1  /*
2   * Copyright (c) 1991, 1993
3   *	The Regents of the University of California.  All rights reserved.
4   *
5   * Redistribution and use in source and binary forms, with or without
6   * modification, are permitted provided that the following conditions
7   * are met:
8   * 1. Redistributions of source code must retain the above copyright
9   *    notice, this list of conditions and the following disclaimer.
10   * 2. Redistributions in binary form must reproduce the above copyright
11   *    notice, this list of conditions and the following disclaimer in the
12   *    documentation and/or other materials provided with the distribution.
13   *
14   * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
15   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17   * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
18   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24   * SUCH DAMAGE.
25   *
26   *	@(#)queue.h	8.5 (Berkeley) 8/20/94
27   * $FreeBSD: src/sys/sys/queue.h,v 1.38 2000/05/26 02:06:56 jake Exp $
28   */
29  
30  #ifndef _SYS_QUEUE_H_
31  #define	_SYS_QUEUE_H_
32  
33  /*
34   * This file defines five types of data structures: singly-linked lists,
35   * singly-linked tail queues, lists, tail queues, and circular queues.
36   *
37   * A singly-linked list is headed by a single forward pointer. The elements
38   * are singly linked for minimum space and pointer manipulation overhead at
39   * the expense of O(n) removal for arbitrary elements. New elements can be
40   * added to the list after an existing element or at the head of the list.
41   * Elements being removed from the head of the list should use the explicit
42   * macro for this purpose for optimum efficiency. A singly-linked list may
43   * only be traversed in the forward direction.  Singly-linked lists are ideal
44   * for applications with large datasets and few or no removals or for
45   * implementing a LIFO queue.
46   *
47   * A singly-linked tail queue is headed by a pair of pointers, one to the
48   * head of the list and the other to the tail of the list. The elements are
49   * singly linked for minimum space and pointer manipulation overhead at the
50   * expense of O(n) removal for arbitrary elements. New elements can be added
51   * to the list after an existing element, at the head of the list, or at the
52   * end of the list. Elements being removed from the head of the tail queue
53   * should use the explicit macro for this purpose for optimum efficiency.
54   * A singly-linked tail queue may only be traversed in the forward direction.
55   * Singly-linked tail queues are ideal for applications with large datasets
56   * and few or no removals or for implementing a FIFO queue.
57   *
58   * A list is headed by a single forward pointer (or an array of forward
59   * pointers for a hash table header). The elements are doubly linked
60   * so that an arbitrary element can be removed without a need to
61   * traverse the list. New elements can be added to the list before
62   * or after an existing element or at the head of the list. A list
63   * may only be traversed in the forward direction.
64   *
65   * A tail queue is headed by a pair of pointers, one to the head of the
66   * list and the other to the tail of the list. The elements are doubly
67   * linked so that an arbitrary element can be removed without a need to
68   * traverse the list. New elements can be added to the list before or
69   * after an existing element, at the head of the list, or at the end of
70   * the list. A tail queue may be traversed in either direction.
71   *
72   * A circle queue is headed by a pair of pointers, one to the head of the
73   * list and the other to the tail of the list. The elements are doubly
74   * linked so that an arbitrary element can be removed without a need to
75   * traverse the list. New elements can be added to the list before or after
76   * an existing element, at the head of the list, or at the end of the list.
77   * A circle queue may be traversed in either direction, but has a more
78   * complex end of list detection.
79   *
80   * For details on the use of these macros, see the queue(3) manual page.
81   *
82   *
83   *			SLIST	LIST	STAILQ	TAILQ	CIRCLEQ
84   * _HEAD		+	+	+	+	+
85   * _HEAD_INITIALIZER	+	+	+	+	+
86   * _ENTRY		+	+	+	+	+
87   * _INIT		+	+	+	+	+
88   * _EMPTY		+	+	+	+	+
89   * _FIRST		+	+	+	+	+
90   * _NEXT		+	+	+	+	+
91   * _PREV		-	-	-	+	+
92   * _LAST		-	-	+	+	+
93   * _FOREACH		+	+	+	+	+
94   * _FOREACH_REVERSE	-	-	-	+	+
95   * _INSERT_HEAD		+	+	+	+	+
96   * _INSERT_BEFORE	-	+	-	+	+
97   * _INSERT_AFTER	+	+	+	+	+
98   * _INSERT_TAIL		-	-	+	+	+
99   * _REMOVE_HEAD		+	-	+	-	-
100   * _REMOVE		+	+	+	+	+
101   *
102   */
103  
104  /*
105   * Singly-linked List declarations.
106   */
107  #define	SLIST_HEAD(name, type)						\
108  struct name {								\
109  	struct type *slh_first;	/* first element */			\
110  }
111  
112  #define	SLIST_HEAD_INITIALIZER(head)					\
113  	{ NULL }
114  
115  #define	SLIST_ENTRY(type)						\
116  struct {								\
117  	struct type *sle_next;	/* next element */			\
118  }
119  
120  /*
121   * Singly-linked List functions.
122   */
123  #define	SLIST_EMPTY(head)	((head)->slh_first == NULL)
124  
125  #define	SLIST_FIRST(head)	((head)->slh_first)
126  
127  #define	SLIST_FOREACH(var, head, field)					\
128  	for ((var) = SLIST_FIRST((head));				\
129  	    (var);							\
130  	    (var) = SLIST_NEXT((var), field))
131  
132  #define	SLIST_INIT(head) do {						\
133  	SLIST_FIRST((head)) = NULL;					\
134  } while (0)
135  
136  #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
137  	SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field);	\
138  	SLIST_NEXT((slistelm), field) = (elm);				\
139  } while (0)
140  
141  #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
142  	SLIST_NEXT((elm), field) = SLIST_FIRST((head));			\
143  	SLIST_FIRST((head)) = (elm);					\
144  } while (0)
145  
146  #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
147  
148  #define	SLIST_REMOVE(head, elm, type, field) do {			\
149  	if (SLIST_FIRST((head)) == (elm)) {				\
150  		SLIST_REMOVE_HEAD((head), field);			\
151  	}								\
152  	else {								\
153  		struct type *curelm = SLIST_FIRST((head));		\
154  		while (SLIST_NEXT(curelm, field) != (elm))		\
155  			curelm = SLIST_NEXT(curelm, field);		\
156  		SLIST_NEXT(curelm, field) =				\
157  		    SLIST_NEXT(SLIST_NEXT(curelm, field), field);	\
158  	}								\
159  } while (0)
160  
161  #define	SLIST_REMOVE_HEAD(head, field) do {				\
162  	SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field);	\
163  } while (0)
164  
165  /*
166   * Singly-linked Tail queue declarations.
167   */
168  #define	STAILQ_HEAD(name, type)						\
169  struct name {								\
170  	struct type *stqh_first;/* first element */			\
171  	struct type **stqh_last;/* addr of last next element */		\
172  }
173  
174  #define	STAILQ_HEAD_INITIALIZER(head)					\
175  	{ NULL, &(head).stqh_first }
176  
177  #define	STAILQ_ENTRY(type)						\
178  struct {								\
179  	struct type *stqe_next;	/* next element */			\
180  }
181  
182  /*
183   * Singly-linked Tail queue functions.
184   */
185  #define	STAILQ_EMPTY(head)	((head)->stqh_first == NULL)
186  
187  #define	STAILQ_FIRST(head)	((head)->stqh_first)
188  
189  #define	STAILQ_FOREACH(var, head, field)				\
190  	for((var) = STAILQ_FIRST((head));				\
191  	   (var);							\
192  	   (var) = STAILQ_NEXT((var), field))
193  
194  #define	STAILQ_INIT(head) do {						\
195  	STAILQ_FIRST((head)) = NULL;					\
196  	(head)->stqh_last = &STAILQ_FIRST((head));			\
197  } while (0)
198  
199  #define	STAILQ_INSERT_AFTER(head, tqelm, elm, field) do {		\
200  	if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\
201  		(head)->stqh_last = &STAILQ_NEXT((elm), field);		\
202  	STAILQ_NEXT((tqelm), field) = (elm);				\
203  } while (0)
204  
205  #define	STAILQ_INSERT_HEAD(head, elm, field) do {			\
206  	if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL)	\
207  		(head)->stqh_last = &STAILQ_NEXT((elm), field);		\
208  	STAILQ_FIRST((head)) = (elm);					\
209  } while (0)
210  
211  #define	STAILQ_INSERT_TAIL(head, elm, field) do {			\
212  	STAILQ_NEXT((elm), field) = NULL;				\
213  	STAILQ_LAST((head)) = (elm);					\
214  	(head)->stqh_last = &STAILQ_NEXT((elm), field);			\
215  } while (0)
216  
217  #define	STAILQ_LAST(head)	(*(head)->stqh_last)
218  
219  #define	STAILQ_NEXT(elm, field)	((elm)->field.stqe_next)
220  
221  #define	STAILQ_REMOVE(head, elm, type, field) do {			\
222  	if (STAILQ_FIRST((head)) == (elm)) {				\
223  		STAILQ_REMOVE_HEAD(head, field);			\
224  	}								\
225  	else {								\
226  		struct type *curelm = STAILQ_FIRST((head));		\
227  		while (STAILQ_NEXT(curelm, field) != (elm))		\
228  			curelm = STAILQ_NEXT(curelm, field);		\
229  		if ((STAILQ_NEXT(curelm, field) =			\
230  		     STAILQ_NEXT(STAILQ_NEXT(curelm, field), field)) == NULL)\
231  			(head)->stqh_last = &STAILQ_NEXT((curelm), field);\
232  	}								\
233  } while (0)
234  
235  #define	STAILQ_REMOVE_HEAD(head, field) do {				\
236  	if ((STAILQ_FIRST((head)) =					\
237  	     STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL)		\
238  		(head)->stqh_last = &STAILQ_FIRST((head));		\
239  } while (0)
240  
241  #define	STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do {			\
242  	if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL)	\
243  		(head)->stqh_last = &STAILQ_FIRST((head));		\
244  } while (0)
245  
246  /*
247   * List declarations.
248   */
249  #define	BSD_LIST_HEAD(name, type)					\
250  struct name {								\
251  	struct type *lh_first;	/* first element */			\
252  }
253  
254  #define	LIST_HEAD_INITIALIZER(head)					\
255  	{ NULL }
256  
257  #define	LIST_ENTRY(type)						\
258  struct {								\
259  	struct type *le_next;	/* next element */			\
260  	struct type **le_prev;	/* address of previous next element */	\
261  }
262  
263  /*
264   * List functions.
265   */
266  
267  #define	LIST_EMPTY(head)	((head)->lh_first == NULL)
268  
269  #define	LIST_FIRST(head)	((head)->lh_first)
270  
271  #define	LIST_FOREACH(var, head, field)					\
272  	for ((var) = LIST_FIRST((head));				\
273  	    (var);							\
274  	    (var) = LIST_NEXT((var), field))
275  
276  #define	LIST_INIT(head) do {						\
277  	LIST_FIRST((head)) = NULL;					\
278  } while (0)
279  
280  #define	LIST_INSERT_AFTER(listelm, elm, field) do {			\
281  	if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\
282  		LIST_NEXT((listelm), field)->field.le_prev =		\
283  		    &LIST_NEXT((elm), field);				\
284  	LIST_NEXT((listelm), field) = (elm);				\
285  	(elm)->field.le_prev = &LIST_NEXT((listelm), field);		\
286  } while (0)
287  
288  #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
289  	(elm)->field.le_prev = (listelm)->field.le_prev;		\
290  	LIST_NEXT((elm), field) = (listelm);				\
291  	*(listelm)->field.le_prev = (elm);				\
292  	(listelm)->field.le_prev = &LIST_NEXT((elm), field);		\
293  } while (0)
294  
295  #define	LIST_INSERT_HEAD(head, elm, field) do {				\
296  	if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL)	\
297  		LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\
298  	LIST_FIRST((head)) = (elm);					\
299  	(elm)->field.le_prev = &LIST_FIRST((head));			\
300  } while (0)
301  
302  #define	LIST_NEXT(elm, field)	((elm)->field.le_next)
303  
304  #define	LIST_REMOVE(elm, field) do {					\
305  	if (LIST_NEXT((elm), field) != NULL)				\
306  		LIST_NEXT((elm), field)->field.le_prev = 		\
307  		    (elm)->field.le_prev;				\
308  	*(elm)->field.le_prev = LIST_NEXT((elm), field);		\
309  } while (0)
310  
311  /*
312   * Tail queue declarations.
313   */
314  #define	TAILQ_HEAD(name, type)						\
315  struct name {								\
316  	struct type *tqh_first;	/* first element */			\
317  	struct type **tqh_last;	/* addr of last next element */		\
318  }
319  
320  #define	TAILQ_HEAD_INITIALIZER(head)					\
321  	{ NULL, &(head).tqh_first }
322  
323  #define	TAILQ_ENTRY(type)						\
324  struct {								\
325  	struct type *tqe_next;	/* next element */			\
326  	struct type **tqe_prev;	/* address of previous next element */	\
327  }
328  
329  /*
330   * Tail queue functions.
331   */
332  #define	TAILQ_EMPTY(head)	((head)->tqh_first == NULL)
333  
334  #define	TAILQ_FIRST(head)	((head)->tqh_first)
335  
336  #define	TAILQ_FOREACH(var, head, field)					\
337  	for ((var) = TAILQ_FIRST((head));				\
338  	    (var);							\
339  	    (var) = TAILQ_NEXT((var), field))
340  
341  #define	TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
342  	for ((var) = TAILQ_LAST((head), headname);			\
343  	    (var);							\
344  	    (var) = TAILQ_PREV((var), headname, field))
345  
346  #define	TAILQ_INIT(head) do {						\
347  	TAILQ_FIRST((head)) = NULL;					\
348  	(head)->tqh_last = &TAILQ_FIRST((head));			\
349  } while (0)
350  
351  #define	TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
352  	if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\
353  		TAILQ_NEXT((elm), field)->field.tqe_prev = 		\
354  		    &TAILQ_NEXT((elm), field);				\
355  	else								\
356  		(head)->tqh_last = &TAILQ_NEXT((elm), field);		\
357  	TAILQ_NEXT((listelm), field) = (elm);				\
358  	(elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field);		\
359  } while (0)
360  
361  #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
362  	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
363  	TAILQ_NEXT((elm), field) = (listelm);				\
364  	*(listelm)->field.tqe_prev = (elm);				\
365  	(listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field);		\
366  } while (0)
367  
368  #define	TAILQ_INSERT_HEAD(head, elm, field) do {			\
369  	if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL)	\
370  		TAILQ_FIRST((head))->field.tqe_prev =			\
371  		    &TAILQ_NEXT((elm), field);				\
372  	else								\
373  		(head)->tqh_last = &TAILQ_NEXT((elm), field);		\
374  	TAILQ_FIRST((head)) = (elm);					\
375  	(elm)->field.tqe_prev = &TAILQ_FIRST((head));			\
376  } while (0)
377  
378  #define	TAILQ_INSERT_TAIL(head, elm, field) do {			\
379  	TAILQ_NEXT((elm), field) = NULL;				\
380  	(elm)->field.tqe_prev = (head)->tqh_last;			\
381  	*(head)->tqh_last = (elm);					\
382  	(head)->tqh_last = &TAILQ_NEXT((elm), field);			\
383  } while (0)
384  
385  #define	TAILQ_LAST(head, headname)					\
386  	(*(((struct headname *)((head)->tqh_last))->tqh_last))
387  
388  #define	TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
389  
390  #define	TAILQ_PREV(elm, headname, field)				\
391  	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
392  
393  #define	TAILQ_REMOVE(head, elm, field) do {				\
394  	if ((TAILQ_NEXT((elm), field)) != NULL)				\
395  		TAILQ_NEXT((elm), field)->field.tqe_prev = 		\
396  		    (elm)->field.tqe_prev;				\
397  	else								\
398  		(head)->tqh_last = (elm)->field.tqe_prev;		\
399  	*(elm)->field.tqe_prev = TAILQ_NEXT((elm), field);		\
400  } while (0)
401  
402  /*
403   * Circular queue declarations.
404   */
405  #define	CIRCLEQ_HEAD(name, type)					\
406  struct name {								\
407  	struct type *cqh_first;		/* first element */		\
408  	struct type *cqh_last;		/* last element */		\
409  }
410  
411  #define	CIRCLEQ_HEAD_INITIALIZER(head)					\
412  	{ (void *)&(head), (void *)&(head) }
413  
414  #define	CIRCLEQ_ENTRY(type)						\
415  struct {								\
416  	struct type *cqe_next;		/* next element */		\
417  	struct type *cqe_prev;		/* previous element */		\
418  }
419  
420  /*
421   * Circular queue functions.
422   */
423  #define	CIRCLEQ_EMPTY(head)	((head)->cqh_first == (void *)(head))
424  
425  #define	CIRCLEQ_FIRST(head)	((head)->cqh_first)
426  
427  #define	CIRCLEQ_FOREACH(var, head, field)				\
428  	for ((var) = CIRCLEQ_FIRST((head));				\
429  	    (var) != (void *)(head);					\
430  	    (var) = CIRCLEQ_NEXT((var), field))
431  
432  #define	CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
433  	for ((var) = CIRCLEQ_LAST((head));				\
434  	    (var) != (void *)(head);					\
435  	    (var) = CIRCLEQ_PREV((var), field))
436  
437  #define	CIRCLEQ_INIT(head) do {						\
438  	CIRCLEQ_FIRST((head)) = (void *)(head);				\
439  	CIRCLEQ_LAST((head)) = (void *)(head);				\
440  } while (0)
441  
442  #define	CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
443  	CIRCLEQ_NEXT((elm), field) = CIRCLEQ_NEXT((listelm), field);	\
444  	CIRCLEQ_PREV((elm), field) = (listelm);				\
445  	if (CIRCLEQ_NEXT((listelm), field) == (void *)(head))		\
446  		CIRCLEQ_LAST((head)) = (elm);				\
447  	else								\
448  		CIRCLEQ_PREV(CIRCLEQ_NEXT((listelm), field), field) = (elm);\
449  	CIRCLEQ_NEXT((listelm), field) = (elm);				\
450  } while (0)
451  
452  #define	CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
453  	CIRCLEQ_NEXT((elm), field) = (listelm);				\
454  	CIRCLEQ_PREV((elm), field) = CIRCLEQ_PREV((listelm), field);	\
455  	if (CIRCLEQ_PREV((listelm), field) == (void *)(head))		\
456  		CIRCLEQ_FIRST((head)) = (elm);				\
457  	else								\
458  		CIRCLEQ_NEXT(CIRCLEQ_PREV((listelm), field), field) = (elm);\
459  	CIRCLEQ_PREV((listelm), field) = (elm);				\
460  } while (0)
461  
462  #define	CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
463  	CIRCLEQ_NEXT((elm), field) = CIRCLEQ_FIRST((head));		\
464  	CIRCLEQ_PREV((elm), field) = (void *)(head);			\
465  	if (CIRCLEQ_LAST((head)) == (void *)(head))			\
466  		CIRCLEQ_LAST((head)) = (elm);				\
467  	else								\
468  		CIRCLEQ_PREV(CIRCLEQ_FIRST((head)), field) = (elm);	\
469  	CIRCLEQ_FIRST((head)) = (elm);					\
470  } while (0)
471  
472  #define	CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
473  	CIRCLEQ_NEXT((elm), field) = (void *)(head);			\
474  	CIRCLEQ_PREV((elm), field) = CIRCLEQ_LAST((head));		\
475  	if (CIRCLEQ_FIRST((head)) == (void *)(head))			\
476  		CIRCLEQ_FIRST((head)) = (elm);				\
477  	else								\
478  		CIRCLEQ_NEXT(CIRCLEQ_LAST((head)), field) = (elm);	\
479  	CIRCLEQ_LAST((head)) = (elm);					\
480  } while (0)
481  
482  #define	CIRCLEQ_LAST(head)	((head)->cqh_last)
483  
484  #define	CIRCLEQ_NEXT(elm,field)	((elm)->field.cqe_next)
485  
486  #define	CIRCLEQ_PREV(elm,field)	((elm)->field.cqe_prev)
487  
488  #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
489  	if (CIRCLEQ_NEXT((elm), field) == (void *)(head))		\
490  		CIRCLEQ_LAST((head)) = CIRCLEQ_PREV((elm), field);	\
491  	else								\
492  		CIRCLEQ_PREV(CIRCLEQ_NEXT((elm), field), field) =	\
493  		    CIRCLEQ_PREV((elm), field);				\
494  	if (CIRCLEQ_PREV((elm), field) == (void *)(head))		\
495  		CIRCLEQ_FIRST((head)) = CIRCLEQ_NEXT((elm), field);	\
496  	else								\
497  		CIRCLEQ_NEXT(CIRCLEQ_PREV((elm), field), field) =	\
498  		    CIRCLEQ_NEXT((elm), field);				\
499  } while (0)
500  
501  #endif /* !_SYS_QUEUE_H_ */
502