1 /*
2  * Copyright (c) 2011,2017-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _TARGET_IF_SPECTRAL_H_
21 #define _TARGET_IF_SPECTRAL_H_
22 
23 #include <wlan_objmgr_cmn.h>
24 #include <wlan_objmgr_psoc_obj.h>
25 #include <wlan_objmgr_pdev_obj.h>
26 #include <wlan_objmgr_vdev_obj.h>
27 #include <wlan_reg_services_api.h>
28 #include <qdf_lock.h>
29 #include <wlan_spectral_public_structs.h>
30 #include <reg_services_public_struct.h>
31 #ifdef DIRECT_BUF_RX_ENABLE
32 #include <target_if_direct_buf_rx_api.h>
33 #endif
34 #ifdef WIN32
35 #pragma pack(push, target_if_spectral, 1)
36 #define __ATTRIB_PACK
37 #else
38 #ifndef __ATTRIB_PACK
39 #define __ATTRIB_PACK __attribute__ ((packed))
40 #endif
41 #endif
42 
43 #include <spectral_defs_i.h>
44 #include <wmi_unified_param.h>
45 
46 #define FREQ_OFFSET_10MHZ (10)
47 #define FREQ_OFFSET_40MHZ (40)
48 #define FREQ_OFFSET_80MHZ (80)
49 #define FREQ_OFFSET_85MHZ (85)
50 #ifndef SPECTRAL_USE_NL_BCAST
51 #define SPECTRAL_USE_NL_BCAST  (0)
52 #endif
53 
54 #define STATUS_PASS       1
55 #define STATUS_FAIL       0
56 #undef spectral_dbg_line
57 #define spectral_dbg_line() \
58 	spectral_debug("----------------------------------------------------")
59 
60 #undef spectral_ops_not_registered
61 #define spectral_ops_not_registered(str) \
62 	spectral_info("SPECTRAL : %s not registered\n", (str))
63 #undef not_yet_implemented
64 #define not_yet_implemented() \
65 	spectral_info("SPECTRAL : %s : %d Not yet implemented\n", \
66 		      __func__, __LINE__)
67 
68 #define SPECTRAL_HT20_NUM_BINS               56
69 #define SPECTRAL_HT20_FFT_LEN                56
70 #define SPECTRAL_HT20_DC_INDEX               (SPECTRAL_HT20_FFT_LEN / 2)
71 #define SPECTRAL_HT20_DATA_LEN               60
72 #define SPECTRAL_HT20_TOTAL_DATA_LEN         (SPECTRAL_HT20_DATA_LEN + 3)
73 #define SPECTRAL_HT40_TOTAL_NUM_BINS         128
74 #define SPECTRAL_HT40_DATA_LEN               135
75 #define SPECTRAL_HT40_TOTAL_DATA_LEN         (SPECTRAL_HT40_DATA_LEN + 3)
76 #define SPECTRAL_HT40_FFT_LEN                128
77 #define SPECTRAL_HT40_DC_INDEX               (SPECTRAL_HT40_FFT_LEN / 2)
78 
79 /*
80  * Used for the SWAR to obtain approximate combined rssi
81  * in secondary 80Mhz segment
82  */
83 #define OFFSET_CH_WIDTH_20	65
84 #define OFFSET_CH_WIDTH_40	62
85 #define OFFSET_CH_WIDTH_80	56
86 #define OFFSET_CH_WIDTH_160	50
87 
88 /* Min and max for relevant Spectral params */
89 #define SPECTRAL_PARAM_FFT_SIZE_MIN_GEN2          (1)
90 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN2          (9)
91 #define SPECTRAL_PARAM_FFT_SIZE_MIN_GEN3          (5)
92 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_DEFAULT  (9)
93 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_QCN9000  (10)
94 #define SPECTRAL_PARAM_FFT_SIZE_MIN_GEN3_BE       (5)
95 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_BE       (11)
96 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_BE_20MHZ (9)
97 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_BE_40MHZ (10)
98 #define INVALID_FFT_SIZE                          (0xFFFF)
99 #define SPECTRAL_PARAM_RPT_MODE_MIN               (0)
100 #define SPECTRAL_PARAM_RPT_MODE_MAX               (3)
101 #define SPECTRAL_PARAM_SCAN_COUNT_MAX_GEN3        (4095)
102 #define SPECTRAL_PARAM_SCAN_COUNT_MAX_GEN3_BE     (4095)
103 #define SPECTRAL_DWORD_SIZE                       (4)
104 
105 #define MAX_FFTBIN_VALUE_LINEAR_MODE              (U8_MAX)
106 #define MAX_FFTBIN_VALUE_DBM_MODE                 (S8_MAX)
107 #define MIN_FFTBIN_VALUE_DBM_MODE                 (S8_MIN)
108 #define MAX_FFTBIN_VALUE                          (255)
109 
110 /* DBR ring debug size for Spectral */
111 #define SPECTRAL_DBR_RING_DEBUG_SIZE 512
112 
113 #ifdef BIG_ENDIAN_HOST
114 #define SPECTRAL_MESSAGE_COPY_CHAR_ARRAY(destp, srcp, len)  do { \
115 	int j; \
116 	uint32_t *src, *dest; \
117 	src = (uint32_t *)(srcp); \
118 	dest = (uint32_t *)(destp); \
119 	for (j = 0; j < roundup((len), sizeof(uint32_t)) / 4; j++) { \
120 	*(dest + j) = qdf_le32_to_cpu(*(src + j)); \
121 	} \
122 	} while (0)
123 #else
124 #define SPECTRAL_MESSAGE_COPY_CHAR_ARRAY(destp, srcp, len) \
125 	OS_MEMCPY((destp), (srcp), (len));
126 #endif
127 
128 #define DUMMY_NF_VALUE          (-123)
129 /* 5 categories x (lower + upper) bands */
130 #define MAX_INTERF                   10
131 #define HOST_MAX_ANTENNA         3
132 /* Mask for time stamp from descriptor */
133 #define SPECTRAL_TSMASK              0xFFFFFFFF
134 #define SPECTRAL_SIGNATURE           0xdeadbeef
135 /* Signature to write onto spectral buffer and then later validate */
136 #define MEM_POISON_SIGNATURE (htobe32(0xdeadbeef))
137 
138 /* START of spectral GEN II HW specific details */
139 #define SPECTRAL_PHYERR_SIGNATURE_GEN2           0xbb
140 #define TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN2     0xF9
141 #define TLV_TAG_ADC_REPORT_GEN2                  0xFA
142 #define TLV_TAG_SEARCH_FFT_REPORT_GEN2           0xFB
143 
144 /*
145  * The Maximum number of detector information to be filled in the SAMP msg
146  * is 3, only for 165MHz case. For all other cases this value will be 1.
147  */
148 #define MAX_NUM_DEST_DETECTOR_INFO    (3)
149 #define MAX_DETECTORS_PER_PDEV        (3)
150 #define FFT_BIN_SIZE_1BYTE            (1)
151 
152 #ifdef OPTIMIZED_SAMP_MESSAGE
153 /**
154  * enum spectral_160mhz_report_delivery_state - 160 MHz state machine states
155  * @SPECTRAL_REPORT_WAIT_PRIMARY80:   Wait for primary80 report
156  * @SPECTRAL_REPORT_WAIT_SECONDARY80: Wait for secondory 80 report
157  */
158 enum spectral_160mhz_report_delivery_state {
159 	SPECTRAL_REPORT_WAIT_PRIMARY80,
160 	SPECTRAL_REPORT_WAIT_SECONDARY80,
161 };
162 #else
163 /**
164  * enum spectral_160mhz_report_delivery_state - 160 MHz state machine states
165  * @SPECTRAL_REPORT_WAIT_PRIMARY80:   Wait for primary80 report
166  * @SPECTRAL_REPORT_RX_PRIMARY80:     Receive primary 80 report
167  * @SPECTRAL_REPORT_WAIT_SECONDARY80: Wait for secondory 80 report
168  * @SPECTRAL_REPORT_RX_SECONDARY80:   Receive secondary 80 report
169  */
170 enum spectral_160mhz_report_delivery_state {
171 	SPECTRAL_REPORT_WAIT_PRIMARY80,
172 	SPECTRAL_REPORT_RX_PRIMARY80,
173 	SPECTRAL_REPORT_WAIT_SECONDARY80,
174 	SPECTRAL_REPORT_RX_SECONDARY80,
175 };
176 #endif /* OPTIMIZED_SAMP_MESSAGE */
177 
178 /**
179  * enum spectral_freq_span_id - Spectral frequency span id
180  * @SPECTRAL_FREQ_SPAN_ID_0: Frequency span 0
181  * @SPECTRAL_FREQ_SPAN_ID_1: Frequency span 1
182  * @SPECTRAL_FREQ_SPAN_ID_2: Frequency span 2
183  */
184 enum spectral_freq_span_id {
185 	SPECTRAL_FREQ_SPAN_ID_0,
186 	SPECTRAL_FREQ_SPAN_ID_1,
187 	SPECTRAL_FREQ_SPAN_ID_2,
188 };
189 
190 /**
191  * enum spectral_detector_id - Spectral detector id
192  * @SPECTRAL_DETECTOR_ID_0: Spectral detector 0
193  * @SPECTRAL_DETECTOR_ID_1: Spectral detector 1
194  * @SPECTRAL_DETECTOR_ID_2: Spectral detector 2
195  * @SPECTRAL_DETECTOR_ID_MAX: Max Spectral detector ID
196  * @SPECTRAL_DETECTOR_ID_INVALID: Invalid Spectral detector ID
197  */
198 enum spectral_detector_id {
199 	SPECTRAL_DETECTOR_ID_0,
200 	SPECTRAL_DETECTOR_ID_1,
201 	SPECTRAL_DETECTOR_ID_2,
202 	SPECTRAL_DETECTOR_ID_MAX,
203 	SPECTRAL_DETECTOR_ID_INVALID = 0xff,
204 };
205 
206 /**
207  * struct spectral_search_fft_info_gen2 - spectral search fft report for gen2
208  * @relpwr_db:       Total bin power in db
209  * @num_str_bins_ib: Number of strong bins
210  * @base_pwr:        Base power
211  * @total_gain_info: Total gain
212  * @fft_chn_idx:     FFT chain on which report is originated
213  * @avgpwr_db:       Average power in db
214  * @peak_mag:        Peak power seen in the bins
215  * @peak_inx:        Index of bin holding peak power
216  */
217 struct spectral_search_fft_info_gen2 {
218 	uint32_t relpwr_db;
219 	uint32_t num_str_bins_ib;
220 	uint32_t base_pwr;
221 	uint32_t total_gain_info;
222 	uint32_t fft_chn_idx;
223 	uint32_t avgpwr_db;
224 	uint32_t peak_mag;
225 	int16_t  peak_inx;
226 };
227 
228 /*
229  * XXX Check if we should be handling the endinness difference in some
230  * other way opaque to the host
231  */
232 #ifdef BIG_ENDIAN_HOST
233 
234 /**
235  * struct spectral_phyerr_tlv_gen2 - phyerr tlv info for big endian host
236  * @signature: signature
237  * @tag:       tag
238  * @length:    length
239  */
240 struct spectral_phyerr_tlv_gen2 {
241 	uint8_t  signature;
242 	uint8_t  tag;
243 	uint16_t length;
244 } __ATTRIB_PACK;
245 
246 #else
247 
248 /**
249  * struct spectral_phyerr_tlv_gen2 - phyerr tlv info for little endian host
250  * @length:    length
251  * @tag:       tag
252  * @signature: signature
253  */
254 struct spectral_phyerr_tlv_gen2 {
255 	uint16_t length;
256 	uint8_t  tag;
257 	uint8_t  signature;
258 } __ATTRIB_PACK;
259 
260 #endif /* BIG_ENDIAN_HOST */
261 
262 /**
263  * struct spectral_phyerr_hdr_gen2 - phyerr header for gen2 HW
264  * @hdr_a: Header[0:31]
265  * @hdr_b: Header[32:63]
266  */
267 struct spectral_phyerr_hdr_gen2 {
268 	uint32_t hdr_a;
269 	uint32_t hdr_b;
270 };
271 
272 /*
273  * Segment ID information for 80+80.
274  *
275  * If the HW micro-architecture specification extends this DWORD for other
276  * purposes, then redefine+rename accordingly. For now, the specification
277  * mentions only segment ID (though this doesn't require an entire DWORD)
278  * without mention of any generic terminology for the DWORD, or any reservation.
279  * We use nomenclature accordingly.
280  */
281 typedef uint32_t SPECTRAL_SEGID_INFO;
282 
283 /**
284  * struct spectral_phyerr_fft_gen2 - fft info in phyerr event
285  * @buf: fft report
286  */
287 struct spectral_phyerr_fft_gen2 {
288 	__QDF_DECLARE_FLEX_ARRAY(uint8_t, buf);
289 };
290 
291 /**
292  * struct spectral_process_phyerr_info_gen2 - Processed phyerr info structures
293  * needed to fill SAMP params for gen2
294  * @p_rfqual: Pointer to RF quality info
295  * @p_sfft: Pointer to Search fft report info
296  * @pfft: Pointer to FFT info in Phyerr event
297  * @acs_stats: Pointer to ACS stats struct
298  * @tsf64: 64 bit TSF value
299  * @seg_id: Segment ID
300  */
301 struct spectral_process_phyerr_info_gen2 {
302 	struct target_if_spectral_rfqual_info *p_rfqual;
303 	struct spectral_search_fft_info_gen2 *p_sfft;
304 	struct spectral_phyerr_fft_gen2 *pfft;
305 	struct target_if_spectral_acs_stats *acs_stats;
306 	uint64_t tsf64;
307 	uint8_t seg_id;
308 };
309 
310 /* END of spectral GEN II HW specific details */
311 
312 /* START of spectral GEN III HW specific details */
313 
314 #define get_bitfield(value, size, pos) \
315 	(((value) >> (pos)) & ((1 << (size)) - 1))
316 #define unsigned_to_signed(value, width) \
317 	(((value) >= (1 << ((width) - 1))) ? \
318 		(value - (1 << (width))) : (value))
319 
320 #define SSCAN_SUMMARY_REPORT_HDR_A_DETECTOR_ID_POS_GEN3         (29)
321 #define SSCAN_SUMMARY_REPORT_HDR_A_DETECTOR_ID_SIZE_GEN3        (2)
322 #define SSCAN_SUMMARY_REPORT_HDR_A_AGC_TOTAL_GAIN_POS_GEN3      (0)
323 #define SSCAN_SUMMARY_REPORT_HDR_A_AGC_TOTAL_GAIN_SIZE_GEN3     (8)
324 #define SSCAN_SUMMARY_REPORT_HDR_A_INBAND_PWR_DB_POS_GEN3       (18)
325 #define SSCAN_SUMMARY_REPORT_HDR_A_INBAND_PWR_DB_SIZE_GEN3      (10)
326 #define SSCAN_SUMMARY_REPORT_HDR_A_PRI80_POS_GEN3               (31)
327 #define SSCAN_SUMMARY_REPORT_HDR_A_PRI80_SIZE_GEN3              (1)
328 #define SSCAN_SUMMARY_REPORT_HDR_B_GAINCHANGE_POS_GEN3_V1       (30)
329 #define SSCAN_SUMMARY_REPORT_HDR_B_GAINCHANGE_SIZE_GEN3_V1      (1)
330 #define SSCAN_SUMMARY_REPORT_HDR_C_GAINCHANGE_POS_GEN3_V2       (16)
331 #define SSCAN_SUMMARY_REPORT_HDR_C_GAINCHANGE_SIZE_GEN3_V2      (1)
332 #define SSCAN_SUMMARY_REPORT_PAD_HDR_A_BLANKING_POS_GEN3_V2     (0)
333 #define SSCAN_SUMMARY_REPORT_PAD_HDR_A_BLANKING_SIZE_GEN3_V2    (32)
334 #define SSCAN_SUMMARY_REPORT_PAD_HDR_A_BLANKING_TAG_GEN3_V2     (0xc0debeaf)
335 #define SPECTRAL_REPORT_LTS_HDR_LENGTH_POS_GEN3                 (0)
336 #define SPECTRAL_REPORT_LTS_HDR_LENGTH_SIZE_GEN3                (16)
337 #define SPECTRAL_REPORT_LTS_TAG_POS_GEN3                        (16)
338 #define SPECTRAL_REPORT_LTS_TAG_SIZE_GEN3                       (8)
339 #define SPECTRAL_REPORT_LTS_SIGNATURE_POS_GEN3                  (24)
340 #define SPECTRAL_REPORT_LTS_SIGNATURE_SIZE_GEN3                 (8)
341 #define FFT_REPORT_HDR_A_DETECTOR_ID_POS_GEN3                   (0)
342 #define FFT_REPORT_HDR_A_DETECTOR_ID_SIZE_GEN3                  (2)
343 #define FFT_REPORT_HDR_A_FFT_NUM_POS_GEN3                       (2)
344 #define FFT_REPORT_HDR_A_FFT_NUM_SIZE_GEN3                      (3)
345 #define FFT_REPORT_HDR_A_RADAR_CHECK_POS_GEN3_V1                (5)
346 #define FFT_REPORT_HDR_A_RADAR_CHECK_SIZE_GEN3_V1               (12)
347 #define FFT_REPORT_HDR_A_RADAR_CHECK_POS_GEN3_V2                (5)
348 #define FFT_REPORT_HDR_A_RADAR_CHECK_SIZE_GEN3_V2               (14)
349 #define FFT_REPORT_HDR_A_PEAK_INDEX_POS_GEN3_V1                 (17)
350 #define FFT_REPORT_HDR_A_PEAK_INDEX_SIZE_GEN3_V1                (11)
351 #define FFT_REPORT_HDR_A_PEAK_INDEX_POS_GEN3_V2                 (19)
352 #define FFT_REPORT_HDR_A_PEAK_INDEX_SIZE_GEN3_V2                (11)
353 #define FFT_REPORT_HDR_A_CHAIN_INDEX_POS_GEN3_V1                (28)
354 #define FFT_REPORT_HDR_A_CHAIN_INDEX_SIZE_GEN3_V1               (3)
355 #define FFT_REPORT_HDR_B_CHAIN_INDEX_POS_GEN3_V2                (0)
356 #define FFT_REPORT_HDR_B_CHAIN_INDEX_SIZE_GEN3_V2               (3)
357 #define FFT_REPORT_HDR_B_BASE_PWR_POS_GEN3_V1                   (0)
358 #define FFT_REPORT_HDR_B_BASE_PWR_SIZE_GEN3_V1                  (9)
359 #define FFT_REPORT_HDR_B_BASE_PWR_POS_GEN3_V2                   (3)
360 #define FFT_REPORT_HDR_B_BASE_PWR_SIZE_GEN3_V2                  (9)
361 #define FFT_REPORT_HDR_B_TOTAL_GAIN_POS_GEN3_V1                 (9)
362 #define FFT_REPORT_HDR_B_TOTAL_GAIN_SIZE_GEN3_V1                (8)
363 #define FFT_REPORT_HDR_B_TOTAL_GAIN_POS_GEN3_V2                 (12)
364 #define FFT_REPORT_HDR_B_TOTAL_GAIN_SIZE_GEN3_V2                (8)
365 #define FFT_REPORT_HDR_C_NUM_STRONG_BINS_POS_GEN3               (0)
366 #define FFT_REPORT_HDR_C_NUM_STRONG_BINS_SIZE_GEN3              (8)
367 #define FFT_REPORT_HDR_C_PEAK_MAGNITUDE_POS_GEN3                (8)
368 #define FFT_REPORT_HDR_C_PEAK_MAGNITUDE_SIZE_GEN3               (10)
369 #define FFT_REPORT_HDR_C_AVG_PWR_POS_GEN3                       (18)
370 #define FFT_REPORT_HDR_C_AVG_PWR_SIZE_GEN3                      (7)
371 #define FFT_REPORT_HDR_C_RELATIVE_PWR_POS_GEN3                  (25)
372 #define FFT_REPORT_HDR_C_RELATIVE_PWR_SIZE_GEN3                 (7)
373 
374 #define SPECTRAL_PHYERR_SIGNATURE_GEN3                          (0xFA)
375 #define TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN3                    (0x02)
376 #define TLV_TAG_SEARCH_FFT_REPORT_GEN3                          (0x03)
377 #define SPECTRAL_PHYERR_TLVSIZE_GEN3                            (4)
378 
379 #define NUM_SPECTRAL_DETECTORS_GEN3_V1                     (3)
380 #define NUM_SPECTRAL_DETECTORS_GEN3_V2                     (2)
381 #define FFT_REPORT_HEADER_LENGTH_GEN3_V2                   (24)
382 #define FFT_REPORT_HEADER_LENGTH_GEN3_V1                   (16)
383 #define NUM_PADDING_BYTES_SSCAN_SUMARY_REPORT_GEN3_V1      (0)
384 #define NUM_PADDING_BYTES_SSCAN_SUMARY_REPORT_GEN3_V2      (16)
385 
386 #define SPECTRAL_PHYERR_HDR_LTS_POS \
387 	(offsetof(struct spectral_phyerr_fft_report_gen3, fft_hdr_lts))
388 #define SPECTRAL_FFT_BINS_POS \
389 	(offsetof(struct spectral_phyerr_fft_report_gen3, buf))
390 
391 /**
392  * struct phyerr_info - spectral search fft report for gen3
393  * @data:       handle to phyerror buffer
394  * @datalen:    length of phyerror buffer
395  * @p_rfqual:   rf quality matrices
396  * @p_chaninfo: pointer to chaninfo
397  * @tsf64:      64 bit TSF
398  * @acs_stats:  acs stats
399  */
400 struct phyerr_info {
401 	uint8_t *data;
402 	uint32_t datalen;
403 	struct target_if_spectral_rfqual_info *p_rfqual;
404 	struct target_if_spectral_chan_info *p_chaninfo;
405 	uint64_t tsf64;
406 	struct target_if_spectral_acs_stats *acs_stats;
407 };
408 
409 /**
410  * struct spectral_search_fft_info_gen3 - spectral search fft report for gen3
411  * @timestamp:           Timestamp at which fft report was generated
412  * @last_raw_timestamp:  Previous FFT report's raw timestamp
413  * @adjusted_timestamp:  Adjusted timestamp to account for target reset
414  * @fft_detector_id:     Which radio generated this report
415  * @fft_num:             The FFT count number. Set to 0 for short FFT.
416  * @fft_radar_check:     NA for spectral
417  * @fft_peak_sidx:       Index of bin with maximum power
418  * @fft_chn_idx:         Rx chain index
419  * @fft_base_pwr_db:     Base power in dB
420  * @fft_total_gain_db:   Total gain in dB
421  * @fft_num_str_bins_ib: Number of strong bins in the report
422  * @fft_peak_mag:        Peak magnitude
423  * @fft_avgpwr_db:       Average power in dB
424  * @fft_relpwr_db:       Relative power in dB
425  * @fft_bin_count:       Number of FFT bins in the FFT report
426  * @fft_bin_size:        Size of one FFT bin in bytes
427  * @bin_pwr_data:        Contains FFT bins extracted from the report
428  */
429 struct spectral_search_fft_info_gen3 {
430 	uint32_t timestamp;
431 	uint32_t last_raw_timestamp;
432 	uint32_t adjusted_timestamp;
433 	uint32_t fft_detector_id;
434 	uint32_t fft_num;
435 	uint32_t fft_radar_check;
436 	int32_t  fft_peak_sidx;
437 	uint32_t fft_chn_idx;
438 	uint32_t fft_base_pwr_db;
439 	uint32_t fft_total_gain_db;
440 	uint32_t fft_num_str_bins_ib;
441 	int32_t  fft_peak_mag;
442 	uint32_t fft_avgpwr_db;
443 	uint32_t fft_relpwr_db;
444 	uint32_t fft_bin_count;
445 	uint8_t  fft_bin_size;
446 	uint8_t  *bin_pwr_data;
447 };
448 
449 /**
450  * struct spectral_phyerr_fft_report_gen3 - fft info in phyerr event
451  * @fft_timestamp:  Timestamp at which fft report was generated
452  * @fft_hdr_lts:    length, tag, signature fields
453  * @hdr_a:          Header[0:31]
454  * @hdr_b:          Header[32:63]
455  * @hdr_c:          Header[64:95]
456  * @resv:           Header[96:127]
457  * @buf:            fft bins
458  */
459 struct spectral_phyerr_fft_report_gen3 {
460 	uint32_t fft_timestamp;
461 	uint32_t fft_hdr_lts;
462 	uint32_t hdr_a;
463 	uint32_t hdr_b;
464 	uint32_t hdr_c;
465 	uint32_t resv;
466 	uint8_t buf[];
467 } __ATTRIB_PACK;
468 
469 /**
470  * struct sscan_report_fields_gen3 - Fields of spectral report
471  * @sscan_agc_total_gain:  The AGC total gain in DB.
472  * @inband_pwr_db: The in-band power of the signal in 1/2 DB steps
473  * @sscan_gainchange: This bit is set to 1 if a gainchange occurred during
474  *                 the spectral scan FFT.  Software may choose to
475  *                 disregard the results.
476  * @sscan_pri80: This is set to 1 to indicate that the Spectral scan was
477  *                 performed on the pri80 segment. Software may choose to
478  *                 disregard the FFT sample if this is set to 1 but detector ID
479  *                 does not correspond to the ID for the pri80 segment.
480  * @sscan_detector_id: Detector ID in Spectral scan report
481  * @blanking_status: Indicates whether scan blanking was enabled during this
482  * spectral report capture. This field is applicable only when scan blanking
483  * feature is enabled. When scan blanking feature is disabled, this field
484  * will be set to zero.
485  */
486 struct sscan_report_fields_gen3 {
487 	uint8_t sscan_agc_total_gain;
488 	int16_t inband_pwr_db;
489 	uint8_t sscan_gainchange;
490 	uint8_t sscan_pri80;
491 	uint8_t sscan_detector_id;
492 	uint8_t blanking_status;
493 };
494 
495 /**
496  * struct spectral_sscan_summary_report_gen3 - Spectral summary report
497  * event
498  * @sscan_timestamp:  Timestamp at which fft report was generated
499  * @sscan_hdr_lts:    length, tag, signature fields
500  * @hdr_a:          Header[0:31]
501  * @res1:           Header[32:63]
502  * @hdr_b:          Header[64:95]
503  * @hdr_c:          Header[96:127]
504  */
505 struct spectral_sscan_summary_report_gen3 {
506 	u_int32_t sscan_timestamp;
507 	u_int32_t sscan_hdr_lts;
508 	u_int32_t hdr_a;
509 	u_int32_t res1;
510 	u_int32_t hdr_b;
511 	u_int32_t hdr_c;
512 } __ATTRIB_PACK;
513 
514 /**
515  * struct spectral_sscan_summary_report_padding_gen3_v2 - Spectral summary
516  * report padding region
517  * @hdr_a: Header[0:31]
518  * @hdr_b: Header[32:63]
519  * @hdr_c: Header[64:95]
520  * @hdr_d: Header[96:127]
521  */
522 struct spectral_sscan_summary_report_padding_gen3_v2 {
523 	u_int32_t hdr_a;
524 	u_int32_t hdr_b;
525 	u_int32_t hdr_c;
526 	u_int32_t hdr_d;
527 } __ATTRIB_PACK;
528 
529 #ifdef DIRECT_BUF_RX_ENABLE
530 /**
531  * struct spectral_report - spectral report
532  * @data: Report buffer
533  * @noisefloor: Noise floor values
534  * @reset_delay: Time taken for warm reset in us
535  * @cfreq1: center frequency 1
536  * @cfreq2: center frequency 2
537  * @ch_width: channel width
538  */
539 struct spectral_report {
540 	uint8_t *data;
541 	int32_t noisefloor[DBR_MAX_CHAINS];
542 	uint32_t reset_delay;
543 	uint32_t cfreq1;
544 	uint32_t cfreq2;
545 	uint32_t ch_width;
546 };
547 #endif
548 /* END of spectral GEN III HW specific details */
549 
550 typedef signed char pwr_dbm;
551 
552 /**
553  * enum spectral_gen - spectral hw generation
554  * @SPECTRAL_GEN1 : spectral hw gen 1
555  * @SPECTRAL_GEN2 : spectral hw gen 2
556  * @SPECTRAL_GEN3 : spectral hw gen 3
557  */
558 enum spectral_gen {
559 	SPECTRAL_GEN1,
560 	SPECTRAL_GEN2,
561 	SPECTRAL_GEN3,
562 };
563 
564 /**
565  * enum spectral_fftbin_size_war - spectral fft bin size war
566  * @SPECTRAL_FFTBIN_SIZE_NO_WAR: No WAR applicable for Spectral FFT bin size
567  * @SPECTRAL_FFTBIN_SIZE_WAR_2BYTE_TO_1BYTE: Spectral FFT bin size: Retain only
568  *                                           least significant byte from 2 byte
569  *                                           FFT bin transferred by HW
570  * @SPECTRAL_FFTBIN_SIZE_WAR_4BYTE_TO_1BYTE: Spectral FFT bin size: Retain only
571  *                                           least significant byte from 4 byte
572  *                                           FFT bin transferred by HW
573  */
574 enum spectral_fftbin_size_war {
575 	SPECTRAL_FFTBIN_SIZE_NO_WAR = 0,
576 	SPECTRAL_FFTBIN_SIZE_WAR_2BYTE_TO_1BYTE = 1,
577 	SPECTRAL_FFTBIN_SIZE_WAR_4BYTE_TO_1BYTE = 2,
578 };
579 
580 /**
581  * enum spectral_report_format_version - This represents the report format
582  * version number within each Spectral generation.
583  * @SPECTRAL_REPORT_FORMAT_VERSION_1 : version 1
584  * @SPECTRAL_REPORT_FORMAT_VERSION_2 : version 2
585  */
586 enum spectral_report_format_version {
587 	SPECTRAL_REPORT_FORMAT_VERSION_1,
588 	SPECTRAL_REPORT_FORMAT_VERSION_2,
589 };
590 
591 /**
592  * struct spectral_fft_bin_len_adj_swar - Encapsulate information required for
593  * Spectral FFT bin length adjusting software WARS.
594  * @inband_fftbin_size_adj: Whether to carry out FFT bin size adjustment for
595  * in-band report format. This would be required on some chipsets under the
596  * following circumstances: In report mode 2 only the in-band bins are DMA'ed.
597  * Scatter/gather is used. However, the HW generates all bins, not just in-band,
598  * and reports the number of bins accordingly. The subsystem arranging for the
599  * DMA cannot change this value. On such chipsets the adjustment required at the
600  * host driver is to check if report format is 2, and if so halve the number of
601  * bins reported to get the number actually DMA'ed.
602  * @null_fftbin_adj: Whether to remove NULL FFT bins for report mode (1) in
603  * which only summary of metrics for each completed FFT + spectral scan summary
604  * report are to be provided. This would be required on some chipsets under the
605  * following circumstances: In report mode 1, HW reports a length corresponding
606  * to all bins, and provides bins with value 0. This is because the subsystem
607  * arranging for the FFT information does not arrange for DMA of FFT bin values
608  * (as expected), but cannot arrange for a smaller length to be reported by HW.
609  * In these circumstances, the driver would have to disregard the NULL bins and
610  * report a bin count of 0 to higher layers.
611  * @packmode_fftbin_size_adj: Pack mode in HW refers to packing of each Spectral
612  * FFT bin into 2 bytes. But due to a bug HW reports 2 times the expected length
613  * when packmode is enabled. This SWAR compensates this bug by dividing the
614  * length with 2.
615  * @fftbin_size_war: Type of FFT bin size SWAR
616  */
617 struct spectral_fft_bin_len_adj_swar {
618 	u_int8_t inband_fftbin_size_adj;
619 	u_int8_t null_fftbin_adj;
620 	uint8_t packmode_fftbin_size_adj;
621 	enum spectral_fftbin_size_war fftbin_size_war;
622 };
623 
624 /**
625  * struct spectral_report_params - Parameters related to format of Spectral
626  * report.
627  * @version: This represents the report format version number within each
628  * Spectral generation.
629  * @ssummary_padding_bytes: Number of bytes of padding after Spectral summary
630  * report
631  * @fft_report_hdr_len: Number of bytes in the header of the FFT report. This
632  * has to be subtracted from the length field of FFT report to find the length
633  * of FFT bins.
634  * @fragmentation_160: This indicates whether Spectral reports in 160/80p80 is
635  * fragmented.
636  * @detid_mode_table: Detector ID to Spectral scan mode table
637  * @num_spectral_detectors: Total number of Spectral detectors
638  * @marker: Describes the boundaries of pri80, 5 MHz and sec80 bins
639  * @hw_fft_bin_width: FFT bin width reported by the HW
640  */
641 struct spectral_report_params {
642 	enum spectral_report_format_version version;
643 	uint8_t ssummary_padding_bytes;
644 	uint8_t fft_report_hdr_len;
645 	bool fragmentation_160[SPECTRAL_SCAN_MODE_MAX];
646 	enum spectral_scan_mode detid_mode_table[SPECTRAL_DETECTOR_ID_MAX];
647 	uint8_t num_spectral_detectors;
648 	struct spectral_fft_bin_markers_160_165mhz
649 				marker[SPECTRAL_SCAN_MODE_MAX];
650 	uint8_t hw_fft_bin_width;
651 };
652 
653 /**
654  * struct spectral_param_min_max - Spectral parameter minimum and maximum values
655  * @fft_size_min: Minimum value of fft_size
656  * @fft_size_max: Maximum value of fft_size for each BW
657  * @scan_count_max: Maximum value of scan count
658  */
659 struct spectral_param_min_max {
660 	uint16_t fft_size_min;
661 	uint16_t fft_size_max[CH_WIDTH_MAX];
662 	uint16_t scan_count_max;
663 };
664 
665 /**
666  * struct spectral_timestamp_war - Spectral time stamp WAR related parameters
667  * @timestamp_war_offset: Offset to be added to correct timestamp
668  * @target_reset_count: Number of times target exercised the reset routine
669  * @last_fft_timestamp: last fft report timestamp
670  */
671 struct spectral_timestamp_war {
672 	uint32_t timestamp_war_offset[SPECTRAL_SCAN_MODE_MAX];
673 	uint64_t target_reset_count;
674 	uint32_t last_fft_timestamp[SPECTRAL_SCAN_MODE_MAX];
675 };
676 
677 #if ATH_PERF_PWR_OFFLOAD
678 /**
679  * enum target_if_spectral_info - Enumerations for specifying which spectral
680  *                              information (among parameters and states)
681  *                              is desired.
682  * @TARGET_IF_SPECTRAL_INFO_ACTIVE:  Indicated whether spectral is active
683  * @TARGET_IF_SPECTRAL_INFO_ENABLED: Indicated whether spectral is enabled
684  * @TARGET_IF_SPECTRAL_INFO_PARAMS:  Config params
685  */
686 enum target_if_spectral_info {
687 	TARGET_IF_SPECTRAL_INFO_ACTIVE,
688 	TARGET_IF_SPECTRAL_INFO_ENABLED,
689 	TARGET_IF_SPECTRAL_INFO_PARAMS,
690 };
691 #endif /* ATH_PERF_PWR_OFFLOAD */
692 
693 /* forward declaration */
694 struct target_if_spectral;
695 
696 /**
697  * struct target_if_spectral_chan_info - Channel information
698  * @center_freq1: center frequency 1 in MHz
699  * @center_freq2: center frequency 2 in MHz -valid only for
700  *		 11ACVHT 80PLUS80 mode
701  * @chan_width:   channel width in MHz
702  */
703 struct target_if_spectral_chan_info {
704 	uint16_t    center_freq1;
705 	uint16_t    center_freq2;
706 	uint8_t     chan_width;
707 };
708 
709 /**
710  * struct target_if_spectral_acs_stats - EACS stats from spectral samples
711  * @nfc_ctl_rssi: Control chan rssi
712  * @nfc_ext_rssi: Extension chan rssi
713  * @ctrl_nf:      Control chan Noise Floor
714  * @ext_nf:       Extension chan Noise Floor
715  */
716 struct target_if_spectral_acs_stats {
717 	int8_t nfc_ctl_rssi;
718 	int8_t nfc_ext_rssi;
719 	int8_t ctrl_nf;
720 	int8_t ext_nf;
721 };
722 
723 /**
724  * struct target_if_spectral_perchain_rssi_info - per chain rssi info
725  * @rssi_pri20: Rssi of primary 20 Mhz
726  * @rssi_sec20: Rssi of secondary 20 Mhz
727  * @rssi_sec40: Rssi of secondary 40 Mhz
728  * @rssi_sec80: Rssi of secondary 80 Mhz
729  */
730 struct target_if_spectral_perchain_rssi_info {
731 	int8_t    rssi_pri20;
732 	int8_t    rssi_sec20;
733 	int8_t    rssi_sec40;
734 	int8_t    rssi_sec80;
735 };
736 
737 /**
738  * struct target_if_spectral_rfqual_info - RF measurement information
739  * @rssi_comb:    RSSI Information
740  * @pc_rssi_info: XXX : For now, we know we are getting information
741  *                for only 4 chains at max. For future extensions
742  *                use a define
743  * @noise_floor:  Noise floor information
744  */
745 struct target_if_spectral_rfqual_info {
746 	int8_t    rssi_comb;
747 	struct    target_if_spectral_perchain_rssi_info pc_rssi_info[4];
748 	int16_t   noise_floor[4];
749 };
750 
751 #define GET_TARGET_IF_SPECTRAL_OPS(spectral) \
752 	((struct target_if_spectral_ops *)(&((spectral)->spectral_ops)))
753 
754 /**
755  * struct target_if_spectral_ops - spectral low level ops table
756  * @get_tsf64:               Get 64 bit TSF value
757  * @get_capability:          Get capability info
758  * @set_rxfilter:            Set rx filter
759  * @get_rxfilter:            Get rx filter
760  * @is_spectral_active:      Check whether icm is active
761  * @is_spectral_enabled:     Check whether spectral is enabled
762  * @start_spectral_scan:     Start spectral scan
763  * @stop_spectral_scan:      Stop spectral scan
764  * @get_extension_channel:   Get extension channel
765  * @get_ctl_noisefloor:      Get control noise floor
766  * @get_ext_noisefloor:      Get extension noise floor
767  * @configure_spectral:      Set spectral configurations
768  * @get_spectral_config:     Get spectral configurations
769  * @get_ent_spectral_mask:   Get spectral mask
770  * @get_mac_address:         Get mac address
771  * @get_current_channel:     Get current channel
772  * @reset_hw:                Reset HW
773  * @get_chain_noise_floor:   Get Channel noise floor
774  * @spectral_process_phyerr: Process phyerr event
775  * @process_spectral_report: Process spectral report
776  * @byte_swap_headers:       Apply byte-swap on report headers
777  * @byte_swap_fft_bins:      Apply byte-swap on FFT bins
778  */
779 struct target_if_spectral_ops {
780 	uint64_t (*get_tsf64)(void *arg);
781 	uint32_t (*get_capability)(
782 		void *arg, enum spectral_capability_type type);
783 	uint32_t (*set_rxfilter)(void *arg, int rxfilter);
784 	uint32_t (*get_rxfilter)(void *arg);
785 	uint32_t (*is_spectral_active)(void *arg,
786 				       enum spectral_scan_mode smode);
787 	uint32_t (*is_spectral_enabled)(void *arg,
788 					enum spectral_scan_mode smode);
789 	uint32_t (*start_spectral_scan)(void *arg,
790 					enum spectral_scan_mode smode,
791 					enum spectral_cp_error_code *err);
792 	uint32_t (*stop_spectral_scan)(void *arg,
793 				       enum spectral_scan_mode smode);
794 	uint32_t (*get_extension_channel)(void *arg,
795 					  enum spectral_scan_mode smode);
796 	int8_t    (*get_ctl_noisefloor)(void *arg);
797 	int8_t    (*get_ext_noisefloor)(void *arg);
798 	uint32_t (*configure_spectral)(
799 			void *arg,
800 			struct spectral_config *params,
801 			enum spectral_scan_mode smode);
802 	uint32_t (*get_spectral_config)(
803 			void *arg,
804 			struct spectral_config *params,
805 			enum spectral_scan_mode smode);
806 	uint32_t (*get_ent_spectral_mask)(void *arg);
807 	uint32_t (*get_mac_address)(void *arg, char *addr);
808 	uint32_t (*get_current_channel)(void *arg,
809 					enum spectral_scan_mode smode);
810 	uint32_t (*reset_hw)(void *arg);
811 	uint32_t (*get_chain_noise_floor)(void *arg, int16_t *nf_buf);
812 	int (*spectral_process_phyerr)(struct target_if_spectral *spectral,
813 				       uint8_t *data, uint32_t datalen,
814 			struct target_if_spectral_rfqual_info *p_rfqual,
815 			struct target_if_spectral_chan_info *p_chaninfo,
816 			uint64_t tsf64,
817 			struct target_if_spectral_acs_stats *acs_stats);
818 	int (*process_spectral_report)(struct wlan_objmgr_pdev *pdev,
819 				       void *payload);
820 	QDF_STATUS (*byte_swap_headers)(
821 		struct target_if_spectral *spectral,
822 		void *data);
823 	QDF_STATUS (*byte_swap_fft_bins)(
824 		const struct spectral_report_params *rparams,
825 		void *bin_pwr_data, size_t num_fftbins);
826 };
827 
828 /**
829  * struct target_if_spectral_stats - spectral stats info
830  * @num_spectral_detects: Total num. of spectral detects
831  * @total_phy_errors:     Total number of phyerrors
832  * @owl_phy_errors:       Indicated phyerrors in old gen1 chipsets
833  * @pri_phy_errors:       Phyerrors in primary channel
834  * @ext_phy_errors:       Phyerrors in secondary channel
835  * @dc_phy_errors:        Phyerrors due to dc
836  * @early_ext_phy_errors: Early secondary channel phyerrors
837  * @bwinfo_errors:        Bandwidth info errors
838  * @datalen_discards:     Invalid data length errors, seen in gen1 chipsets
839  * @rssi_discards:        Indicates reports dropped due to RSSI threshold
840  * @last_reset_tstamp:    Last reset time stamp
841  */
842 struct target_if_spectral_stats {
843 	uint32_t    num_spectral_detects;
844 	uint32_t    total_phy_errors;
845 	uint32_t    owl_phy_errors;
846 	uint32_t    pri_phy_errors;
847 	uint32_t    ext_phy_errors;
848 	uint32_t    dc_phy_errors;
849 	uint32_t    early_ext_phy_errors;
850 	uint32_t    bwinfo_errors;
851 	uint32_t    datalen_discards;
852 	uint32_t    rssi_discards;
853 	uint64_t    last_reset_tstamp;
854 };
855 
856 /**
857  * struct target_if_spectral_event - spectral event structure
858  * @se_ts:        Original 15 bit recv timestamp
859  * @se_full_ts:   64-bit full timestamp from interrupt time
860  * @se_rssi:      Rssi of spectral event
861  * @se_bwinfo:    Rssi of spectral event
862  * @se_dur:       Duration of spectral pulse
863  * @se_chanindex: Channel of event
864  * @se_list:      List of spectral events
865  */
866 struct target_if_spectral_event {
867 	uint32_t                       se_ts;
868 	uint64_t                       se_full_ts;
869 	uint8_t                        se_rssi;
870 	uint8_t                        se_bwinfo;
871 	uint8_t                        se_dur;
872 	uint8_t                        se_chanindex;
873 
874 	STAILQ_ENTRY(spectral_event)    se_list;
875 };
876 
877 /**
878  * struct target_if_chain_noise_pwr_info - Noise power info for each channel
879  * @rptcount:        Count of reports in pwr array
880  * @un_cal_nf:       Uncalibrated noise floor
881  * @factory_cal_nf:  Noise floor as calibrated at the factory for module
882  * @median_pwr:      Median power (median of pwr array)
883  * @pwr:             Power reports
884  */
885 struct target_if_chain_noise_pwr_info {
886 	int        rptcount;
887 	pwr_dbm    un_cal_nf;
888 	pwr_dbm    factory_cal_nf;
889 	pwr_dbm    median_pwr;
890 	pwr_dbm    pwr[];
891 } __ATTRIB_PACK;
892 
893 /**
894  * struct target_if_spectral_chan_stats - Channel information
895  * @cycle_count:         Cycle count
896  * @channel_load:        Channel load
897  * @per:                 Period
898  * @noisefloor:          Noise floor
899  * @comp_usablity:       Computed usability
900  * @maxregpower:         Maximum allowed regulatary power
901  * @comp_usablity_sec80: Computed usability of secondary 80 Mhz
902  * @maxregpower_sec80:   Max regulatory power in secondary 80 Mhz
903  */
904 struct target_if_spectral_chan_stats {
905 	int          cycle_count;
906 	int          channel_load;
907 	int          per;
908 	int          noisefloor;
909 	uint16_t    comp_usablity;
910 	int8_t       maxregpower;
911 	uint16_t    comp_usablity_sec80;
912 	int8_t       maxregpower_sec80;
913 };
914 
915 #if ATH_PERF_PWR_OFFLOAD
916 
917 /**
918  * struct target_if_spectral_cache - Cache used to minimize WMI operations
919  *                             in offload architecture
920  * @osc_spectral_enabled: Whether Spectral is enabled
921  * @osc_spectral_active:  Whether spectral is active
922  *                        XXX: Ideally, we should NOT cache this
923  *                        since the hardware can self clear the bit,
924  *                        the firmware can possibly stop spectral due to
925  *                        intermittent off-channel activity, etc
926  *                        A WMI read command should be introduced to handle
927  *                        this This will be discussed.
928  * @osc_params:           Spectral parameters
929  * @osc_is_valid:         Whether the cache is valid
930  */
931 struct target_if_spectral_cache {
932 	uint8_t                  osc_spectral_enabled;
933 	uint8_t                  osc_spectral_active;
934 	struct spectral_config    osc_params;
935 	uint8_t                  osc_is_valid;
936 };
937 
938 /**
939  * struct target_if_spectral_param_state_info - Structure used to represent and
940  *                                        manage spectral information
941  *                                        (parameters and states)
942  * @osps_lock:  Lock to synchronize accesses to information
943  * @osps_cache: Cacheable' information
944  */
945 struct target_if_spectral_param_state_info {
946 	qdf_spinlock_t               osps_lock;
947 	struct target_if_spectral_cache    osps_cache;
948 	/* XXX - Non-cacheable information goes here, in the future */
949 };
950 #endif /* ATH_PERF_PWR_OFFLOAD */
951 
952 struct vdev_spectral_configure_params;
953 struct vdev_spectral_enable_params;
954 
955 /**
956  * struct spectral_wmi_ops - structure used holding the operations
957  * related to Spectral WMI
958  * @wmi_spectral_configure_cmd_send: Configure Spectral parameters
959  * @wmi_spectral_enable_cmd_send: Enable/Disable Spectral
960  * @wmi_spectral_crash_inject: Inject FW crash
961  * @wmi_extract_pdev_sscan_fw_cmd_fixed_param: Extract Fixed params from
962  * start scan response event
963  * @wmi_extract_pdev_sscan_fft_bin_index: Extract TLV which describes FFT
964  * bin indices from start scan response event
965  * @wmi_unified_register_event_handler: Register WMI event handler
966  * @wmi_unified_unregister_event_handler: Unregister WMI event handler
967  * @wmi_service_enabled: API to check whether a given WMI service is enabled
968  * @extract_pdev_spectral_session_chan_info: Extract Spectral scan session
969  * channel information
970  * @extract_pdev_spectral_session_detector_info: Extract Spectral scan session
971  * detector information
972  * @extract_spectral_caps_fixed_param: Extract fixed parameters from Spectral
973  * capabilities event
974  * @extract_spectral_scan_bw_caps: Extract bandwidth capabilities from Spectral
975  * capabilities event
976  * @extract_spectral_fft_size_caps: Extract fft size capabilities from Spectral
977  * capabilities event
978  */
979 struct spectral_wmi_ops {
980 	QDF_STATUS (*wmi_spectral_configure_cmd_send)(
981 		    wmi_unified_t wmi_hdl,
982 		    struct vdev_spectral_configure_params *param);
983 	QDF_STATUS (*wmi_spectral_enable_cmd_send)(
984 		    wmi_unified_t wmi_hdl,
985 		    struct vdev_spectral_enable_params *param);
986 	QDF_STATUS (*wmi_spectral_crash_inject)(
987 		wmi_unified_t wmi_handle, struct crash_inject *param);
988 	QDF_STATUS (*wmi_extract_pdev_sscan_fw_cmd_fixed_param)(
989 				wmi_unified_t wmi_handle, uint8_t *evt_buf,
990 				struct spectral_startscan_resp_params *param);
991 	QDF_STATUS (*wmi_extract_pdev_sscan_fft_bin_index)(
992 			wmi_unified_t wmi_handle, uint8_t *evt_buf,
993 			struct spectral_fft_bin_markers_160_165mhz *param);
994 	QDF_STATUS (*wmi_unified_register_event_handler)(
995 				wmi_unified_t wmi_handle,
996 				wmi_conv_event_id event_id,
997 				wmi_unified_event_handler handler_func,
998 				uint8_t rx_ctx);
999 	QDF_STATUS (*wmi_unified_unregister_event_handler)(
1000 				wmi_unified_t wmi_handle,
1001 				wmi_conv_event_id event_id);
1002 	bool (*wmi_service_enabled)(wmi_unified_t wmi_handle,
1003 				    uint32_t service_id);
1004 	QDF_STATUS (*extract_pdev_spectral_session_chan_info)(
1005 			wmi_unified_t wmi_handle, void *event,
1006 			struct spectral_session_chan_info *chan_info);
1007 	QDF_STATUS (*extract_pdev_spectral_session_detector_info)(
1008 		wmi_unified_t wmi_handle, void *event,
1009 		struct spectral_session_det_info *det_info,
1010 		uint8_t det_info_idx);
1011 	QDF_STATUS (*extract_spectral_caps_fixed_param)(
1012 		wmi_unified_t wmi_handle, void *event,
1013 		struct spectral_capabilities_event_params *param);
1014 	QDF_STATUS (*extract_spectral_scan_bw_caps)(
1015 		wmi_unified_t wmi_handle, void *event,
1016 		struct spectral_scan_bw_capabilities *bw_caps);
1017 	QDF_STATUS (*extract_spectral_fft_size_caps)(
1018 		wmi_unified_t wmi_handle, void *event,
1019 		struct spectral_fft_size_capabilities *fft_size_caps);
1020 };
1021 
1022 /**
1023  * struct spectral_tgt_ops - structure used holding the operations
1024  * related to target operations
1025  * @tgt_get_psoc_from_scn_hdl: Function to get psoc from scn
1026  */
1027 struct spectral_tgt_ops {
1028 	struct wlan_objmgr_psoc *(*tgt_get_psoc_from_scn_hdl)(void *scn_handle);
1029 };
1030 
1031 /**
1032  * struct spectral_param_properties - structure holding Spectral
1033  *                                    parameter properties
1034  * @supported: Parameter is supported or not
1035  * @common_all_modes: Parameter should be common for all modes or not
1036  */
1037 struct spectral_param_properties {
1038 	bool supported;
1039 	bool common_all_modes;
1040 };
1041 
1042 /**
1043  * struct target_if_finite_spectral_scan_params - Parameters related to finite
1044  * Spectral scan
1045  * @finite_spectral_scan: Indicates the Spectrl scan is finite/infinite
1046  * @num_reports_expected: Number of Spectral reports expected from target for a
1047  * finite Spectral scan
1048  */
1049 struct target_if_finite_spectral_scan_params {
1050 	bool finite_spectral_scan;
1051 	uint32_t num_reports_expected;
1052 };
1053 
1054 /**
1055  * struct per_session_dest_det_info - Per-session Detector information to be
1056  * filled to samp_detector_info
1057  * @freq_span_id: Contiguous frequency span ID within the SAMP message
1058  * @is_sec80: Indicates pri80/sec80 segment for 160/80p80 BW
1059  * @det_id: Detector ID within samp_freq_span_info corresponding to
1060  * freq_span_id
1061  * @dest_start_bin_idx: Start index of FFT bins within SAMP msg's bin_pwr array
1062  * @dest_end_bin_idx: End index of FFT bins within SAMP msg's bin_pwr array
1063  * @lb_extrabins_start_idx: Left band edge extra bins start index
1064  * @lb_extrabins_num: Number of left band edge extra bins
1065  * @rb_extrabins_start_idx: Right band edge extra bins start index
1066  * @rb_extrabins_num: Number of right band edge extra bins
1067  * @start_freq: Indicates start frequency per-detector (in MHz)
1068  * @end_freq: Indicates last frequency per-detector (in MHz)
1069  * @src_start_bin_idx: Start index within the Spectral report's bin_pwr array,
1070  * where the FFT bins corresponding to this dest_det_id start
1071  */
1072 struct per_session_dest_det_info {
1073 	uint8_t freq_span_id;
1074 	bool is_sec80;
1075 	uint8_t det_id;
1076 	uint16_t dest_start_bin_idx;
1077 	uint16_t dest_end_bin_idx;
1078 	uint16_t lb_extrabins_start_idx;
1079 	uint16_t lb_extrabins_num;
1080 	uint16_t rb_extrabins_start_idx;
1081 	uint16_t rb_extrabins_num;
1082 	uint32_t start_freq;
1083 	uint32_t end_freq;
1084 	uint16_t src_start_bin_idx;
1085 };
1086 
1087 /**
1088  * struct per_session_det_map - A map of per-session detector information,
1089  * keyed by the detector id obtained from the Spectral FFT report, mapping to
1090  * destination detector info in SAMP message.
1091  * @dest_det_info: Struct containing per-session detector information
1092  * @num_dest_det_info: Number of destination detectors to which information
1093  * of this detector is to be filled
1094  * @buf_type: Spectral message buffer type
1095  * @send_to_upper_layers: Indicates whether to send SAMP msg to upper layers
1096  * @det_map_valid: Indicates whether detector map is valid or not
1097  */
1098 struct per_session_det_map {
1099 	struct per_session_dest_det_info
1100 			dest_det_info[MAX_NUM_DEST_DETECTOR_INFO];
1101 	uint8_t num_dest_det_info;
1102 	enum spectral_msg_buf_type buf_type;
1103 	bool send_to_upper_layers;
1104 	bool det_map_valid[SPECTRAL_SCAN_MODE_MAX];
1105 };
1106 
1107 /**
1108  * struct per_session_report_info - Consists of per-session Spectral report
1109  * information to be filled at report level in SAMP message.
1110  * @pri20_freq: Primary 20MHz operating frequency in MHz
1111  * @cfreq1: Centre frequency of the frequency span for 20/40/80 MHz BW.
1112  * Segment 1 centre frequency in MHz for 80p80/160 BW.
1113  * @cfreq2: For 80p80, indicates segment 2 centre frequency in MHz. For 160MHz,
1114  * indicates the center frequency of 160MHz span.
1115  * @operating_bw: Device's operating bandwidth.Valid values = enum phy_ch_width
1116  * @sscan_cfreq1: Normal/Agile scan Centre frequency of the frequency span for
1117  * 20/40/80 MHz BW. Center frequency of Primary Segment in MHz for 80p80/160 BW
1118  * Based on Spectral scan mode.
1119  * @sscan_cfreq2: For 80p80, Normal/Agile scan Center frequency for Sec80
1120  * segment. For 160MHz, indicates the center frequency of 160MHz span. Based on
1121  * spectral scan mode
1122  * @sscan_bw: Normal/Agile Scan BW based on Spectral scan mode.
1123  * Valid values = enum phy_ch_width
1124  * @num_spans: Number of frequency spans
1125  * @valid: Indicated whether report info is valid
1126  */
1127 struct per_session_report_info {
1128 	uint32_t pri20_freq;
1129 	uint32_t cfreq1;
1130 	uint32_t cfreq2;
1131 	enum phy_ch_width operating_bw;
1132 	uint32_t sscan_cfreq1;
1133 	uint32_t sscan_cfreq2;
1134 	enum phy_ch_width sscan_bw;
1135 	uint8_t num_spans;
1136 	bool valid;
1137 };
1138 
1139 /**
1140  * struct sscan_detector_list - Spectral scan Detector list, for given Spectral
1141  * scan mode and operating BW
1142  * @detectors: List of detectors
1143  * @num_detectors: Number of detectors for given spectral scan mode, BW
1144  *                 and target type
1145  */
1146 struct sscan_detector_list {
1147 	uint8_t detectors[SPECTRAL_DETECTOR_ID_MAX];
1148 	uint8_t num_detectors;
1149 };
1150 
1151 /**
1152  * struct spectral_supported_bws - Supported sscan bandwidths
1153  * @supports_sscan_bw_5: 5 MHz bandwidth supported
1154  * @supports_sscan_bw_10: 10 MHz bandwidth supported
1155  * @supports_sscan_bw_20: 20 MHz bandwidth supported
1156  * @supports_sscan_bw_40: 40 MHz bandwidth supported
1157  * @supports_sscan_bw_80: 80 MHz bandwidth supported
1158  * @supports_sscan_bw_160: 160 MHz bandwidth supported
1159  * @supports_sscan_bw_80_80: 80+80 MHz bandwidth supported
1160  * @supports_sscan_bw_320: 320 MHz bandwidth supported
1161  * @reserved: reserved for future use
1162  * @bandwidths: bitmap of supported sscan bandwidths. Make sure to maintain this
1163  * bitmap in the increasing order of bandwidths.
1164  */
1165 struct spectral_supported_bws {
1166 	union {
1167 		struct {
1168 			uint32_t supports_sscan_bw_5:1,
1169 				 supports_sscan_bw_10:1,
1170 				 supports_sscan_bw_20:1,
1171 				 supports_sscan_bw_40:1,
1172 				 supports_sscan_bw_80:1,
1173 				 supports_sscan_bw_160:1,
1174 				 supports_sscan_bw_80_80:1,
1175 				 supports_sscan_bw_320:1,
1176 				 reserved:24;
1177 		};
1178 		uint32_t bandwidths;
1179 	};
1180 };
1181 
1182 /**
1183  * get_supported_sscan_bw_pos() - Get the position of a given sscan_bw inside
1184  * the supported sscan bandwidths bitmap
1185  * @sscan_bw: Spectral scan bandwidth
1186  *
1187  * Return: bit position for a valid sscan bandwidth, else -1
1188  */
1189 int get_supported_sscan_bw_pos(enum phy_ch_width sscan_bw);
1190 
1191 /**
1192  * struct target_if_spectral - main spectral structure
1193  * @pdev_obj: Pointer to pdev
1194  * @spectral_ops: Target if internal Spectral low level operations table
1195  * @capability: Spectral capabilities structure
1196  * @properties: Spectral parameter properties per mode
1197  * @spectral_lock: Lock used for internal Spectral operations
1198  * @vdev_id: VDEV id for all spectral modes
1199  * @spectral_curchan_radindex: Current channel spectral index
1200  * @spectral_extchan_radindex: Extension channel spectral index
1201  * @spectraldomain: Current Spectral domain
1202  * @spectral_proc_phyerr:  Flags to process for PHY errors
1203  * @spectral_defaultparams: Default PHY params per Spectral stat
1204  * @spectral_stats:  Spectral related stats
1205  * @events:   Events structure
1206  * @sc_spectral_ext_chan_ok:  Can spectral be detected on the extension channel?
1207  * @sc_spectral_combined_rssi_ok:  Can use combined spectral RSSI?
1208  * @sc_spectral_20_40_mode:  Is AP in 20-40 mode?
1209  * @sc_spectral_noise_pwr_cal:  Noise power cal required?
1210  * @sc_spectral_non_edma:  Is the spectral capable device Non-EDMA?
1211  * @upper_is_control: Upper segment is primary
1212  * @upper_is_extension: Upper segment is secondary
1213  * @lower_is_control: Lower segment is primary
1214  * @lower_is_extension: Lower segment is secondary
1215  * @sc_spectraltest_ieeechan:  IEEE channel number to return to after a spectral
1216  * mute test
1217  * @spectral_numbins: Number of bins
1218  * @spectral_fft_len: FFT length
1219  * @spectral_data_len: Total phyerror report length
1220  * @lb_edge_extrabins: Number of extra bins on left band edge
1221  * @rb_edge_extrabins: Number of extra bins on right band edge
1222  * @spectral_max_index_offset: Max FFT index offset (20 MHz mode)
1223  * @spectral_upper_max_index_offset: Upper max FFT index offset (20/40 MHz mode)
1224  * @spectral_lower_max_index_offset: Lower max FFT index offset (20/40 MHz mode)
1225  * @spectral_dc_index: At which index DC is present
1226  * @send_single_packet: Deprecated
1227  * @spectral_sent_msg: Indicates whether we send report to upper layers
1228  * @classify_scan:
1229  * @classify_timer:
1230  * @params: Spectral parameters
1231  * @params_valid:
1232  * @classifier_params:
1233  * @last_capture_time: Indicates timestamp of previous report
1234  * @num_spectral_data: Number of Spectral samples received in current session
1235  * @total_spectral_data: Total number of Spectral samples received
1236  * @max_rssi: Maximum RSSI
1237  * @detects_control_channel: NA
1238  * @detects_extension_channel: NA
1239  * @detects_below_dc: NA
1240  * @detects_above_dc: NA
1241  * @sc_scanning: Indicates active wifi scan
1242  * @sc_spectral_scan: Indicates active specral scan
1243  * @sc_spectral_full_scan: Deprecated
1244  * @scan_start_tstamp: Deprecated
1245  * @last_tstamp: Deprecated
1246  * @first_tstamp: Deprecated
1247  * @spectral_samp_count: Deprecated
1248  * @sc_spectral_samp_count: Deprecated
1249  * @noise_pwr_reports_reqd: Number of noise power reports required
1250  * @noise_pwr_reports_recv: Number of noise power reports received
1251  * @noise_pwr_reports_lock: Lock used for Noise power report processing
1252  * @noise_pwr_chain_ctl: Noise power report - control channel
1253  * @noise_pwr_chain_ext: Noise power report - extension channel
1254  * @tsf64: Latest TSF Value
1255  * @param_info: Offload architecture Spectral parameter cache information
1256  * @ch_width: Indicates Channel Width 20/40/80/160 MHz for each Spectral mode
1257  * @sscan_width_configured: Whether user has configured sscan bandwidth
1258  * @diag_stats: Diagnostic statistics
1259  * @is_160_format:  Indicates whether information provided by HW is in altered
1260  * format for 802.11ac 160/80+80 MHz support (QCA9984 onwards)
1261  * @is_lb_edge_extrabins_format:  Indicates whether information provided by
1262  * HW has 4 extra bins, at left band edge, for report mode 2
1263  * @is_rb_edge_extrabins_format:   Indicates whether information provided
1264  * by HW has 4 extra bins, at right band edge, for report mode 2
1265  * @is_sec80_rssi_war_required: Indicates whether the software workaround is
1266  * required to obtain approximate combined RSSI for secondary 80Mhz segment
1267  * @simctx: Spectral Simulation context
1268  * @spectral_gen: Spectral hardware generation
1269  * @hdr_sig_exp: Expected signature in PHYERR TLV header, for the given hardware
1270  * generation
1271  * @tag_sscan_summary_exp: Expected Spectral Scan Summary tag in PHYERR TLV
1272  * header, for the given hardware generation
1273  * @tag_sscan_fft_exp: Expected Spectral Scan FFT report tag in PHYERR TLV
1274  * header, for the given hardware generation
1275  * @tlvhdr_size: Expected PHYERR TLV header size, for the given hardware
1276  * generation
1277  * @nl_cb: Netlink callbacks
1278  * @use_nl_bcast: Whether to use Netlink broadcast/unicast
1279  * @send_phy_data: Send data to the application layer for a particular msg type
1280  * @len_adj_swar: Spectral fft bin length adjustment SWAR related info
1281  * @timestamp_war: Spectral time stamp WAR related info
1282  * @state_160mhz_delivery: Delivery state for each spectral scan mode
1283  * @dbr_ring_debug: Whether Spectral DBR ring debug is enabled
1284  * @dbr_buff_debug: Whether Spectral DBR buffer debug is enabled
1285  * @direct_dma_support: Whether Direct-DMA is supported on the current radio
1286  * @prev_tstamp: Timestamp of the previously received sample, which has to be
1287  * compared with the current tstamp to check descrepancy
1288  * @rparams: Parameters related to Spectral report structure
1289  * @param_min_max: Spectral parameter's minimum and maximum values
1290  * @finite_scan: Parameters for finite Spectral scan
1291  * @detector_list: Detector list for a given Spectral scan mode and channel
1292  * width, based on the target type.
1293  * @detector_list_lock: Lock to synchronize accesses to detector list
1294  * @det_map: Map of per-session detector information keyed by the Spectral HW
1295  * detector id.
1296  * @session_det_map_lock: Lock to synchronize accesses to session detector map
1297  * @report_info: Per session info to be filled at report level in SAMP message
1298  * @session_report_info_lock: Lock to synchronize access to session report info
1299  * @supported_bws: Supported sscan bandwidths for all sscan modes and
1300  * operating widths
1301  * @supported_sscan_bw_list: List of supported sscan widths for all sscan modes
1302  * @data_stats: stats in Spectral data path
1303  */
1304 struct target_if_spectral {
1305 	struct wlan_objmgr_pdev *pdev_obj;
1306 	struct target_if_spectral_ops                 spectral_ops;
1307 	struct spectral_caps                    capability;
1308 	struct spectral_param_properties
1309 			properties[SPECTRAL_SCAN_MODE_MAX][SPECTRAL_PARAM_MAX];
1310 	qdf_spinlock_t                          spectral_lock;
1311 	uint8_t                                 vdev_id[SPECTRAL_SCAN_MODE_MAX];
1312 	int16_t                                 spectral_curchan_radindex;
1313 	int16_t                                 spectral_extchan_radindex;
1314 	uint32_t                               spectraldomain;
1315 	uint32_t                               spectral_proc_phyerr;
1316 	struct spectral_config                  spectral_defaultparams;
1317 	struct target_if_spectral_stats         spectral_stats;
1318 	struct target_if_spectral_event *events;
1319 	unsigned int                            sc_spectral_ext_chan_ok:1,
1320 						sc_spectral_combined_rssi_ok:1,
1321 						sc_spectral_20_40_mode:1,
1322 						sc_spectral_noise_pwr_cal:1,
1323 						sc_spectral_non_edma:1;
1324 	int                                     upper_is_control;
1325 	int                                     upper_is_extension;
1326 	int                                     lower_is_control;
1327 	int                                     lower_is_extension;
1328 	uint8_t                                sc_spectraltest_ieeechan;
1329 	int                                     spectral_numbins;
1330 	int                                     spectral_fft_len;
1331 	int                                     spectral_data_len;
1332 
1333 	/*
1334 	 * For 11ac chipsets prior to AR900B version 2.0, a max of 512 bins are
1335 	 * delivered.  However, there can be additional bins reported for
1336 	 * AR900B version 2.0 and QCA9984 as described next:
1337 	 *
1338 	 * AR900B version 2.0: An additional tone is processed on the right
1339 	 * hand side in order to facilitate detection of radar pulses out to
1340 	 * the extreme band-edge of the channel frequency. Since the HW design
1341 	 * processes four tones at a time, this requires one additional Dword
1342 	 * to be added to the search FFT report.
1343 	 *
1344 	 * QCA9984: When spectral_scan_rpt_mode = 2, i.e 2-dword summary +
1345 	 * 1x-oversampled bins (in-band) per FFT, then 8 more bins
1346 	 * (4 more on left side and 4 more on right side)are added.
1347 	 */
1348 
1349 	int                                     lb_edge_extrabins;
1350 	int                                     rb_edge_extrabins;
1351 	int                                     spectral_max_index_offset;
1352 	int                                     spectral_upper_max_index_offset;
1353 	int                                     spectral_lower_max_index_offset;
1354 	int                                     spectral_dc_index;
1355 	int                                     send_single_packet;
1356 	int                                     spectral_sent_msg;
1357 	int                                     classify_scan;
1358 	qdf_timer_t                             classify_timer;
1359 	struct spectral_config params[SPECTRAL_SCAN_MODE_MAX];
1360 	bool params_valid[SPECTRAL_SCAN_MODE_MAX];
1361 	struct spectral_classifier_params       classifier_params;
1362 	int                                     last_capture_time;
1363 	int                                     num_spectral_data;
1364 	int                                     total_spectral_data;
1365 	int                                     max_rssi;
1366 	int                                     detects_control_channel;
1367 	int                                     detects_extension_channel;
1368 	int                                     detects_below_dc;
1369 	int                                     detects_above_dc;
1370 	int                                     sc_scanning;
1371 	int                                     sc_spectral_scan;
1372 	int                                     sc_spectral_full_scan;
1373 	uint64_t                               scan_start_tstamp;
1374 	uint32_t                               last_tstamp;
1375 	uint32_t                               first_tstamp;
1376 	uint32_t                               spectral_samp_count;
1377 	uint32_t                               sc_spectral_samp_count;
1378 	int                                     noise_pwr_reports_reqd;
1379 	int                                     noise_pwr_reports_recv;
1380 	qdf_spinlock_t                          noise_pwr_reports_lock;
1381 	struct target_if_chain_noise_pwr_info
1382 		*noise_pwr_chain_ctl[HOST_MAX_ANTENNA];
1383 	struct target_if_chain_noise_pwr_info
1384 		*noise_pwr_chain_ext[HOST_MAX_ANTENNA];
1385 	uint64_t                               tsf64;
1386 #if ATH_PERF_PWR_OFFLOAD
1387 	struct target_if_spectral_param_state_info
1388 					param_info[SPECTRAL_SCAN_MODE_MAX];
1389 #endif
1390 	enum phy_ch_width ch_width[SPECTRAL_SCAN_MODE_MAX];
1391 	bool sscan_width_configured[SPECTRAL_SCAN_MODE_MAX];
1392 	struct spectral_diag_stats              diag_stats;
1393 	bool                                    is_160_format;
1394 	bool                                    is_lb_edge_extrabins_format;
1395 	bool                                    is_rb_edge_extrabins_format;
1396 	bool                                    is_sec80_rssi_war_required;
1397 #ifdef QCA_SUPPORT_SPECTRAL_SIMULATION
1398 	void                                    *simctx;
1399 #endif
1400 	enum spectral_gen                       spectral_gen;
1401 	uint8_t                                hdr_sig_exp;
1402 	uint8_t                                tag_sscan_summary_exp;
1403 	uint8_t                                tag_sscan_fft_exp;
1404 	uint8_t                                tlvhdr_size;
1405 	struct spectral_nl_cb nl_cb;
1406 	bool use_nl_bcast;
1407 	int (*send_phy_data)(struct wlan_objmgr_pdev *pdev,
1408 			     enum spectral_msg_type smsg_type);
1409 	struct spectral_fft_bin_len_adj_swar len_adj_swar;
1410 	struct spectral_timestamp_war timestamp_war;
1411 	enum spectral_160mhz_report_delivery_state
1412 			state_160mhz_delivery[SPECTRAL_SCAN_MODE_MAX];
1413 	bool dbr_ring_debug;
1414 	bool dbr_buff_debug;
1415 	bool direct_dma_support;
1416 #ifdef OPTIMIZED_SAMP_MESSAGE
1417 	uint32_t prev_tstamp[MAX_DETECTORS_PER_PDEV];
1418 #else
1419 	uint32_t prev_tstamp;
1420 #endif
1421 	struct spectral_report_params rparams;
1422 	struct spectral_param_min_max param_min_max;
1423 	struct target_if_finite_spectral_scan_params
1424 					finite_scan[SPECTRAL_SCAN_MODE_MAX];
1425 	struct sscan_detector_list
1426 			detector_list[SPECTRAL_SCAN_MODE_MAX][CH_WIDTH_MAX];
1427 	qdf_spinlock_t detector_list_lock;
1428 	struct per_session_det_map det_map[MAX_DETECTORS_PER_PDEV];
1429 	qdf_spinlock_t session_det_map_lock;
1430 	struct per_session_report_info report_info[SPECTRAL_SCAN_MODE_MAX];
1431 	qdf_spinlock_t session_report_info_lock;
1432 	struct spectral_supported_bws
1433 		supported_bws[SPECTRAL_SCAN_MODE_MAX][CH_WIDTH_MAX];
1434 	/* Whether a given sscan BW is supported on a given smode */
1435 	bool supported_sscan_bw_list[SPECTRAL_SCAN_MODE_MAX][CH_WIDTH_MAX];
1436 	struct spectral_data_stats data_stats;
1437 };
1438 
1439 /**
1440  * struct target_if_psoc_spectral - Target if psoc Spectral object
1441  * @psoc_obj:  psoc object
1442  * @wmi_ops:  Spectral WMI operations
1443  */
1444 struct target_if_psoc_spectral {
1445 	struct wlan_objmgr_psoc *psoc_obj;
1446 	struct spectral_wmi_ops wmi_ops;
1447 };
1448 
1449 #ifdef OPTIMIZED_SAMP_MESSAGE
1450 /**
1451  * struct target_if_samp_msg_params - Spectral Analysis Messaging Protocol
1452  * data format
1453  * @hw_detector_id: Spectral HW detector ID
1454  * @rssi: Spectral RSSI
1455  * @lower_rssi: RSSI of lower band
1456  * @upper_rssi: RSSI of upper band
1457  * @chain_ctl_rssi: RSSI for control channel, for all antennas
1458  * @chain_ext_rssi: RSSI for extension channel, for all antennas
1459  * @last_raw_timestamp: Previous FFT report's raw timestamp.
1460  * @raw_timestamp: FFT timestamp reported by HW on primary segment.
1461  * @timestamp: timestamp
1462  * @reset_delay: Time gap between the last spectral report before reset and the
1463  *               end of reset.
1464  * @max_mag: maximum magnitude
1465  * @max_index: index of max magnitude
1466  * @noise_floor: current noise floor
1467  * @agc_total_gain: AGC total gain on primary channel
1468  * @gainchange: Indicates a gainchange occurred during the spectral scan
1469  * @pri80ind: Indication from hardware that the sample was received on the
1470  *            primary 80 MHz segment. If this is set when smode =
1471  *            SPECTRAL_SCAN_MODE_AGILE, it indicates that Spectral was carried
1472  *            out on pri80 instead of the Agile frequency due to a channel
1473  *            switch - Software may choose to ignore the sample in this case.
1474  * @blanking_status: Indicates whether scan blanking was enabled during this
1475  * spectral report capture.
1476  * @bin_pwr_data: Contains FFT magnitudes
1477  */
1478 struct target_if_samp_msg_params {
1479 	uint8_t hw_detector_id;
1480 	int8_t rssi;
1481 	int8_t lower_rssi;
1482 	int8_t upper_rssi;
1483 	int8_t chain_ctl_rssi[HOST_MAX_ANTENNA];
1484 	int8_t chain_ext_rssi[HOST_MAX_ANTENNA];
1485 	uint32_t last_raw_timestamp;
1486 	uint32_t raw_timestamp;
1487 	uint32_t timestamp;
1488 	uint32_t reset_delay;
1489 	uint16_t max_mag;
1490 	uint16_t max_index;
1491 	int16_t noise_floor;
1492 	uint8_t agc_total_gain;
1493 	uint8_t gainchange;
1494 	uint8_t pri80ind;
1495 	uint8_t blanking_status;
1496 	uint8_t *bin_pwr_data;
1497 };
1498 
1499 #else
1500 /**
1501  * struct target_if_samp_msg_params - Spectral Analysis Messaging Protocol
1502  * data format
1503  * @rssi:  RSSI (except for secondary 80 segment)
1504  * @rssi_sec80:  RSSI for secondary 80 segment
1505  * @lower_rssi:  RSSI of lower band
1506  * @upper_rssi:  RSSI of upper band
1507  * @chain_ctl_rssi: RSSI for control channel, for all antennas
1508  * @chain_ext_rssi: RSSI for extension channel, for all antennas
1509  * @bwinfo:  bandwidth info
1510  * @datalen:  length of FFT data (except for secondary 80 segment)
1511  * @datalen_sec80:  length of FFT data for secondary 80 segment
1512  * @tstamp:  timestamp
1513  * @last_tstamp:  last time stamp
1514  * @max_mag:  maximum magnitude (except for secondary 80 segment)
1515  * @max_mag_sec80:  maximum magnitude for secondary 80 segment
1516  * @max_index:  index of max magnitude (except for secondary 80 segment)
1517  * @max_index_sec80:  index of max magnitude for secondary 80 segment
1518  * @max_exp:  max exp
1519  * @peak: peak frequency (obsolete)
1520  * @pwr_count:  number of FFT bins (except for secondary 80 segment)
1521  * @pwr_count_5mhz:  number of FFT bins in extra 5 MHz in
1522  *                   165 MHz/restricted 80p80 mode
1523  * @pwr_count_sec80:  number of FFT bins in secondary 80 segment
1524  * @nb_lower: This is deprecated
1525  * @nb_upper: This is deprecated
1526  * @max_upper_index:  index of max mag in upper band
1527  * @max_lower_index:  index of max mag in lower band
1528  * @bin_pwr_data: Contains FFT magnitudes (except for secondary 80 segment)
1529  * @bin_pwr_data_5mhz: Contains FFT magnitudes for the extra 5 MHz
1530  *                     in 165 MHz/restricted 80p80 mode
1531  * @bin_pwr_data_sec80: Contains FFT magnitudes for the secondary 80 segment
1532  * @freq: Center frequency of primary 20MHz channel in MHz
1533  * @vhtop_ch_freq_seg1: VHT operation first segment center frequency in MHz
1534  * @vhtop_ch_freq_seg2: VHT operation second segment center frequency in MHz
1535  * @agile_freq1:        Center frequency in MHz of the entire span(for 80+80 MHz
1536  *                      agile Scan it is primary 80 MHz span) across which
1537  *                      Agile Spectral is carried out. Applicable only for Agile
1538  *                      Spectral samples.
1539  * @agile_freq2:        Center frequency in MHz of the secondary 80 MHz span
1540  *                      across which Agile Spectral is carried out. Applicable
1541  *                      only for Agile Spectral samples in 80+80 MHz mode.
1542  * @freq_loading: spectral control duty cycles
1543  * @noise_floor:  current noise floor (except for secondary 80 segment)
1544  * @noise_floor_sec80:  current noise floor for secondary 80 segment
1545  * @interf_list: List of interference sources
1546  * @classifier_params:  classifier parameters
1547  * @sc:  classifier parameters
1548  * @agc_total_gain: AGC total gain on primary channel
1549  * @agc_total_gain_sec80: AGC total gain on secondary channel
1550  * @gainchange: Indicates a gainchange occurred during the spectral scan
1551  * @gainchange_sec80: Indicates a gainchange occurred in the secondary
1552  * channel during the spectral scan
1553  * @smode: spectral scan mode
1554  * @pri80ind: Indication from hardware that the sample was received on the
1555  * primary 80 MHz segment. If this is set when smode =
1556  * SPECTRAL_SCAN_MODE_AGILE, it indicates that Spectral was carried out on
1557  * pri80 instead of the Agile frequency due to a channel switch - Software may
1558  * choose to ignore the sample in this case.
1559  * @pri80ind_sec80: Indication from hardware that the sample was received on the
1560  * primary 80 MHz segment instead of the secondary 80 MHz segment due to a
1561  * channel switch - Software may choose to ignore the sample if this is set.
1562  * Applicable only if smode = SPECTRAL_SCAN_MODE_NORMAL and for 160/80+80 MHz
1563  * Spectral operation and if the chipset supports fragmented 160/80+80 MHz
1564  * operation.
1565  * @last_raw_timestamp: Previous FFT report's raw timestamp. In case of 160MHz
1566  * it will be primary 80 segment's timestamp as both primary & secondary
1567  * segment's timestamps are expected to be almost equal
1568  * @timestamp_war_offset: Offset calculated based on reset_delay and
1569  * last_raw_stamp. It will be added to raw_timestamp to get tstamp.
1570  * @raw_timestamp: FFT timestamp reported by HW on primary segment.
1571  * @raw_timestamp_sec80: FFT timestamp reported by HW on secondary 80 segment.
1572  * @reset_delay: Time gap between the last spectral report before reset and the
1573  * end of reset.
1574  * @target_reset_count: Indicates the the number of times the target went
1575  * through reset routine after spectral was enabled.
1576  */
1577 struct target_if_samp_msg_params {
1578 	int8_t      rssi;
1579 	int8_t      rssi_sec80;
1580 	int8_t      lower_rssi;
1581 	int8_t      upper_rssi;
1582 	int8_t      chain_ctl_rssi[HOST_MAX_ANTENNA];
1583 	int8_t      chain_ext_rssi[HOST_MAX_ANTENNA];
1584 	uint16_t    bwinfo;
1585 	uint16_t    datalen;
1586 	uint16_t    datalen_sec80;
1587 	uint32_t    tstamp;
1588 	uint32_t    last_tstamp;
1589 	uint16_t    max_mag;
1590 	uint16_t    max_mag_sec80;
1591 	uint16_t    max_index;
1592 	uint16_t    max_index_sec80;
1593 	uint8_t     max_exp;
1594 	int         peak;
1595 	int         pwr_count;
1596 	int         pwr_count_5mhz;
1597 	int         pwr_count_sec80;
1598 	int8_t      nb_lower;
1599 	int8_t      nb_upper;
1600 	uint16_t    max_lower_index;
1601 	uint16_t    max_upper_index;
1602 	uint8_t    *bin_pwr_data;
1603 	uint8_t    *bin_pwr_data_5mhz;
1604 	uint8_t    *bin_pwr_data_sec80;
1605 	uint16_t   freq;
1606 	uint16_t   vhtop_ch_freq_seg1;
1607 	uint16_t   vhtop_ch_freq_seg2;
1608 	uint16_t   agile_freq1;
1609 	uint16_t   agile_freq2;
1610 	uint16_t   freq_loading;
1611 	int16_t     noise_floor;
1612 	int16_t     noise_floor_sec80;
1613 	struct interf_src_rsp interf_list;
1614 	struct spectral_classifier_params classifier_params;
1615 	struct ath_softc *sc;
1616 	uint8_t agc_total_gain;
1617 	uint8_t agc_total_gain_sec80;
1618 	uint8_t gainchange;
1619 	uint8_t gainchange_sec80;
1620 	enum spectral_scan_mode smode;
1621 	uint8_t pri80ind;
1622 	uint8_t pri80ind_sec80;
1623 	uint32_t last_raw_timestamp;
1624 	uint32_t timestamp_war_offset;
1625 	uint32_t raw_timestamp;
1626 	uint32_t raw_timestamp_sec80;
1627 	uint32_t reset_delay;
1628 	uint32_t target_reset_count;
1629 };
1630 #endif
1631 
1632 /**
1633  * struct target_if_spectral_agile_mode_cap - Structure to hold agile
1634  * Spetcral scan capability
1635  * @agile_spectral_cap: agile Spectral scan capability for 20/40/80 MHz
1636  * @agile_spectral_cap_160: agile Spectral scan capability for 160 MHz
1637  * @agile_spectral_cap_80p80: agile Spectral scan capability for 80+80 MHz
1638  * @agile_spectral_cap_320: agile Spectral scan capability for 320 MHz
1639  */
1640 struct target_if_spectral_agile_mode_cap {
1641 	bool agile_spectral_cap;
1642 	bool agile_spectral_cap_160;
1643 	bool agile_spectral_cap_80p80;
1644 	bool agile_spectral_cap_320;
1645 };
1646 
1647 #ifdef WLAN_CONV_SPECTRAL_ENABLE
1648 /**
1649  * target_if_spectral_dump_fft() - Dump Spectral FFT
1650  * @pfft: Pointer to Spectral Phyerr FFT
1651  * @fftlen: FFT length
1652  *
1653  * Return: Success or failure
1654  */
1655 int target_if_spectral_dump_fft(uint8_t *pfft, int fftlen);
1656 
1657 /**
1658  * target_if_dbg_print_samp_param() - Print contents of SAMP struct
1659  * @p: Pointer to SAMP message
1660  *
1661  * Return: Void
1662  */
1663 void target_if_dbg_print_samp_param(struct target_if_samp_msg_params *p);
1664 
1665 /**
1666  * target_if_get_offset_swar_sec80() - Get offset for SWAR according to
1667  *                                     the channel width
1668  * @channel_width: Channel width
1669  *
1670  * Return: Offset for SWAR
1671  */
1672 uint32_t target_if_get_offset_swar_sec80(uint32_t channel_width);
1673 
1674 /**
1675  * target_if_sptrl_register_tx_ops() - Register Spectral target_if Tx Ops
1676  * @tx_ops: Tx Ops
1677  *
1678  * Return: void
1679  */
1680 void target_if_sptrl_register_tx_ops(struct wlan_lmac_if_tx_ops *tx_ops);
1681 
1682 #ifndef OPTIMIZED_SAMP_MESSAGE
1683 /**
1684  * target_if_spectral_create_samp_msg() - Create the spectral samp message
1685  * @spectral : Pointer to spectral internal structure
1686  * @params : spectral samp message parameters
1687  *
1688  * API to create the spectral samp message
1689  *
1690  * Return: void
1691  */
1692 void target_if_spectral_create_samp_msg(
1693 	struct target_if_spectral *spectral,
1694 	struct target_if_samp_msg_params *params);
1695 #endif
1696 
1697 #ifdef OPTIMIZED_SAMP_MESSAGE
1698 /**
1699  * target_if_spectral_fill_samp_msg() - Fill the Spectral SAMP message
1700  * @spectral : Pointer to spectral internal structure
1701  * @params: Spectral SAMP message fields
1702  *
1703  * Fill the spectral SAMP message fields using params and detector map.
1704  *
1705  * Return: Success/Failure
1706  */
1707 QDF_STATUS target_if_spectral_fill_samp_msg(
1708 			struct target_if_spectral *spectral,
1709 			struct target_if_samp_msg_params *params);
1710 #endif
1711 
1712 /**
1713  * target_if_spectral_process_report_gen3() - Process spectral report for gen3
1714  * @pdev:    Pointer to pdev object
1715  * @buf: Pointer to spectral report
1716  *
1717  * Process phyerror event for gen3
1718  *
1719  * Return: Success/Failure
1720  */
1721 int target_if_spectral_process_report_gen3(struct wlan_objmgr_pdev *pdev,
1722 					   void *buf);
1723 
1724 /**
1725  * target_if_process_phyerr_gen2() - Process PHY Error for gen2
1726  * @spectral: Pointer to Spectral object
1727  * @data: Pointer to phyerror event buffer
1728  * @datalen: Data length
1729  * @p_rfqual: RF quality info
1730  * @p_chaninfo: Channel info
1731  * @tsf64: 64 bit tsf timestamp
1732  * @acs_stats: ACS stats
1733  *
1734  * Process PHY Error for gen2
1735  *
1736  * Return: Success/Failure
1737  */
1738 int target_if_process_phyerr_gen2(
1739 	struct target_if_spectral *spectral,
1740 	uint8_t *data,
1741 	uint32_t datalen, struct target_if_spectral_rfqual_info *p_rfqual,
1742 	struct target_if_spectral_chan_info *p_chaninfo,
1743 	uint64_t tsf64,
1744 	struct target_if_spectral_acs_stats *acs_stats);
1745 
1746 /**
1747  * target_if_spectral_send_intf_found_msg() - Indicate to application layer that
1748  * interference has been found
1749  * @pdev: Pointer to pdev
1750  * @cw_int: 1 if CW interference is found, 0 if WLAN interference is found
1751  * @dcs_enabled: 1 if DCS is enabled, 0 if DCS is disabled
1752  *
1753  * Send message to application layer
1754  * indicating that interference has been found
1755  *
1756  * Return: None
1757  */
1758 void target_if_spectral_send_intf_found_msg(
1759 	struct wlan_objmgr_pdev *pdev,
1760 	uint16_t cw_int, uint32_t dcs_enabled);
1761 
1762 /**
1763  * target_if_stop_spectral_scan() - Stop spectral scan
1764  * @pdev: Pointer to pdev object
1765  * @smode: Spectral scan mode
1766  * @err: Pointer to error code
1767  *
1768  * API to stop the current on-going spectral scan
1769  *
1770  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
1771  */
1772 QDF_STATUS target_if_stop_spectral_scan(struct wlan_objmgr_pdev *pdev,
1773 					const enum spectral_scan_mode smode,
1774 					enum spectral_cp_error_code *err);
1775 
1776 /**
1777  * target_if_spectral_get_vdev() - Get pointer to vdev to be used for Spectral
1778  * operations
1779  * @spectral: Pointer to Spectral target_if internal private data
1780  * @smode: spectral scan mode
1781  *
1782  * Spectral operates on pdev. However, in order to retrieve some WLAN
1783  * properties, a vdev is required. To facilitate this, the function returns the
1784  * first vdev in our pdev. The caller should release the reference to the vdev
1785  * once it is done using it.
1786  * TODO: If the framework later provides an API to obtain the first active
1787  * vdev, then it would be preferable to use this API.
1788  *
1789  * Return: Pointer to vdev on success, NULL on failure
1790  */
1791 struct wlan_objmgr_vdev *target_if_spectral_get_vdev(
1792 	struct target_if_spectral *spectral,
1793 	enum spectral_scan_mode smode);
1794 
1795 /**
1796  * target_if_spectral_dump_hdr_gen2() - Dump Spectral header for gen2
1797  * @phdr: Pointer to Spectral Phyerr Header
1798  *
1799  * Dump Spectral header
1800  *
1801  * Return: Success/Failure
1802  */
1803 int target_if_spectral_dump_hdr_gen2(struct spectral_phyerr_hdr_gen2 *phdr);
1804 
1805 /**
1806  * target_if_get_combrssi_sec80_seg_gen2() - Get approximate combined RSSI
1807  *                                           for Secondary 80 segment
1808  * @spectral: Pointer to spectral object
1809  * @p_sfft_sec80: Pointer to search fft info of secondary 80 segment
1810  *
1811  * Get approximate combined RSSI for Secondary 80 segment
1812  *
1813  * Return: Combined RSSI for secondary 80Mhz segment
1814  */
1815 int8_t target_if_get_combrssi_sec80_seg_gen2(
1816 	struct target_if_spectral *spectral,
1817 	struct spectral_search_fft_info_gen2 *p_sfft_sec80);
1818 
1819 /**
1820  * target_if_spectral_dump_tlv_gen2() - Dump Spectral TLV for gen2
1821  * @ptlv: Pointer to Spectral Phyerr TLV
1822  * @is_160_format: Indicates 160 format
1823  *
1824  * Dump Spectral TLV for gen2
1825  *
1826  * Return: Success/Failure
1827  */
1828 int target_if_spectral_dump_tlv_gen2(
1829 	struct spectral_phyerr_tlv_gen2 *ptlv, bool is_160_format);
1830 
1831 /**
1832  * target_if_spectral_dump_phyerr_data_gen2() - Dump Spectral
1833  * related PHY Error for gen2
1834  * @data: Pointer to phyerror buffer
1835  * @datalen: Data length
1836  * @is_160_format: Indicates 160 format
1837  *
1838  * Dump Spectral related PHY Error for gen2
1839  *
1840  * Return: Success/Failure
1841  */
1842 int target_if_spectral_dump_phyerr_data_gen2(
1843 	uint8_t *data,
1844 	uint32_t datalen,
1845 	bool is_160_format);
1846 
1847 /**
1848  * target_if_dbg_print_samp_msg() - Print contents of SAMP Message
1849  * @pmsg: Pointer to SAMP message
1850  *
1851  * Print contents of SAMP Message
1852  *
1853  * Return: Void
1854  */
1855 void target_if_dbg_print_samp_msg(struct spectral_samp_msg *pmsg);
1856 
1857 /**
1858  * get_target_if_spectral_handle_from_pdev() - Get handle to target_if internal
1859  * Spectral data
1860  * @pdev: Pointer to pdev
1861  *
1862  * Return: Handle to target_if internal Spectral data on success, NULL on
1863  * failure
1864  */
1865 struct target_if_spectral *get_target_if_spectral_handle_from_pdev(
1866 	struct wlan_objmgr_pdev *pdev);
1867 
1868 /**
1869  * get_target_if_spectral_handle_from_psoc() - Get handle to psoc target_if
1870  * internal Spectral data
1871  * @psoc: Pointer to psoc
1872  *
1873  * Return: Handle to target_if psoc internal Spectral data on success, NULL on
1874  * failure
1875  */
1876 static inline
get_target_if_spectral_handle_from_psoc(struct wlan_objmgr_psoc * psoc)1877 struct target_if_psoc_spectral *get_target_if_spectral_handle_from_psoc(
1878 	struct wlan_objmgr_psoc *psoc)
1879 {
1880 	struct wlan_lmac_if_rx_ops *rx_ops;
1881 	struct target_if_psoc_spectral *psoc_spectral;
1882 
1883 	if (!psoc) {
1884 		spectral_err("psoc is null");
1885 		return NULL;
1886 	}
1887 
1888 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
1889 	if (!rx_ops) {
1890 		spectral_err("rx_ops is null");
1891 		return NULL;
1892 	}
1893 
1894 	psoc_spectral = (struct target_if_psoc_spectral *)
1895 		rx_ops->sptrl_rx_ops.sptrlro_get_psoc_target_handle(psoc);
1896 
1897 	return psoc_spectral;
1898 }
1899 
1900 /**
1901  * target_if_vdev_get_chan_freq() - Get vdev operating channel frequency
1902  * @vdev: Pointer to vdev
1903  *
1904  * Get the operating channel frequency of a given vdev
1905  *
1906  * Return: Operating channel frequency of a vdev in MHz
1907  */
1908 static inline
target_if_vdev_get_chan_freq(struct wlan_objmgr_vdev * vdev)1909 int16_t target_if_vdev_get_chan_freq(struct wlan_objmgr_vdev *vdev)
1910 {
1911 	struct wlan_objmgr_psoc *psoc = NULL;
1912 	struct wlan_lmac_if_rx_ops *rx_ops;
1913 
1914 	psoc = wlan_vdev_get_psoc(vdev);
1915 	if (!psoc) {
1916 		spectral_err("psoc is NULL");
1917 		return -EINVAL;
1918 	}
1919 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
1920 	if (!rx_ops) {
1921 		spectral_err("rx_ops is null");
1922 		return -EINVAL;
1923 	}
1924 
1925 	return rx_ops->sptrl_rx_ops.sptrlro_vdev_get_chan_freq(
1926 		vdev);
1927 }
1928 
1929 /**
1930  * target_if_vdev_get_chan_freq_seg2() - Get center frequency of secondary 80 of
1931  * given vdev
1932  * @vdev: Pointer to vdev
1933  *
1934  * Get the center frequency of secondary 80 of given vdev
1935  *
1936  * Return: center frequency of secondary 80
1937  */
1938 static inline
target_if_vdev_get_chan_freq_seg2(struct wlan_objmgr_vdev * vdev)1939 int16_t target_if_vdev_get_chan_freq_seg2(struct wlan_objmgr_vdev *vdev)
1940 {
1941 	struct wlan_objmgr_psoc *psoc = NULL;
1942 	struct wlan_lmac_if_rx_ops *rx_ops;
1943 
1944 	psoc = wlan_vdev_get_psoc(vdev);
1945 	if (!psoc) {
1946 		spectral_err("psoc is NULL");
1947 		return -EINVAL;
1948 	}
1949 
1950 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
1951 	if (!rx_ops) {
1952 		spectral_err("rx_ops is null");
1953 		return -EINVAL;
1954 	}
1955 
1956 	return rx_ops->sptrl_rx_ops.sptrlro_vdev_get_chan_freq_seg2(vdev);
1957 }
1958 
1959 /**
1960  * target_if_vdev_get_ch_width() - Get vdev operating channel bandwidth
1961  * @vdev: Pointer to vdev
1962  *
1963  * Get the operating channel bandwidth of a given vdev
1964  *
1965  * Return: channel bandwidth enumeration corresponding to the vdev
1966  */
1967 static inline
target_if_vdev_get_ch_width(struct wlan_objmgr_vdev * vdev)1968 enum phy_ch_width target_if_vdev_get_ch_width(struct wlan_objmgr_vdev *vdev)
1969 {
1970 	struct wlan_objmgr_psoc *psoc = NULL;
1971 	enum phy_ch_width ch_width;
1972 	struct wlan_lmac_if_rx_ops *rx_ops;
1973 
1974 	psoc = wlan_vdev_get_psoc(vdev);
1975 	if (!psoc) {
1976 		spectral_err("psoc is NULL");
1977 		return CH_WIDTH_INVALID;
1978 	}
1979 
1980 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
1981 	if (!rx_ops) {
1982 		spectral_err("rx_ops is null");
1983 		return CH_WIDTH_INVALID;
1984 	}
1985 
1986 	ch_width = rx_ops->sptrl_rx_ops.sptrlro_vdev_get_ch_width(vdev);
1987 
1988 	if (ch_width == CH_WIDTH_160MHZ) {
1989 		int16_t cfreq2;
1990 
1991 		cfreq2 = target_if_vdev_get_chan_freq_seg2(vdev);
1992 		if (cfreq2 < 0) {
1993 			spectral_err("Invalid value for cfreq2 %d", cfreq2);
1994 			return CH_WIDTH_INVALID;
1995 		}
1996 
1997 		/* Use non zero cfreq2 to identify 80p80 */
1998 		if (cfreq2)
1999 			ch_width = CH_WIDTH_80P80MHZ;
2000 	}
2001 
2002 	return ch_width;
2003 }
2004 
2005 /**
2006  * target_if_vdev_get_sec20chan_freq_mhz() - Get the frequency of secondary
2007  * 20 MHz channel for a given vdev
2008  * @vdev: Pointer to vdev
2009  * @sec20chan_freq: Location to return secondary 20 MHz channel
2010  *
2011  * Get the frequency of secondary 20 MHz channel for a given vdev
2012  *
2013  * Return: 0 if 20 MHz channel was returned, negative errno otherwise
2014  */
2015 static inline
target_if_vdev_get_sec20chan_freq_mhz(struct wlan_objmgr_vdev * vdev,uint16_t * sec20chan_freq)2016 int target_if_vdev_get_sec20chan_freq_mhz(
2017 	struct wlan_objmgr_vdev *vdev,
2018 	uint16_t *sec20chan_freq)
2019 {
2020 	struct wlan_objmgr_psoc *psoc = NULL;
2021 	struct wlan_lmac_if_rx_ops *rx_ops;
2022 
2023 	psoc = wlan_vdev_get_psoc(vdev);
2024 	if (!psoc) {
2025 		spectral_err("psoc is NULL");
2026 		return -EINVAL;
2027 	}
2028 
2029 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
2030 	if (!rx_ops) {
2031 		spectral_err("rx_ops is null");
2032 		return -EINVAL;
2033 	}
2034 
2035 	return rx_ops->sptrl_rx_ops.
2036 		sptrlro_vdev_get_sec20chan_freq_mhz(vdev, sec20chan_freq);
2037 }
2038 
2039 /**
2040  * target_if_spectral_is_feature_disabled_psoc() - Check if Spectral feature is
2041  * disabled for a given psoc
2042  * @psoc: Pointer to psoc
2043  *
2044  * Return: true or false
2045  */
2046 static inline
target_if_spectral_is_feature_disabled_psoc(struct wlan_objmgr_psoc * psoc)2047 bool target_if_spectral_is_feature_disabled_psoc(struct wlan_objmgr_psoc *psoc)
2048 {
2049 	struct wlan_lmac_if_rx_ops *rx_ops;
2050 
2051 	if (!psoc) {
2052 		spectral_err("psoc is NULL");
2053 		return true;
2054 	}
2055 
2056 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
2057 	if (!rx_ops) {
2058 		spectral_err("rx_ops is null");
2059 		return true;
2060 	}
2061 
2062 	if (rx_ops->sptrl_rx_ops.
2063 	    sptrlro_spectral_is_feature_disabled_psoc)
2064 		return rx_ops->sptrl_rx_ops.
2065 		       sptrlro_spectral_is_feature_disabled_psoc(psoc);
2066 
2067 	return true;
2068 }
2069 
2070 /**
2071  * target_if_spectral_is_feature_disabled_pdev() - Check if Spectral feature is
2072  * disabled for a given pdev
2073  * @pdev: Pointer to pdev
2074  *
2075  * Return: true or false
2076  */
2077 static inline
target_if_spectral_is_feature_disabled_pdev(struct wlan_objmgr_pdev * pdev)2078 bool target_if_spectral_is_feature_disabled_pdev(struct wlan_objmgr_pdev *pdev)
2079 {
2080 	struct wlan_lmac_if_rx_ops *rx_ops;
2081 	struct wlan_objmgr_psoc *psoc;
2082 
2083 	if (!pdev) {
2084 		spectral_err("pdev is NULL");
2085 		return true;
2086 	}
2087 
2088 	psoc = wlan_pdev_get_psoc(pdev);
2089 	if (!psoc) {
2090 		spectral_err("psoc is NULL");
2091 		return true;
2092 	}
2093 
2094 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
2095 	if (!rx_ops) {
2096 		spectral_err("rx_ops is null");
2097 		return true;
2098 	}
2099 
2100 	if (rx_ops->sptrl_rx_ops.
2101 	    sptrlro_spectral_is_feature_disabled_pdev)
2102 		return rx_ops->sptrl_rx_ops.
2103 		       sptrlro_spectral_is_feature_disabled_pdev(pdev);
2104 
2105 	return true;
2106 }
2107 
2108 /**
2109  * target_if_spectral_set_rxchainmask() - Set Spectral Rx chainmask
2110  * @pdev: Pointer to pdev
2111  * @spectral_rx_chainmask: Spectral Rx chainmask
2112  *
2113  * Return: None
2114  */
2115 static inline
target_if_spectral_set_rxchainmask(struct wlan_objmgr_pdev * pdev,uint8_t spectral_rx_chainmask)2116 void target_if_spectral_set_rxchainmask(struct wlan_objmgr_pdev *pdev,
2117 					uint8_t spectral_rx_chainmask)
2118 {
2119 	struct wlan_objmgr_psoc *psoc = NULL;
2120 	struct target_if_spectral *spectral = NULL;
2121 	enum spectral_scan_mode smode = SPECTRAL_SCAN_MODE_NORMAL;
2122 	struct wlan_lmac_if_rx_ops *rx_ops;
2123 
2124 	psoc = wlan_pdev_get_psoc(pdev);
2125 	if (!psoc) {
2126 		spectral_err("psoc is NULL");
2127 		return;
2128 	}
2129 
2130 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
2131 	if (!rx_ops) {
2132 		spectral_err("rx_ops is null");
2133 		return;
2134 	}
2135 
2136 	if (smode >= SPECTRAL_SCAN_MODE_MAX) {
2137 		spectral_err("Invalid Spectral mode %u", smode);
2138 		return;
2139 	}
2140 
2141 	if (rx_ops->sptrl_rx_ops.
2142 	    sptrlro_spectral_is_feature_disabled_pdev(pdev)) {
2143 		spectral_info("Spectral feature is disabled");
2144 		return;
2145 	}
2146 
2147 	spectral = get_target_if_spectral_handle_from_pdev(pdev);
2148 	if (!spectral) {
2149 		spectral_err("Spectral target if object is null");
2150 		return;
2151 	}
2152 
2153 	/* set chainmask for all the modes */
2154 	for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++)
2155 		spectral->params[smode].ss_chn_mask = spectral_rx_chainmask;
2156 }
2157 
2158 /**
2159  * target_if_spectral_process_phyerr() - Process Spectral PHY error
2160  * @pdev: Pointer to pdev
2161  * @data: PHY error data received from FW
2162  * @datalen: Length of data
2163  * @p_rfqual: Pointer to RF Quality information
2164  * @p_chaninfo: Pointer to channel information
2165  * @tsf64: TSF time instance at which the Spectral sample was received
2166  * @acs_stats: ACS stats
2167  *
2168  * Process Spectral PHY error by extracting necessary information from the data
2169  * sent by FW, and send the extracted information to application layer.
2170  *
2171  * Return: None
2172  */
2173 static inline
target_if_spectral_process_phyerr(struct wlan_objmgr_pdev * pdev,uint8_t * data,uint32_t datalen,struct target_if_spectral_rfqual_info * p_rfqual,struct target_if_spectral_chan_info * p_chaninfo,uint64_t tsf64,struct target_if_spectral_acs_stats * acs_stats)2174 void target_if_spectral_process_phyerr(
2175 	struct wlan_objmgr_pdev *pdev,
2176 	uint8_t *data, uint32_t datalen,
2177 	struct target_if_spectral_rfqual_info *p_rfqual,
2178 	struct target_if_spectral_chan_info *p_chaninfo,
2179 	uint64_t tsf64,
2180 	struct target_if_spectral_acs_stats *acs_stats)
2181 {
2182 	struct target_if_spectral *spectral = NULL;
2183 	struct target_if_spectral_ops *p_sops = NULL;
2184 
2185 	spectral = get_target_if_spectral_handle_from_pdev(pdev);
2186 	if (!spectral) {
2187 		spectral_err("Spectral target if object is null");
2188 		return;
2189 	}
2190 
2191 	p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
2192 	if (!p_sops->spectral_process_phyerr) {
2193 		spectral_err("null spectral_process_phyerr");
2194 		return;
2195 	}
2196 	p_sops->spectral_process_phyerr(spectral, data, datalen,
2197 					p_rfqual, p_chaninfo,
2198 					tsf64, acs_stats);
2199 }
2200 
2201 static QDF_STATUS
target_if_get_spectral_msg_type(enum spectral_scan_mode smode,enum spectral_msg_type * msg_type)2202 target_if_get_spectral_msg_type(enum spectral_scan_mode smode,
2203 				enum spectral_msg_type *msg_type) {
2204 
2205 	switch (smode) {
2206 	case SPECTRAL_SCAN_MODE_NORMAL:
2207 		*msg_type = SPECTRAL_MSG_NORMAL_MODE;
2208 		break;
2209 
2210 	case SPECTRAL_SCAN_MODE_AGILE:
2211 		*msg_type = SPECTRAL_MSG_AGILE_MODE;
2212 		break;
2213 
2214 	default:
2215 		spectral_err("Invalid spectral mode");
2216 		return QDF_STATUS_E_FAILURE;
2217 	}
2218 
2219 	return QDF_STATUS_SUCCESS;
2220 }
2221 
2222 static inline bool
is_ch_width_160_or_80p80(enum phy_ch_width ch_width)2223 is_ch_width_160_or_80p80(enum phy_ch_width ch_width)
2224 {
2225 	return (ch_width == CH_WIDTH_160MHZ || ch_width == CH_WIDTH_80P80MHZ);
2226 }
2227 
2228 /**
2229  * free_samp_msg_skb() - Free SAMP message skb
2230  * @spectral: Pointer to Spectral
2231  * @smode: Spectral Scan mode
2232  *
2233  * Free SAMP message skb, if error in report processing
2234  *
2235  * Return: void
2236  */
2237 static inline void
free_samp_msg_skb(struct target_if_spectral * spectral,enum spectral_scan_mode smode)2238 free_samp_msg_skb(struct target_if_spectral *spectral,
2239 		  enum spectral_scan_mode smode)
2240 {
2241 	enum spectral_msg_type smsg_type;
2242 	QDF_STATUS ret;
2243 
2244 	if (smode >= SPECTRAL_SCAN_MODE_MAX) {
2245 		spectral_err_rl("Invalid Spectral mode %d", smode);
2246 		return;
2247 	}
2248 
2249 	if (is_ch_width_160_or_80p80(spectral->ch_width[smode])) {
2250 		ret = target_if_get_spectral_msg_type(smode, &smsg_type);
2251 		if (QDF_IS_STATUS_ERROR(ret)) {
2252 			spectral_err("Failed to get spectral message type");
2253 			return;
2254 		}
2255 		spectral->nl_cb.free_sbuff(spectral->pdev_obj,
2256 					   smsg_type);
2257 	}
2258 }
2259 
2260 /**
2261  * init_160mhz_delivery_state_machine() - Initialize 160MHz Spectral
2262  *                                        state machine
2263  * @spectral: Pointer to Spectral
2264  *
2265  * Initialize 160MHz Spectral state machine
2266  *
2267  * Return: void
2268  */
2269 static inline void
init_160mhz_delivery_state_machine(struct target_if_spectral * spectral)2270 init_160mhz_delivery_state_machine(struct target_if_spectral *spectral)
2271 {
2272 	uint8_t smode;
2273 
2274 	smode = 0;
2275 	for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++)
2276 		spectral->state_160mhz_delivery[smode] =
2277 				SPECTRAL_REPORT_WAIT_PRIMARY80;
2278 }
2279 
2280 /**
2281  * reset_160mhz_delivery_state_machine() - Reset 160MHz Spectral state machine
2282  * @spectral: Pointer to Spectral
2283  * @smode: Spectral scan mode
2284  *
2285  * Reset 160MHz Spectral state machine
2286  *
2287  * Return: void
2288  */
2289 static inline void
reset_160mhz_delivery_state_machine(struct target_if_spectral * spectral,enum spectral_scan_mode smode)2290 reset_160mhz_delivery_state_machine(struct target_if_spectral *spectral,
2291 				    enum spectral_scan_mode smode)
2292 {
2293 	if (smode >= SPECTRAL_SCAN_MODE_MAX) {
2294 		spectral_err_rl("Invalid Spectral mode %d", smode);
2295 		return;
2296 	}
2297 
2298 	free_samp_msg_skb(spectral, smode);
2299 
2300 	if (is_ch_width_160_or_80p80(spectral->ch_width[smode])) {
2301 		spectral->state_160mhz_delivery[smode] =
2302 			SPECTRAL_REPORT_WAIT_PRIMARY80;
2303 	}
2304 }
2305 
2306 /**
2307  * is_secondaryseg_expected() - Is waiting for secondary 80 report
2308  * @spectral: Pointer to Spectral
2309  * @smode: Spectral scan mode
2310  *
2311  * Return true if secondary 80 report expected and mode is 160 MHz
2312  *
2313  * Return: true or false
2314  */
2315 static inline
is_secondaryseg_expected(struct target_if_spectral * spectral,enum spectral_scan_mode smode)2316 bool is_secondaryseg_expected(struct target_if_spectral *spectral,
2317 			      enum spectral_scan_mode smode)
2318 {
2319 	return
2320 	(is_ch_width_160_or_80p80(spectral->ch_width[smode]) &&
2321 	 spectral->rparams.fragmentation_160[smode] &&
2322 	 (spectral->state_160mhz_delivery[smode] ==
2323 	  SPECTRAL_REPORT_WAIT_SECONDARY80));
2324 }
2325 
2326 /**
2327  * is_primaryseg_expected() - Is waiting for primary 80 report
2328  * @spectral: Pointer to Spectral
2329  * @smode: Spectral scan mode
2330  *
2331  * Return true if mode is 160 Mhz and primary 80 report expected or
2332  * mode is not 160 Mhz
2333  *
2334  * Return: true or false
2335  */
2336 static inline
is_primaryseg_expected(struct target_if_spectral * spectral,enum spectral_scan_mode smode)2337 bool is_primaryseg_expected(struct target_if_spectral *spectral,
2338 			    enum spectral_scan_mode smode)
2339 {
2340 	return
2341 	(!is_ch_width_160_or_80p80(spectral->ch_width[smode]) ||
2342 	 !spectral->rparams.fragmentation_160[smode] ||
2343 	 (spectral->state_160mhz_delivery[smode] ==
2344 	  SPECTRAL_REPORT_WAIT_PRIMARY80));
2345 }
2346 
2347 #ifndef OPTIMIZED_SAMP_MESSAGE
2348 /**
2349  * is_primaryseg_rx_inprog() - Is primary 80 report processing is in progress
2350  * @spectral: Pointer to Spectral
2351  * @smode: Spectral scan mode
2352  *
2353  * Is primary 80 report processing is in progress
2354  *
2355  * Return: true or false
2356  */
2357 static inline
is_primaryseg_rx_inprog(struct target_if_spectral * spectral,enum spectral_scan_mode smode)2358 bool is_primaryseg_rx_inprog(struct target_if_spectral *spectral,
2359 			     enum spectral_scan_mode smode)
2360 {
2361 	return
2362 	(!is_ch_width_160_or_80p80(spectral->ch_width[smode]) ||
2363 	 spectral->spectral_gen == SPECTRAL_GEN2 ||
2364 	 (spectral->spectral_gen == SPECTRAL_GEN3 &&
2365 	  (!spectral->rparams.fragmentation_160[smode] ||
2366 	   spectral->state_160mhz_delivery[smode] ==
2367 	   SPECTRAL_REPORT_RX_PRIMARY80)));
2368 }
2369 
2370 /**
2371  * is_secondaryseg_rx_inprog() - Is secondary80 report processing is in progress
2372  * @spectral: Pointer to Spectral
2373  * @smode: Spectral scan mode
2374  *
2375  * Is secondary 80 report processing is in progress
2376  *
2377  * Return: true or false
2378  */
2379 static inline
is_secondaryseg_rx_inprog(struct target_if_spectral * spectral,enum spectral_scan_mode smode)2380 bool is_secondaryseg_rx_inprog(struct target_if_spectral *spectral,
2381 			       enum spectral_scan_mode smode)
2382 {
2383 	return
2384 	(is_ch_width_160_or_80p80(spectral->ch_width[smode]) &&
2385 	 (spectral->spectral_gen == SPECTRAL_GEN2 ||
2386 	  ((spectral->spectral_gen == SPECTRAL_GEN3) &&
2387 	   (!spectral->rparams.fragmentation_160[smode] ||
2388 	    spectral->state_160mhz_delivery[smode] ==
2389 	    SPECTRAL_REPORT_RX_SECONDARY80))));
2390 }
2391 #endif
2392 
2393 /**
2394  * clamp_fft_bin_value() - Clamp the FFT bin value between min and max
2395  * @fft_bin_value: FFT bin value as reported by HW
2396  * @pwr_format: FFT bin format (linear or dBm format)
2397  *
2398  * Each FFT bin value is represented as an 8 bit integer in SAMP message. But
2399  * depending on the configuration, the FFT bin value reported by HW might
2400  * exceed 8 bits. Clamp the FFT bin value between the min and max value
2401  * which can be represented by 8 bits. For linear mode, min and max FFT bin
2402  * value which can be represented by 8 bit is 0 and U8_MAX respectively. For
2403  * dBm mode,  min and max FFT bin value which can be represented by 8 bit is
2404  * S8_MIN and S8_MAX respectively.
2405  *
2406  * Return: Clamped FFT bin value
2407  */
2408 static inline uint8_t
clamp_fft_bin_value(uint16_t fft_bin_value,uint16_t pwr_format)2409 clamp_fft_bin_value(uint16_t fft_bin_value, uint16_t pwr_format)
2410 {
2411 	uint8_t clamped_fft_bin_value = 0;
2412 
2413 	switch (pwr_format) {
2414 	case SPECTRAL_PWR_FORMAT_LINEAR:
2415 		if (qdf_unlikely(fft_bin_value > MAX_FFTBIN_VALUE_LINEAR_MODE))
2416 			clamped_fft_bin_value = MAX_FFTBIN_VALUE_LINEAR_MODE;
2417 		else
2418 			clamped_fft_bin_value = fft_bin_value;
2419 		break;
2420 
2421 	case SPECTRAL_PWR_FORMAT_DBM:
2422 		if (qdf_unlikely((int16_t)fft_bin_value >
2423 		    MAX_FFTBIN_VALUE_DBM_MODE))
2424 			clamped_fft_bin_value = MAX_FFTBIN_VALUE_DBM_MODE;
2425 		else if (qdf_unlikely((int16_t)fft_bin_value <
2426 			 MIN_FFTBIN_VALUE_DBM_MODE))
2427 			clamped_fft_bin_value = MIN_FFTBIN_VALUE_DBM_MODE;
2428 		else
2429 			clamped_fft_bin_value = fft_bin_value;
2430 		break;
2431 
2432 	default:
2433 		spectral_err_rl("Invalid pwr format: %d.", pwr_format);
2434 		return 0;
2435 	}
2436 
2437 	return clamped_fft_bin_value;
2438 }
2439 
2440 /**
2441  * target_if_160mhz_delivery_state_change() - State transition for 160Mhz
2442  *                                            Spectral
2443  * @spectral: Pointer to spectral object
2444  * @smode: Spectral scan mode
2445  * @detector_id: Detector id
2446  *
2447  * Move the states of state machine for 160MHz spectral scan report receive
2448  *
2449  * Return: QDF_STATUS
2450  */
2451 QDF_STATUS
2452 target_if_160mhz_delivery_state_change(struct target_if_spectral *spectral,
2453 				       enum spectral_scan_mode smode,
2454 				       uint8_t detector_id);
2455 
2456 /**
2457  * target_if_sops_is_spectral_enabled() - Get whether Spectral is enabled
2458  * @arg: Pointer to handle for Spectral target_if internal private data
2459  * @smode: Spectral scan mode
2460  *
2461  * Function to check whether Spectral is enabled
2462  *
2463  * Return: True if Spectral is enabled, false if Spectral is not enabled
2464  */
2465 uint32_t target_if_sops_is_spectral_enabled(void *arg,
2466 					    enum spectral_scan_mode smode);
2467 
2468 /**
2469  * target_if_sops_is_spectral_active() - Get whether Spectral is active
2470  * @arg: Pointer to handle for Spectral target_if internal private data
2471  * @smode: Spectral scan mode
2472  *
2473  * Function to check whether Spectral is active
2474  *
2475  * Return: True if Spectral is active, false if Spectral is not active
2476  */
2477 uint32_t target_if_sops_is_spectral_active(void *arg,
2478 					   enum spectral_scan_mode smode);
2479 
2480 /**
2481  * target_if_sops_start_spectral_scan() - Start Spectral scan
2482  * @arg: Pointer to handle for Spectral target_if internal private data
2483  * @smode: Spectral scan mode
2484  * @err: Pointer to error code
2485  *
2486  * Function to start spectral scan
2487  *
2488  * Return: 0 on success else failure
2489  */
2490 uint32_t target_if_sops_start_spectral_scan(void *arg,
2491 					    enum spectral_scan_mode smode,
2492 					    enum spectral_cp_error_code *err);
2493 
2494 /**
2495  * target_if_sops_stop_spectral_scan() - Stop Spectral scan
2496  * @arg: Pointer to handle for Spectral target_if internal private data
2497  * @smode: Spectral scan mode
2498  *
2499  * Function to stop spectral scan
2500  *
2501  * Return: 0 in case of success, -1 on failure
2502  */
2503 uint32_t target_if_sops_stop_spectral_scan(void *arg,
2504 					   enum spectral_scan_mode smode);
2505 
2506 /**
2507  * target_if_spectral_get_extension_channel() - Get the current Extension
2508  *                                              channel (in MHz)
2509  * @arg: Pointer to handle for Spectral target_if internal private data
2510  * @smode: Spectral scan mode
2511  *
2512  * Return: Current Extension channel (in MHz) on success, 0 on failure or if
2513  * extension channel is not present.
2514  */
2515 uint32_t
2516 target_if_spectral_get_extension_channel(void *arg,
2517 					 enum spectral_scan_mode smode);
2518 
2519 /**
2520  * target_if_spectral_get_current_channel() - Get the current channel (in MHz)
2521  * @arg: Pointer to handle for Spectral target_if internal private data
2522  * @smode: Spectral scan mode
2523  *
2524  * Return: Current channel (in MHz) on success, 0 on failure
2525  */
2526 uint32_t
2527 target_if_spectral_get_current_channel(void *arg,
2528 				       enum spectral_scan_mode smode);
2529 
2530 
2531 /**
2532  * target_if_spectral_reset_hw() - Reset the hardware
2533  * @arg: Pointer to handle for Spectral target_if internal private data
2534  *
2535  * This is only a placeholder since it is not currently required in the offload
2536  * case.
2537  *
2538  * Return: 0
2539  */
2540 uint32_t target_if_spectral_reset_hw(void *arg);
2541 
2542 /**
2543  * target_if_spectral_get_chain_noise_floor() - Get the Chain noise floor from
2544  * Noisefloor history buffer
2545  * @arg: Pointer to handle for Spectral target_if internal private data
2546  * @nf_buf: Pointer to buffer into which chain Noise Floor data should be copied
2547  *
2548  * This is only a placeholder since it is not currently required in the offload
2549  * case.
2550  *
2551  * Return: 0
2552  */
2553 uint32_t target_if_spectral_get_chain_noise_floor(void *arg, int16_t *nf_buf);
2554 
2555 /**
2556  * target_if_spectral_get_ext_noisefloor() - Get the extension channel
2557  * noisefloor
2558  * @arg: Pointer to handle for Spectral target_if internal private data
2559  *
2560  * This is only a placeholder since it is not currently required in the offload
2561  * case.
2562  *
2563  * Return: 0
2564  */
2565 int8_t target_if_spectral_get_ext_noisefloor(void *arg);
2566 
2567 /**
2568  * target_if_spectral_get_ctl_noisefloor() - Get the control channel noisefloor
2569  * @arg: Pointer to handle for Spectral target_if internal private data
2570  *
2571  * This is only a placeholder since it is not currently required in the offload
2572  * case.
2573  *
2574  * Return: 0
2575  */
2576 int8_t target_if_spectral_get_ctl_noisefloor(void *arg);
2577 
2578 /**
2579  * target_if_spectral_get_capability() - Get whether a given Spectral hardware
2580  * capability is available
2581  * @arg: Pointer to handle for Spectral target_if internal private data
2582  * @type: Spectral hardware capability type
2583  *
2584  * Return: True if the capability is available, false if the capability is not
2585  * available
2586  */
2587 uint32_t target_if_spectral_get_capability(
2588 	void *arg, enum spectral_capability_type type);
2589 
2590 /**
2591  * target_if_spectral_set_rxfilter() - Set the RX Filter before Spectral start
2592  * @arg: Pointer to handle for Spectral target_if internal private data
2593  * @rxfilter: Rx filter to be used
2594  *
2595  * Note: This is only a placeholder function. It is not currently required since
2596  * FW should be taking care of setting the required filters.
2597  *
2598  * Return: 0
2599  */
2600 uint32_t target_if_spectral_set_rxfilter(void *arg, int rxfilter);
2601 
2602 /**
2603  * target_if_spectral_sops_configure_params() - Configure user supplied Spectral
2604  * parameters
2605  * @arg: Pointer to handle for Spectral target_if internal private data
2606  * @params: Spectral parameters
2607  * @smode: Spectral scan mode
2608  *
2609  * Return: 0 in case of success, -1 on failure
2610  */
2611 uint32_t target_if_spectral_sops_configure_params(
2612 				void *arg, struct spectral_config *params,
2613 				enum spectral_scan_mode smode);
2614 
2615 /**
2616  * target_if_spectral_get_rxfilter() - Get the current RX Filter settings
2617  * @arg: Pointer to handle for Spectral target_if internal private data
2618  *
2619  * Note: This is only a placeholder function. It is not currently required since
2620  * FW should be taking care of setting the required filters.
2621  *
2622  * Return: 0
2623  */
2624 uint32_t target_if_spectral_get_rxfilter(void *arg);
2625 
2626 /**
2627  * target_if_pdev_spectral_deinit() - De-initialize target_if Spectral
2628  * functionality for the given pdev
2629  * @pdev: Pointer to pdev object
2630  *
2631  * Return: None
2632  */
2633 void target_if_pdev_spectral_deinit(struct wlan_objmgr_pdev *pdev);
2634 
2635 /**
2636  * target_if_set_spectral_config() - Set spectral config
2637  * @pdev:       Pointer to pdev object
2638  * @param: Spectral parameter id and value
2639  * @smode: Spectral scan mode
2640  * @err: Pointer to Spectral error code
2641  *
2642  * API to set spectral configurations
2643  *
2644  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2645  */
2646 QDF_STATUS target_if_set_spectral_config(struct wlan_objmgr_pdev *pdev,
2647 					 const struct spectral_cp_param *param,
2648 					 const enum spectral_scan_mode smode,
2649 					 enum spectral_cp_error_code *err);
2650 
2651 /**
2652  * target_if_pdev_spectral_init() - Initialize target_if Spectral
2653  * functionality for the given pdev
2654  * @pdev: Pointer to pdev object
2655  *
2656  * Return: On success, pointer to Spectral target_if internal private data, on
2657  * failure, NULL
2658  */
2659 void *target_if_pdev_spectral_init(struct wlan_objmgr_pdev *pdev);
2660 
2661 /**
2662  * target_if_spectral_sops_get_params() - Get user configured Spectral
2663  * parameters
2664  * @arg: Pointer to handle for Spectral target_if internal private data
2665  * @params: Pointer to buffer into which Spectral parameters should be copied
2666  * @smode: Spectral scan mode
2667  *
2668  * Return: 0 in case of success, -1 on failure
2669  */
2670 uint32_t target_if_spectral_sops_get_params(
2671 			void *arg, struct spectral_config *params,
2672 			enum spectral_scan_mode smode);
2673 
2674 /**
2675  * target_if_init_spectral_capability() - Initialize Spectral capability
2676  *
2677  * @spectral: Pointer to Spectral target_if internal private data
2678  * @target_type: target type
2679  *
2680  * This is a workaround.
2681  *
2682  * Return: QDF_STATUS
2683  */
2684 QDF_STATUS
2685 target_if_init_spectral_capability(struct target_if_spectral *spectral,
2686 				   uint32_t target_type);
2687 
2688 /**
2689  * target_if_start_spectral_scan() - Start spectral scan
2690  * @pdev: Pointer to pdev object
2691  * @vdev_id: VDEV id
2692  * @smode: Spectral scan mode
2693  * @err: Spectral error code
2694  *
2695  * API to start spectral scan
2696  *
2697  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2698  */
2699 QDF_STATUS target_if_start_spectral_scan(struct wlan_objmgr_pdev *pdev,
2700 					 uint8_t vdev_id,
2701 					 enum spectral_scan_mode smode,
2702 					 enum spectral_cp_error_code *err);
2703 
2704 /**
2705  * target_if_get_spectral_config() - Get spectral configuration
2706  * @pdev: Pointer to pdev object
2707  * @param: Pointer to spectral_config structure in which the configuration
2708  * should be returned
2709  * @smode: Spectral scan mode
2710  *
2711  * API to get the current spectral configuration
2712  *
2713  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2714  */
2715 QDF_STATUS target_if_get_spectral_config(struct wlan_objmgr_pdev *pdev,
2716 					 struct spectral_config *param,
2717 					 enum spectral_scan_mode smode);
2718 
2719 /**
2720  * target_if_spectral_scan_enable_params() - Enable use of desired Spectral
2721  *                                           parameters
2722  * @spectral: Pointer to Spectral target_if internal private data
2723  * @spectral_params: Pointer to Spectral parameters
2724  * @smode: Spectral scan mode
2725  * @err: Spectral error code
2726  *
2727  * Enable use of desired Spectral parameters by configuring them into HW, and
2728  * starting Spectral scan
2729  *
2730  * Return: 0 on success, 1 on failure
2731  */
2732 int target_if_spectral_scan_enable_params(
2733 		struct target_if_spectral *spectral,
2734 		struct spectral_config *spectral_params,
2735 		enum spectral_scan_mode smode,
2736 		enum spectral_cp_error_code *err);
2737 
2738 /**
2739  * target_if_is_spectral_active() - Get whether Spectral is active
2740  * @pdev: Pointer to pdev object
2741  * @smode: Spectral scan mode
2742  *
2743  * Return: True if Spectral is active, false if Spectral is not active
2744  */
2745 bool target_if_is_spectral_active(struct wlan_objmgr_pdev *pdev,
2746 				  enum spectral_scan_mode smode);
2747 
2748 /**
2749  * target_if_is_spectral_enabled() - Get whether Spectral is enabled
2750  * @pdev: Pointer to pdev object
2751  * @smode: Spectral scan mode
2752  *
2753  * Return: True if Spectral is enabled, false if Spectral is not enabled
2754  */
2755 bool target_if_is_spectral_enabled(struct wlan_objmgr_pdev *pdev,
2756 				   enum spectral_scan_mode smode);
2757 
2758 /**
2759  * target_if_set_debug_level() - Set debug level for Spectral
2760  * @pdev: Pointer to pdev object
2761  * @debug_level: Debug level
2762  *
2763  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2764  *
2765  */
2766 QDF_STATUS target_if_set_debug_level(struct wlan_objmgr_pdev *pdev,
2767 				     uint32_t debug_level);
2768 
2769 /**
2770  * target_if_get_debug_level() - Get debug level for Spectral
2771  * @pdev: Pointer to pdev object
2772  *
2773  * Return: Current debug level
2774  */
2775 uint32_t target_if_get_debug_level(struct wlan_objmgr_pdev *pdev);
2776 
2777 
2778 /**
2779  * target_if_get_spectral_capinfo() - Get Spectral capability information
2780  * @pdev: Pointer to pdev object
2781  * @scaps: Buffer into which data should be copied
2782  *
2783  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2784  */
2785 QDF_STATUS target_if_get_spectral_capinfo(struct wlan_objmgr_pdev *pdev,
2786 					  struct spectral_caps *scaps);
2787 
2788 
2789 /**
2790  * target_if_get_spectral_diagstats() - Get Spectral diagnostic statistics
2791  * @pdev:  Pointer to pdev object
2792  * @stats: Buffer into which data should be copied
2793  *
2794  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2795  */
2796 QDF_STATUS target_if_get_spectral_diagstats(struct wlan_objmgr_pdev *pdev,
2797 					    struct spectral_diag_stats *stats);
2798 
2799 QDF_STATUS
2800 target_if_160mhz_delivery_state_change(struct target_if_spectral *spectral,
2801 				       enum spectral_scan_mode smode,
2802 				       uint8_t detector_id);
2803 
2804 #ifdef OPTIMIZED_SAMP_MESSAGE
2805 /**
2806  * target_if_spectral_get_num_fft_bins() - Get number of FFT bins from FFT size
2807  * according to the Spectral report mode.
2808  * @fft_size: FFT length
2809  * @report_mode: Spectral report mode
2810  *
2811  * Get number of FFT bins from FFT size according to the Spectral
2812  * report mode.
2813  *
2814  * Return: Number of FFT bins
2815  */
2816 static inline uint32_t
target_if_spectral_get_num_fft_bins(uint32_t fft_size,enum spectral_report_mode report_mode)2817 target_if_spectral_get_num_fft_bins(uint32_t fft_size,
2818 				    enum spectral_report_mode report_mode)
2819 {
2820 	switch (report_mode) {
2821 	case SPECTRAL_REPORT_MODE_0:
2822 	case SPECTRAL_REPORT_MODE_1:
2823 		return 0;
2824 	case SPECTRAL_REPORT_MODE_2:
2825 		return (1 << (fft_size - 1));
2826 	case SPECTRAL_REPORT_MODE_3:
2827 		return (1 << fft_size);
2828 	default:
2829 		return -EINVAL;
2830 	}
2831 }
2832 #endif /* OPTIMIZED_SAMP_MESSAGE */
2833 
2834 #ifdef OPTIMIZED_SAMP_MESSAGE
2835 /**
2836  * target_if_get_detector_chwidth() - Get per-detector bandwidth
2837  * based on channel width and fragmentation.
2838  * @ch_width: Spectral scan channel width
2839  * @fragmentation_160: Target type has fragmentation or not
2840  *
2841  * Get per-detector BW.
2842  *
2843  * Return: detector BW
2844  */
2845 static inline
target_if_get_detector_chwidth(enum phy_ch_width ch_width,bool fragmentation_160)2846 enum phy_ch_width target_if_get_detector_chwidth(enum phy_ch_width ch_width,
2847 						 bool fragmentation_160)
2848 {
2849 	return ((ch_width == CH_WIDTH_160MHZ && fragmentation_160) ?
2850 		CH_WIDTH_80MHZ : ((ch_width == CH_WIDTH_80P80MHZ) ?
2851 		CH_WIDTH_80MHZ : ch_width));
2852 }
2853 
2854 /**
2855  * target_if_spectral_set_start_end_freq() - Set start and end frequencies for
2856  * a given center frequency
2857  * @cfreq: Center frequency for which start and end freq need to be set
2858  * @ch_width: Spectral scan Channel width
2859  * @fragmentation_160: Target type has fragmentation or not
2860  * @start_end_freq: Array containing start and end frequency of detector
2861  *
2862  * Set the start and end frequencies for given center frequency in destination
2863  * detector info struct
2864  *
2865  * Return: void
2866  */
2867 static inline
target_if_spectral_set_start_end_freq(uint32_t cfreq,enum phy_ch_width ch_width,bool fragmentation_160,uint32_t * start_end_freq)2868 void target_if_spectral_set_start_end_freq(uint32_t cfreq,
2869 					   enum phy_ch_width ch_width,
2870 					   bool fragmentation_160,
2871 					   uint32_t *start_end_freq)
2872 {
2873 	enum phy_ch_width det_ch_width;
2874 
2875 	det_ch_width = target_if_get_detector_chwidth(ch_width,
2876 						      fragmentation_160);
2877 
2878 	start_end_freq[0] = cfreq - (wlan_reg_get_bw_value(det_ch_width) >> 1);
2879 	start_end_freq[1] = cfreq + (wlan_reg_get_bw_value(det_ch_width) >> 1);
2880 }
2881 #endif /* OPTIMIZED_SAMP_MESSAGE */
2882 
2883 #ifdef DIRECT_BUF_RX_ENABLE
2884 /**
2885  * target_if_consume_spectral_report_gen3() -  Process fft report for gen3
2886  * @spectral: Pointer to spectral object
2887  * @report: Pointer to spectral report
2888  *
2889  * Process fft report for gen3
2890  *
2891  * Return: Success/Failure
2892  */
2893 int
2894 target_if_consume_spectral_report_gen3(
2895 	 struct target_if_spectral *spectral,
2896 	 struct spectral_report *report);
2897 #endif
2898 
2899 /**
2900  * target_if_spectral_fw_hang() - Crash the FW from Spectral module
2901  * @spectral: Pointer to Spectral LMAC object
2902  *
2903  * Return: QDF_STATUS of operation
2904  */
2905 QDF_STATUS target_if_spectral_fw_hang(struct target_if_spectral *spectral);
2906 
2907 /**
2908  * target_if_spectral_finite_scan_update() - Update scan count for finite scan
2909  * and stop Spectral scan when required
2910  * @spectral: Pointer to Spectral target_if internal private data
2911  * @smode: Spectral scan mode
2912  *
2913  * This API decrements the number of Spectral reports expected from target for
2914  * a finite Spectral scan. When expected number of reports are received from
2915  * target Spectral scan is stopped.
2916  *
2917  * Return: QDF_STATUS on success
2918  */
2919 QDF_STATUS
2920 target_if_spectral_finite_scan_update(struct target_if_spectral *spectral,
2921 				      enum spectral_scan_mode smode);
2922 
2923 /**
2924  * target_if_spectral_is_finite_scan() - Check Spectral scan is finite/infinite
2925  * @spectral: Pointer to Spectral target_if internal private data
2926  * @smode: Spectral scan mode
2927  * @finite_spectral_scan: location to store result
2928  *
2929  * API to check whether Spectral scan is finite/infinite for the give mode.
2930  * A non zero scan count indicates that scan is finite. Scan count of 0
2931  * indicates an infinite Spectral scan.
2932  *
2933  * Return: QDF_STATUS on success
2934  */
2935 QDF_STATUS
2936 target_if_spectral_is_finite_scan(struct target_if_spectral *spectral,
2937 				  enum spectral_scan_mode smode,
2938 				  bool *finite_spectral_scan);
2939 
2940 #ifdef BIG_ENDIAN_HOST
2941 /**
2942  * target_if_byte_swap_spectral_headers_gen3() - Apply byte-swap on headers
2943  * @spectral: Pointer to Spectral target_if internal private data
2944  * @data: Pointer to the start of Spectral Scan Summary report
2945  *
2946  * This API is only required for Big-endian Host platforms.
2947  * It applies 32-bit byte-swap on Spectral Scan Summary and Search FFT reports
2948  * and copies them back to the source location.
2949  * Padding bytes that lie between the reports won't be touched.
2950  *
2951  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2952  */
2953 QDF_STATUS target_if_byte_swap_spectral_headers_gen3(
2954 	 struct target_if_spectral *spectral,
2955 	 void *data);
2956 
2957 /**
2958  * target_if_byte_swap_spectral_fft_bins_gen3() - Apply byte-swap on FFT bins
2959  * @rparams: Pointer to Spectral report parameters
2960  * @bin_pwr_data: Pointer to the start of FFT bins
2961  * @num_fftbins: Number of FFT bins
2962  *
2963  * This API is only required for Big-endian Host platforms.
2964  * It applies pack-mode-aware byte-swap on the FFT bins as below:
2965  *   1. pack-mode 0 (i.e., 1 FFT bin per DWORD):
2966  *        Reads the least significant 2 bytes of each DWORD, applies 16-bit
2967  *        byte-swap on that value, and copies it back to the source location.
2968  *   2. pack-mode 1 (i.e., 2 FFT bins per DWORD):
2969  *        Reads each FFT bin, applies 16-bit byte-swap on that value,
2970  *        and copies it back to the source location.
2971  *   3. pack-mode 2 (4 FFT bins per DWORD):
2972  *        Nothing
2973  *
2974  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2975  */
2976 QDF_STATUS target_if_byte_swap_spectral_fft_bins_gen3(
2977 	const struct spectral_report_params *rparams,
2978 	void *bin_pwr_data, size_t num_fftbins);
2979 #endif /* BIG_ENDIAN_HOST */
2980 
2981 #ifdef OPTIMIZED_SAMP_MESSAGE
2982 /**
2983  * target_if_populate_fft_bins_info() - Populate the start and end bin
2984  * indices, on per-detector level.
2985  * @spectral: Pointer to target_if spectral internal structure
2986  * @smode: Spectral scan mode
2987  *
2988  * Populate the start and end bin indices, on per-detector level.
2989  *
2990  * Return: Success/Failure
2991  */
2992 QDF_STATUS
2993 target_if_populate_fft_bins_info(struct target_if_spectral *spectral,
2994 				 enum spectral_scan_mode smode);
2995 #else
2996 static inline QDF_STATUS
target_if_populate_fft_bins_info(struct target_if_spectral * spectral,enum spectral_scan_mode smode)2997 target_if_populate_fft_bins_info(struct target_if_spectral *spectral,
2998 				 enum spectral_scan_mode smode)
2999 {
3000 	return QDF_STATUS_SUCCESS;
3001 }
3002 #endif
3003 
3004 /**
3005  * spectral_is_session_info_expected_from_target() - Check if spectral scan
3006  * session is expected from target
3007  * @pdev: pdev pointer
3008  * @is_session_info_expected: Pointer to caller variable
3009  *
3010  * Return: QDF_STATUS of operation
3011  */
3012 QDF_STATUS
3013 spectral_is_session_info_expected_from_target(struct wlan_objmgr_pdev *pdev,
3014 					      bool *is_session_info_expected);
3015 
3016 #ifdef WIN32
3017 #pragma pack(pop, target_if_spectral)
3018 #endif
3019 #ifdef __ATTRIB_PACK
3020 #undef __ATTRIB_PACK
3021 #endif
3022 
3023 /**
3024  * target_if_spectral_copy_fft_bins() - Copy FFT bins from source buffer to
3025  * destination buffer
3026  * @spectral: Pointer to Spectral LMAC object
3027  * @src_fft_buf: Pointer to source FFT buffer
3028  * @dest_fft_buf: Pointer to destination FFT buffer
3029  * @fft_bin_count: Number of FFT bins to copy
3030  * @bytes_copied: Number of bytes copied by this API
3031  * @pwr_format: Spectral FFT bin format (linear/dBm mode)
3032  *
3033  * Different targets supports different FFT bin widths. This API encapsulates
3034  * all those details and copies 8-bit FFT value into the destination buffer.
3035  * Also, this API takes care of handling big-endian mode.
3036  * In essence, it does the following.
3037  *   - Read DWORDs one by one
3038  *   - Extract individual FFT bins out of it
3039  *   - Copy the FFT bin to destination buffer
3040  *
3041  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
3042  */
3043 QDF_STATUS
3044 target_if_spectral_copy_fft_bins(struct target_if_spectral *spectral,
3045 				 const void *src_fft_buf,
3046 				 void *dest_fft_buf,
3047 				 uint32_t fft_bin_count,
3048 				 uint32_t *bytes_copied,
3049 				 uint16_t pwr_format);
3050 #endif /* WLAN_CONV_SPECTRAL_ENABLE */
3051 
3052 struct spectral_capabilities_event_params;
3053 /**
3054  * target_if_wmi_extract_spectral_caps_fixed_param() - Wrapper function to
3055  * extract fixed params from Spectral capabilities WMI event
3056  * @psoc: Pointer to psoc object
3057  * @evt_buf: Event buffer
3058  * @param: Spectral capabilities event parameters data structure to be filled
3059  * by this API
3060  *
3061  * Return: QDF_STATUS of operation
3062  */
3063 QDF_STATUS target_if_wmi_extract_spectral_caps_fixed_param(
3064 			struct wlan_objmgr_psoc *psoc,
3065 			uint8_t *evt_buf,
3066 			struct spectral_capabilities_event_params *param);
3067 
3068 struct spectral_scan_bw_capabilities;
3069 /**
3070  * target_if_wmi_extract_spectral_scan_bw_caps() - Wrapper function to
3071  * extract bandwidth capabilities from Spectral capabilities WMI event
3072  * @psoc: Pointer to psoc object
3073  * @evt_buf: Event buffer
3074  * @bw_caps: Data structure to be filled by this API after extraction
3075  *
3076  * Return: QDF_STATUS of operation
3077  */
3078 QDF_STATUS
3079 target_if_wmi_extract_spectral_scan_bw_caps(
3080 			struct wlan_objmgr_psoc *psoc,
3081 			uint8_t *evt_buf,
3082 			struct spectral_scan_bw_capabilities *bw_caps);
3083 
3084 struct spectral_fft_size_capabilities;
3085 /**
3086  * target_if_wmi_extract_spectral_fft_size_caps() - Wrapper function to
3087  * extract fft size capabilities from Spectral capabilities WMI event
3088  * @psoc: Pointer to psoc object
3089  * @evt_buf: Event buffer
3090  * @fft_size_caps: Data structure to be filled by this API after extraction
3091  *
3092  * Return: QDF_STATUS of operation
3093  */
3094 QDF_STATUS
3095 target_if_wmi_extract_spectral_fft_size_caps(
3096 			struct wlan_objmgr_psoc *psoc,
3097 			uint8_t *evt_buf,
3098 			struct spectral_fft_size_capabilities *fft_size_caps);
3099 #endif /* _TARGET_IF_SPECTRAL_H_ */
3100