1 |
2 |	ssin.sa 3.3 7/29/91
3 |
4 |	The entry point sSIN computes the sine of an input argument
5 |	sCOS computes the cosine, and sSINCOS computes both. The
6 |	corresponding entry points with a "d" computes the same
7 |	corresponding function values for denormalized inputs.
8 |
9 |	Input: Double-extended number X in location pointed to
10 |		by address register a0.
11 |
12 |	Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
13 |		COS is requested. Otherwise, for SINCOS, sin(X) is returned
14 |		in Fp0, and cos(X) is returned in Fp1.
15 |
16 |	Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
17 |
18 |	Accuracy and Monotonicity: The returned result is within 1 ulp in
19 |		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
20 |		result is subsequently rounded to double precision. The
21 |		result is provably monotonic in double precision.
22 |
23 |	Speed: The programs sSIN and sCOS take approximately 150 cycles for
24 |		input argument X such that |X| < 15Pi, which is the usual
25 |		situation. The speed for sSINCOS is approximately 190 cycles.
26 |
27 |	Algorithm:
28 |
29 |	SIN and COS:
30 |	1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
31 |
32 |	2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
33 |
34 |	3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
35 |		k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
36 |		k by k := k + AdjN.
37 |
38 |	4. If k is even, go to 6.
39 |
40 |	5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
41 |		where cos(r) is approximated by an even polynomial in r,
42 |		1 + r*r*(B1+s*(B2+ ... + s*B8)),	s = r*r.
43 |		Exit.
44 |
45 |	6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
46 |		where sin(r) is approximated by an odd polynomial in r
47 |		r + r*s*(A1+s*(A2+ ... + s*A7)),	s = r*r.
48 |		Exit.
49 |
50 |	7. If |X| > 1, go to 9.
51 |
52 |	8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
53 |
54 |	9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
55 |
56 |	SINCOS:
57 |	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
58 |
59 |	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
60 |		k = N mod 4, so in particular, k = 0,1,2,or 3.
61 |
62 |	3. If k is even, go to 5.
63 |
64 |	4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
65 |		j1 exclusive or with the l.s.b. of k.
66 |		sgn1 := (-1)**j1, sgn2 := (-1)**j2.
67 |		SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
68 |		sin(r) and cos(r) are computed as odd and even polynomials
69 |		in r, respectively. Exit
70 |
71 |	5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
72 |		SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
73 |		sin(r) and cos(r) are computed as odd and even polynomials
74 |		in r, respectively. Exit
75 |
76 |	6. If |X| > 1, go to 8.
77 |
78 |	7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
79 |
80 |	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
81 |
82 
83 |		Copyright (C) Motorola, Inc. 1990
84 |			All Rights Reserved
85 |
86 |       For details on the license for this file, please see the
87 |       file, README, in this same directory.
88 
89 |SSIN	idnt	2,1 | Motorola 040 Floating Point Software Package
90 
91 	|section	8
92 
93 #include "fpsp.h"
94 
95 BOUNDS1:	.long 0x3FD78000,0x4004BC7E
96 TWOBYPI:	.long 0x3FE45F30,0x6DC9C883
97 
98 SINA7:	.long 0xBD6AAA77,0xCCC994F5
99 SINA6:	.long 0x3DE61209,0x7AAE8DA1
100 
101 SINA5:	.long 0xBE5AE645,0x2A118AE4
102 SINA4:	.long 0x3EC71DE3,0xA5341531
103 
104 SINA3:	.long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
105 
106 SINA2:	.long 0x3FF80000,0x88888888,0x888859AF,0x00000000
107 
108 SINA1:	.long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
109 
110 COSB8:	.long 0x3D2AC4D0,0xD6011EE3
111 COSB7:	.long 0xBDA9396F,0x9F45AC19
112 
113 COSB6:	.long 0x3E21EED9,0x0612C972
114 COSB5:	.long 0xBE927E4F,0xB79D9FCF
115 
116 COSB4:	.long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
117 
118 COSB3:	.long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
119 
120 COSB2:	.long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
121 COSB1:	.long 0xBF000000
122 
123 INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A
124 
125 TWOPI1:	.long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
126 TWOPI2:	.long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
127 
128 	|xref	PITBL
129 
130 	.set	INARG,FP_SCR4
131 
132 	.set	X,FP_SCR5
133 	.set	XDCARE,X+2
134 	.set	XFRAC,X+4
135 
136 	.set	RPRIME,FP_SCR1
137 	.set	SPRIME,FP_SCR2
138 
139 	.set	POSNEG1,L_SCR1
140 	.set	TWOTO63,L_SCR1
141 
142 	.set	ENDFLAG,L_SCR2
143 	.set	N,L_SCR2
144 
145 	.set	ADJN,L_SCR3
146 
147 	| xref	t_frcinx
148 	|xref	t_extdnrm
149 	|xref	sto_cos
150 
151 	.global	ssind
152 ssind:
153 |--SIN(X) = X FOR DENORMALIZED X
154 	bra		t_extdnrm
155 
156 	.global	scosd
157 scosd:
158 |--COS(X) = 1 FOR DENORMALIZED X
159 
160 	fmoves		#0x3F800000,%fp0
161 |
162 |	9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
163 |
164 	fmovel		#0,%fpsr
165 |
166 	bra		t_frcinx
167 
168 	.global	ssin
169 ssin:
170 |--SET ADJN TO 0
171 	movel		#0,ADJN(%a6)
172 	bras		SINBGN
173 
174 	.global	scos
175 scos:
176 |--SET ADJN TO 1
177 	movel		#1,ADJN(%a6)
178 
179 SINBGN:
180 |--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
181 
182 	fmovex		(%a0),%fp0	| ...LOAD INPUT
183 
184 	movel		(%a0),%d0
185 	movew		4(%a0),%d0
186 	fmovex		%fp0,X(%a6)
187 	andil		#0x7FFFFFFF,%d0		| ...COMPACTIFY X
188 
189 	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
190 	bges		SOK1
191 	bra		SINSM
192 
193 SOK1:
194 	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
195 	blts		SINMAIN
196 	bra		REDUCEX
197 
198 SINMAIN:
199 |--THIS IS THE USUAL CASE, |X| <= 15 PI.
200 |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
201 	fmovex		%fp0,%fp1
202 	fmuld		TWOBYPI,%fp1	| ...X*2/PI
203 
204 |--HIDE THE NEXT THREE INSTRUCTIONS
205 	lea		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
206 
207 
208 |--FP1 IS NOW READY
209 	fmovel		%fp1,N(%a6)		| ...CONVERT TO INTEGER
210 
211 	movel		N(%a6),%d0
212 	asll		#4,%d0
213 	addal		%d0,%a1	| ...A1 IS THE ADDRESS OF N*PIBY2
214 |				...WHICH IS IN TWO PIECES Y1 & Y2
215 
216 	fsubx		(%a1)+,%fp0	| ...X-Y1
217 |--HIDE THE NEXT ONE
218 	fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2
219 
220 SINCONT:
221 |--continuation from REDUCEX
222 
223 |--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
224 	movel		N(%a6),%d0
225 	addl		ADJN(%a6),%d0	| ...SEE IF D0 IS ODD OR EVEN
226 	rorl		#1,%d0	| ...D0 WAS ODD IFF D0 IS NEGATIVE
227 	cmpil		#0,%d0
228 	blt		COSPOLY
229 
230 SINPOLY:
231 |--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
232 |--THEN WE RETURN	SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
233 |--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
234 |--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
235 |--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
236 |--WHERE T=S*S.
237 |--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
238 |--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
239 	fmovex		%fp0,X(%a6)	| ...X IS R
240 	fmulx		%fp0,%fp0	| ...FP0 IS S
241 |---HIDE THE NEXT TWO WHILE WAITING FOR FP0
242 	fmoved		SINA7,%fp3
243 	fmoved		SINA6,%fp2
244 |--FP0 IS NOW READY
245 	fmovex		%fp0,%fp1
246 	fmulx		%fp1,%fp1	| ...FP1 IS T
247 |--HIDE THE NEXT TWO WHILE WAITING FOR FP1
248 
249 	rorl		#1,%d0
250 	andil		#0x80000000,%d0
251 |				...LEAST SIG. BIT OF D0 IN SIGN POSITION
252 	eorl		%d0,X(%a6)	| ...X IS NOW R'= SGN*R
253 
254 	fmulx		%fp1,%fp3	| ...TA7
255 	fmulx		%fp1,%fp2	| ...TA6
256 
257 	faddd		SINA5,%fp3 | ...A5+TA7
258 	faddd		SINA4,%fp2 | ...A4+TA6
259 
260 	fmulx		%fp1,%fp3	| ...T(A5+TA7)
261 	fmulx		%fp1,%fp2	| ...T(A4+TA6)
262 
263 	faddd		SINA3,%fp3 | ...A3+T(A5+TA7)
264 	faddx		SINA2,%fp2 | ...A2+T(A4+TA6)
265 
266 	fmulx		%fp3,%fp1	| ...T(A3+T(A5+TA7))
267 
268 	fmulx		%fp0,%fp2	| ...S(A2+T(A4+TA6))
269 	faddx		SINA1,%fp1 | ...A1+T(A3+T(A5+TA7))
270 	fmulx		X(%a6),%fp0	| ...R'*S
271 
272 	faddx		%fp2,%fp1	| ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
273 |--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
274 |--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING
275 
276 
277 	fmulx		%fp1,%fp0		| ...SIN(R')-R'
278 |--FP1 RELEASED.
279 
280 	fmovel		%d1,%FPCR		|restore users exceptions
281 	faddx		X(%a6),%fp0		|last inst - possible exception set
282 	bra		t_frcinx
283 
284 
285 COSPOLY:
286 |--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
287 |--THEN WE RETURN	SGN*COS(R). SGN*COS(R) IS COMPUTED BY
288 |--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
289 |--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
290 |--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
291 |--WHERE T=S*S.
292 |--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
293 |--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
294 |--AND IS THEREFORE STORED AS SINGLE PRECISION.
295 
296 	fmulx		%fp0,%fp0	| ...FP0 IS S
297 |---HIDE THE NEXT TWO WHILE WAITING FOR FP0
298 	fmoved		COSB8,%fp2
299 	fmoved		COSB7,%fp3
300 |--FP0 IS NOW READY
301 	fmovex		%fp0,%fp1
302 	fmulx		%fp1,%fp1	| ...FP1 IS T
303 |--HIDE THE NEXT TWO WHILE WAITING FOR FP1
304 	fmovex		%fp0,X(%a6)	| ...X IS S
305 	rorl		#1,%d0
306 	andil		#0x80000000,%d0
307 |			...LEAST SIG. BIT OF D0 IN SIGN POSITION
308 
309 	fmulx		%fp1,%fp2	| ...TB8
310 |--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
311 	eorl		%d0,X(%a6)	| ...X IS NOW S'= SGN*S
312 	andil		#0x80000000,%d0
313 
314 	fmulx		%fp1,%fp3	| ...TB7
315 |--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
316 	oril		#0x3F800000,%d0	| ...D0 IS SGN IN SINGLE
317 	movel		%d0,POSNEG1(%a6)
318 
319 	faddd		COSB6,%fp2 | ...B6+TB8
320 	faddd		COSB5,%fp3 | ...B5+TB7
321 
322 	fmulx		%fp1,%fp2	| ...T(B6+TB8)
323 	fmulx		%fp1,%fp3	| ...T(B5+TB7)
324 
325 	faddd		COSB4,%fp2 | ...B4+T(B6+TB8)
326 	faddx		COSB3,%fp3 | ...B3+T(B5+TB7)
327 
328 	fmulx		%fp1,%fp2	| ...T(B4+T(B6+TB8))
329 	fmulx		%fp3,%fp1	| ...T(B3+T(B5+TB7))
330 
331 	faddx		COSB2,%fp2 | ...B2+T(B4+T(B6+TB8))
332 	fadds		COSB1,%fp1 | ...B1+T(B3+T(B5+TB7))
333 
334 	fmulx		%fp2,%fp0	| ...S(B2+T(B4+T(B6+TB8)))
335 |--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
336 |--FP2 RELEASED.
337 
338 
339 	faddx		%fp1,%fp0
340 |--FP1 RELEASED
341 
342 	fmulx		X(%a6),%fp0
343 
344 	fmovel		%d1,%FPCR		|restore users exceptions
345 	fadds		POSNEG1(%a6),%fp0	|last inst - possible exception set
346 	bra		t_frcinx
347 
348 
349 SINBORS:
350 |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
351 |--IF |X| < 2**(-40), RETURN X OR 1.
352 	cmpil		#0x3FFF8000,%d0
353 	bgts		REDUCEX
354 
355 
356 SINSM:
357 	movel		ADJN(%a6),%d0
358 	cmpil		#0,%d0
359 	bgts		COSTINY
360 
361 SINTINY:
362 	movew		#0x0000,XDCARE(%a6)	| ...JUST IN CASE
363 	fmovel		%d1,%FPCR		|restore users exceptions
364 	fmovex		X(%a6),%fp0		|last inst - possible exception set
365 	bra		t_frcinx
366 
367 
368 COSTINY:
369 	fmoves		#0x3F800000,%fp0
370 
371 	fmovel		%d1,%FPCR		|restore users exceptions
372 	fsubs		#0x00800000,%fp0	|last inst - possible exception set
373 	bra		t_frcinx
374 
375 
376 REDUCEX:
377 |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
378 |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
379 |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
380 
381 	fmovemx	%fp2-%fp5,-(%a7)	| ...save FP2 through FP5
382 	movel		%d2,-(%a7)
383         fmoves         #0x00000000,%fp1
384 |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
385 |--there is a danger of unwanted overflow in first LOOP iteration.  In this
386 |--case, reduce argument by one remainder step to make subsequent reduction
387 |--safe.
388 	cmpil	#0x7ffeffff,%d0		|is argument dangerously large?
389 	bnes	LOOP
390 	movel	#0x7ffe0000,FP_SCR2(%a6)	|yes
391 |					;create 2**16383*PI/2
392 	movel	#0xc90fdaa2,FP_SCR2+4(%a6)
393 	clrl	FP_SCR2+8(%a6)
394 	ftstx	%fp0			|test sign of argument
395 	movel	#0x7fdc0000,FP_SCR3(%a6)	|create low half of 2**16383*
396 |					;PI/2 at FP_SCR3
397 	movel	#0x85a308d3,FP_SCR3+4(%a6)
398 	clrl   FP_SCR3+8(%a6)
399 	fblt	red_neg
400 	orw	#0x8000,FP_SCR2(%a6)	|positive arg
401 	orw	#0x8000,FP_SCR3(%a6)
402 red_neg:
403 	faddx  FP_SCR2(%a6),%fp0		|high part of reduction is exact
404 	fmovex  %fp0,%fp1		|save high result in fp1
405 	faddx  FP_SCR3(%a6),%fp0		|low part of reduction
406 	fsubx  %fp0,%fp1			|determine low component of result
407 	faddx  FP_SCR3(%a6),%fp1		|fp0/fp1 are reduced argument.
408 
409 |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
410 |--integer quotient will be stored in N
411 |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
412 
413 LOOP:
414 	fmovex		%fp0,INARG(%a6)	| ...+-2**K * F, 1 <= F < 2
415 	movew		INARG(%a6),%d0
416         movel          %d0,%a1		| ...save a copy of D0
417 	andil		#0x00007FFF,%d0
418 	subil		#0x00003FFF,%d0	| ...D0 IS K
419 	cmpil		#28,%d0
420 	bles		LASTLOOP
421 CONTLOOP:
422 	subil		#27,%d0	 | ...D0 IS L := K-27
423 	movel		#0,ENDFLAG(%a6)
424 	bras		WORK
425 LASTLOOP:
426 	clrl		%d0		| ...D0 IS L := 0
427 	movel		#1,ENDFLAG(%a6)
428 
429 WORK:
430 |--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN
431 |--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29.
432 
433 |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
434 |--2**L * (PIby2_1), 2**L * (PIby2_2)
435 
436 	movel		#0x00003FFE,%d2	| ...BIASED EXPO OF 2/PI
437 	subl		%d0,%d2		| ...BIASED EXPO OF 2**(-L)*(2/PI)
438 
439 	movel		#0xA2F9836E,FP_SCR1+4(%a6)
440 	movel		#0x4E44152A,FP_SCR1+8(%a6)
441 	movew		%d2,FP_SCR1(%a6)	| ...FP_SCR1 is 2**(-L)*(2/PI)
442 
443 	fmovex		%fp0,%fp2
444 	fmulx		FP_SCR1(%a6),%fp2
445 |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
446 |--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N
447 |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
448 |--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE
449 |--US THE DESIRED VALUE IN FLOATING POINT.
450 
451 |--HIDE SIX CYCLES OF INSTRUCTION
452         movel		%a1,%d2
453         swap		%d2
454 	andil		#0x80000000,%d2
455 	oril		#0x5F000000,%d2	| ...D2 IS SIGN(INARG)*2**63 IN SGL
456 	movel		%d2,TWOTO63(%a6)
457 
458 	movel		%d0,%d2
459 	addil		#0x00003FFF,%d2	| ...BIASED EXPO OF 2**L * (PI/2)
460 
461 |--FP2 IS READY
462 	fadds		TWOTO63(%a6),%fp2	| ...THE FRACTIONAL PART OF FP1 IS ROUNDED
463 
464 |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1  and  2**(L)*Piby2_2
465         movew		%d2,FP_SCR2(%a6)
466 	clrw           FP_SCR2+2(%a6)
467 	movel		#0xC90FDAA2,FP_SCR2+4(%a6)
468 	clrl		FP_SCR2+8(%a6)		| ...FP_SCR2 is  2**(L) * Piby2_1
469 
470 |--FP2 IS READY
471 	fsubs		TWOTO63(%a6),%fp2		| ...FP2 is N
472 
473 	addil		#0x00003FDD,%d0
474         movew		%d0,FP_SCR3(%a6)
475 	clrw           FP_SCR3+2(%a6)
476 	movel		#0x85A308D3,FP_SCR3+4(%a6)
477 	clrl		FP_SCR3+8(%a6)		| ...FP_SCR3 is 2**(L) * Piby2_2
478 
479 	movel		ENDFLAG(%a6),%d0
480 
481 |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
482 |--P2 = 2**(L) * Piby2_2
483 	fmovex		%fp2,%fp4
484 	fmulx		FP_SCR2(%a6),%fp4		| ...W = N*P1
485 	fmovex		%fp2,%fp5
486 	fmulx		FP_SCR3(%a6),%fp5		| ...w = N*P2
487 	fmovex		%fp4,%fp3
488 |--we want P+p = W+w  but  |p| <= half ulp of P
489 |--Then, we need to compute  A := R-P   and  a := r-p
490 	faddx		%fp5,%fp3			| ...FP3 is P
491 	fsubx		%fp3,%fp4			| ...W-P
492 
493 	fsubx		%fp3,%fp0			| ...FP0 is A := R - P
494         faddx		%fp5,%fp4			| ...FP4 is p = (W-P)+w
495 
496 	fmovex		%fp0,%fp3			| ...FP3 A
497 	fsubx		%fp4,%fp1			| ...FP1 is a := r - p
498 
499 |--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
500 |--|r| <= half ulp of R.
501 	faddx		%fp1,%fp0			| ...FP0 is R := A+a
502 |--No need to calculate r if this is the last loop
503 	cmpil		#0,%d0
504 	bgt		RESTORE
505 
506 |--Need to calculate r
507 	fsubx		%fp0,%fp3			| ...A-R
508 	faddx		%fp3,%fp1			| ...FP1 is r := (A-R)+a
509 	bra		LOOP
510 
511 RESTORE:
512         fmovel		%fp2,N(%a6)
513 	movel		(%a7)+,%d2
514 	fmovemx	(%a7)+,%fp2-%fp5
515 
516 
517 	movel		ADJN(%a6),%d0
518 	cmpil		#4,%d0
519 
520 	blt		SINCONT
521 	bras		SCCONT
522 
523 	.global	ssincosd
524 ssincosd:
525 |--SIN AND COS OF X FOR DENORMALIZED X
526 
527 	fmoves		#0x3F800000,%fp1
528 	bsr		sto_cos		|store cosine result
529 	bra		t_extdnrm
530 
531 	.global	ssincos
532 ssincos:
533 |--SET ADJN TO 4
534 	movel		#4,ADJN(%a6)
535 
536 	fmovex		(%a0),%fp0	| ...LOAD INPUT
537 
538 	movel		(%a0),%d0
539 	movew		4(%a0),%d0
540 	fmovex		%fp0,X(%a6)
541 	andil		#0x7FFFFFFF,%d0		| ...COMPACTIFY X
542 
543 	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
544 	bges		SCOK1
545 	bra		SCSM
546 
547 SCOK1:
548 	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
549 	blts		SCMAIN
550 	bra		REDUCEX
551 
552 
553 SCMAIN:
554 |--THIS IS THE USUAL CASE, |X| <= 15 PI.
555 |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
556 	fmovex		%fp0,%fp1
557 	fmuld		TWOBYPI,%fp1	| ...X*2/PI
558 
559 |--HIDE THE NEXT THREE INSTRUCTIONS
560 	lea		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
561 
562 
563 |--FP1 IS NOW READY
564 	fmovel		%fp1,N(%a6)		| ...CONVERT TO INTEGER
565 
566 	movel		N(%a6),%d0
567 	asll		#4,%d0
568 	addal		%d0,%a1		| ...ADDRESS OF N*PIBY2, IN Y1, Y2
569 
570 	fsubx		(%a1)+,%fp0	| ...X-Y1
571         fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2
572 
573 SCCONT:
574 |--continuation point from REDUCEX
575 
576 |--HIDE THE NEXT TWO
577 	movel		N(%a6),%d0
578 	rorl		#1,%d0
579 
580 	cmpil		#0,%d0		| ...D0 < 0 IFF N IS ODD
581 	bge		NEVEN
582 
583 NODD:
584 |--REGISTERS SAVED SO FAR: D0, A0, FP2.
585 
586 	fmovex		%fp0,RPRIME(%a6)
587 	fmulx		%fp0,%fp0	 | ...FP0 IS S = R*R
588 	fmoved		SINA7,%fp1	| ...A7
589 	fmoved		COSB8,%fp2	| ...B8
590 	fmulx		%fp0,%fp1	 | ...SA7
591 	movel		%d2,-(%a7)
592 	movel		%d0,%d2
593 	fmulx		%fp0,%fp2	 | ...SB8
594 	rorl		#1,%d2
595 	andil		#0x80000000,%d2
596 
597 	faddd		SINA6,%fp1	| ...A6+SA7
598 	eorl		%d0,%d2
599 	andil		#0x80000000,%d2
600 	faddd		COSB7,%fp2	| ...B7+SB8
601 
602 	fmulx		%fp0,%fp1	 | ...S(A6+SA7)
603 	eorl		%d2,RPRIME(%a6)
604 	movel		(%a7)+,%d2
605 	fmulx		%fp0,%fp2	 | ...S(B7+SB8)
606 	rorl		#1,%d0
607 	andil		#0x80000000,%d0
608 
609 	faddd		SINA5,%fp1	| ...A5+S(A6+SA7)
610 	movel		#0x3F800000,POSNEG1(%a6)
611 	eorl		%d0,POSNEG1(%a6)
612 	faddd		COSB6,%fp2	| ...B6+S(B7+SB8)
613 
614 	fmulx		%fp0,%fp1	 | ...S(A5+S(A6+SA7))
615 	fmulx		%fp0,%fp2	 | ...S(B6+S(B7+SB8))
616 	fmovex		%fp0,SPRIME(%a6)
617 
618 	faddd		SINA4,%fp1	| ...A4+S(A5+S(A6+SA7))
619 	eorl		%d0,SPRIME(%a6)
620 	faddd		COSB5,%fp2	| ...B5+S(B6+S(B7+SB8))
621 
622 	fmulx		%fp0,%fp1	 | ...S(A4+...)
623 	fmulx		%fp0,%fp2	 | ...S(B5+...)
624 
625 	faddd		SINA3,%fp1	| ...A3+S(A4+...)
626 	faddd		COSB4,%fp2	| ...B4+S(B5+...)
627 
628 	fmulx		%fp0,%fp1	 | ...S(A3+...)
629 	fmulx		%fp0,%fp2	 | ...S(B4+...)
630 
631 	faddx		SINA2,%fp1	| ...A2+S(A3+...)
632 	faddx		COSB3,%fp2	| ...B3+S(B4+...)
633 
634 	fmulx		%fp0,%fp1	 | ...S(A2+...)
635 	fmulx		%fp0,%fp2	 | ...S(B3+...)
636 
637 	faddx		SINA1,%fp1	| ...A1+S(A2+...)
638 	faddx		COSB2,%fp2	| ...B2+S(B3+...)
639 
640 	fmulx		%fp0,%fp1	 | ...S(A1+...)
641 	fmulx		%fp2,%fp0	 | ...S(B2+...)
642 
643 
644 
645 	fmulx		RPRIME(%a6),%fp1	| ...R'S(A1+...)
646 	fadds		COSB1,%fp0	| ...B1+S(B2...)
647 	fmulx		SPRIME(%a6),%fp0	| ...S'(B1+S(B2+...))
648 
649 	movel		%d1,-(%sp)	|restore users mode & precision
650 	andil		#0xff,%d1		|mask off all exceptions
651 	fmovel		%d1,%FPCR
652 	faddx		RPRIME(%a6),%fp1	| ...COS(X)
653 	bsr		sto_cos		|store cosine result
654 	fmovel		(%sp)+,%FPCR	|restore users exceptions
655 	fadds		POSNEG1(%a6),%fp0	| ...SIN(X)
656 
657 	bra		t_frcinx
658 
659 
660 NEVEN:
661 |--REGISTERS SAVED SO FAR: FP2.
662 
663 	fmovex		%fp0,RPRIME(%a6)
664 	fmulx		%fp0,%fp0	 | ...FP0 IS S = R*R
665 	fmoved		COSB8,%fp1			| ...B8
666 	fmoved		SINA7,%fp2			| ...A7
667 	fmulx		%fp0,%fp1	 | ...SB8
668 	fmovex		%fp0,SPRIME(%a6)
669 	fmulx		%fp0,%fp2	 | ...SA7
670 	rorl		#1,%d0
671 	andil		#0x80000000,%d0
672 	faddd		COSB7,%fp1	| ...B7+SB8
673 	faddd		SINA6,%fp2	| ...A6+SA7
674 	eorl		%d0,RPRIME(%a6)
675 	eorl		%d0,SPRIME(%a6)
676 	fmulx		%fp0,%fp1	 | ...S(B7+SB8)
677 	oril		#0x3F800000,%d0
678 	movel		%d0,POSNEG1(%a6)
679 	fmulx		%fp0,%fp2	 | ...S(A6+SA7)
680 
681 	faddd		COSB6,%fp1	| ...B6+S(B7+SB8)
682 	faddd		SINA5,%fp2	| ...A5+S(A6+SA7)
683 
684 	fmulx		%fp0,%fp1	 | ...S(B6+S(B7+SB8))
685 	fmulx		%fp0,%fp2	 | ...S(A5+S(A6+SA7))
686 
687 	faddd		COSB5,%fp1	| ...B5+S(B6+S(B7+SB8))
688 	faddd		SINA4,%fp2	| ...A4+S(A5+S(A6+SA7))
689 
690 	fmulx		%fp0,%fp1	 | ...S(B5+...)
691 	fmulx		%fp0,%fp2	 | ...S(A4+...)
692 
693 	faddd		COSB4,%fp1	| ...B4+S(B5+...)
694 	faddd		SINA3,%fp2	| ...A3+S(A4+...)
695 
696 	fmulx		%fp0,%fp1	 | ...S(B4+...)
697 	fmulx		%fp0,%fp2	 | ...S(A3+...)
698 
699 	faddx		COSB3,%fp1	| ...B3+S(B4+...)
700 	faddx		SINA2,%fp2	| ...A2+S(A3+...)
701 
702 	fmulx		%fp0,%fp1	 | ...S(B3+...)
703 	fmulx		%fp0,%fp2	 | ...S(A2+...)
704 
705 	faddx		COSB2,%fp1	| ...B2+S(B3+...)
706 	faddx		SINA1,%fp2	| ...A1+S(A2+...)
707 
708 	fmulx		%fp0,%fp1	 | ...S(B2+...)
709 	fmulx		%fp2,%fp0	 | ...s(a1+...)
710 
711 
712 
713 	fadds		COSB1,%fp1	| ...B1+S(B2...)
714 	fmulx		RPRIME(%a6),%fp0	| ...R'S(A1+...)
715 	fmulx		SPRIME(%a6),%fp1	| ...S'(B1+S(B2+...))
716 
717 	movel		%d1,-(%sp)	|save users mode & precision
718 	andil		#0xff,%d1		|mask off all exceptions
719 	fmovel		%d1,%FPCR
720 	fadds		POSNEG1(%a6),%fp1	| ...COS(X)
721 	bsr		sto_cos		|store cosine result
722 	fmovel		(%sp)+,%FPCR	|restore users exceptions
723 	faddx		RPRIME(%a6),%fp0	| ...SIN(X)
724 
725 	bra		t_frcinx
726 
727 SCBORS:
728 	cmpil		#0x3FFF8000,%d0
729 	bgt		REDUCEX
730 
731 
732 SCSM:
733 	movew		#0x0000,XDCARE(%a6)
734 	fmoves		#0x3F800000,%fp1
735 
736 	movel		%d1,-(%sp)	|save users mode & precision
737 	andil		#0xff,%d1		|mask off all exceptions
738 	fmovel		%d1,%FPCR
739 	fsubs		#0x00800000,%fp1
740 	bsr		sto_cos		|store cosine result
741 	fmovel		(%sp)+,%FPCR	|restore users exceptions
742 	fmovex		X(%a6),%fp0
743 	bra		t_frcinx
744 
745 	|end
746