WLAN_CAPABILITY_DEL_BACK	(1<<14)
3372 #define WLAN_CAPABILITY_IMM_BACK	(1<<15)
3373 
3374 /* DMG (60gHz) 802.11ad */
3375 /* type - bits 0..1 */
3376 #define WLAN_CAPABILITY_DMG_TYPE_MASK		(3<<0)
3377 #define WLAN_CAPABILITY_DMG_TYPE_IBSS		(1<<0) /* Tx by: STA */
3378 #define WLAN_CAPABILITY_DMG_TYPE_PBSS		(2<<0) /* Tx by: PCP */
3379 #define WLAN_CAPABILITY_DMG_TYPE_AP		(3<<0) /* Tx by: AP */
3380 
3381 #define WLAN_CAPABILITY_DMG_CBAP_ONLY		(1<<2)
3382 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE		(1<<3)
3383 #define WLAN_CAPABILITY_DMG_PRIVACY		(1<<4)
3384 #define WLAN_CAPABILITY_DMG_ECPAC		(1<<5)
3385 
3386 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT	(1<<8)
3387 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE	(1<<12)
3388 
3389 /* measurement */
3390 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE	(1<<0)
3391 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE	(1<<1)
3392 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED	(1<<2)
3393 
3394 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC	0
3395 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA	1
3396 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI	2
3397 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI	8
3398 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC	11
3399 
3400 /* 802.11g ERP information element */
3401 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3402 #define WLAN_ERP_USE_PROTECTION (1<<1)
3403 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3404 
3405 /* WLAN_ERP_BARKER_PREAMBLE values */
3406 enum {
3407 	WLAN_ERP_PREAMBLE_SHORT = 0,
3408 	WLAN_ERP_PREAMBLE_LONG = 1,
3409 };
3410 
3411 /* Band ID, 802.11ad #8.4.1.45 */
3412 enum {
3413 	IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3414 	IEEE80211_BANDID_SUB1  = 1, /* Sub-1 GHz (excluding TV white spaces) */
3415 	IEEE80211_BANDID_2G    = 2, /* 2.4 GHz */
3416 	IEEE80211_BANDID_3G    = 3, /* 3.6 GHz */
3417 	IEEE80211_BANDID_5G    = 4, /* 4.9 and 5 GHz */
3418 	IEEE80211_BANDID_60G   = 5, /* 60 GHz */
3419 };
3420 
3421 /* Status codes */
3422 enum ieee80211_statuscode {
3423 	WLAN_STATUS_SUCCESS = 0,
3424 	WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3425 	WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3426 	WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3427 	WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3428 	WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3429 	WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3430 	WLAN_STATUS_CHALLENGE_FAIL = 15,
3431 	WLAN_STATUS_AUTH_TIMEOUT = 16,
3432 	WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3433 	WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3434 	/* 802.11b */
3435 	WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3436 	WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3437 	WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3438 	/* 802.11h */
3439 	WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3440 	WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3441 	WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3442 	/* 802.11g */
3443 	WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3444 	WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3445 	/* 802.11w */
3446 	WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3447 	WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3448 	/* 802.11i */
3449 	WLAN_STATUS_INVALID_IE = 40,
3450 	WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3451 	WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3452 	WLAN_STATUS_INVALID_AKMP = 43,
3453 	WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3454 	WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3455 	WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3456 	/* 802.11e */
3457 	WLAN_STATUS_UNSPECIFIED_QOS = 32,
3458 	WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3459 	WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3460 	WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3461 	WLAN_STATUS_REQUEST_DECLINED = 37,
3462 	WLAN_STATUS_INVALID_QOS_PARAM = 38,
3463 	WLAN_STATUS_CHANGE_TSPEC = 39,
3464 	WLAN_STATUS_WAIT_TS_DELAY = 47,
3465 	WLAN_STATUS_NO_DIRECT_LINK = 48,
3466 	WLAN_STATUS_STA_NOT_PRESENT = 49,
3467 	WLAN_STATUS_STA_NOT_QSTA = 50,
3468 	/* 802.11s */
3469 	WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3470 	WLAN_STATUS_FCG_NOT_SUPP = 78,
3471 	WLAN_STATUS_STA_NO_TBTT = 78,
3472 	/* 802.11ad */
3473 	WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3474 	WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3475 	WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3476 	WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3477 	WLAN_STATUS_PERFORMING_FST_NOW = 87,
3478 	WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3479 	WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3480 	WLAN_STATUS_REJECT_DSE_BAND = 96,
3481 	WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3482 	WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3483 	/* 802.11ai */
3484 	WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3485 	WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3486 	WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3487 	WLAN_STATUS_SAE_PK = 127,
3488 	WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133,
3489 	WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134,
3490 };
3491 
3492 
3493 /* Reason codes */
3494 enum ieee80211_reasoncode {
3495 	WLAN_REASON_UNSPECIFIED = 1,
3496 	WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3497 	WLAN_REASON_DEAUTH_LEAVING = 3,
3498 	WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3499 	WLAN_REASON_DISASSOC_AP_BUSY = 5,
3500 	WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3501 	WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3502 	WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3503 	WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3504 	/* 802.11h */
3505 	WLAN_REASON_DISASSOC_BAD_POWER = 10,
3506 	WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3507 	/* 802.11i */
3508 	WLAN_REASON_INVALID_IE = 13,
3509 	WLAN_REASON_MIC_FAILURE = 14,
3510 	WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3511 	WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3512 	WLAN_REASON_IE_DIFFERENT = 17,
3513 	WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3514 	WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3515 	WLAN_REASON_INVALID_AKMP = 20,
3516 	WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3517 	WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3518 	WLAN_REASON_IEEE8021X_FAILED = 23,
3519 	WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3520 	/* TDLS (802.11z) */
3521 	WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3522 	WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3523 	/* 802.11e */
3524 	WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3525 	WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3526 	WLAN_REASON_DISASSOC_LOW_ACK = 34,
3527 	WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3528 	WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3529 	WLAN_REASON_QSTA_NOT_USE = 37,
3530 	WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3531 	WLAN_REASON_QSTA_TIMEOUT = 39,
3532 	WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3533 	/* 802.11s */
3534 	WLAN_REASON_MESH_PEER_CANCELED = 52,
3535 	WLAN_REASON_MESH_MAX_PEERS = 53,
3536 	WLAN_REASON_MESH_CONFIG = 54,
3537 	WLAN_REASON_MESH_CLOSE = 55,
3538 	WLAN_REASON_MESH_MAX_RETRIES = 56,
3539 	WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3540 	WLAN_REASON_MESH_INVALID_GTK = 58,
3541 	WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3542 	WLAN_REASON_MESH_INVALID_SECURITY = 60,
3543 	WLAN_REASON_MESH_PATH_ERROR = 61,
3544 	WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3545 	WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3546 	WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3547 	WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3548 	WLAN_REASON_MESH_CHAN = 66,
3549 };
3550 
3551 
3552 /* Information Element IDs */
3553 enum ieee80211_eid {
3554 	WLAN_EID_SSID = 0,
3555 	WLAN_EID_SUPP_RATES = 1,
3556 	WLAN_EID_FH_PARAMS = 2, /* reserved now */
3557 	WLAN_EID_DS_PARAMS = 3,
3558 	WLAN_EID_CF_PARAMS = 4,
3559 	WLAN_EID_TIM = 5,
3560 	WLAN_EID_IBSS_PARAMS = 6,
3561 	WLAN_EID_COUNTRY = 7,
3562 	/* 8, 9 reserved */
3563 	WLAN_EID_REQUEST = 10,
3564 	WLAN_EID_QBSS_LOAD = 11,
3565 	WLAN_EID_EDCA_PARAM_SET = 12,
3566 	WLAN_EID_TSPEC = 13,
3567 	WLAN_EID_TCLAS = 14,
3568 	WLAN_EID_SCHEDULE = 15,
3569 	WLAN_EID_CHALLENGE = 16,
3570 	/* 17-31 reserved for challenge text extension */
3571 	WLAN_EID_PWR_CONSTRAINT = 32,
3572 	WLAN_EID_PWR_CAPABILITY = 33,
3573 	WLAN_EID_TPC_REQUEST = 34,
3574 	WLAN_EID_TPC_REPORT = 35,
3575 	WLAN_EID_SUPPORTED_CHANNELS = 36,
3576 	WLAN_EID_CHANNEL_SWITCH = 37,
3577 	WLAN_EID_MEASURE_REQUEST = 38,
3578 	WLAN_EID_MEASURE_REPORT = 39,
3579 	WLAN_EID_QUIET = 40,
3580 	WLAN_EID_IBSS_DFS = 41,
3581 	WLAN_EID_ERP_INFO = 42,
3582 	WLAN_EID_TS_DELAY = 43,
3583 	WLAN_EID_TCLAS_PROCESSING = 44,
3584 	WLAN_EID_HT_CAPABILITY = 45,
3585 	WLAN_EID_QOS_CAPA = 46,
3586 	/* 47 reserved for Broadcom */
3587 	WLAN_EID_RSN = 48,
3588 	WLAN_EID_802_15_COEX = 49,
3589 	WLAN_EID_EXT_SUPP_RATES = 50,
3590 	WLAN_EID_AP_CHAN_REPORT = 51,
3591 	WLAN_EID_NEIGHBOR_REPORT = 52,
3592 	WLAN_EID_RCPI = 53,
3593 	WLAN_EID_MOBILITY_DOMAIN = 54,
3594 	WLAN_EID_FAST_BSS_TRANSITION = 55,
3595 	WLAN_EID_TIMEOUT_INTERVAL = 56,
3596 	WLAN_EID_RIC_DATA = 57,
3597 	WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3598 	WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3599 	WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3600 	WLAN_EID_HT_OPERATION = 61,
3601 	WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3602 	WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3603 	WLAN_EID_ANTENNA_INFO = 64,
3604 	WLAN_EID_RSNI = 65,
3605 	WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3606 	WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3607 	WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3608 	WLAN_EID_TIME_ADVERTISEMENT = 69,
3609 	WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3610 	WLAN_EID_MULTIPLE_BSSID = 71,
3611 	WLAN_EID_BSS_COEX_2040 = 72,
3612 	WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3613 	WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3614 	WLAN_EID_RIC_DESCRIPTOR = 75,
3615 	WLAN_EID_MMIE = 76,
3616 	WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3617 	WLAN_EID_EVENT_REQUEST = 78,
3618 	WLAN_EID_EVENT_REPORT = 79,
3619 	WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3620 	WLAN_EID_DIAGNOSTIC_REPORT = 81,
3621 	WLAN_EID_LOCATION_PARAMS = 82,
3622 	WLAN_EID_NON_TX_BSSID_CAP =  83,
3623 	WLAN_EID_SSID_LIST = 84,
3624 	WLAN_EID_MULTI_BSSID_IDX = 85,
3625 	WLAN_EID_FMS_DESCRIPTOR = 86,
3626 	WLAN_EID_FMS_REQUEST = 87,
3627 	WLAN_EID_FMS_RESPONSE = 88,
3628 	WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3629 	WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3630 	WLAN_EID_TSF_REQUEST = 91,
3631 	WLAN_EID_TSF_RESPOSNE = 92,
3632 	WLAN_EID_WNM_SLEEP_MODE = 93,
3633 	WLAN_EID_TIM_BCAST_REQ = 94,
3634 	WLAN_EID_TIM_BCAST_RESP = 95,
3635 	WLAN_EID_COLL_IF_REPORT = 96,
3636 	WLAN_EID_CHANNEL_USAGE = 97,
3637 	WLAN_EID_TIME_ZONE = 98,
3638 	WLAN_EID_DMS_REQUEST = 99,
3639 	WLAN_EID_DMS_RESPONSE = 100,
3640 	WLAN_EID_LINK_ID = 101,
3641 	WLAN_EID_WAKEUP_SCHEDUL = 102,
3642 	/* 103 reserved */
3643 	WLAN_EID_CHAN_SWITCH_TIMING = 104,
3644 	WLAN_EID_PTI_CONTROL = 105,
3645 	WLAN_EID_PU_BUFFER_STATUS = 106,
3646 	WLAN_EID_INTERWORKING = 107,
3647 	WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3648 	WLAN_EID_EXPEDITED_BW_REQ = 109,
3649 	WLAN_EID_QOS_MAP_SET = 110,
3650 	WLAN_EID_ROAMING_CONSORTIUM = 111,
3651 	WLAN_EID_EMERGENCY_ALERT = 112,
3652 	WLAN_EID_MESH_CONFIG = 113,
3653 	WLAN_EID_MESH_ID = 114,
3654 	WLAN_EID_LINK_METRIC_REPORT = 115,
3655 	WLAN_EID_CONGESTION_NOTIFICATION = 116,
3656 	WLAN_EID_PEER_MGMT = 117,
3657 	WLAN_EID_CHAN_SWITCH_PARAM = 118,
3658 	WLAN_EID_MESH_AWAKE_WINDOW = 119,
3659 	WLAN_EID_BEACON_TIMING = 120,
3660 	WLAN_EID_MCCAOP_SETUP_REQ = 121,
3661 	WLAN_EID_MCCAOP_SETUP_RESP = 122,
3662 	WLAN_EID_MCCAOP_ADVERT = 123,
3663 	WLAN_EID_MCCAOP_TEARDOWN = 124,
3664 	WLAN_EID_GANN = 125,
3665 	WLAN_EID_RANN = 126,
3666 	WLAN_EID_EXT_CAPABILITY = 127,
3667 	/* 128, 129 reserved for Agere */
3668 	WLAN_EID_PREQ = 130,
3669 	WLAN_EID_PREP = 131,
3670 	WLAN_EID_PERR = 132,
3671 	/* 133-136 reserved for Cisco */
3672 	WLAN_EID_PXU = 137,
3673 	WLAN_EID_PXUC = 138,
3674 	WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3675 	WLAN_EID_MIC = 140,
3676 	WLAN_EID_DESTINATION_URI = 141,
3677 	WLAN_EID_UAPSD_COEX = 142,
3678 	WLAN_EID_WAKEUP_SCHEDULE = 143,
3679 	WLAN_EID_EXT_SCHEDULE = 144,
3680 	WLAN_EID_STA_AVAILABILITY = 145,
3681 	WLAN_EID_DMG_TSPEC = 146,
3682 	WLAN_EID_DMG_AT = 147,
3683 	WLAN_EID_DMG_CAP = 148,
3684 	/* 149 reserved for Cisco */
3685 	WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3686 	WLAN_EID_DMG_OPERATION = 151,
3687 	WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3688 	WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3689 	WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3690 	/* 155-156 reserved for Cisco */
3691 	WLAN_EID_AWAKE_WINDOW = 157,
3692 	WLAN_EID_MULTI_BAND = 158,
3693 	WLAN_EID_ADDBA_EXT = 159,
3694 	WLAN_EID_NEXT_PCP_LIST = 160,
3695 	WLAN_EID_PCP_HANDOVER = 161,
3696 	WLAN_EID_DMG_LINK_MARGIN = 162,
3697 	WLAN_EID_SWITCHING_STREAM = 163,
3698 	WLAN_EID_SESSION_TRANSITION = 164,
3699 	WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3700 	WLAN_EID_CLUSTER_REPORT = 166,
3701 	WLAN_EID_RELAY_CAP = 167,
3702 	WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3703 	WLAN_EID_BEAM_LINK_MAINT = 169,
3704 	WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3705 	WLAN_EID_U_PID = 171,
3706 	WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3707 	/* 173 reserved for Symbol */
3708 	WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3709 	WLAN_EID_QUIET_PERIOD_REQ = 175,
3710 	/* 176 reserved for Symbol */
3711 	WLAN_EID_QUIET_PERIOD_RESP = 177,
3712 	/* 178-179 reserved for Symbol */
3713 	/* 180 reserved for ISO/IEC 20011 */
3714 	WLAN_EID_EPAC_POLICY = 182,
3715 	WLAN_EID_CLISTER_TIME_OFF = 183,
3716 	WLAN_EID_INTER_AC_PRIO = 184,
3717 	WLAN_EID_SCS_DESCRIPTOR = 185,
3718 	WLAN_EID_QLOAD_REPORT = 186,
3719 	WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3720 	WLAN_EID_HL_STREAM_ID = 188,
3721 	WLAN_EID_GCR_GROUP_ADDR = 189,
3722 	WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3723 	WLAN_EID_VHT_CAPABILITY = 191,
3724 	WLAN_EID_VHT_OPERATION = 192,
3725 	WLAN_EID_EXTENDED_BSS_LOAD = 193,
3726 	WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3727 	WLAN_EID_TX_POWER_ENVELOPE = 195,
3728 	WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3729 	WLAN_EID_AID = 197,
3730 	WLAN_EID_QUIET_CHANNEL = 198,
3731 	WLAN_EID_OPMODE_NOTIF = 199,
3732 
3733 	WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3734 
3735 	WLAN_EID_AID_REQUEST = 210,
3736 	WLAN_EID_AID_RESPONSE = 211,
3737 	WLAN_EID_S1G_BCN_COMPAT = 213,
3738 	WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3739 	WLAN_EID_S1G_TWT = 216,
3740 	WLAN_EID_S1G_CAPABILITIES = 217,
3741 	WLAN_EID_VENDOR_SPECIFIC = 221,
3742 	WLAN_EID_QOS_PARAMETER = 222,
3743 	WLAN_EID_S1G_OPERATION = 232,
3744 	WLAN_EID_CAG_NUMBER = 237,
3745 	WLAN_EID_AP_CSN = 239,
3746 	WLAN_EID_FILS_INDICATION = 240,
3747 	WLAN_EID_DILS = 241,
3748 	WLAN_EID_FRAGMENT = 242,
3749 	WLAN_EID_RSNX = 244,
3750 	WLAN_EID_EXTENSION = 255
3751 };
3752 
3753 /* Element ID Extensions for Element ID 255 */
3754 enum ieee80211_eid_ext {
3755 	WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3756 	WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3757 	WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3758 	WLAN_EID_EXT_FILS_SESSION = 4,
3759 	WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3760 	WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3761 	WLAN_EID_EXT_KEY_DELIVERY = 7,
3762 	WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3763 	WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3764 	WLAN_EID_EXT_FILS_NONCE = 13,
3765 	WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3766 	WLAN_EID_EXT_HE_CAPABILITY = 35,
3767 	WLAN_EID_EXT_HE_OPERATION = 36,
3768 	WLAN_EID_EXT_UORA = 37,
3769 	WLAN_EID_EXT_HE_MU_EDCA = 38,
3770 	WLAN_EID_EXT_HE_SPR = 39,
3771 	WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3772 	WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3773 	WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3774 	WLAN_EID_EXT_ESS_REPORT = 45,
3775 	WLAN_EID_EXT_OPS = 46,
3776 	WLAN_EID_EXT_HE_BSS_LOAD = 47,
3777 	WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3778 	WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3779 	WLAN_EID_EXT_NON_INHERITANCE = 56,
3780 	WLAN_EID_EXT_KNOWN_BSSID = 57,
3781 	WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3782 	WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3783 	WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3784 	WLAN_EID_EXT_EHT_OPERATION = 106,
3785 	WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3786 	WLAN_EID_EXT_EHT_CAPABILITY = 108,
3787 	WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109,
3788 	WLAN_EID_EXT_BANDWIDTH_INDICATION = 135,
3789 };
3790 
3791 /* Action category code */
3792 enum ieee80211_category {
3793 	WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3794 	WLAN_CATEGORY_QOS = 1,
3795 	WLAN_CATEGORY_DLS = 2,
3796 	WLAN_CATEGORY_BACK = 3,
3797 	WLAN_CATEGORY_PUBLIC = 4,
3798 	WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3799 	WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3800 	WLAN_CATEGORY_HT = 7,
3801 	WLAN_CATEGORY_SA_QUERY = 8,
3802 	WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3803 	WLAN_CATEGORY_WNM = 10,
3804 	WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3805 	WLAN_CATEGORY_TDLS = 12,
3806 	WLAN_CATEGORY_MESH_ACTION = 13,
3807 	WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3808 	WLAN_CATEGORY_SELF_PROTECTED = 15,
3809 	WLAN_CATEGORY_DMG = 16,
3810 	WLAN_CATEGORY_WMM = 17,
3811 	WLAN_CATEGORY_FST = 18,
3812 	WLAN_CATEGORY_UNPROT_DMG = 20,
3813 	WLAN_CATEGORY_VHT = 21,
3814 	WLAN_CATEGORY_S1G = 22,
3815 	WLAN_CATEGORY_PROTECTED_EHT = 37,
3816 	WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3817 	WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3818 };
3819 
3820 /* SPECTRUM_MGMT action code */
3821 enum ieee80211_spectrum_mgmt_actioncode {
3822 	WLAN_ACTION_SPCT_MSR_REQ = 0,
3823 	WLAN_ACTION_SPCT_MSR_RPRT = 1,
3824 	WLAN_ACTION_SPCT_TPC_REQ = 2,
3825 	WLAN_ACTION_SPCT_TPC_RPRT = 3,
3826 	WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3827 };
3828 
3829 /* HT action codes */
3830 enum ieee80211_ht_actioncode {
3831 	WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3832 	WLAN_HT_ACTION_SMPS = 1,
3833 	WLAN_HT_ACTION_PSMP = 2,
3834 	WLAN_HT_ACTION_PCO_PHASE = 3,
3835 	WLAN_HT_ACTION_CSI = 4,
3836 	WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3837 	WLAN_HT_ACTION_COMPRESSED_BF = 6,
3838 	WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3839 };
3840 
3841 /* VHT action codes */
3842 enum ieee80211_vht_actioncode {
3843 	WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3844 	WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3845 	WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3846 };
3847 
3848 /* Self Protected Action codes */
3849 enum ieee80211_self_protected_actioncode {
3850 	WLAN_SP_RESERVED = 0,
3851 	WLAN_SP_MESH_PEERING_OPEN = 1,
3852 	WLAN_SP_MESH_PEERING_CONFIRM = 2,
3853 	WLAN_SP_MESH_PEERING_CLOSE = 3,
3854 	WLAN_SP_MGK_INFORM = 4,
3855 	WLAN_SP_MGK_ACK = 5,
3856 };
3857 
3858 /* Mesh action codes */
3859 enum ieee80211_mesh_actioncode {
3860 	WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3861 	WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3862 	WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3863 	WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3864 	WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3865 	WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3866 	WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3867 	WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3868 	WLAN_MESH_ACTION_MCCA_TEARDOWN,
3869 	WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3870 	WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3871 };
3872 
3873 /* Unprotected WNM action codes */
3874 enum ieee80211_unprotected_wnm_actioncode {
3875 	WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3876 	WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3877 };
3878 
3879 /* Protected EHT action codes */
3880 enum ieee80211_protected_eht_actioncode {
3881 	WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0,
3882 	WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1,
3883 	WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2,
3884 };
3885 
3886 /* Security key length */
3887 enum ieee80211_key_len {
3888 	WLAN_KEY_LEN_WEP40 = 5,
3889 	WLAN_KEY_LEN_WEP104 = 13,
3890 	WLAN_KEY_LEN_CCMP = 16,
3891 	WLAN_KEY_LEN_CCMP_256 = 32,
3892 	WLAN_KEY_LEN_TKIP = 32,
3893 	WLAN_KEY_LEN_AES_CMAC = 16,
3894 	WLAN_KEY_LEN_SMS4 = 32,
3895 	WLAN_KEY_LEN_GCMP = 16,
3896 	WLAN_KEY_LEN_GCMP_256 = 32,
3897 	WLAN_KEY_LEN_BIP_CMAC_256 = 32,
3898 	WLAN_KEY_LEN_BIP_GMAC_128 = 16,
3899 	WLAN_KEY_LEN_BIP_GMAC_256 = 32,
3900 };
3901 
3902 enum ieee80211_s1g_actioncode {
3903 	WLAN_S1G_AID_SWITCH_REQUEST,
3904 	WLAN_S1G_AID_SWITCH_RESPONSE,
3905 	WLAN_S1G_SYNC_CONTROL,
3906 	WLAN_S1G_STA_INFO_ANNOUNCE,
3907 	WLAN_S1G_EDCA_PARAM_SET,
3908 	WLAN_S1G_EL_OPERATION,
3909 	WLAN_S1G_TWT_SETUP,
3910 	WLAN_S1G_TWT_TEARDOWN,
3911 	WLAN_S1G_SECT_GROUP_ID_LIST,
3912 	WLAN_S1G_SECT_ID_FEEDBACK,
3913 	WLAN_S1G_TWT_INFORMATION = 11,
3914 };
3915 
3916 #define IEEE80211_WEP_IV_LEN		4
3917 #define IEEE80211_WEP_ICV_LEN		4
3918 #define IEEE80211_CCMP_HDR_LEN		8
3919 #define IEEE80211_CCMP_MIC_LEN		8
3920 #define IEEE80211_CCMP_PN_LEN		6
3921 #define IEEE80211_CCMP_256_HDR_LEN	8
3922 #define IEEE80211_CCMP_256_MIC_LEN	16
3923 #define IEEE80211_CCMP_256_PN_LEN	6
3924 #define IEEE80211_TKIP_IV_LEN		8
3925 #define IEEE80211_TKIP_ICV_LEN		4
3926 #define IEEE80211_CMAC_PN_LEN		6
3927 #define IEEE80211_GMAC_PN_LEN		6
3928 #define IEEE80211_GCMP_HDR_LEN		8
3929 #define IEEE80211_GCMP_MIC_LEN		16
3930 #define IEEE80211_GCMP_PN_LEN		6
3931 
3932 #define FILS_NONCE_LEN			16
3933 #define FILS_MAX_KEK_LEN		64
3934 
3935 #define FILS_ERP_MAX_USERNAME_LEN	16
3936 #define FILS_ERP_MAX_REALM_LEN		253
3937 #define FILS_ERP_MAX_RRK_LEN		64
3938 
3939 #define PMK_MAX_LEN			64
3940 #define SAE_PASSWORD_MAX_LEN		128
3941 
3942 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
3943 enum ieee80211_pub_actioncode {
3944 	WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
3945 	WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
3946 	WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
3947 	WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
3948 	WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
3949 	WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
3950 	WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
3951 	WLAN_PUB_ACTION_MSMT_PILOT = 7,
3952 	WLAN_PUB_ACTION_DSE_PC = 8,
3953 	WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
3954 	WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
3955 	WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
3956 	WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
3957 	WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
3958 	WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
3959 	WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
3960 	WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
3961 	WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
3962 	WLAN_PUB_ACTION_QMF_POLICY = 18,
3963 	WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
3964 	WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
3965 	WLAN_PUB_ACTION_QLOAD_REPORT = 21,
3966 	WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
3967 	WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
3968 	WLAN_PUB_ACTION_PUBLIC_KEY = 24,
3969 	WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
3970 	WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
3971 	WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
3972 	WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
3973 	WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
3974 	WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
3975 	WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
3976 	WLAN_PUB_ACTION_FTM_REQUEST = 32,
3977 	WLAN_PUB_ACTION_FTM_RESPONSE = 33,
3978 	WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
3979 };
3980 
3981 /* TDLS action codes */
3982 enum ieee80211_tdls_actioncode {
3983 	WLAN_TDLS_SETUP_REQUEST = 0,
3984 	WLAN_TDLS_SETUP_RESPONSE = 1,
3985 	WLAN_TDLS_SETUP_CONFIRM = 2,
3986 	WLAN_TDLS_TEARDOWN = 3,
3987 	WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
3988 	WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
3989 	WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
3990 	WLAN_TDLS_PEER_PSM_REQUEST = 7,
3991 	WLAN_TDLS_PEER_PSM_RESPONSE = 8,
3992 	WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
3993 	WLAN_TDLS_DISCOVERY_REQUEST = 10,
3994 };
3995 
3996 /* Extended Channel Switching capability to be set in the 1st byte of
3997  * the @WLAN_EID_EXT_CAPABILITY information element
3998  */
3999 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING	BIT(2)
4000 
4001 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
4002  * @WLAN_EID_EXT_CAPABILITY information element
4003  */
4004 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT	BIT(6)
4005 
4006 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
4007  * of the @WLAN_EID_EXT_CAPABILITY information element
4008  */
4009 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT	BIT(7)
4010 
4011 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
4012 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA		BIT(4)
4013 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM		BIT(5)
4014 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH		BIT(6)
4015 
4016 /* Interworking capabilities are set in 7th bit of 4th byte of the
4017  * @WLAN_EID_EXT_CAPABILITY information element
4018  */
4019 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED	BIT(7)
4020 
4021 /*
4022  * TDLS capabililites to be enabled in the 5th byte of the
4023  * @WLAN_EID_EXT_CAPABILITY information element
4024  */
4025 #define WLAN_EXT_CAPA5_TDLS_ENABLED	BIT(5)
4026 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED	BIT(6)
4027 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED	BIT(7)
4028 
4029 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED	BIT(5)
4030 #define WLAN_EXT_CAPA8_OPMODE_NOTIF	BIT(6)
4031 
4032 /* Defines the maximal number of MSDUs in an A-MSDU. */
4033 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB	BIT(7)
4034 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB	BIT(0)
4035 
4036 /*
4037  * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
4038  * information element
4039  */
4040 #define WLAN_EXT_CAPA9_FTM_INITIATOR	BIT(7)
4041 
4042 /* Defines support for TWT Requester and TWT Responder */
4043 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT	BIT(5)
4044 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT	BIT(6)
4045 
4046 /*
4047  * When set, indicates that the AP is able to tolerate 26-tone RU UL
4048  * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
4049  * 26-tone RU UL OFDMA transmissions as radar pulses).
4050  */
4051 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
4052 
4053 /* Defines support for enhanced multi-bssid advertisement*/
4054 #define WLAN_EXT_CAPA11_EMA_SUPPORT	BIT(3)
4055 
4056 /* TDLS specific payload type in the LLC/SNAP header */
4057 #define WLAN_TDLS_SNAP_RFTYPE	0x2
4058 
4059 /* BSS Coex IE information field bits */
4060 #define WLAN_BSS_COEX_INFORMATION_REQUEST	BIT(0)
4061 
4062 /**
4063  * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
4064  *
4065  * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
4066  * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
4067  *	that will be specified in a vendor specific information element
4068  */
4069 enum ieee80211_mesh_sync_method {
4070 	IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
4071 	IEEE80211_SYNC_METHOD_VENDOR = 255,
4072 };
4073 
4074 /**
4075  * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
4076  *
4077  * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
4078  * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
4079  *	be specified in a vendor specific information element
4080  */
4081 enum ieee80211_mesh_path_protocol {
4082 	IEEE80211_PATH_PROTOCOL_HWMP = 1,
4083 	IEEE80211_PATH_PROTOCOL_VENDOR = 255,
4084 };
4085 
4086 /**
4087  * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
4088  *
4089  * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
4090  * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
4091  *	specified in a vendor specific information element
4092  */
4093 enum ieee80211_mesh_path_metric {
4094 	IEEE80211_PATH_METRIC_AIRTIME = 1,
4095 	IEEE80211_PATH_METRIC_VENDOR = 255,
4096 };
4097 
4098 /**
4099  * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
4100  *
4101  * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
4102  *
4103  * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
4104  * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
4105  *	this value
4106  * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
4107  *	the proactive PREQ with proactive PREP subfield set to 0
4108  * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
4109  *	supports the proactive PREQ with proactive PREP subfield set to 1
4110  * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
4111  *	the proactive RANN
4112  */
4113 enum ieee80211_root_mode_identifier {
4114 	IEEE80211_ROOTMODE_NO_ROOT = 0,
4115 	IEEE80211_ROOTMODE_ROOT = 1,
4116 	IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
4117 	IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
4118 	IEEE80211_PROACTIVE_RANN = 4,
4119 };
4120 
4121 /*
4122  * IEEE 802.11-2007 7.3.2.9 Country information element
4123  *
4124  * Minimum length is 8 octets, ie len must be evenly
4125  * divisible by 2
4126  */
4127 
4128 /* Although the spec says 8 I'm seeing 6 in practice */
4129 #define IEEE80211_COUNTRY_IE_MIN_LEN	6
4130 
4131 /* The Country String field of the element shall be 3 octets in length */
4132 #define IEEE80211_COUNTRY_STRING_LEN	3
4133 
4134 /*
4135  * For regulatory extension stuff see IEEE 802.11-2007
4136  * Annex I (page 1141) and Annex J (page 1147). Also
4137  * review 7.3.2.9.
4138  *
4139  * When dot11RegulatoryClassesRequired is true and the
4140  * first_channel/reg_extension_id is >= 201 then the IE
4141  * compromises of the 'ext' struct represented below:
4142  *
4143  *  - Regulatory extension ID - when generating IE this just needs
4144  *    to be monotonically increasing for each triplet passed in
4145  *    the IE
4146  *  - Regulatory class - index into set of rules
4147  *  - Coverage class - index into air propagation time (Table 7-27),
4148  *    in microseconds, you can compute the air propagation time from
4149  *    the index by multiplying by 3, so index 10 yields a propagation
4150  *    of 10 us. Valid values are 0-31, values 32-255 are not defined
4151  *    yet. A value of 0 inicates air propagation of <= 1 us.
4152  *
4153  *  See also Table I.2 for Emission limit sets and table
4154  *  I.3 for Behavior limit sets. Table J.1 indicates how to map
4155  *  a reg_class to an emission limit set and behavior limit set.
4156  */
4157 #define IEEE80211_COUNTRY_EXTENSION_ID 201
4158 
4159 /*
4160  *  Channels numbers in the IE must be monotonically increasing
4161  *  if dot11RegulatoryClassesRequired is not true.
4162  *
4163  *  If dot11RegulatoryClassesRequired is true consecutive
4164  *  subband triplets following a regulatory triplet shall
4165  *  have monotonically increasing first_channel number fields.
4166  *
4167  *  Channel numbers shall not overlap.
4168  *
4169  *  Note that max_power is signed.
4170  */
4171 struct ieee80211_country_ie_triplet {
4172 	union {
4173 		struct {
4174 			u8 first_channel;
4175 			u8 num_channels;
4176 			s8 max_power;
4177 		} __packed chans;
4178 		struct {
4179 			u8 reg_extension_id;
4180 			u8 reg_class;
4181 			u8 coverage_class;
4182 		} __packed ext;
4183 	};
4184 } __packed;
4185 
4186 enum ieee80211_timeout_interval_type {
4187 	WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
4188 	WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
4189 	WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
4190 };
4191 
4192 /**
4193  * struct ieee80211_timeout_interval_ie - Timeout Interval element
4194  * @type: type, see &enum ieee80211_timeout_interval_type
4195  * @value: timeout interval value
4196  */
4197 struct ieee80211_timeout_interval_ie {
4198 	u8 type;
4199 	__le32 value;
4200 } __packed;
4201 
4202 /**
4203  * enum ieee80211_idle_options - BSS idle options
4204  * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4205  *	protected frame to the AP to reset the idle timer at the AP for
4206  *	the station.
4207  */
4208 enum ieee80211_idle_options {
4209 	WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4210 };
4211 
4212 /**
4213  * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct
4214  *
4215  * This structure refers to "BSS Max idle period element"
4216  *
4217  * @max_idle_period: indicates the time period during which a station can
4218  *	refrain from transmitting frames to its associated AP without being
4219  *	disassociated. In units of 1000 TUs.
4220  * @idle_options: indicates the options associated with the BSS idle capability
4221  *	as specified in &enum ieee80211_idle_options.
4222  */
4223 struct ieee80211_bss_max_idle_period_ie {
4224 	__le16 max_idle_period;
4225 	u8 idle_options;
4226 } __packed;
4227 
4228 /* BACK action code */
4229 enum ieee80211_back_actioncode {
4230 	WLAN_ACTION_ADDBA_REQ = 0,
4231 	WLAN_ACTION_ADDBA_RESP = 1,
4232 	WLAN_ACTION_DELBA = 2,
4233 };
4234 
4235 /* BACK (block-ack) parties */
4236 enum ieee80211_back_parties {
4237 	WLAN_BACK_RECIPIENT = 0,
4238 	WLAN_BACK_INITIATOR = 1,
4239 };
4240 
4241 /* SA Query action */
4242 enum ieee80211_sa_query_action {
4243 	WLAN_ACTION_SA_QUERY_REQUEST = 0,
4244 	WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4245 };
4246 
4247 /**
4248  * struct ieee80211_bssid_index - multiple BSSID index element structure
4249  *
4250  * This structure refers to "Multiple BSSID-index element"
4251  *
4252  * @bssid_index: BSSID index
4253  * @dtim_period: optional, overrides transmitted BSS dtim period
4254  * @dtim_count: optional, overrides transmitted BSS dtim count
4255  */
4256 struct ieee80211_bssid_index {
4257 	u8 bssid_index;
4258 	u8 dtim_period;
4259 	u8 dtim_count;
4260 };
4261 
4262 /**
4263  * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration
4264  *	element structure
4265  *
4266  * This structure refers to "Multiple BSSID Configuration element"
4267  *
4268  * @bssid_count: total number of active BSSIDs in the set
4269  * @profile_periodicity: the least number of beacon frames need to be received
4270  *	in order to discover all the nontransmitted BSSIDs in the set.
4271  */
4272 struct ieee80211_multiple_bssid_configuration {
4273 	u8 bssid_count;
4274 	u8 profile_periodicity;
4275 };
4276 
4277 #define SUITE(oui, id)	(((oui) << 8) | (id))
4278 
4279 /* cipher suite selectors */
4280 #define WLAN_CIPHER_SUITE_USE_GROUP	SUITE(0x000FAC, 0)
4281 #define WLAN_CIPHER_SUITE_WEP40		SUITE(0x000FAC, 1)
4282 #define WLAN_CIPHER_SUITE_TKIP		SUITE(0x000FAC, 2)
4283 /* reserved: 				SUITE(0x000FAC, 3) */
4284 #define WLAN_CIPHER_SUITE_CCMP		SUITE(0x000FAC, 4)
4285 #define WLAN_CIPHER_SUITE_WEP104	SUITE(0x000FAC, 5)
4286 #define WLAN_CIPHER_SUITE_AES_CMAC	SUITE(0x000FAC, 6)
4287 #define WLAN_CIPHER_SUITE_GCMP		SUITE(0x000FAC, 8)
4288 #define WLAN_CIPHER_SUITE_GCMP_256	SUITE(0x000FAC, 9)
4289 #define WLAN_CIPHER_SUITE_CCMP_256	SUITE(0x000FAC, 10)
4290 #define WLAN_CIPHER_SUITE_BIP_GMAC_128	SUITE(0x000FAC, 11)
4291 #define WLAN_CIPHER_SUITE_BIP_GMAC_256	SUITE(0x000FAC, 12)
4292 #define WLAN_CIPHER_SUITE_BIP_CMAC_256	SUITE(0x000FAC, 13)
4293 
4294 #define WLAN_CIPHER_SUITE_SMS4		SUITE(0x001472, 1)
4295 
4296 /* AKM suite selectors */
4297 #define WLAN_AKM_SUITE_8021X			SUITE(0x000FAC, 1)
4298 #define WLAN_AKM_SUITE_PSK			SUITE(0x000FAC, 2)
4299 #define WLAN_AKM_SUITE_FT_8021X			SUITE(0x000FAC, 3)
4300 #define WLAN_AKM_SUITE_FT_PSK			SUITE(0x000FAC, 4)
4301 #define WLAN_AKM_SUITE_8021X_SHA256		SUITE(0x000FAC, 5)
4302 #define WLAN_AKM_SUITE_PSK_SHA256		SUITE(0x000FAC, 6)
4303 #define WLAN_AKM_SUITE_TDLS			SUITE(0x000FAC, 7)
4304 #define WLAN_AKM_SUITE_SAE			SUITE(0x000FAC, 8)
4305 #define WLAN_AKM_SUITE_FT_OVER_SAE		SUITE(0x000FAC, 9)
4306 #define WLAN_AKM_SUITE_AP_PEER_KEY		SUITE(0x000FAC, 10)
4307 #define WLAN_AKM_SUITE_8021X_SUITE_B		SUITE(0x000FAC, 11)
4308 #define WLAN_AKM_SUITE_8021X_SUITE_B_192	SUITE(0x000FAC, 12)
4309 #define WLAN_AKM_SUITE_FT_8021X_SHA384		SUITE(0x000FAC, 13)
4310 #define WLAN_AKM_SUITE_FILS_SHA256		SUITE(0x000FAC, 14)
4311 #define WLAN_AKM_SUITE_FILS_SHA384		SUITE(0x000FAC, 15)
4312 #define WLAN_AKM_SUITE_FT_FILS_SHA256		SUITE(0x000FAC, 16)
4313 #define WLAN_AKM_SUITE_FT_FILS_SHA384		SUITE(0x000FAC, 17)
4314 #define WLAN_AKM_SUITE_OWE			SUITE(0x000FAC, 18)
4315 #define WLAN_AKM_SUITE_FT_PSK_SHA384		SUITE(0x000FAC, 19)
4316 #define WLAN_AKM_SUITE_PSK_SHA384		SUITE(0x000FAC, 20)
4317 
4318 #define WLAN_AKM_SUITE_WFA_DPP			SUITE(WLAN_OUI_WFA, 2)
4319 
4320 #define WLAN_MAX_KEY_LEN		32
4321 
4322 #define WLAN_PMK_NAME_LEN		16
4323 #define WLAN_PMKID_LEN			16
4324 #define WLAN_PMK_LEN_EAP_LEAP		16
4325 #define WLAN_PMK_LEN			32
4326 #define WLAN_PMK_LEN_SUITE_B_192	48
4327 
4328 #define WLAN_OUI_WFA			0x506f9a
4329 #define WLAN_OUI_TYPE_WFA_P2P		9
4330 #define WLAN_OUI_TYPE_WFA_DPP		0x1A
4331 #define WLAN_OUI_MICROSOFT		0x0050f2
4332 #define WLAN_OUI_TYPE_MICROSOFT_WPA	1
4333 #define WLAN_OUI_TYPE_MICROSOFT_WMM	2
4334 #define WLAN_OUI_TYPE_MICROSOFT_WPS	4
4335 #define WLAN_OUI_TYPE_MICROSOFT_TPC	8
4336 
4337 /*
4338  * WMM/802.11e Tspec Element
4339  */
4340 #define IEEE80211_WMM_IE_TSPEC_TID_MASK		0x0F
4341 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT	1
4342 
4343 enum ieee80211_tspec_status_code {
4344 	IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4345 	IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4346 };
4347 
4348 struct ieee80211_tspec_ie {
4349 	u8 element_id;
4350 	u8 len;
4351 	u8 oui[3];
4352 	u8 oui_type;
4353 	u8 oui_subtype;
4354 	u8 version;
4355 	__le16 tsinfo;
4356 	u8 tsinfo_resvd;
4357 	__le16 nominal_msdu;
4358 	__le16 max_msdu;
4359 	__le32 min_service_int;
4360 	__le32 max_service_int;
4361 	__le32 inactivity_int;
4362 	__le32 suspension_int;
4363 	__le32 service_start_time;
4364 	__le32 min_data_rate;
4365 	__le32 mean_data_rate;
4366 	__le32 peak_data_rate;
4367 	__le32 max_burst_size;
4368 	__le32 delay_bound;
4369 	__le32 min_phy_rate;
4370 	__le16 sba;
4371 	__le16 medium_time;
4372 } __packed;
4373 
4374 struct ieee80211_he_6ghz_capa {
4375 	/* uses IEEE80211_HE_6GHZ_CAP_* below */
4376 	__le16 capa;
4377 } __packed;
4378 
4379 /* HE 6 GHz band capabilities */
4380 /* uses enum ieee80211_min_mpdu_spacing values */
4381 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START	0x0007
4382 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4383 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP	0x0038
4384 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4385 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN	0x00c0
4386 /* WLAN_HT_CAP_SM_PS_* values */
4387 #define IEEE80211_HE_6GHZ_CAP_SM_PS		0x0600
4388 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER	0x0800
4389 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS	0x1000
4390 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS	0x2000
4391 
4392 /**
4393  * ieee80211_get_qos_ctl - get pointer to qos control bytes
4394  * @hdr: the frame
4395  * Return: a pointer to the QoS control field in the frame header
4396  *
4397  * The qos ctrl bytes come after the frame_control, duration, seq_num
4398  * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4399  * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4400  */
ieee80211_get_qos_ctl(struct ieee80211_hdr * hdr)4401 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4402 {
4403 	union {
4404 		struct ieee80211_qos_hdr	addr3;
4405 		struct ieee80211_qos_hdr_4addr	addr4;
4406 	} *qos;
4407 
4408 	qos = (void *)hdr;
4409 	if (ieee80211_has_a4(qos->addr3.frame_control))
4410 		return (u8 *)&qos->addr4.qos_ctrl;
4411 	else
4412 		return (u8 *)&qos->addr3.qos_ctrl;
4413 }
4414 
4415 /**
4416  * ieee80211_get_tid - get qos TID
4417  * @hdr: the frame
4418  * Return: the TID from the QoS control field
4419  */
ieee80211_get_tid(struct ieee80211_hdr * hdr)4420 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4421 {
4422 	u8 *qc = ieee80211_get_qos_ctl(hdr);
4423 
4424 	return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4425 }
4426 
4427 /**
4428  * ieee80211_get_SA - get pointer to SA
4429  * @hdr: the frame
4430  * Return: a pointer to the source address (SA)
4431  *
4432  * Given an 802.11 frame, this function returns the offset
4433  * to the source address (SA). It does not verify that the
4434  * header is long enough to contain the address, and the
4435  * header must be long enough to contain the frame control
4436  * field.
4437  */
ieee80211_get_SA(struct ieee80211_hdr * hdr)4438 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4439 {
4440 	if (ieee80211_has_a4(hdr->frame_control))
4441 		return hdr->addr4;
4442 	if (ieee80211_has_fromds(hdr->frame_control))
4443 		return hdr->addr3;
4444 	return hdr->addr2;
4445 }
4446 
4447 /**
4448  * ieee80211_get_DA - get pointer to DA
4449  * @hdr: the frame
4450  * Return: a pointer to the destination address (DA)
4451  *
4452  * Given an 802.11 frame, this function returns the offset
4453  * to the destination address (DA). It does not verify that
4454  * the header is long enough to contain the address, and the
4455  * header must be long enough to contain the frame control
4456  * field.
4457  */
ieee80211_get_DA(struct ieee80211_hdr * hdr)4458 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4459 {
4460 	if (ieee80211_has_tods(hdr->frame_control))
4461 		return hdr->addr3;
4462 	else
4463 		return hdr->addr1;
4464 }
4465 
4466 /**
4467  * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4468  * @skb: the skb to check, starting with the 802.11 header
4469  * Return: whether or not the MMPDU is bufferable
4470  */
ieee80211_is_bufferable_mmpdu(struct sk_buff * skb)4471 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4472 {
4473 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4474 	__le16 fc = mgmt->frame_control;
4475 
4476 	/*
4477 	 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4478 	 * note that this ignores the IBSS special case.
4479 	 */
4480 	if (!ieee80211_is_mgmt(fc))
4481 		return false;
4482 
4483 	if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4484 		return true;
4485 
4486 	if (!ieee80211_is_action(fc))
4487 		return false;
4488 
4489 	if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4490 		return true;
4491 
4492 	/* action frame - additionally check for non-bufferable FTM */
4493 
4494 	if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4495 	    mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4496 		return true;
4497 
4498 	if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4499 	    mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4500 		return false;
4501 
4502 	return true;
4503 }
4504 
4505 /**
4506  * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4507  * @hdr: the frame (buffer must include at least the first octet of payload)
4508  * Return: whether or not the frame is a robust management frame
4509  */
_ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr * hdr)4510 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4511 {
4512 	if (ieee80211_is_disassoc(hdr->frame_control) ||
4513 	    ieee80211_is_deauth(hdr->frame_control))
4514 		return true;
4515 
4516 	if (ieee80211_is_action(hdr->frame_control)) {
4517 		u8 *category;
4518 
4519 		/*
4520 		 * Action frames, excluding Public Action frames, are Robust
4521 		 * Management Frames. However, if we are looking at a Protected
4522 		 * frame, skip the check since the data may be encrypted and
4523 		 * the frame has already been found to be a Robust Management
4524 		 * Frame (by the other end).
4525 		 */
4526 		if (ieee80211_has_protected(hdr->frame_control))
4527 			return true;
4528 		category = ((u8 *) hdr) + 24;
4529 		return *category != WLAN_CATEGORY_PUBLIC &&
4530 			*category != WLAN_CATEGORY_HT &&
4531 			*category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4532 			*category != WLAN_CATEGORY_SELF_PROTECTED &&
4533 			*category != WLAN_CATEGORY_UNPROT_DMG &&
4534 			*category != WLAN_CATEGORY_VHT &&
4535 			*category != WLAN_CATEGORY_S1G &&
4536 			*category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4537 	}
4538 
4539 	return false;
4540 }
4541 
4542 /**
4543  * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4544  * @skb: the skb containing the frame, length will be checked
4545  * Return: whether or not the frame is a robust management frame
4546  */
ieee80211_is_robust_mgmt_frame(struct sk_buff * skb)4547 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4548 {
4549 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4550 		return false;
4551 	return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4552 }
4553 
4554 /**
4555  * ieee80211_is_public_action - check if frame is a public action frame
4556  * @hdr: the frame
4557  * @len: length of the frame
4558  * Return: whether or not the frame is a public action frame
4559  */
ieee80211_is_public_action(struct ieee80211_hdr * hdr,size_t len)4560 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4561 					      size_t len)
4562 {
4563 	struct ieee80211_mgmt *mgmt = (void *)hdr;
4564 
4565 	if (len < IEEE80211_MIN_ACTION_SIZE)
4566 		return false;
4567 	if (!ieee80211_is_action(hdr->frame_control))
4568 		return false;
4569 	return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4570 }
4571 
4572 /**
4573  * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4574  * protected dual of public action management frame
4575  * @skb: the skb containing the frame, length will be checked
4576  *
4577  * Return: true if the skb contains a protected dual of public action
4578  * management frame, false otherwise.
4579  */
4580 static inline bool
ieee80211_is_protected_dual_of_public_action(struct sk_buff * skb)4581 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4582 {
4583 	u8 action;
4584 
4585 	if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4586 	    skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4587 		return false;
4588 
4589 	action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4590 
4591 	return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4592 		action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4593 		action != WLAN_PUB_ACTION_MSMT_PILOT &&
4594 		action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4595 		action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4596 		action != WLAN_PUB_ACTION_FTM_REQUEST &&
4597 		action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4598 		action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4599 		action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4600 }
4601 
4602 /**
4603  * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4604  *	privacy action frame
4605  * @hdr: the frame
4606  * Return: whether or not the frame is a group addressed privacy action frame
4607  */
_ieee80211_is_group_privacy_action(struct ieee80211_hdr * hdr)4608 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4609 {
4610 	struct ieee80211_mgmt *mgmt = (void *)hdr;
4611 
4612 	if (!ieee80211_is_action(hdr->frame_control) ||
4613 	    !is_multicast_ether_addr(hdr->addr1))
4614 		return false;
4615 
4616 	return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4617 	       mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4618 }
4619 
4620 /**
4621  * ieee80211_is_group_privacy_action - check if frame is a group addressed
4622  *	privacy action frame
4623  * @skb: the skb containing the frame, length will be checked
4624  * Return: whether or not the frame is a group addressed privacy action frame
4625  */
ieee80211_is_group_privacy_action(struct sk_buff * skb)4626 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4627 {
4628 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4629 		return false;
4630 	return _ieee80211_is_group_privacy_action((void *)skb->data);
4631 }
4632 
4633 /**
4634  * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4635  * @tu: the TUs
4636  * Return: the time value converted to microseconds
4637  */
ieee80211_tu_to_usec(unsigned long tu)4638 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4639 {
4640 	return 1024 * tu;
4641 }
4642 
4643 /**
4644  * ieee80211_check_tim - check if AID bit is set in TIM
4645  * @tim: the TIM IE
4646  * @tim_len: length of the TIM IE
4647  * @aid: the AID to look for
4648  * Return: whether or not traffic is indicated in the TIM for the given AID
4649  */
ieee80211_check_tim(const struct ieee80211_tim_ie * tim,u8 tim_len,u16 aid)4650 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4651 				       u8 tim_len, u16 aid)
4652 {
4653 	u8 mask;
4654 	u8 index, indexn1, indexn2;
4655 
4656 	if (unlikely(!tim || tim_len < sizeof(*tim)))
4657 		return false;
4658 
4659 	aid &= 0x3fff;
4660 	index = aid / 8;
4661 	mask  = 1 << (aid & 7);
4662 
4663 	indexn1 = tim->bitmap_ctrl & 0xfe;
4664 	indexn2 = tim_len + indexn1 - 4;
4665 
4666 	if (index < indexn1 || index > indexn2)
4667 		return false;
4668 
4669 	index -= indexn1;
4670 
4671 	return !!(tim->virtual_map[index] & mask);
4672 }
4673 
4674 /**
4675  * ieee80211_get_tdls_action - get TDLS action code
4676  * @skb: the skb containing the frame, length will not be checked
4677  * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action
4678  *	frame
4679  *
4680  * This function assumes the frame is a data frame, and that the network header
4681  * is in the correct place.
4682  */
ieee80211_get_tdls_action(struct sk_buff * skb)4683 static inline int ieee80211_get_tdls_action(struct sk_buff *skb)
4684 {
4685 	if (!skb_is_nonlinear(skb) &&
4686 	    skb->len > (skb_network_offset(skb) + 2)) {
4687 		/* Point to where the indication of TDLS should start */
4688 		const u8 *tdls_data = skb_network_header(skb) - 2;
4689 
4690 		if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
4691 		    tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
4692 		    tdls_data[3] == WLAN_CATEGORY_TDLS)
4693 			return tdls_data[4];
4694 	}
4695 
4696 	return -1;
4697 }
4698 
4699 /* convert time units */
4700 #define TU_TO_JIFFIES(x)	(usecs_to_jiffies((x) * 1024))
4701 #define TU_TO_EXP_TIME(x)	(jiffies + TU_TO_JIFFIES(x))
4702 
4703 /* convert frequencies */
4704 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
4705 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
4706 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
4707 #define KHZ_F "%d.%03d"
4708 
4709 /* convert powers */
4710 #define DBI_TO_MBI(gain) ((gain) * 100)
4711 #define MBI_TO_DBI(gain) ((gain) / 100)
4712 #define DBM_TO_MBM(gain) ((gain) * 100)
4713 #define MBM_TO_DBM(gain) ((gain) / 100)
4714 
4715 /**
4716  * ieee80211_action_contains_tpc - checks if the frame contains TPC element
4717  * @skb: the skb containing the frame, length will be checked
4718  * Return: %true if the frame contains a TPC element, %false otherwise
4719  *
4720  * This function checks if it's either TPC report action frame or Link
4721  * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
4722  * and 8.5.7.5 accordingly.
4723  */
ieee80211_action_contains_tpc(struct sk_buff * skb)4724 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
4725 {
4726 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4727 
4728 	if (!ieee80211_is_action(mgmt->frame_control))
4729 		return false;
4730 
4731 	if (skb->len < IEEE80211_MIN_ACTION_SIZE +
4732 		       sizeof(mgmt->u.action.u.tpc_report))
4733 		return false;
4734 
4735 	/*
4736 	 * TPC report - check that:
4737 	 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
4738 	 * spectrum management action = 3 (TPC/Link Measurement report)
4739 	 * TPC report EID = 35
4740 	 * TPC report element length = 2
4741 	 *
4742 	 * The spectrum management's tpc_report struct is used here both for
4743 	 * parsing tpc_report and radio measurement's link measurement report
4744 	 * frame, since the relevant part is identical in both frames.
4745 	 */
4746 	if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
4747 	    mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
4748 		return false;
4749 
4750 	/* both spectrum mgmt and link measurement have same action code */
4751 	if (mgmt->u.action.u.tpc_report.action_code !=
4752 	    WLAN_ACTION_SPCT_TPC_RPRT)
4753 		return false;
4754 
4755 	if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
4756 	    mgmt->u.action.u.tpc_report.tpc_elem_length !=
4757 	    sizeof(struct ieee80211_tpc_report_ie))
4758 		return false;
4759 
4760 	return true;
4761 }
4762 
4763 /**
4764  * ieee80211_is_timing_measurement - check if frame is timing measurement response
4765  * @skb: the SKB to check
4766  * Return: whether or not the frame is a valid timing measurement response
4767  */
ieee80211_is_timing_measurement(struct sk_buff * skb)4768 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
4769 {
4770 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4771 
4772 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4773 		return false;
4774 
4775 	if (!ieee80211_is_action(mgmt->frame_control))
4776 		return false;
4777 
4778 	if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
4779 	    mgmt->u.action.u.wnm_timing_msr.action_code ==
4780 		WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
4781 	    skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
4782 		return true;
4783 
4784 	return false;
4785 }
4786 
4787 /**
4788  * ieee80211_is_ftm - check if frame is FTM response
4789  * @skb: the SKB to check
4790  * Return: whether or not the frame is a valid FTM response action frame
4791  */
ieee80211_is_ftm(struct sk_buff * skb)4792 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
4793 {
4794 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4795 
4796 	if (!ieee80211_is_public_action((void *)mgmt, skb->len))
4797 		return false;
4798 
4799 	if (mgmt->u.action.u.ftm.action_code ==
4800 		WLAN_PUB_ACTION_FTM_RESPONSE &&
4801 	    skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
4802 		return true;
4803 
4804 	return false;
4805 }
4806 
4807 struct element {
4808 	u8 id;
4809 	u8 datalen;
4810 	u8 data[];
4811 } __packed;
4812 
4813 /* element iteration helpers */
4814 #define for_each_element(_elem, _data, _datalen)			\
4815 	for (_elem = (const struct element *)(_data);			\
4816 	     (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >=	\
4817 		(int)sizeof(*_elem) &&					\
4818 	     (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >=	\
4819 		(int)sizeof(*_elem) + _elem->datalen;			\
4820 	     _elem = (const struct element *)(_elem->data + _elem->datalen))
4821 
4822 #define for_each_element_id(element, _id, data, datalen)		\
4823 	for_each_element(element, data, datalen)			\
4824 		if (element->id == (_id))
4825 
4826 #define for_each_element_extid(element, extid, _data, _datalen)		\
4827 	for_each_element(element, _data, _datalen)			\
4828 		if (element->id == WLAN_EID_EXTENSION &&		\
4829 		    element->datalen > 0 &&				\
4830 		    element->data[0] == (extid))
4831 
4832 #define for_each_subelement(sub, element)				\
4833 	for_each_element(sub, (element)->data, (element)->datalen)
4834 
4835 #define for_each_subelement_id(sub, id, element)			\
4836 	for_each_element_id(sub, id, (element)->data, (element)->datalen)
4837 
4838 #define for_each_subelement_extid(sub, extid, element)			\
4839 	for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
4840 
4841 /**
4842  * for_each_element_completed - determine if element parsing consumed all data
4843  * @element: element pointer after for_each_element() or friends
4844  * @data: same data pointer as passed to for_each_element() or friends
4845  * @datalen: same data length as passed to for_each_element() or friends
4846  * Return: %true if all elements were iterated, %false otherwise; see notes
4847  *
4848  * This function returns %true if all the data was parsed or considered
4849  * while walking the elements. Only use this if your for_each_element()
4850  * loop cannot be broken out of, otherwise it always returns %false.
4851  *
4852  * If some data was malformed, this returns %false since the last parsed
4853  * element will not fill the whole remaining data.
4854  */
for_each_element_completed(const struct element * element,const void * data,size_t datalen)4855 static inline bool for_each_element_completed(const struct element *element,
4856 					      const void *data, size_t datalen)
4857 {
4858 	return (const u8 *)element == (const u8 *)data + datalen;
4859 }
4860 
4861 /*
4862  * RSNX Capabilities:
4863  * bits 0-3: Field length (n-1)
4864  */
4865 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
4866 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
4867 
4868 /*
4869  * reduced neighbor report, based on Draft P802.11ax_D6.1,
4870  * section 9.4.2.170 and accepted contributions.
4871  */
4872 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE				0x03
4873 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED			0x04
4874 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC			0x08
4875 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT			0xF0
4876 #define IEEE80211_TBTT_INFO_TYPE_TBTT				0
4877 #define IEEE80211_TBTT_INFO_TYPE_MLD				1
4878 
4879 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED		0x01
4880 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID			0x02
4881 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID			0x04
4882 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID		0x08
4883 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS			0x10
4884 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE			0x20
4885 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP			0x40
4886 
4887 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT			127
4888 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED			-128
4889 
4890 struct ieee80211_neighbor_ap_info {
4891 	u8 tbtt_info_hdr;
4892 	u8 tbtt_info_len;
4893 	u8 op_class;
4894 	u8 channel;
4895 } __packed;
4896 
4897 enum ieee80211_range_params_max_total_ltf {
4898 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
4899 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
4900 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
4901 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
4902 };
4903 
4904 /*
4905  * reduced neighbor report, based on Draft P802.11be_D3.0,
4906  * section 9.4.2.170.2.
4907  */
4908 struct ieee80211_rnr_mld_params {
4909 	u8 mld_id;
4910 	__le16 params;
4911 } __packed;
4912 
4913 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID			0x000F
4914 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT		0x0FF0
4915 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED		0x1000
4916 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK			0x2000
4917 
4918 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
4919 struct ieee80211_tbtt_info_7_8_9 {
4920 	u8 tbtt_offset;
4921 	u8 bssid[ETH_ALEN];
4922 
4923 	/* The following element is optional, structure may not grow */
4924 	u8 bss_params;
4925 	s8 psd_20;
4926 } __packed;
4927 
4928 /* Format of the TBTT information element if it has >= 11 bytes */
4929 struct ieee80211_tbtt_info_ge_11 {
4930 	u8 tbtt_offset;
4931 	u8 bssid[ETH_ALEN];
4932 	__le32 short_ssid;
4933 
4934 	/* The following elements are optional, structure may grow */
4935 	u8 bss_params;
4936 	s8 psd_20;
4937 	struct ieee80211_rnr_mld_params mld_params;
4938 } __packed;
4939 
4940 /* multi-link device */
4941 #define IEEE80211_MLD_MAX_NUM_LINKS	15
4942 
4943 #define IEEE80211_ML_CONTROL_TYPE			0x0007
4944 #define IEEE80211_ML_CONTROL_TYPE_BASIC			0
4945 #define IEEE80211_ML_CONTROL_TYPE_PREQ			1
4946 #define IEEE80211_ML_CONTROL_TYPE_RECONF		2
4947 #define IEEE80211_ML_CONTROL_TYPE_TDLS			3
4948 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS		4
4949 #define IEEE80211_ML_CONTROL_PRESENCE_MASK		0xfff0
4950 
4951 struct ieee80211_multi_link_elem {
4952 	__le16 control;
4953 	u8 variable[];
4954 } __packed;
4955 
4956 #define IEEE80211_MLC_BASIC_PRES_LINK_ID		0x0010
4957 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT	0x0020
4958 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY		0x0040
4959 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA		0x0080
4960 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP		0x0100
4961 #define IEEE80211_MLC_BASIC_PRES_MLD_ID			0x0200
4962 
4963 #define IEEE80211_MED_SYNC_DELAY_DURATION		0x00ff
4964 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH	0x0f00
4965 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS	0xf000
4966 
4967 /*
4968  * Described in P802.11be_D3.0
4969  * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
4970  * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
4971  * dot11MSDTXOPMAX defaults to 1
4972  */
4973 #define IEEE80211_MED_SYNC_DELAY_DEFAULT		0x10ac
4974 
4975 #define IEEE80211_EML_CAP_EMLSR_SUPP			0x0001
4976 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY		0x000e
4977 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US		0
4978 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US		1
4979 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US		2
4980 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US		3
4981 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US		4
4982 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY	0x0070
4983 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US		0
4984 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US		1
4985 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US		2
4986 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US		3
4987 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US		4
4988 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US		5
4989 #define IEEE80211_EML_CAP_EMLMR_SUPPORT			0x0080
4990 #define IEEE80211_EML_CAP_EMLMR_DELAY			0x0700
4991 #define  IEEE80211_EML_CAP_EMLMR_DELAY_0US			0
4992 #define  IEEE80211_EML_CAP_EMLMR_DELAY_32US			1
4993 #define  IEEE80211_EML_CAP_EMLMR_DELAY_64US			2
4994 #define  IEEE80211_EML_CAP_EMLMR_DELAY_128US			3
4995 #define  IEEE80211_EML_CAP_EMLMR_DELAY_256US			4
4996 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT		0x7800
4997 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0			0
4998 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US		1
4999 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US		2
5000 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US		3
5001 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU		4
5002 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU		5
5003 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU		6
5004 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU		7
5005 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU		8
5006 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU		9
5007 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU		10
5008 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU		11
5009 
5010 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS		0x000f
5011 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT		0x0010
5012 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP	0x0060
5013 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP	0
5014 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME	1
5015 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED	2
5016 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF	3
5017 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND		0x0f80
5018 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT		0x1000
5019 
5020 struct ieee80211_mle_basic_common_info {
5021 	u8 len;
5022 	u8 mld_mac_addr[ETH_ALEN];
5023 	u8 variable[];
5024 } __packed;
5025 
5026 #define IEEE80211_MLC_PREQ_PRES_MLD_ID			0x0010
5027 
5028 struct ieee80211_mle_preq_common_info {
5029 	u8 len;
5030 	u8 variable[];
5031 } __packed;
5032 
5033 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR		0x0010
5034 
5035 /* no fixed fields in RECONF */
5036 
5037 struct ieee80211_mle_tdls_common_info {
5038 	u8 len;
5039 	u8 ap_mld_mac_addr[ETH_ALEN];
5040 } __packed;
5041 
5042 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR	0x0010
5043 
5044 /* no fixed fields in PRIO_ACCESS */
5045 
5046 /**
5047  * ieee80211_mle_common_size - check multi-link element common size
5048  * @data: multi-link element, must already be checked for size using
5049  *	ieee80211_mle_size_ok()
5050  * Return: the size of the multi-link element's "common" subfield
5051  */
ieee80211_mle_common_size(const u8 * data)5052 static inline u8 ieee80211_mle_common_size(const u8 *data)
5053 {
5054 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5055 	u16 control = le16_to_cpu(mle->control);
5056 	u8 common = 0;
5057 
5058 	switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5059 	case IEEE80211_ML_CONTROL_TYPE_BASIC:
5060 	case IEEE80211_ML_CONTROL_TYPE_PREQ:
5061 	case IEEE80211_ML_CONTROL_TYPE_TDLS:
5062 	case IEEE80211_ML_CONTROL_TYPE_RECONF:
5063 		/*
5064 		 * The length is the first octet pointed by mle->variable so no
5065 		 * need to add anything
5066 		 */
5067 		break;
5068 	case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5069 		if (control & IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR)
5070 			common += ETH_ALEN;
5071 		return common;
5072 	default:
5073 		WARN_ON(1);
5074 		return 0;
5075 	}
5076 
5077 	return sizeof(*mle) + common + mle->variable[0];
5078 }
5079 
5080 /**
5081  * ieee80211_mle_get_link_id - returns the link ID
5082  * @data: the basic multi link element
5083  * Return: the link ID, or -1 if not present
5084  *
5085  * The element is assumed to be of the correct type (BASIC) and big enough,
5086  * this must be checked using ieee80211_mle_type_ok().
5087  */
ieee80211_mle_get_link_id(const u8 * data)5088 static inline int ieee80211_mle_get_link_id(const u8 *data)
5089 {
5090 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5091 	u16 control = le16_to_cpu(mle->control);
5092 	const u8 *common = mle->variable;
5093 
5094 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5095 	common += sizeof(struct ieee80211_mle_basic_common_info);
5096 
5097 	if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID))
5098 		return -1;
5099 
5100 	return *common;
5101 }
5102 
5103 /**
5104  * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
5105  * @data: pointer to the basic multi link element
5106  * Return: the BSS Parameter Change Count field value, or -1 if not present
5107  *
5108  * The element is assumed to be of the correct type (BASIC) and big enough,
5109  * this must be checked using ieee80211_mle_type_ok().
5110  */
5111 static inline int
ieee80211_mle_get_bss_param_ch_cnt(const u8 * data)5112 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data)
5113 {
5114 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5115 	u16 control = le16_to_cpu(mle->control);
5116 	const u8 *common = mle->variable;
5117 
5118 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5119 	common += sizeof(struct ieee80211_mle_basic_common_info);
5120 
5121 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
5122 		return -1;
5123 
5124 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5125 		common += 1;
5126 
5127 	return *common;
5128 }
5129 
5130 /**
5131  * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
5132  * @data: pointer to the multi-link element
5133  * Return: the medium synchronization delay field value from the multi-link
5134  *	element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT)
5135  *	if not present
5136  *
5137  * The element is assumed to be of the correct type (BASIC) and big enough,
5138  * this must be checked using ieee80211_mle_type_ok().
5139  */
ieee80211_mle_get_eml_med_sync_delay(const u8 * data)5140 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
5141 {
5142 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5143 	u16 control = le16_to_cpu(mle->control);
5144 	const u8 *common = mle->variable;
5145 
5146 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5147 	common += sizeof(struct ieee80211_mle_basic_common_info);
5148 
5149 	if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
5150 		return IEEE80211_MED_SYNC_DELAY_DEFAULT;
5151 
5152 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5153 		common += 1;
5154 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5155 		common += 1;
5156 
5157 	return get_unaligned_le16(common);
5158 }
5159 
5160 /**
5161  * ieee80211_mle_get_eml_cap - returns the EML capability
5162  * @data: pointer to the multi-link element
5163  * Return: the EML capability field value from the multi-link element,
5164  *	or 0 if not present
5165  *
5166  * The element is assumed to be of the correct type (BASIC) and big enough,
5167  * this must be checked using ieee80211_mle_type_ok().
5168  */
ieee80211_mle_get_eml_cap(const u8 * data)5169 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
5170 {
5171 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5172 	u16 control = le16_to_cpu(mle->control);
5173 	const u8 *common = mle->variable;
5174 
5175 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5176 	common += sizeof(struct ieee80211_mle_basic_common_info);
5177 
5178 	if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
5179 		return 0;
5180 
5181 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5182 		common += 1;
5183 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5184 		common += 1;
5185 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5186 		common += 2;
5187 
5188 	return get_unaligned_le16(common);
5189 }
5190 
5191 /**
5192  * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations.
5193  * @data: pointer to the multi-link element
5194  * Return: the MLD capabilities and operations field value from the multi-link
5195  *	element, or 0 if not present
5196  *
5197  * The element is assumed to be of the correct type (BASIC) and big enough,
5198  * this must be checked using ieee80211_mle_type_ok().
5199  */
ieee80211_mle_get_mld_capa_op(const u8 * data)5200 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data)
5201 {
5202 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5203 	u16 control = le16_to_cpu(mle->control);
5204 	const u8 *common = mle->variable;
5205 
5206 	/*
5207 	 * common points now at the beginning of
5208 	 * ieee80211_mle_basic_common_info
5209 	 */
5210 	common += sizeof(struct ieee80211_mle_basic_common_info);
5211 
5212 	if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
5213 		return 0;
5214 
5215 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5216 		common += 1;
5217 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5218 		common += 1;
5219 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5220 		common += 2;
5221 	if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5222 		common += 2;
5223 
5224 	return get_unaligned_le16(common);
5225 }
5226 
5227 /**
5228  * ieee80211_mle_get_mld_id - returns the MLD ID
5229  * @data: pointer to the multi-link element
5230  * Return: The MLD ID in the given multi-link element, or 0 if not present
5231  *
5232  * The element is assumed to be of the correct type (BASIC) and big enough,
5233  * this must be checked using ieee80211_mle_type_ok().
5234  */
ieee80211_mle_get_mld_id(const u8 * data)5235 static inline u8 ieee80211_mle_get_mld_id(const u8 *data)
5236 {
5237 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5238 	u16 control = le16_to_cpu(mle->control);
5239 	const u8 *common = mle->variable;
5240 
5241 	/*
5242 	 * common points now at the beginning of
5243 	 * ieee80211_mle_basic_common_info
5244 	 */
5245 	common += sizeof(struct ieee80211_mle_basic_common_info);
5246 
5247 	if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID))
5248 		return 0;
5249 
5250 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5251 		common += 1;
5252 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5253 		common += 1;
5254 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5255 		common += 2;
5256 	if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5257 		common += 2;
5258 	if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5259 		common += 2;
5260 
5261 	return *common;
5262 }
5263 
5264 /**
5265  * ieee80211_mle_size_ok - validate multi-link element size
5266  * @data: pointer to the element data
5267  * @len: length of the containing element
5268  * Return: whether or not the multi-link element size is OK
5269  */
ieee80211_mle_size_ok(const u8 * data,size_t len)5270 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
5271 {
5272 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5273 	u8 fixed = sizeof(*mle);
5274 	u8 common = 0;
5275 	bool check_common_len = false;
5276 	u16 control;
5277 
5278 	if (!data || len < fixed)
5279 		return false;
5280 
5281 	control = le16_to_cpu(mle->control);
5282 
5283 	switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5284 	case IEEE80211_ML_CONTROL_TYPE_BASIC:
5285 		common += sizeof(struct ieee80211_mle_basic_common_info);
5286 		check_common_len = true;
5287 		if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5288 			common += 1;
5289 		if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5290 			common += 1;
5291 		if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5292 			common += 2;
5293 		if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5294 			common += 2;
5295 		if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5296 			common += 2;
5297 		if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5298 			common += 1;
5299 		break;
5300 	case IEEE80211_ML_CONTROL_TYPE_PREQ:
5301 		common += sizeof(struct ieee80211_mle_preq_common_info);
5302 		if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
5303 			common += 1;
5304 		check_common_len = true;
5305 		break;
5306 	case IEEE80211_ML_CONTROL_TYPE_RECONF:
5307 		if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
5308 			common += ETH_ALEN;
5309 		break;
5310 	case IEEE80211_ML_CONTROL_TYPE_TDLS:
5311 		common += sizeof(struct ieee80211_mle_tdls_common_info);
5312 		check_common_len = true;
5313 		break;
5314 	case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5315 		if (control & IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR)
5316 			common += ETH_ALEN;
5317 		break;
5318 	default:
5319 		/* we don't know this type */
5320 		return true;
5321 	}
5322 
5323 	if (len < fixed + common)
5324 		return false;
5325 
5326 	if (!check_common_len)
5327 		return true;
5328 
5329 	/* if present, common length is the first octet there */
5330 	return mle->variable[0] >= common;
5331 }
5332 
5333 /**
5334  * ieee80211_mle_type_ok - validate multi-link element type and size
5335  * @data: pointer to the element data
5336  * @type: expected type of the element
5337  * @len: length of the containing element
5338  * Return: whether or not the multi-link element type matches and size is OK
5339  */
ieee80211_mle_type_ok(const u8 * data,u8 type,size_t len)5340 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5341 {
5342 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5343 	u16 control;
5344 
5345 	if (!ieee80211_mle_size_ok(data, len))
5346 		return false;
5347 
5348 	control = le16_to_cpu(mle->control);
5349 
5350 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5351 		return true;
5352 
5353 	return false;
5354 }
5355 
5356 enum ieee80211_mle_subelems {
5357 	IEEE80211_MLE_SUBELEM_PER_STA_PROFILE		= 0,
5358 	IEEE80211_MLE_SUBELEM_FRAGMENT		        = 254,
5359 };
5360 
5361 #define IEEE80211_MLE_STA_CONTROL_LINK_ID			0x000f
5362 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE		0x0010
5363 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT		0x0020
5364 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT		0x0040
5365 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT		0x0080
5366 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT		0x0100
5367 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT	0x0200
5368 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE		0x0400
5369 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT	0x0800
5370 
5371 struct ieee80211_mle_per_sta_profile {
5372 	__le16 control;
5373 	u8 sta_info_len;
5374 	u8 variable[];
5375 } __packed;
5376 
5377 /**
5378  * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5379  *	profile size
5380  * @data: pointer to the sub element data
5381  * @len: length of the containing sub element
5382  * Return: %true if the STA profile is large enough, %false otherwise
5383  */
ieee80211_mle_basic_sta_prof_size_ok(const u8 * data,size_t len)5384 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5385 							size_t len)
5386 {
5387 	const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5388 	u16 control;
5389 	u8 fixed = sizeof(*prof);
5390 	u8 info_len = 1;
5391 
5392 	if (len < fixed)
5393 		return false;
5394 
5395 	control = le16_to_cpu(prof->control);
5396 
5397 	if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5398 		info_len += 6;
5399 	if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5400 		info_len += 2;
5401 	if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5402 		info_len += 8;
5403 	if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5404 		info_len += 2;
5405 	if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5406 	    control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5407 		if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5408 			info_len += 2;
5409 		else
5410 			info_len += 1;
5411 	}
5412 	if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5413 		info_len += 1;
5414 
5415 	return prof->sta_info_len >= info_len &&
5416 	       fixed + prof->sta_info_len - 1 <= len;
5417 }
5418 
5419 /**
5420  * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5421  *	parameter change count
5422  * @prof: the per-STA profile, having been checked with
5423  *	ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5424  *
5425  * Return: The BSS parameter change count value if present, 0 otherwise.
5426  */
5427 static inline u8
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile * prof)5428 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5429 {
5430 	u16 control = le16_to_cpu(prof->control);
5431 	const u8 *pos = prof->variable;
5432 
5433 	if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5434 		return 0;
5435 
5436 	if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5437 		pos += 6;
5438 	if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5439 		pos += 2;
5440 	if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5441 		pos += 8;
5442 	if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5443 		pos += 2;
5444 	if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5445 	    control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5446 		if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5447 			pos += 2;
5448 		else
5449 			pos += 1;
5450 	}
5451 
5452 	return *pos;
5453 }
5454 
5455 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID			0x000f
5456 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE		0x0010
5457 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT		0x0020
5458 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT		0x0040
5459 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_UPDATE_TYPE		0x0780
5460 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT	0x0800
5461 
5462 /**
5463  * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5464  *	element sta profile size.
5465  * @data: pointer to the sub element data
5466  * @len: length of the containing sub element
5467  * Return: %true if the STA profile is large enough, %false otherwise
5468  */
ieee80211_mle_reconf_sta_prof_size_ok(const u8 * data,size_t len)5469 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5470 							 size_t len)
5471 {
5472 	const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5473 	u16 control;
5474 	u8 fixed = sizeof(*prof);
5475 	u8 info_len = 1;
5476 
5477 	if (len < fixed)
5478 		return false;
5479 
5480 	control = le16_to_cpu(prof->control);
5481 
5482 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5483 		info_len += ETH_ALEN;
5484 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5485 		info_len += 2;
5486 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5487 		info_len += 2;
5488 
5489 	return prof->sta_info_len >= info_len &&
5490 	       fixed + prof->sta_info_len - 1 <= len;
5491 }
5492 
ieee80211_tid_to_link_map_size_ok(const u8 * data,size_t len)5493 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len)
5494 {
5495 	const struct ieee80211_ttlm_elem *t2l = (const void *)data;
5496 	u8 control, fixed = sizeof(*t2l), elem_len = 0;
5497 
5498 	if (len < fixed)
5499 		return false;
5500 
5501 	control = t2l->control;
5502 
5503 	if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)
5504 		elem_len += 2;
5505 	if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)
5506 		elem_len += 3;
5507 
5508 	if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) {
5509 		u8 bm_size;
5510 
5511 		elem_len += 1;
5512 		if (len < fixed + elem_len)
5513 			return false;
5514 
5515 		if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
5516 			bm_size = 1;
5517 		else
5518 			bm_size = 2;
5519 
5520 		elem_len += hweight8(t2l->optional[0]) * bm_size;
5521 	}
5522 
5523 	return len >= fixed + elem_len;
5524 }
5525 
5526 #define for_each_mle_subelement(_elem, _data, _len)			\
5527 	if (ieee80211_mle_size_ok(_data, _len))				\
5528 		for_each_element(_elem,					\
5529 				 _data + ieee80211_mle_common_size(_data),\
5530 				 _len - ieee80211_mle_common_size(_data))
5531 
5532 #endif /* LINUX_IEEE80211_H */
5533