1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  Copyright (C) 1991,1992  Linus Torvalds
4 *
5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
6 *
7 * Stack layout while running C code:
8 *	ptrace needs to have all registers on the stack.
9 *	If the order here is changed, it needs to be
10 *	updated in fork.c:copy_process(), signal.c:do_signal(),
11 *	ptrace.c and ptrace.h
12 *
13 *	 0(%esp) - %ebx
14 *	 4(%esp) - %ecx
15 *	 8(%esp) - %edx
16 *	 C(%esp) - %esi
17 *	10(%esp) - %edi
18 *	14(%esp) - %ebp
19 *	18(%esp) - %eax
20 *	1C(%esp) - %ds
21 *	20(%esp) - %es
22 *	24(%esp) - %fs
23 *	28(%esp) - unused -- was %gs on old stackprotector kernels
24 *	2C(%esp) - orig_eax
25 *	30(%esp) - %eip
26 *	34(%esp) - %cs
27 *	38(%esp) - %eflags
28 *	3C(%esp) - %oldesp
29 *	40(%esp) - %oldss
30 */
31
32#include <linux/linkage.h>
33#include <linux/err.h>
34#include <asm/thread_info.h>
35#include <asm/irqflags.h>
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
39#include <asm/percpu.h>
40#include <asm/processor-flags.h>
41#include <asm/irq_vectors.h>
42#include <asm/cpufeatures.h>
43#include <asm/alternative.h>
44#include <asm/asm.h>
45#include <asm/smap.h>
46#include <asm/frame.h>
47#include <asm/trapnr.h>
48#include <asm/nospec-branch.h>
49
50#include "calling.h"
51
52	.section .entry.text, "ax"
53
54#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
55
56/* Unconditionally switch to user cr3 */
57.macro SWITCH_TO_USER_CR3 scratch_reg:req
58	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
59
60	movl	%cr3, \scratch_reg
61	orl	$PTI_SWITCH_MASK, \scratch_reg
62	movl	\scratch_reg, %cr3
63.Lend_\@:
64.endm
65
66.macro BUG_IF_WRONG_CR3 no_user_check=0
67#ifdef CONFIG_DEBUG_ENTRY
68	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
69	.if \no_user_check == 0
70	/* coming from usermode? */
71	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
72	jz	.Lend_\@
73	.endif
74	/* On user-cr3? */
75	movl	%cr3, %eax
76	testl	$PTI_SWITCH_MASK, %eax
77	jnz	.Lend_\@
78	/* From userspace with kernel cr3 - BUG */
79	ud2
80.Lend_\@:
81#endif
82.endm
83
84/*
85 * Switch to kernel cr3 if not already loaded and return current cr3 in
86 * \scratch_reg
87 */
88.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
89	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
90	movl	%cr3, \scratch_reg
91	/* Test if we are already on kernel CR3 */
92	testl	$PTI_SWITCH_MASK, \scratch_reg
93	jz	.Lend_\@
94	andl	$(~PTI_SWITCH_MASK), \scratch_reg
95	movl	\scratch_reg, %cr3
96	/* Return original CR3 in \scratch_reg */
97	orl	$PTI_SWITCH_MASK, \scratch_reg
98.Lend_\@:
99.endm
100
101#define CS_FROM_ENTRY_STACK	(1 << 31)
102#define CS_FROM_USER_CR3	(1 << 30)
103#define CS_FROM_KERNEL		(1 << 29)
104#define CS_FROM_ESPFIX		(1 << 28)
105
106.macro FIXUP_FRAME
107	/*
108	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
109	 * Clear them in case hardware didn't do this for us.
110	 */
111	andl	$0x0000ffff, 4*4(%esp)
112
113#ifdef CONFIG_VM86
114	testl	$X86_EFLAGS_VM, 5*4(%esp)
115	jnz	.Lfrom_usermode_no_fixup_\@
116#endif
117	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
118	jnz	.Lfrom_usermode_no_fixup_\@
119
120	orl	$CS_FROM_KERNEL, 4*4(%esp)
121
122	/*
123	 * When we're here from kernel mode; the (exception) stack looks like:
124	 *
125	 *  6*4(%esp) - <previous context>
126	 *  5*4(%esp) - flags
127	 *  4*4(%esp) - cs
128	 *  3*4(%esp) - ip
129	 *  2*4(%esp) - orig_eax
130	 *  1*4(%esp) - gs / function
131	 *  0*4(%esp) - fs
132	 *
133	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
134	 * is complete and in particular regs->sp is correct. This gives us
135	 * the original 6 entries as gap:
136	 *
137	 * 14*4(%esp) - <previous context>
138	 * 13*4(%esp) - gap / flags
139	 * 12*4(%esp) - gap / cs
140	 * 11*4(%esp) - gap / ip
141	 * 10*4(%esp) - gap / orig_eax
142	 *  9*4(%esp) - gap / gs / function
143	 *  8*4(%esp) - gap / fs
144	 *  7*4(%esp) - ss
145	 *  6*4(%esp) - sp
146	 *  5*4(%esp) - flags
147	 *  4*4(%esp) - cs
148	 *  3*4(%esp) - ip
149	 *  2*4(%esp) - orig_eax
150	 *  1*4(%esp) - gs / function
151	 *  0*4(%esp) - fs
152	 */
153
154	pushl	%ss		# ss
155	pushl	%esp		# sp (points at ss)
156	addl	$7*4, (%esp)	# point sp back at the previous context
157	pushl	7*4(%esp)	# flags
158	pushl	7*4(%esp)	# cs
159	pushl	7*4(%esp)	# ip
160	pushl	7*4(%esp)	# orig_eax
161	pushl	7*4(%esp)	# gs / function
162	pushl	7*4(%esp)	# fs
163.Lfrom_usermode_no_fixup_\@:
164.endm
165
166.macro IRET_FRAME
167	/*
168	 * We're called with %ds, %es, %fs, and %gs from the interrupted
169	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
170	 * mode and therefore have a nonzero SS base and an offset ESP,
171	 * so any attempt to access the stack needs to use SS.  (except for
172	 * accesses through %esp, which automatically use SS.)
173	 */
174	testl $CS_FROM_KERNEL, 1*4(%esp)
175	jz .Lfinished_frame_\@
176
177	/*
178	 * Reconstruct the 3 entry IRET frame right after the (modified)
179	 * regs->sp without lowering %esp in between, such that an NMI in the
180	 * middle doesn't scribble our stack.
181	 */
182	pushl	%eax
183	pushl	%ecx
184	movl	5*4(%esp), %eax		# (modified) regs->sp
185
186	movl	4*4(%esp), %ecx		# flags
187	movl	%ecx, %ss:-1*4(%eax)
188
189	movl	3*4(%esp), %ecx		# cs
190	andl	$0x0000ffff, %ecx
191	movl	%ecx, %ss:-2*4(%eax)
192
193	movl	2*4(%esp), %ecx		# ip
194	movl	%ecx, %ss:-3*4(%eax)
195
196	movl	1*4(%esp), %ecx		# eax
197	movl	%ecx, %ss:-4*4(%eax)
198
199	popl	%ecx
200	lea	-4*4(%eax), %esp
201	popl	%eax
202.Lfinished_frame_\@:
203.endm
204
205.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
206	cld
207.if \skip_gs == 0
208	pushl	$0
209.endif
210	pushl	%fs
211
212	pushl	%eax
213	movl	$(__KERNEL_PERCPU), %eax
214	movl	%eax, %fs
215.if \unwind_espfix > 0
216	UNWIND_ESPFIX_STACK
217.endif
218	popl	%eax
219
220	FIXUP_FRAME
221	pushl	%es
222	pushl	%ds
223	pushl	\pt_regs_ax
224	pushl	%ebp
225	pushl	%edi
226	pushl	%esi
227	pushl	%edx
228	pushl	%ecx
229	pushl	%ebx
230	movl	$(__USER_DS), %edx
231	movl	%edx, %ds
232	movl	%edx, %es
233	/* Switch to kernel stack if necessary */
234.if \switch_stacks > 0
235	SWITCH_TO_KERNEL_STACK
236.endif
237.endm
238
239.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
240	SAVE_ALL unwind_espfix=\unwind_espfix
241
242	BUG_IF_WRONG_CR3
243
244	/*
245	 * Now switch the CR3 when PTI is enabled.
246	 *
247	 * We can enter with either user or kernel cr3, the code will
248	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
249	 * if necessary.
250	 */
251	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
252
253.Lend_\@:
254.endm
255
256.macro RESTORE_INT_REGS
257	popl	%ebx
258	popl	%ecx
259	popl	%edx
260	popl	%esi
261	popl	%edi
262	popl	%ebp
263	popl	%eax
264.endm
265
266.macro RESTORE_REGS pop=0
267	RESTORE_INT_REGS
2681:	popl	%ds
2692:	popl	%es
2703:	popl	%fs
2714:	addl	$(4 + \pop), %esp	/* pop the unused "gs" slot */
272	IRET_FRAME
273
274	/*
275	 * There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is
276	 * ASM the registers are known and we can trivially hard-code them.
277	 */
278	_ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS)
279	_ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES)
280	_ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS)
281.endm
282
283.macro RESTORE_ALL_NMI cr3_reg:req pop=0
284	/*
285	 * Now switch the CR3 when PTI is enabled.
286	 *
287	 * We enter with kernel cr3 and switch the cr3 to the value
288	 * stored on \cr3_reg, which is either a user or a kernel cr3.
289	 */
290	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
291
292	testl	$PTI_SWITCH_MASK, \cr3_reg
293	jz	.Lswitched_\@
294
295	/* User cr3 in \cr3_reg - write it to hardware cr3 */
296	movl	\cr3_reg, %cr3
297
298.Lswitched_\@:
299
300	BUG_IF_WRONG_CR3
301
302	RESTORE_REGS pop=\pop
303.endm
304
305.macro CHECK_AND_APPLY_ESPFIX
306#ifdef CONFIG_X86_ESPFIX32
307#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
308#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page + GDT_ESPFIX_OFFSET)
309
310	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
311
312	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
313	/*
314	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
315	 * are returning to the kernel.
316	 * See comments in process.c:copy_thread() for details.
317	 */
318	movb	PT_OLDSS(%esp), %ah
319	movb	PT_CS(%esp), %al
320	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
321	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
322	jne	.Lend_\@	# returning to user-space with LDT SS
323
324	/*
325	 * Setup and switch to ESPFIX stack
326	 *
327	 * We're returning to userspace with a 16 bit stack. The CPU will not
328	 * restore the high word of ESP for us on executing iret... This is an
329	 * "official" bug of all the x86-compatible CPUs, which we can work
330	 * around to make dosemu and wine happy. We do this by preloading the
331	 * high word of ESP with the high word of the userspace ESP while
332	 * compensating for the offset by changing to the ESPFIX segment with
333	 * a base address that matches for the difference.
334	 */
335	mov	%esp, %edx			/* load kernel esp */
336	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
337	mov	%dx, %ax			/* eax: new kernel esp */
338	sub	%eax, %edx			/* offset (low word is 0) */
339	shr	$16, %edx
340	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
341	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
342	pushl	$__ESPFIX_SS
343	pushl	%eax				/* new kernel esp */
344	/*
345	 * Disable interrupts, but do not irqtrace this section: we
346	 * will soon execute iret and the tracer was already set to
347	 * the irqstate after the IRET:
348	 */
349	cli
350	lss	(%esp), %esp			/* switch to espfix segment */
351.Lend_\@:
352#endif /* CONFIG_X86_ESPFIX32 */
353.endm
354
355/*
356 * Called with pt_regs fully populated and kernel segments loaded,
357 * so we can access PER_CPU and use the integer registers.
358 *
359 * We need to be very careful here with the %esp switch, because an NMI
360 * can happen everywhere. If the NMI handler finds itself on the
361 * entry-stack, it will overwrite the task-stack and everything we
362 * copied there. So allocate the stack-frame on the task-stack and
363 * switch to it before we do any copying.
364 */
365
366.macro SWITCH_TO_KERNEL_STACK
367
368	BUG_IF_WRONG_CR3
369
370	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
371
372	/*
373	 * %eax now contains the entry cr3 and we carry it forward in
374	 * that register for the time this macro runs
375	 */
376
377	/* Are we on the entry stack? Bail out if not! */
378	movl	PER_CPU_VAR(cpu_entry_area), %ecx
379	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
380	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
381	cmpl	$SIZEOF_entry_stack, %ecx
382	jae	.Lend_\@
383
384	/* Load stack pointer into %esi and %edi */
385	movl	%esp, %esi
386	movl	%esi, %edi
387
388	/* Move %edi to the top of the entry stack */
389	andl	$(MASK_entry_stack), %edi
390	addl	$(SIZEOF_entry_stack), %edi
391
392	/* Load top of task-stack into %edi */
393	movl	TSS_entry2task_stack(%edi), %edi
394
395	/* Special case - entry from kernel mode via entry stack */
396#ifdef CONFIG_VM86
397	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
398	movb	PT_CS(%esp), %cl
399	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
400#else
401	movl	PT_CS(%esp), %ecx
402	andl	$SEGMENT_RPL_MASK, %ecx
403#endif
404	cmpl	$USER_RPL, %ecx
405	jb	.Lentry_from_kernel_\@
406
407	/* Bytes to copy */
408	movl	$PTREGS_SIZE, %ecx
409
410#ifdef CONFIG_VM86
411	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
412	jz	.Lcopy_pt_regs_\@
413
414	/*
415	 * Stack-frame contains 4 additional segment registers when
416	 * coming from VM86 mode
417	 */
418	addl	$(4 * 4), %ecx
419
420#endif
421.Lcopy_pt_regs_\@:
422
423	/* Allocate frame on task-stack */
424	subl	%ecx, %edi
425
426	/* Switch to task-stack */
427	movl	%edi, %esp
428
429	/*
430	 * We are now on the task-stack and can safely copy over the
431	 * stack-frame
432	 */
433	shrl	$2, %ecx
434	cld
435	rep movsl
436
437	jmp .Lend_\@
438
439.Lentry_from_kernel_\@:
440
441	/*
442	 * This handles the case when we enter the kernel from
443	 * kernel-mode and %esp points to the entry-stack. When this
444	 * happens we need to switch to the task-stack to run C code,
445	 * but switch back to the entry-stack again when we approach
446	 * iret and return to the interrupted code-path. This usually
447	 * happens when we hit an exception while restoring user-space
448	 * segment registers on the way back to user-space or when the
449	 * sysenter handler runs with eflags.tf set.
450	 *
451	 * When we switch to the task-stack here, we can't trust the
452	 * contents of the entry-stack anymore, as the exception handler
453	 * might be scheduled out or moved to another CPU. Therefore we
454	 * copy the complete entry-stack to the task-stack and set a
455	 * marker in the iret-frame (bit 31 of the CS dword) to detect
456	 * what we've done on the iret path.
457	 *
458	 * On the iret path we copy everything back and switch to the
459	 * entry-stack, so that the interrupted kernel code-path
460	 * continues on the same stack it was interrupted with.
461	 *
462	 * Be aware that an NMI can happen anytime in this code.
463	 *
464	 * %esi: Entry-Stack pointer (same as %esp)
465	 * %edi: Top of the task stack
466	 * %eax: CR3 on kernel entry
467	 */
468
469	/* Calculate number of bytes on the entry stack in %ecx */
470	movl	%esi, %ecx
471
472	/* %ecx to the top of entry-stack */
473	andl	$(MASK_entry_stack), %ecx
474	addl	$(SIZEOF_entry_stack), %ecx
475
476	/* Number of bytes on the entry stack to %ecx */
477	sub	%esi, %ecx
478
479	/* Mark stackframe as coming from entry stack */
480	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
481
482	/*
483	 * Test the cr3 used to enter the kernel and add a marker
484	 * so that we can switch back to it before iret.
485	 */
486	testl	$PTI_SWITCH_MASK, %eax
487	jz	.Lcopy_pt_regs_\@
488	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
489
490	/*
491	 * %esi and %edi are unchanged, %ecx contains the number of
492	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
493	 * the stack-frame on task-stack and copy everything over
494	 */
495	jmp .Lcopy_pt_regs_\@
496
497.Lend_\@:
498.endm
499
500/*
501 * Switch back from the kernel stack to the entry stack.
502 *
503 * The %esp register must point to pt_regs on the task stack. It will
504 * first calculate the size of the stack-frame to copy, depending on
505 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
506 * to copy the contents of the stack over to the entry stack.
507 *
508 * We must be very careful here, as we can't trust the contents of the
509 * task-stack once we switched to the entry-stack. When an NMI happens
510 * while on the entry-stack, the NMI handler will switch back to the top
511 * of the task stack, overwriting our stack-frame we are about to copy.
512 * Therefore we switch the stack only after everything is copied over.
513 */
514.macro SWITCH_TO_ENTRY_STACK
515
516	/* Bytes to copy */
517	movl	$PTREGS_SIZE, %ecx
518
519#ifdef CONFIG_VM86
520	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
521	jz	.Lcopy_pt_regs_\@
522
523	/* Additional 4 registers to copy when returning to VM86 mode */
524	addl    $(4 * 4), %ecx
525
526.Lcopy_pt_regs_\@:
527#endif
528
529	/* Initialize source and destination for movsl */
530	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
531	subl	%ecx, %edi
532	movl	%esp, %esi
533
534	/* Save future stack pointer in %ebx */
535	movl	%edi, %ebx
536
537	/* Copy over the stack-frame */
538	shrl	$2, %ecx
539	cld
540	rep movsl
541
542	/*
543	 * Switch to entry-stack - needs to happen after everything is
544	 * copied because the NMI handler will overwrite the task-stack
545	 * when on entry-stack
546	 */
547	movl	%ebx, %esp
548
549.Lend_\@:
550.endm
551
552/*
553 * This macro handles the case when we return to kernel-mode on the iret
554 * path and have to switch back to the entry stack and/or user-cr3
555 *
556 * See the comments below the .Lentry_from_kernel_\@ label in the
557 * SWITCH_TO_KERNEL_STACK macro for more details.
558 */
559.macro PARANOID_EXIT_TO_KERNEL_MODE
560
561	/*
562	 * Test if we entered the kernel with the entry-stack. Most
563	 * likely we did not, because this code only runs on the
564	 * return-to-kernel path.
565	 */
566	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
567	jz	.Lend_\@
568
569	/* Unlikely slow-path */
570
571	/* Clear marker from stack-frame */
572	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
573
574	/* Copy the remaining task-stack contents to entry-stack */
575	movl	%esp, %esi
576	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
577
578	/* Bytes on the task-stack to ecx */
579	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
580	subl	%esi, %ecx
581
582	/* Allocate stack-frame on entry-stack */
583	subl	%ecx, %edi
584
585	/*
586	 * Save future stack-pointer, we must not switch until the
587	 * copy is done, otherwise the NMI handler could destroy the
588	 * contents of the task-stack we are about to copy.
589	 */
590	movl	%edi, %ebx
591
592	/* Do the copy */
593	shrl	$2, %ecx
594	cld
595	rep movsl
596
597	/* Safe to switch to entry-stack now */
598	movl	%ebx, %esp
599
600	/*
601	 * We came from entry-stack and need to check if we also need to
602	 * switch back to user cr3.
603	 */
604	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
605	jz	.Lend_\@
606
607	/* Clear marker from stack-frame */
608	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
609
610	SWITCH_TO_USER_CR3 scratch_reg=%eax
611
612.Lend_\@:
613.endm
614
615/**
616 * idtentry - Macro to generate entry stubs for simple IDT entries
617 * @vector:		Vector number
618 * @asmsym:		ASM symbol for the entry point
619 * @cfunc:		C function to be called
620 * @has_error_code:	Hardware pushed error code on stack
621 */
622.macro idtentry vector asmsym cfunc has_error_code:req
623SYM_CODE_START(\asmsym)
624	ASM_CLAC
625	cld
626
627	.if \has_error_code == 0
628		pushl	$0		/* Clear the error code */
629	.endif
630
631	/* Push the C-function address into the GS slot */
632	pushl	$\cfunc
633	/* Invoke the common exception entry */
634	jmp	handle_exception
635SYM_CODE_END(\asmsym)
636.endm
637
638.macro idtentry_irq vector cfunc
639	.p2align CONFIG_X86_L1_CACHE_SHIFT
640SYM_CODE_START_LOCAL(asm_\cfunc)
641	ASM_CLAC
642	SAVE_ALL switch_stacks=1
643	ENCODE_FRAME_POINTER
644	movl	%esp, %eax
645	movl	PT_ORIG_EAX(%esp), %edx		/* get the vector from stack */
646	movl	$-1, PT_ORIG_EAX(%esp)		/* no syscall to restart */
647	call	\cfunc
648	jmp	handle_exception_return
649SYM_CODE_END(asm_\cfunc)
650.endm
651
652/*
653 * Include the defines which emit the idt entries which are shared
654 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
655 * so the stacktrace boundary checks work.
656 */
657	.align 16
658	.globl __irqentry_text_start
659__irqentry_text_start:
660
661#include <asm/idtentry.h>
662
663	.align 16
664	.globl __irqentry_text_end
665__irqentry_text_end:
666
667/*
668 * %eax: prev task
669 * %edx: next task
670 */
671.pushsection .text, "ax"
672SYM_CODE_START(__switch_to_asm)
673	/*
674	 * Save callee-saved registers
675	 * This must match the order in struct inactive_task_frame
676	 */
677	pushl	%ebp
678	pushl	%ebx
679	pushl	%edi
680	pushl	%esi
681	/*
682	 * Flags are saved to prevent AC leakage. This could go
683	 * away if objtool would have 32bit support to verify
684	 * the STAC/CLAC correctness.
685	 */
686	pushfl
687
688	/* switch stack */
689	movl	%esp, TASK_threadsp(%eax)
690	movl	TASK_threadsp(%edx), %esp
691
692#ifdef CONFIG_STACKPROTECTOR
693	movl	TASK_stack_canary(%edx), %ebx
694	movl	%ebx, PER_CPU_VAR(__stack_chk_guard)
695#endif
696
697	/*
698	 * When switching from a shallower to a deeper call stack
699	 * the RSB may either underflow or use entries populated
700	 * with userspace addresses. On CPUs where those concerns
701	 * exist, overwrite the RSB with entries which capture
702	 * speculative execution to prevent attack.
703	 */
704	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
705
706	/* Restore flags or the incoming task to restore AC state. */
707	popfl
708	/* restore callee-saved registers */
709	popl	%esi
710	popl	%edi
711	popl	%ebx
712	popl	%ebp
713
714	jmp	__switch_to
715SYM_CODE_END(__switch_to_asm)
716.popsection
717
718/*
719 * A newly forked process directly context switches into this address.
720 *
721 * eax: prev task we switched from
722 * ebx: kernel thread func (NULL for user thread)
723 * edi: kernel thread arg
724 */
725.pushsection .text, "ax"
726SYM_CODE_START(ret_from_fork_asm)
727	movl	%esp, %edx	/* regs */
728
729	/* return address for the stack unwinder */
730	pushl	$.Lsyscall_32_done
731
732	FRAME_BEGIN
733	/* prev already in EAX */
734	movl	%ebx, %ecx	/* fn */
735	pushl	%edi		/* fn_arg */
736	call	ret_from_fork
737	addl	$4, %esp
738	FRAME_END
739
740	RET
741SYM_CODE_END(ret_from_fork_asm)
742.popsection
743
744SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
745/*
746 * All code from here through __end_SYSENTER_singlestep_region is subject
747 * to being single-stepped if a user program sets TF and executes SYSENTER.
748 * There is absolutely nothing that we can do to prevent this from happening
749 * (thanks Intel!).  To keep our handling of this situation as simple as
750 * possible, we handle TF just like AC and NT, except that our #DB handler
751 * will ignore all of the single-step traps generated in this range.
752 */
753
754/*
755 * 32-bit SYSENTER entry.
756 *
757 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
758 * if X86_FEATURE_SEP is available.  This is the preferred system call
759 * entry on 32-bit systems.
760 *
761 * The SYSENTER instruction, in principle, should *only* occur in the
762 * vDSO.  In practice, a small number of Android devices were shipped
763 * with a copy of Bionic that inlined a SYSENTER instruction.  This
764 * never happened in any of Google's Bionic versions -- it only happened
765 * in a narrow range of Intel-provided versions.
766 *
767 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
768 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
769 * SYSENTER does not save anything on the stack,
770 * and does not save old EIP (!!!), ESP, or EFLAGS.
771 *
772 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
773 * user and/or vm86 state), we explicitly disable the SYSENTER
774 * instruction in vm86 mode by reprogramming the MSRs.
775 *
776 * Arguments:
777 * eax  system call number
778 * ebx  arg1
779 * ecx  arg2
780 * edx  arg3
781 * esi  arg4
782 * edi  arg5
783 * ebp  user stack
784 * 0(%ebp) arg6
785 */
786SYM_FUNC_START(entry_SYSENTER_32)
787	/*
788	 * On entry-stack with all userspace-regs live - save and
789	 * restore eflags and %eax to use it as scratch-reg for the cr3
790	 * switch.
791	 */
792	pushfl
793	pushl	%eax
794	BUG_IF_WRONG_CR3 no_user_check=1
795	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
796	popl	%eax
797	popfl
798
799	/* Stack empty again, switch to task stack */
800	movl	TSS_entry2task_stack(%esp), %esp
801
802.Lsysenter_past_esp:
803	pushl	$__USER_DS		/* pt_regs->ss */
804	pushl	$0			/* pt_regs->sp (placeholder) */
805	pushfl				/* pt_regs->flags (except IF = 0) */
806	pushl	$__USER_CS		/* pt_regs->cs */
807	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
808	pushl	%eax			/* pt_regs->orig_ax */
809	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
810
811	/*
812	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
813	 * and TF ourselves.  To save a few cycles, we can check whether
814	 * either was set instead of doing an unconditional popfq.
815	 * This needs to happen before enabling interrupts so that
816	 * we don't get preempted with NT set.
817	 *
818	 * If TF is set, we will single-step all the way to here -- do_debug
819	 * will ignore all the traps.  (Yes, this is slow, but so is
820	 * single-stepping in general.  This allows us to avoid having
821	 * a more complicated code to handle the case where a user program
822	 * forces us to single-step through the SYSENTER entry code.)
823	 *
824	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
825	 * out-of-line as an optimization: NT is unlikely to be set in the
826	 * majority of the cases and instead of polluting the I$ unnecessarily,
827	 * we're keeping that code behind a branch which will predict as
828	 * not-taken and therefore its instructions won't be fetched.
829	 */
830	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
831	jnz	.Lsysenter_fix_flags
832.Lsysenter_flags_fixed:
833
834	movl	%esp, %eax
835	call	do_SYSENTER_32
836	testb	%al, %al
837	jz	.Lsyscall_32_done
838
839	STACKLEAK_ERASE
840
841	/* Opportunistic SYSEXIT */
842
843	/*
844	 * Setup entry stack - we keep the pointer in %eax and do the
845	 * switch after almost all user-state is restored.
846	 */
847
848	/* Load entry stack pointer and allocate frame for eflags/eax */
849	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
850	subl	$(2*4), %eax
851
852	/* Copy eflags and eax to entry stack */
853	movl	PT_EFLAGS(%esp), %edi
854	movl	PT_EAX(%esp), %esi
855	movl	%edi, (%eax)
856	movl	%esi, 4(%eax)
857
858	/* Restore user registers and segments */
859	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
860	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
8611:	mov	PT_FS(%esp), %fs
862
863	popl	%ebx			/* pt_regs->bx */
864	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
865	popl	%esi			/* pt_regs->si */
866	popl	%edi			/* pt_regs->di */
867	popl	%ebp			/* pt_regs->bp */
868
869	/* Switch to entry stack */
870	movl	%eax, %esp
871
872	/* Now ready to switch the cr3 */
873	SWITCH_TO_USER_CR3 scratch_reg=%eax
874	/* Clobbers ZF */
875	CLEAR_CPU_BUFFERS
876
877	/*
878	 * Restore all flags except IF. (We restore IF separately because
879	 * STI gives a one-instruction window in which we won't be interrupted,
880	 * whereas POPF does not.)
881	 */
882	btrl	$X86_EFLAGS_IF_BIT, (%esp)
883	BUG_IF_WRONG_CR3 no_user_check=1
884	popfl
885	popl	%eax
886
887	/*
888	 * Return back to the vDSO, which will pop ecx and edx.
889	 * Don't bother with DS and ES (they already contain __USER_DS).
890	 */
891	sti
892	sysexit
893
8942:	movl    $0, PT_FS(%esp)
895	jmp     1b
896	_ASM_EXTABLE(1b, 2b)
897
898.Lsysenter_fix_flags:
899	pushl	$X86_EFLAGS_FIXED
900	popfl
901	jmp	.Lsysenter_flags_fixed
902SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
903SYM_FUNC_END(entry_SYSENTER_32)
904
905/*
906 * 32-bit legacy system call entry.
907 *
908 * 32-bit x86 Linux system calls traditionally used the INT $0x80
909 * instruction.  INT $0x80 lands here.
910 *
911 * This entry point can be used by any 32-bit perform system calls.
912 * Instances of INT $0x80 can be found inline in various programs and
913 * libraries.  It is also used by the vDSO's __kernel_vsyscall
914 * fallback for hardware that doesn't support a faster entry method.
915 * Restarted 32-bit system calls also fall back to INT $0x80
916 * regardless of what instruction was originally used to do the system
917 * call.  (64-bit programs can use INT $0x80 as well, but they can
918 * only run on 64-bit kernels and therefore land in
919 * entry_INT80_compat.)
920 *
921 * This is considered a slow path.  It is not used by most libc
922 * implementations on modern hardware except during process startup.
923 *
924 * Arguments:
925 * eax  system call number
926 * ebx  arg1
927 * ecx  arg2
928 * edx  arg3
929 * esi  arg4
930 * edi  arg5
931 * ebp  arg6
932 */
933SYM_FUNC_START(entry_INT80_32)
934	ASM_CLAC
935	pushl	%eax			/* pt_regs->orig_ax */
936
937	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
938
939	movl	%esp, %eax
940	call	do_int80_syscall_32
941.Lsyscall_32_done:
942	STACKLEAK_ERASE
943
944restore_all_switch_stack:
945	SWITCH_TO_ENTRY_STACK
946	CHECK_AND_APPLY_ESPFIX
947
948	/* Switch back to user CR3 */
949	SWITCH_TO_USER_CR3 scratch_reg=%eax
950
951	BUG_IF_WRONG_CR3
952
953	/* Restore user state */
954	RESTORE_REGS pop=4			# skip orig_eax/error_code
955	CLEAR_CPU_BUFFERS
956.Lirq_return:
957	/*
958	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
959	 * when returning from IPI handler and when returning from
960	 * scheduler to user-space.
961	 */
962	iret
963
964.Lasm_iret_error:
965	pushl	$0				# no error code
966	pushl	$iret_error
967
968#ifdef CONFIG_DEBUG_ENTRY
969	/*
970	 * The stack-frame here is the one that iret faulted on, so its a
971	 * return-to-user frame. We are on kernel-cr3 because we come here from
972	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
973	 * as the checker expects it.
974	 */
975	pushl	%eax
976	SWITCH_TO_USER_CR3 scratch_reg=%eax
977	popl	%eax
978#endif
979
980	jmp	handle_exception
981
982	_ASM_EXTABLE(.Lirq_return, .Lasm_iret_error)
983SYM_FUNC_END(entry_INT80_32)
984
985.macro FIXUP_ESPFIX_STACK
986/*
987 * Switch back for ESPFIX stack to the normal zerobased stack
988 *
989 * We can't call C functions using the ESPFIX stack. This code reads
990 * the high word of the segment base from the GDT and swiches to the
991 * normal stack and adjusts ESP with the matching offset.
992 *
993 * We might be on user CR3 here, so percpu data is not mapped and we can't
994 * access the GDT through the percpu segment.  Instead, use SGDT to find
995 * the cpu_entry_area alias of the GDT.
996 */
997#ifdef CONFIG_X86_ESPFIX32
998	/* fixup the stack */
999	pushl	%ecx
1000	subl	$2*4, %esp
1001	sgdt	(%esp)
1002	movl	2(%esp), %ecx				/* GDT address */
1003	/*
1004	 * Careful: ECX is a linear pointer, so we need to force base
1005	 * zero.  %cs is the only known-linear segment we have right now.
1006	 */
1007	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
1008	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1009	shl	$16, %eax
1010	addl	$2*4, %esp
1011	popl	%ecx
1012	addl	%esp, %eax			/* the adjusted stack pointer */
1013	pushl	$__KERNEL_DS
1014	pushl	%eax
1015	lss	(%esp), %esp			/* switch to the normal stack segment */
1016#endif
1017.endm
1018
1019.macro UNWIND_ESPFIX_STACK
1020	/* It's safe to clobber %eax, all other regs need to be preserved */
1021#ifdef CONFIG_X86_ESPFIX32
1022	movl	%ss, %eax
1023	/* see if on espfix stack */
1024	cmpw	$__ESPFIX_SS, %ax
1025	jne	.Lno_fixup_\@
1026	/* switch to normal stack */
1027	FIXUP_ESPFIX_STACK
1028.Lno_fixup_\@:
1029#endif
1030.endm
1031
1032SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1033	/* the function address is in %gs's slot on the stack */
1034	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1035	ENCODE_FRAME_POINTER
1036
1037	movl	PT_GS(%esp), %edi		# get the function address
1038
1039	/* fixup orig %eax */
1040	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1041	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1042
1043	movl	%esp, %eax			# pt_regs pointer
1044	CALL_NOSPEC edi
1045
1046handle_exception_return:
1047#ifdef CONFIG_VM86
1048	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
1049	movb	PT_CS(%esp), %al
1050	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1051#else
1052	/*
1053	 * We can be coming here from child spawned by kernel_thread().
1054	 */
1055	movl	PT_CS(%esp), %eax
1056	andl	$SEGMENT_RPL_MASK, %eax
1057#endif
1058	cmpl	$USER_RPL, %eax			# returning to v8086 or userspace ?
1059	jnb	ret_to_user
1060
1061	PARANOID_EXIT_TO_KERNEL_MODE
1062	BUG_IF_WRONG_CR3
1063	RESTORE_REGS 4
1064	jmp	.Lirq_return
1065
1066ret_to_user:
1067	movl	%esp, %eax
1068	jmp	restore_all_switch_stack
1069SYM_CODE_END(handle_exception)
1070
1071SYM_CODE_START(asm_exc_double_fault)
10721:
1073	/*
1074	 * This is a task gate handler, not an interrupt gate handler.
1075	 * The error code is on the stack, but the stack is otherwise
1076	 * empty.  Interrupts are off.  Our state is sane with the following
1077	 * exceptions:
1078	 *
1079	 *  - CR0.TS is set.  "TS" literally means "task switched".
1080	 *  - EFLAGS.NT is set because we're a "nested task".
1081	 *  - The doublefault TSS has back_link set and has been marked busy.
1082	 *  - TR points to the doublefault TSS and the normal TSS is busy.
1083	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
1084	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
1085	 *    would make it very awkward to return back to the context we came
1086	 *    from.
1087	 *
1088	 * The rest of EFLAGS is sanitized for us, so we don't need to
1089	 * worry about AC or DF.
1090	 *
1091	 * Don't even bother popping the error code.  It's always zero,
1092	 * and ignoring it makes us a bit more robust against buggy
1093	 * hypervisor task gate implementations.
1094	 *
1095	 * We will manually undo the task switch instead of doing a
1096	 * task-switching IRET.
1097	 */
1098
1099	clts				/* clear CR0.TS */
1100	pushl	$X86_EFLAGS_FIXED
1101	popfl				/* clear EFLAGS.NT */
1102
1103	call	doublefault_shim
1104
1105	/* We don't support returning, so we have no IRET here. */
11061:
1107	hlt
1108	jmp 1b
1109SYM_CODE_END(asm_exc_double_fault)
1110
1111/*
1112 * NMI is doubly nasty.  It can happen on the first instruction of
1113 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1114 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1115 * switched stacks.  We handle both conditions by simply checking whether we
1116 * interrupted kernel code running on the SYSENTER stack.
1117 */
1118SYM_CODE_START(asm_exc_nmi)
1119	ASM_CLAC
1120
1121#ifdef CONFIG_X86_ESPFIX32
1122	/*
1123	 * ESPFIX_SS is only ever set on the return to user path
1124	 * after we've switched to the entry stack.
1125	 */
1126	pushl	%eax
1127	movl	%ss, %eax
1128	cmpw	$__ESPFIX_SS, %ax
1129	popl	%eax
1130	je	.Lnmi_espfix_stack
1131#endif
1132
1133	pushl	%eax				# pt_regs->orig_ax
1134	SAVE_ALL_NMI cr3_reg=%edi
1135	ENCODE_FRAME_POINTER
1136	xorl	%edx, %edx			# zero error code
1137	movl	%esp, %eax			# pt_regs pointer
1138
1139	/* Are we currently on the SYSENTER stack? */
1140	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1141	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1142	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1143	cmpl	$SIZEOF_entry_stack, %ecx
1144	jb	.Lnmi_from_sysenter_stack
1145
1146	/* Not on SYSENTER stack. */
1147	call	exc_nmi
1148	jmp	.Lnmi_return
1149
1150.Lnmi_from_sysenter_stack:
1151	/*
1152	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1153	 * is using the thread stack right now, so it's safe for us to use it.
1154	 */
1155	movl	%esp, %ebx
1156	movl	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esp
1157	call	exc_nmi
1158	movl	%ebx, %esp
1159
1160.Lnmi_return:
1161#ifdef CONFIG_X86_ESPFIX32
1162	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
1163	jnz	.Lnmi_from_espfix
1164#endif
1165
1166	CHECK_AND_APPLY_ESPFIX
1167	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1168	CLEAR_CPU_BUFFERS
1169	jmp	.Lirq_return
1170
1171#ifdef CONFIG_X86_ESPFIX32
1172.Lnmi_espfix_stack:
1173	/*
1174	 * Create the pointer to LSS back
1175	 */
1176	pushl	%ss
1177	pushl	%esp
1178	addl	$4, (%esp)
1179
1180	/* Copy the (short) IRET frame */
1181	pushl	4*4(%esp)	# flags
1182	pushl	4*4(%esp)	# cs
1183	pushl	4*4(%esp)	# ip
1184
1185	pushl	%eax		# orig_ax
1186
1187	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1188	ENCODE_FRAME_POINTER
1189
1190	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1191	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1192
1193	xorl	%edx, %edx			# zero error code
1194	movl	%esp, %eax			# pt_regs pointer
1195	jmp	.Lnmi_from_sysenter_stack
1196
1197.Lnmi_from_espfix:
1198	RESTORE_ALL_NMI cr3_reg=%edi
1199	/*
1200	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1201	 * fix up the gap and long frame:
1202	 *
1203	 *  3 - original frame	(exception)
1204	 *  2 - ESPFIX block	(above)
1205	 *  6 - gap		(FIXUP_FRAME)
1206	 *  5 - long frame	(FIXUP_FRAME)
1207	 *  1 - orig_ax
1208	 */
1209	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1210	CLEAR_CPU_BUFFERS
1211	jmp	.Lirq_return
1212#endif
1213SYM_CODE_END(asm_exc_nmi)
1214
1215.pushsection .text, "ax"
1216SYM_CODE_START(rewind_stack_and_make_dead)
1217	/* Prevent any naive code from trying to unwind to our caller. */
1218	xorl	%ebp, %ebp
1219
1220	movl	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esi
1221	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1222
1223	call	make_task_dead
12241:	jmp 1b
1225SYM_CODE_END(rewind_stack_and_make_dead)
1226.popsection
1227