1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * fs/f2fs/f2fs.h
4   *
5   * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6   *             http://www.samsung.com/
7   */
8  #ifndef _LINUX_F2FS_H
9  #define _LINUX_F2FS_H
10  
11  #include <linux/uio.h>
12  #include <linux/types.h>
13  #include <linux/page-flags.h>
14  #include <linux/slab.h>
15  #include <linux/crc32.h>
16  #include <linux/magic.h>
17  #include <linux/kobject.h>
18  #include <linux/sched.h>
19  #include <linux/cred.h>
20  #include <linux/sched/mm.h>
21  #include <linux/vmalloc.h>
22  #include <linux/bio.h>
23  #include <linux/blkdev.h>
24  #include <linux/quotaops.h>
25  #include <linux/part_stat.h>
26  #include <linux/rw_hint.h>
27  #include <crypto/hash.h>
28  
29  #include <linux/fscrypt.h>
30  #include <linux/fsverity.h>
31  
32  struct pagevec;
33  
34  #ifdef CONFIG_F2FS_CHECK_FS
35  #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36  #else
37  #define f2fs_bug_on(sbi, condition)					\
38  	do {								\
39  		if (WARN_ON(condition))					\
40  			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41  	} while (0)
42  #endif
43  
44  enum {
45  	FAULT_KMALLOC,
46  	FAULT_KVMALLOC,
47  	FAULT_PAGE_ALLOC,
48  	FAULT_PAGE_GET,
49  	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50  	FAULT_ALLOC_NID,
51  	FAULT_ORPHAN,
52  	FAULT_BLOCK,
53  	FAULT_DIR_DEPTH,
54  	FAULT_EVICT_INODE,
55  	FAULT_TRUNCATE,
56  	FAULT_READ_IO,
57  	FAULT_CHECKPOINT,
58  	FAULT_DISCARD,
59  	FAULT_WRITE_IO,
60  	FAULT_SLAB_ALLOC,
61  	FAULT_DQUOT_INIT,
62  	FAULT_LOCK_OP,
63  	FAULT_BLKADDR_VALIDITY,
64  	FAULT_BLKADDR_CONSISTENCE,
65  	FAULT_NO_SEGMENT,
66  	FAULT_MAX,
67  };
68  
69  #ifdef CONFIG_F2FS_FAULT_INJECTION
70  #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
71  
72  struct f2fs_fault_info {
73  	atomic_t inject_ops;
74  	int inject_rate;
75  	unsigned int inject_type;
76  };
77  
78  extern const char *f2fs_fault_name[FAULT_MAX];
79  #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
80  
81  /* maximum retry count for injected failure */
82  #define DEFAULT_FAILURE_RETRY_COUNT		8
83  #else
84  #define DEFAULT_FAILURE_RETRY_COUNT		1
85  #endif
86  
87  /*
88   * For mount options
89   */
90  #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
91  #define F2FS_MOUNT_DISCARD		0x00000002
92  #define F2FS_MOUNT_NOHEAP		0x00000004
93  #define F2FS_MOUNT_XATTR_USER		0x00000008
94  #define F2FS_MOUNT_POSIX_ACL		0x00000010
95  #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
96  #define F2FS_MOUNT_INLINE_XATTR		0x00000040
97  #define F2FS_MOUNT_INLINE_DATA		0x00000080
98  #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
99  #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
100  #define F2FS_MOUNT_NOBARRIER		0x00000400
101  #define F2FS_MOUNT_FASTBOOT		0x00000800
102  #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
103  #define F2FS_MOUNT_DATA_FLUSH		0x00002000
104  #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
105  #define F2FS_MOUNT_USRQUOTA		0x00008000
106  #define F2FS_MOUNT_GRPQUOTA		0x00010000
107  #define F2FS_MOUNT_PRJQUOTA		0x00020000
108  #define F2FS_MOUNT_QUOTA		0x00040000
109  #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
110  #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
111  #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
112  #define F2FS_MOUNT_NORECOVERY		0x00400000
113  #define F2FS_MOUNT_ATGC			0x00800000
114  #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
115  #define	F2FS_MOUNT_GC_MERGE		0x02000000
116  #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
117  #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
118  
119  #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
120  #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
121  #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
122  #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
123  
124  #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
125  		typecheck(unsigned long long, b) &&			\
126  		((long long)((a) - (b)) > 0))
127  
128  typedef u32 block_t;	/*
129  			 * should not change u32, since it is the on-disk block
130  			 * address format, __le32.
131  			 */
132  typedef u32 nid_t;
133  
134  #define COMPRESS_EXT_NUM		16
135  
136  enum blkzone_allocation_policy {
137  	BLKZONE_ALLOC_PRIOR_SEQ,	/* Prioritize writing to sequential zones */
138  	BLKZONE_ALLOC_ONLY_SEQ,		/* Only allow writing to sequential zones */
139  	BLKZONE_ALLOC_PRIOR_CONV,	/* Prioritize writing to conventional zones */
140  };
141  
142  /*
143   * An implementation of an rwsem that is explicitly unfair to readers. This
144   * prevents priority inversion when a low-priority reader acquires the read lock
145   * while sleeping on the write lock but the write lock is needed by
146   * higher-priority clients.
147   */
148  
149  struct f2fs_rwsem {
150          struct rw_semaphore internal_rwsem;
151  #ifdef CONFIG_F2FS_UNFAIR_RWSEM
152          wait_queue_head_t read_waiters;
153  #endif
154  };
155  
156  struct f2fs_mount_info {
157  	unsigned int opt;
158  	block_t root_reserved_blocks;	/* root reserved blocks */
159  	kuid_t s_resuid;		/* reserved blocks for uid */
160  	kgid_t s_resgid;		/* reserved blocks for gid */
161  	int active_logs;		/* # of active logs */
162  	int inline_xattr_size;		/* inline xattr size */
163  #ifdef CONFIG_F2FS_FAULT_INJECTION
164  	struct f2fs_fault_info fault_info;	/* For fault injection */
165  #endif
166  #ifdef CONFIG_QUOTA
167  	/* Names of quota files with journalled quota */
168  	char *s_qf_names[MAXQUOTAS];
169  	int s_jquota_fmt;			/* Format of quota to use */
170  #endif
171  	/* For which write hints are passed down to block layer */
172  	int alloc_mode;			/* segment allocation policy */
173  	int fsync_mode;			/* fsync policy */
174  	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
175  	int bggc_mode;			/* bggc mode: off, on or sync */
176  	int memory_mode;		/* memory mode */
177  	int errors;			/* errors parameter */
178  	int discard_unit;		/*
179  					 * discard command's offset/size should
180  					 * be aligned to this unit: block,
181  					 * segment or section
182  					 */
183  	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
184  	block_t unusable_cap_perc;	/* percentage for cap */
185  	block_t unusable_cap;		/* Amount of space allowed to be
186  					 * unusable when disabling checkpoint
187  					 */
188  
189  	/* For compression */
190  	unsigned char compress_algorithm;	/* algorithm type */
191  	unsigned char compress_log_size;	/* cluster log size */
192  	unsigned char compress_level;		/* compress level */
193  	bool compress_chksum;			/* compressed data chksum */
194  	unsigned char compress_ext_cnt;		/* extension count */
195  	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
196  	int compress_mode;			/* compression mode */
197  	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
198  	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
199  };
200  
201  #define F2FS_FEATURE_ENCRYPT			0x00000001
202  #define F2FS_FEATURE_BLKZONED			0x00000002
203  #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
204  #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
205  #define F2FS_FEATURE_PRJQUOTA			0x00000010
206  #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
207  #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
208  #define F2FS_FEATURE_QUOTA_INO			0x00000080
209  #define F2FS_FEATURE_INODE_CRTIME		0x00000100
210  #define F2FS_FEATURE_LOST_FOUND			0x00000200
211  #define F2FS_FEATURE_VERITY			0x00000400
212  #define F2FS_FEATURE_SB_CHKSUM			0x00000800
213  #define F2FS_FEATURE_CASEFOLD			0x00001000
214  #define F2FS_FEATURE_COMPRESSION		0x00002000
215  #define F2FS_FEATURE_RO				0x00004000
216  
217  #define __F2FS_HAS_FEATURE(raw_super, mask)				\
218  	((raw_super->feature & cpu_to_le32(mask)) != 0)
219  #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
220  
221  /*
222   * Default values for user and/or group using reserved blocks
223   */
224  #define	F2FS_DEF_RESUID		0
225  #define	F2FS_DEF_RESGID		0
226  
227  /*
228   * For checkpoint manager
229   */
230  enum {
231  	NAT_BITMAP,
232  	SIT_BITMAP
233  };
234  
235  #define	CP_UMOUNT	0x00000001
236  #define	CP_FASTBOOT	0x00000002
237  #define	CP_SYNC		0x00000004
238  #define	CP_RECOVERY	0x00000008
239  #define	CP_DISCARD	0x00000010
240  #define CP_TRIMMED	0x00000020
241  #define CP_PAUSE	0x00000040
242  #define CP_RESIZE 	0x00000080
243  
244  #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
245  #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
246  #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
247  #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
248  #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
249  #define DEF_CP_INTERVAL			60	/* 60 secs */
250  #define DEF_IDLE_INTERVAL		5	/* 5 secs */
251  #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
252  #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
253  #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
254  
255  struct cp_control {
256  	int reason;
257  	__u64 trim_start;
258  	__u64 trim_end;
259  	__u64 trim_minlen;
260  };
261  
262  /*
263   * indicate meta/data type
264   */
265  enum {
266  	META_CP,
267  	META_NAT,
268  	META_SIT,
269  	META_SSA,
270  	META_MAX,
271  	META_POR,
272  	DATA_GENERIC,		/* check range only */
273  	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
274  	DATA_GENERIC_ENHANCE_READ,	/*
275  					 * strong check on range and segment
276  					 * bitmap but no warning due to race
277  					 * condition of read on truncated area
278  					 * by extent_cache
279  					 */
280  	DATA_GENERIC_ENHANCE_UPDATE,	/*
281  					 * strong check on range and segment
282  					 * bitmap for update case
283  					 */
284  	META_GENERIC,
285  };
286  
287  /* for the list of ino */
288  enum {
289  	ORPHAN_INO,		/* for orphan ino list */
290  	APPEND_INO,		/* for append ino list */
291  	UPDATE_INO,		/* for update ino list */
292  	TRANS_DIR_INO,		/* for transactions dir ino list */
293  	XATTR_DIR_INO,		/* for xattr updated dir ino list */
294  	FLUSH_INO,		/* for multiple device flushing */
295  	MAX_INO_ENTRY,		/* max. list */
296  };
297  
298  struct ino_entry {
299  	struct list_head list;		/* list head */
300  	nid_t ino;			/* inode number */
301  	unsigned int dirty_device;	/* dirty device bitmap */
302  };
303  
304  /* for the list of inodes to be GCed */
305  struct inode_entry {
306  	struct list_head list;	/* list head */
307  	struct inode *inode;	/* vfs inode pointer */
308  };
309  
310  struct fsync_node_entry {
311  	struct list_head list;	/* list head */
312  	struct page *page;	/* warm node page pointer */
313  	unsigned int seq_id;	/* sequence id */
314  };
315  
316  struct ckpt_req {
317  	struct completion wait;		/* completion for checkpoint done */
318  	struct llist_node llnode;	/* llist_node to be linked in wait queue */
319  	int ret;			/* return code of checkpoint */
320  	ktime_t queue_time;		/* request queued time */
321  };
322  
323  struct ckpt_req_control {
324  	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
325  	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
326  	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
327  	atomic_t issued_ckpt;		/* # of actually issued ckpts */
328  	atomic_t total_ckpt;		/* # of total ckpts */
329  	atomic_t queued_ckpt;		/* # of queued ckpts */
330  	struct llist_head issue_list;	/* list for command issue */
331  	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
332  	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
333  	unsigned int peak_time;		/* peak wait time in msec until now */
334  };
335  
336  /* for the bitmap indicate blocks to be discarded */
337  struct discard_entry {
338  	struct list_head list;	/* list head */
339  	block_t start_blkaddr;	/* start blockaddr of current segment */
340  	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
341  };
342  
343  /* minimum discard granularity, unit: block count */
344  #define MIN_DISCARD_GRANULARITY		1
345  /* default discard granularity of inner discard thread, unit: block count */
346  #define DEFAULT_DISCARD_GRANULARITY		16
347  /* default maximum discard granularity of ordered discard, unit: block count */
348  #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
349  
350  /* max discard pend list number */
351  #define MAX_PLIST_NUM		512
352  #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
353  					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
354  
355  enum {
356  	D_PREP,			/* initial */
357  	D_PARTIAL,		/* partially submitted */
358  	D_SUBMIT,		/* all submitted */
359  	D_DONE,			/* finished */
360  };
361  
362  struct discard_info {
363  	block_t lstart;			/* logical start address */
364  	block_t len;			/* length */
365  	block_t start;			/* actual start address in dev */
366  };
367  
368  struct discard_cmd {
369  	struct rb_node rb_node;		/* rb node located in rb-tree */
370  	struct discard_info di;		/* discard info */
371  	struct list_head list;		/* command list */
372  	struct completion wait;		/* compleation */
373  	struct block_device *bdev;	/* bdev */
374  	unsigned short ref;		/* reference count */
375  	unsigned char state;		/* state */
376  	unsigned char queued;		/* queued discard */
377  	int error;			/* bio error */
378  	spinlock_t lock;		/* for state/bio_ref updating */
379  	unsigned short bio_ref;		/* bio reference count */
380  };
381  
382  enum {
383  	DPOLICY_BG,
384  	DPOLICY_FORCE,
385  	DPOLICY_FSTRIM,
386  	DPOLICY_UMOUNT,
387  	MAX_DPOLICY,
388  };
389  
390  enum {
391  	DPOLICY_IO_AWARE_DISABLE,	/* force to not be aware of IO */
392  	DPOLICY_IO_AWARE_ENABLE,	/* force to be aware of IO */
393  	DPOLICY_IO_AWARE_MAX,
394  };
395  
396  struct discard_policy {
397  	int type;			/* type of discard */
398  	unsigned int min_interval;	/* used for candidates exist */
399  	unsigned int mid_interval;	/* used for device busy */
400  	unsigned int max_interval;	/* used for candidates not exist */
401  	unsigned int max_requests;	/* # of discards issued per round */
402  	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
403  	bool io_aware;			/* issue discard in idle time */
404  	bool sync;			/* submit discard with REQ_SYNC flag */
405  	bool ordered;			/* issue discard by lba order */
406  	bool timeout;			/* discard timeout for put_super */
407  	unsigned int granularity;	/* discard granularity */
408  };
409  
410  struct discard_cmd_control {
411  	struct task_struct *f2fs_issue_discard;	/* discard thread */
412  	struct list_head entry_list;		/* 4KB discard entry list */
413  	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
414  	struct list_head wait_list;		/* store on-flushing entries */
415  	struct list_head fstrim_list;		/* in-flight discard from fstrim */
416  	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
417  	struct mutex cmd_lock;
418  	unsigned int nr_discards;		/* # of discards in the list */
419  	unsigned int max_discards;		/* max. discards to be issued */
420  	unsigned int max_discard_request;	/* max. discard request per round */
421  	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
422  	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
423  	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
424  	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
425  	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
426  	unsigned int discard_granularity;	/* discard granularity */
427  	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
428  	unsigned int discard_io_aware;		/* io_aware policy */
429  	unsigned int undiscard_blks;		/* # of undiscard blocks */
430  	unsigned int next_pos;			/* next discard position */
431  	atomic_t issued_discard;		/* # of issued discard */
432  	atomic_t queued_discard;		/* # of queued discard */
433  	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
434  	struct rb_root_cached root;		/* root of discard rb-tree */
435  	bool rbtree_check;			/* config for consistence check */
436  	bool discard_wake;			/* to wake up discard thread */
437  };
438  
439  /* for the list of fsync inodes, used only during recovery */
440  struct fsync_inode_entry {
441  	struct list_head list;	/* list head */
442  	struct inode *inode;	/* vfs inode pointer */
443  	block_t blkaddr;	/* block address locating the last fsync */
444  	block_t last_dentry;	/* block address locating the last dentry */
445  };
446  
447  #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
448  #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
449  
450  #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
451  #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
452  #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
453  #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
454  
455  #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
456  #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
457  
update_nats_in_cursum(struct f2fs_journal * journal,int i)458  static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
459  {
460  	int before = nats_in_cursum(journal);
461  
462  	journal->n_nats = cpu_to_le16(before + i);
463  	return before;
464  }
465  
update_sits_in_cursum(struct f2fs_journal * journal,int i)466  static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
467  {
468  	int before = sits_in_cursum(journal);
469  
470  	journal->n_sits = cpu_to_le16(before + i);
471  	return before;
472  }
473  
__has_cursum_space(struct f2fs_journal * journal,int size,int type)474  static inline bool __has_cursum_space(struct f2fs_journal *journal,
475  							int size, int type)
476  {
477  	if (type == NAT_JOURNAL)
478  		return size <= MAX_NAT_JENTRIES(journal);
479  	return size <= MAX_SIT_JENTRIES(journal);
480  }
481  
482  /* for inline stuff */
483  #define DEF_INLINE_RESERVED_SIZE	1
484  static inline int get_extra_isize(struct inode *inode);
485  static inline int get_inline_xattr_addrs(struct inode *inode);
486  #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
487  				(CUR_ADDRS_PER_INODE(inode) -		\
488  				get_inline_xattr_addrs(inode) -	\
489  				DEF_INLINE_RESERVED_SIZE))
490  
491  /* for inline dir */
492  #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
493  				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
494  				BITS_PER_BYTE + 1))
495  #define INLINE_DENTRY_BITMAP_SIZE(inode) \
496  	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
497  #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
498  				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
499  				NR_INLINE_DENTRY(inode) + \
500  				INLINE_DENTRY_BITMAP_SIZE(inode)))
501  
502  /*
503   * For INODE and NODE manager
504   */
505  /* for directory operations */
506  
507  struct f2fs_filename {
508  	/*
509  	 * The filename the user specified.  This is NULL for some
510  	 * filesystem-internal operations, e.g. converting an inline directory
511  	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
512  	 */
513  	const struct qstr *usr_fname;
514  
515  	/*
516  	 * The on-disk filename.  For encrypted directories, this is encrypted.
517  	 * This may be NULL for lookups in an encrypted dir without the key.
518  	 */
519  	struct fscrypt_str disk_name;
520  
521  	/* The dirhash of this filename */
522  	f2fs_hash_t hash;
523  
524  #ifdef CONFIG_FS_ENCRYPTION
525  	/*
526  	 * For lookups in encrypted directories: either the buffer backing
527  	 * disk_name, or a buffer that holds the decoded no-key name.
528  	 */
529  	struct fscrypt_str crypto_buf;
530  #endif
531  #if IS_ENABLED(CONFIG_UNICODE)
532  	/*
533  	 * For casefolded directories: the casefolded name, but it's left NULL
534  	 * if the original name is not valid Unicode, if the original name is
535  	 * "." or "..", if the directory is both casefolded and encrypted and
536  	 * its encryption key is unavailable, or if the filesystem is doing an
537  	 * internal operation where usr_fname is also NULL.  In all these cases
538  	 * we fall back to treating the name as an opaque byte sequence.
539  	 */
540  	struct qstr cf_name;
541  #endif
542  };
543  
544  struct f2fs_dentry_ptr {
545  	struct inode *inode;
546  	void *bitmap;
547  	struct f2fs_dir_entry *dentry;
548  	__u8 (*filename)[F2FS_SLOT_LEN];
549  	int max;
550  	int nr_bitmap;
551  };
552  
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)553  static inline void make_dentry_ptr_block(struct inode *inode,
554  		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
555  {
556  	d->inode = inode;
557  	d->max = NR_DENTRY_IN_BLOCK;
558  	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
559  	d->bitmap = t->dentry_bitmap;
560  	d->dentry = t->dentry;
561  	d->filename = t->filename;
562  }
563  
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)564  static inline void make_dentry_ptr_inline(struct inode *inode,
565  					struct f2fs_dentry_ptr *d, void *t)
566  {
567  	int entry_cnt = NR_INLINE_DENTRY(inode);
568  	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
569  	int reserved_size = INLINE_RESERVED_SIZE(inode);
570  
571  	d->inode = inode;
572  	d->max = entry_cnt;
573  	d->nr_bitmap = bitmap_size;
574  	d->bitmap = t;
575  	d->dentry = t + bitmap_size + reserved_size;
576  	d->filename = t + bitmap_size + reserved_size +
577  					SIZE_OF_DIR_ENTRY * entry_cnt;
578  }
579  
580  /*
581   * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
582   * as its node offset to distinguish from index node blocks.
583   * But some bits are used to mark the node block.
584   */
585  #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
586  				>> OFFSET_BIT_SHIFT)
587  enum {
588  	ALLOC_NODE,			/* allocate a new node page if needed */
589  	LOOKUP_NODE,			/* look up a node without readahead */
590  	LOOKUP_NODE_RA,			/*
591  					 * look up a node with readahead called
592  					 * by get_data_block.
593  					 */
594  };
595  
596  #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
597  
598  /* congestion wait timeout value, default: 20ms */
599  #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
600  
601  /* maximum retry quota flush count */
602  #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
603  
604  /* maximum retry of EIO'ed page */
605  #define MAX_RETRY_PAGE_EIO			100
606  
607  #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
608  
609  #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
610  
611  /* dirty segments threshold for triggering CP */
612  #define DEFAULT_DIRTY_THRESHOLD		4
613  
614  #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
615  #define RECOVERY_MIN_RA_BLOCKS		1
616  
617  #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
618  
619  /* for in-memory extent cache entry */
620  #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
621  
622  /* number of extent info in extent cache we try to shrink */
623  #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
624  
625  /* number of age extent info in extent cache we try to shrink */
626  #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
627  #define LAST_AGE_WEIGHT			30
628  #define SAME_AGE_REGION			1024
629  
630  /*
631   * Define data block with age less than 1GB as hot data
632   * define data block with age less than 10GB but more than 1GB as warm data
633   */
634  #define DEF_HOT_DATA_AGE_THRESHOLD	262144
635  #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
636  
637  /* extent cache type */
638  enum extent_type {
639  	EX_READ,
640  	EX_BLOCK_AGE,
641  	NR_EXTENT_CACHES,
642  };
643  
644  struct extent_info {
645  	unsigned int fofs;		/* start offset in a file */
646  	unsigned int len;		/* length of the extent */
647  	union {
648  		/* read extent_cache */
649  		struct {
650  			/* start block address of the extent */
651  			block_t blk;
652  #ifdef CONFIG_F2FS_FS_COMPRESSION
653  			/* physical extent length of compressed blocks */
654  			unsigned int c_len;
655  #endif
656  		};
657  		/* block age extent_cache */
658  		struct {
659  			/* block age of the extent */
660  			unsigned long long age;
661  			/* last total blocks allocated */
662  			unsigned long long last_blocks;
663  		};
664  	};
665  };
666  
667  struct extent_node {
668  	struct rb_node rb_node;		/* rb node located in rb-tree */
669  	struct extent_info ei;		/* extent info */
670  	struct list_head list;		/* node in global extent list of sbi */
671  	struct extent_tree *et;		/* extent tree pointer */
672  };
673  
674  struct extent_tree {
675  	nid_t ino;			/* inode number */
676  	enum extent_type type;		/* keep the extent tree type */
677  	struct rb_root_cached root;	/* root of extent info rb-tree */
678  	struct extent_node *cached_en;	/* recently accessed extent node */
679  	struct list_head list;		/* to be used by sbi->zombie_list */
680  	rwlock_t lock;			/* protect extent info rb-tree */
681  	atomic_t node_cnt;		/* # of extent node in rb-tree*/
682  	bool largest_updated;		/* largest extent updated */
683  	struct extent_info largest;	/* largest cached extent for EX_READ */
684  };
685  
686  struct extent_tree_info {
687  	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
688  	struct mutex extent_tree_lock;	/* locking extent radix tree */
689  	struct list_head extent_list;		/* lru list for shrinker */
690  	spinlock_t extent_lock;			/* locking extent lru list */
691  	atomic_t total_ext_tree;		/* extent tree count */
692  	struct list_head zombie_list;		/* extent zombie tree list */
693  	atomic_t total_zombie_tree;		/* extent zombie tree count */
694  	atomic_t total_ext_node;		/* extent info count */
695  };
696  
697  /*
698   * State of block returned by f2fs_map_blocks.
699   */
700  #define F2FS_MAP_NEW		(1U << 0)
701  #define F2FS_MAP_MAPPED		(1U << 1)
702  #define F2FS_MAP_DELALLOC	(1U << 2)
703  #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
704  				F2FS_MAP_DELALLOC)
705  
706  struct f2fs_map_blocks {
707  	struct block_device *m_bdev;	/* for multi-device dio */
708  	block_t m_pblk;
709  	block_t m_lblk;
710  	unsigned int m_len;
711  	unsigned int m_flags;
712  	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
713  	pgoff_t *m_next_extent;		/* point to next possible extent */
714  	int m_seg_type;
715  	bool m_may_create;		/* indicate it is from write path */
716  	bool m_multidev_dio;		/* indicate it allows multi-device dio */
717  };
718  
719  /* for flag in get_data_block */
720  enum {
721  	F2FS_GET_BLOCK_DEFAULT,
722  	F2FS_GET_BLOCK_FIEMAP,
723  	F2FS_GET_BLOCK_BMAP,
724  	F2FS_GET_BLOCK_DIO,
725  	F2FS_GET_BLOCK_PRE_DIO,
726  	F2FS_GET_BLOCK_PRE_AIO,
727  	F2FS_GET_BLOCK_PRECACHE,
728  };
729  
730  /*
731   * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
732   */
733  #define FADVISE_COLD_BIT	0x01
734  #define FADVISE_LOST_PINO_BIT	0x02
735  #define FADVISE_ENCRYPT_BIT	0x04
736  #define FADVISE_ENC_NAME_BIT	0x08
737  #define FADVISE_KEEP_SIZE_BIT	0x10
738  #define FADVISE_HOT_BIT		0x20
739  #define FADVISE_VERITY_BIT	0x40
740  #define FADVISE_TRUNC_BIT	0x80
741  
742  #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
743  
744  #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
745  #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
746  #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
747  
748  #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
749  #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
750  #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
751  
752  #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
753  #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
754  
755  #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
756  #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
757  
758  #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
759  #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
760  
761  #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
762  #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
763  #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
764  
765  #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
766  #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
767  
768  #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
769  #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
770  #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
771  
772  #define DEF_DIR_LEVEL		0
773  
774  /* used for f2fs_inode_info->flags */
775  enum {
776  	FI_NEW_INODE,		/* indicate newly allocated inode */
777  	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
778  	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
779  	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
780  	FI_INC_LINK,		/* need to increment i_nlink */
781  	FI_ACL_MODE,		/* indicate acl mode */
782  	FI_NO_ALLOC,		/* should not allocate any blocks */
783  	FI_FREE_NID,		/* free allocated nide */
784  	FI_NO_EXTENT,		/* not to use the extent cache */
785  	FI_INLINE_XATTR,	/* used for inline xattr */
786  	FI_INLINE_DATA,		/* used for inline data*/
787  	FI_INLINE_DENTRY,	/* used for inline dentry */
788  	FI_APPEND_WRITE,	/* inode has appended data */
789  	FI_UPDATE_WRITE,	/* inode has in-place-update data */
790  	FI_NEED_IPU,		/* used for ipu per file */
791  	FI_ATOMIC_FILE,		/* indicate atomic file */
792  	FI_DATA_EXIST,		/* indicate data exists */
793  	FI_SKIP_WRITES,		/* should skip data page writeback */
794  	FI_OPU_WRITE,		/* used for opu per file */
795  	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
796  	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
797  	FI_HOT_DATA,		/* indicate file is hot */
798  	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
799  	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
800  	FI_PIN_FILE,		/* indicate file should not be gced */
801  	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
802  	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
803  	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
804  	FI_MMAP_FILE,		/* indicate file was mmapped */
805  	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
806  	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
807  	FI_ALIGNED_WRITE,	/* enable aligned write */
808  	FI_COW_FILE,		/* indicate COW file */
809  	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
810  	FI_ATOMIC_DIRTIED,	/* indicate atomic file is dirtied */
811  	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
812  	FI_OPENED_FILE,		/* indicate file has been opened */
813  	FI_MAX,			/* max flag, never be used */
814  };
815  
816  struct f2fs_inode_info {
817  	struct inode vfs_inode;		/* serve a vfs inode */
818  	unsigned long i_flags;		/* keep an inode flags for ioctl */
819  	unsigned char i_advise;		/* use to give file attribute hints */
820  	unsigned char i_dir_level;	/* use for dentry level for large dir */
821  	union {
822  		unsigned int i_current_depth;	/* only for directory depth */
823  		unsigned short i_gc_failures;	/* for gc failure statistic */
824  	};
825  	unsigned int i_pino;		/* parent inode number */
826  	umode_t i_acl_mode;		/* keep file acl mode temporarily */
827  
828  	/* Use below internally in f2fs*/
829  	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
830  	struct f2fs_rwsem i_sem;	/* protect fi info */
831  	atomic_t dirty_pages;		/* # of dirty pages */
832  	f2fs_hash_t chash;		/* hash value of given file name */
833  	unsigned int clevel;		/* maximum level of given file name */
834  	struct task_struct *task;	/* lookup and create consistency */
835  	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
836  	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
837  	nid_t i_xattr_nid;		/* node id that contains xattrs */
838  	loff_t	last_disk_size;		/* lastly written file size */
839  	spinlock_t i_size_lock;		/* protect last_disk_size */
840  
841  #ifdef CONFIG_QUOTA
842  	struct dquot __rcu *i_dquot[MAXQUOTAS];
843  
844  	/* quota space reservation, managed internally by quota code */
845  	qsize_t i_reserved_quota;
846  #endif
847  	struct list_head dirty_list;	/* dirty list for dirs and files */
848  	struct list_head gdirty_list;	/* linked in global dirty list */
849  	struct task_struct *atomic_write_task;	/* store atomic write task */
850  	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
851  					/* cached extent_tree entry */
852  	union {
853  		struct inode *cow_inode;	/* copy-on-write inode for atomic write */
854  		struct inode *atomic_inode;
855  					/* point to atomic_inode, available only for cow_inode */
856  	};
857  
858  	/* avoid racing between foreground op and gc */
859  	struct f2fs_rwsem i_gc_rwsem[2];
860  	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
861  
862  	int i_extra_isize;		/* size of extra space located in i_addr */
863  	kprojid_t i_projid;		/* id for project quota */
864  	int i_inline_xattr_size;	/* inline xattr size */
865  	struct timespec64 i_crtime;	/* inode creation time */
866  	struct timespec64 i_disk_time[3];/* inode disk times */
867  
868  	/* for file compress */
869  	atomic_t i_compr_blocks;		/* # of compressed blocks */
870  	unsigned char i_compress_algorithm;	/* algorithm type */
871  	unsigned char i_log_cluster_size;	/* log of cluster size */
872  	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
873  	unsigned char i_compress_flag;		/* compress flag */
874  	unsigned int i_cluster_size;		/* cluster size */
875  
876  	unsigned int atomic_write_cnt;
877  	loff_t original_i_size;		/* original i_size before atomic write */
878  };
879  
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)880  static inline void get_read_extent_info(struct extent_info *ext,
881  					struct f2fs_extent *i_ext)
882  {
883  	ext->fofs = le32_to_cpu(i_ext->fofs);
884  	ext->blk = le32_to_cpu(i_ext->blk);
885  	ext->len = le32_to_cpu(i_ext->len);
886  }
887  
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)888  static inline void set_raw_read_extent(struct extent_info *ext,
889  					struct f2fs_extent *i_ext)
890  {
891  	i_ext->fofs = cpu_to_le32(ext->fofs);
892  	i_ext->blk = cpu_to_le32(ext->blk);
893  	i_ext->len = cpu_to_le32(ext->len);
894  }
895  
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)896  static inline bool __is_discard_mergeable(struct discard_info *back,
897  			struct discard_info *front, unsigned int max_len)
898  {
899  	return (back->lstart + back->len == front->lstart) &&
900  		(back->len + front->len <= max_len);
901  }
902  
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)903  static inline bool __is_discard_back_mergeable(struct discard_info *cur,
904  			struct discard_info *back, unsigned int max_len)
905  {
906  	return __is_discard_mergeable(back, cur, max_len);
907  }
908  
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)909  static inline bool __is_discard_front_mergeable(struct discard_info *cur,
910  			struct discard_info *front, unsigned int max_len)
911  {
912  	return __is_discard_mergeable(cur, front, max_len);
913  }
914  
915  /*
916   * For free nid management
917   */
918  enum nid_state {
919  	FREE_NID,		/* newly added to free nid list */
920  	PREALLOC_NID,		/* it is preallocated */
921  	MAX_NID_STATE,
922  };
923  
924  enum nat_state {
925  	TOTAL_NAT,
926  	DIRTY_NAT,
927  	RECLAIMABLE_NAT,
928  	MAX_NAT_STATE,
929  };
930  
931  struct f2fs_nm_info {
932  	block_t nat_blkaddr;		/* base disk address of NAT */
933  	nid_t max_nid;			/* maximum possible node ids */
934  	nid_t available_nids;		/* # of available node ids */
935  	nid_t next_scan_nid;		/* the next nid to be scanned */
936  	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
937  	unsigned int ram_thresh;	/* control the memory footprint */
938  	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
939  	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
940  
941  	/* NAT cache management */
942  	struct radix_tree_root nat_root;/* root of the nat entry cache */
943  	struct radix_tree_root nat_set_root;/* root of the nat set cache */
944  	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
945  	struct list_head nat_entries;	/* cached nat entry list (clean) */
946  	spinlock_t nat_list_lock;	/* protect clean nat entry list */
947  	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
948  	unsigned int nat_blocks;	/* # of nat blocks */
949  
950  	/* free node ids management */
951  	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
952  	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
953  	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
954  	spinlock_t nid_list_lock;	/* protect nid lists ops */
955  	struct mutex build_lock;	/* lock for build free nids */
956  	unsigned char **free_nid_bitmap;
957  	unsigned char *nat_block_bitmap;
958  	unsigned short *free_nid_count;	/* free nid count of NAT block */
959  
960  	/* for checkpoint */
961  	char *nat_bitmap;		/* NAT bitmap pointer */
962  
963  	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
964  	unsigned char *nat_bits;	/* NAT bits blocks */
965  	unsigned char *full_nat_bits;	/* full NAT pages */
966  	unsigned char *empty_nat_bits;	/* empty NAT pages */
967  #ifdef CONFIG_F2FS_CHECK_FS
968  	char *nat_bitmap_mir;		/* NAT bitmap mirror */
969  #endif
970  	int bitmap_size;		/* bitmap size */
971  };
972  
973  /*
974   * this structure is used as one of function parameters.
975   * all the information are dedicated to a given direct node block determined
976   * by the data offset in a file.
977   */
978  struct dnode_of_data {
979  	struct inode *inode;		/* vfs inode pointer */
980  	struct page *inode_page;	/* its inode page, NULL is possible */
981  	struct page *node_page;		/* cached direct node page */
982  	nid_t nid;			/* node id of the direct node block */
983  	unsigned int ofs_in_node;	/* data offset in the node page */
984  	bool inode_page_locked;		/* inode page is locked or not */
985  	bool node_changed;		/* is node block changed */
986  	char cur_level;			/* level of hole node page */
987  	char max_level;			/* level of current page located */
988  	block_t	data_blkaddr;		/* block address of the node block */
989  };
990  
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)991  static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
992  		struct page *ipage, struct page *npage, nid_t nid)
993  {
994  	memset(dn, 0, sizeof(*dn));
995  	dn->inode = inode;
996  	dn->inode_page = ipage;
997  	dn->node_page = npage;
998  	dn->nid = nid;
999  }
1000  
1001  /*
1002   * For SIT manager
1003   *
1004   * By default, there are 6 active log areas across the whole main area.
1005   * When considering hot and cold data separation to reduce cleaning overhead,
1006   * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1007   * respectively.
1008   * In the current design, you should not change the numbers intentionally.
1009   * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1010   * logs individually according to the underlying devices. (default: 6)
1011   * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1012   * data and 8 for node logs.
1013   */
1014  #define	NR_CURSEG_DATA_TYPE	(3)
1015  #define NR_CURSEG_NODE_TYPE	(3)
1016  #define NR_CURSEG_INMEM_TYPE	(2)
1017  #define NR_CURSEG_RO_TYPE	(2)
1018  #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1019  #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1020  
1021  enum {
1022  	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1023  	CURSEG_WARM_DATA,	/* data blocks */
1024  	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1025  	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1026  	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1027  	CURSEG_COLD_NODE,	/* indirect node blocks */
1028  	NR_PERSISTENT_LOG,	/* number of persistent log */
1029  	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1030  				/* pinned file that needs consecutive block address */
1031  	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1032  	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1033  };
1034  
1035  struct flush_cmd {
1036  	struct completion wait;
1037  	struct llist_node llnode;
1038  	nid_t ino;
1039  	int ret;
1040  };
1041  
1042  struct flush_cmd_control {
1043  	struct task_struct *f2fs_issue_flush;	/* flush thread */
1044  	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1045  	atomic_t issued_flush;			/* # of issued flushes */
1046  	atomic_t queued_flush;			/* # of queued flushes */
1047  	struct llist_head issue_list;		/* list for command issue */
1048  	struct llist_node *dispatch_list;	/* list for command dispatch */
1049  };
1050  
1051  struct f2fs_sm_info {
1052  	struct sit_info *sit_info;		/* whole segment information */
1053  	struct free_segmap_info *free_info;	/* free segment information */
1054  	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1055  	struct curseg_info *curseg_array;	/* active segment information */
1056  
1057  	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1058  
1059  	block_t seg0_blkaddr;		/* block address of 0'th segment */
1060  	block_t main_blkaddr;		/* start block address of main area */
1061  	block_t ssa_blkaddr;		/* start block address of SSA area */
1062  
1063  	unsigned int segment_count;	/* total # of segments */
1064  	unsigned int main_segments;	/* # of segments in main area */
1065  	unsigned int reserved_segments;	/* # of reserved segments */
1066  	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1067  	unsigned int ovp_segments;	/* # of overprovision segments */
1068  
1069  	/* a threshold to reclaim prefree segments */
1070  	unsigned int rec_prefree_segments;
1071  
1072  	struct list_head sit_entry_set;	/* sit entry set list */
1073  
1074  	unsigned int ipu_policy;	/* in-place-update policy */
1075  	unsigned int min_ipu_util;	/* in-place-update threshold */
1076  	unsigned int min_fsync_blocks;	/* threshold for fsync */
1077  	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1078  	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1079  	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1080  
1081  	/* for flush command control */
1082  	struct flush_cmd_control *fcc_info;
1083  
1084  	/* for discard command control */
1085  	struct discard_cmd_control *dcc_info;
1086  };
1087  
1088  /*
1089   * For superblock
1090   */
1091  /*
1092   * COUNT_TYPE for monitoring
1093   *
1094   * f2fs monitors the number of several block types such as on-writeback,
1095   * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1096   */
1097  #define WB_DATA_TYPE(p, f)			\
1098  	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1099  enum count_type {
1100  	F2FS_DIRTY_DENTS,
1101  	F2FS_DIRTY_DATA,
1102  	F2FS_DIRTY_QDATA,
1103  	F2FS_DIRTY_NODES,
1104  	F2FS_DIRTY_META,
1105  	F2FS_DIRTY_IMETA,
1106  	F2FS_WB_CP_DATA,
1107  	F2FS_WB_DATA,
1108  	F2FS_RD_DATA,
1109  	F2FS_RD_NODE,
1110  	F2FS_RD_META,
1111  	F2FS_DIO_WRITE,
1112  	F2FS_DIO_READ,
1113  	NR_COUNT_TYPE,
1114  };
1115  
1116  /*
1117   * The below are the page types of bios used in submit_bio().
1118   * The available types are:
1119   * DATA			User data pages. It operates as async mode.
1120   * NODE			Node pages. It operates as async mode.
1121   * META			FS metadata pages such as SIT, NAT, CP.
1122   * NR_PAGE_TYPE		The number of page types.
1123   * META_FLUSH		Make sure the previous pages are written
1124   *			with waiting the bio's completion
1125   * ...			Only can be used with META.
1126   */
1127  #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1128  #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1129  enum page_type {
1130  	DATA = 0,
1131  	NODE = 1,	/* should not change this */
1132  	META,
1133  	NR_PAGE_TYPE,
1134  	META_FLUSH,
1135  	IPU,		/* the below types are used by tracepoints only. */
1136  	OPU,
1137  };
1138  
1139  enum temp_type {
1140  	HOT = 0,	/* must be zero for meta bio */
1141  	WARM,
1142  	COLD,
1143  	NR_TEMP_TYPE,
1144  };
1145  
1146  enum need_lock_type {
1147  	LOCK_REQ = 0,
1148  	LOCK_DONE,
1149  	LOCK_RETRY,
1150  };
1151  
1152  enum cp_reason_type {
1153  	CP_NO_NEEDED,
1154  	CP_NON_REGULAR,
1155  	CP_COMPRESSED,
1156  	CP_HARDLINK,
1157  	CP_SB_NEED_CP,
1158  	CP_WRONG_PINO,
1159  	CP_NO_SPC_ROLL,
1160  	CP_NODE_NEED_CP,
1161  	CP_FASTBOOT_MODE,
1162  	CP_SPEC_LOG_NUM,
1163  	CP_RECOVER_DIR,
1164  	CP_XATTR_DIR,
1165  };
1166  
1167  enum iostat_type {
1168  	/* WRITE IO */
1169  	APP_DIRECT_IO,			/* app direct write IOs */
1170  	APP_BUFFERED_IO,		/* app buffered write IOs */
1171  	APP_WRITE_IO,			/* app write IOs */
1172  	APP_MAPPED_IO,			/* app mapped IOs */
1173  	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1174  	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1175  	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1176  	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1177  	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1178  	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1179  	FS_GC_DATA_IO,			/* data IOs from forground gc */
1180  	FS_GC_NODE_IO,			/* node IOs from forground gc */
1181  	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1182  	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1183  	FS_CP_META_IO,			/* meta IOs from checkpoint */
1184  
1185  	/* READ IO */
1186  	APP_DIRECT_READ_IO,		/* app direct read IOs */
1187  	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1188  	APP_READ_IO,			/* app read IOs */
1189  	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1190  	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1191  	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1192  	FS_DATA_READ_IO,		/* data read IOs */
1193  	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1194  	FS_CDATA_READ_IO,		/* compressed data read IOs */
1195  	FS_NODE_READ_IO,		/* node read IOs */
1196  	FS_META_READ_IO,		/* meta read IOs */
1197  
1198  	/* other */
1199  	FS_DISCARD_IO,			/* discard */
1200  	FS_FLUSH_IO,			/* flush */
1201  	FS_ZONE_RESET_IO,		/* zone reset */
1202  	NR_IO_TYPE,
1203  };
1204  
1205  struct f2fs_io_info {
1206  	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1207  	nid_t ino;		/* inode number */
1208  	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1209  	enum temp_type temp;	/* contains HOT/WARM/COLD */
1210  	enum req_op op;		/* contains REQ_OP_ */
1211  	blk_opf_t op_flags;	/* req_flag_bits */
1212  	block_t new_blkaddr;	/* new block address to be written */
1213  	block_t old_blkaddr;	/* old block address before Cow */
1214  	struct page *page;	/* page to be written */
1215  	struct page *encrypted_page;	/* encrypted page */
1216  	struct page *compressed_page;	/* compressed page */
1217  	struct list_head list;		/* serialize IOs */
1218  	unsigned int compr_blocks;	/* # of compressed block addresses */
1219  	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1220  	unsigned int version:8;		/* version of the node */
1221  	unsigned int submitted:1;	/* indicate IO submission */
1222  	unsigned int in_list:1;		/* indicate fio is in io_list */
1223  	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1224  	unsigned int encrypted:1;	/* indicate file is encrypted */
1225  	unsigned int meta_gc:1;		/* require meta inode GC */
1226  	enum iostat_type io_type;	/* io type */
1227  	struct writeback_control *io_wbc; /* writeback control */
1228  	struct bio **bio;		/* bio for ipu */
1229  	sector_t *last_block;		/* last block number in bio */
1230  };
1231  
1232  struct bio_entry {
1233  	struct bio *bio;
1234  	struct list_head list;
1235  };
1236  
1237  #define is_read_io(rw) ((rw) == READ)
1238  struct f2fs_bio_info {
1239  	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1240  	struct bio *bio;		/* bios to merge */
1241  	sector_t last_block_in_bio;	/* last block number */
1242  	struct f2fs_io_info fio;	/* store buffered io info. */
1243  #ifdef CONFIG_BLK_DEV_ZONED
1244  	struct completion zone_wait;	/* condition value for the previous open zone to close */
1245  	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1246  	void *bi_private;		/* previous bi_private for pending bio */
1247  #endif
1248  	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1249  	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1250  	struct list_head io_list;	/* track fios */
1251  	struct list_head bio_list;	/* bio entry list head */
1252  	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1253  };
1254  
1255  #define FDEV(i)				(sbi->devs[i])
1256  #define RDEV(i)				(raw_super->devs[i])
1257  struct f2fs_dev_info {
1258  	struct file *bdev_file;
1259  	struct block_device *bdev;
1260  	char path[MAX_PATH_LEN];
1261  	unsigned int total_segments;
1262  	block_t start_blk;
1263  	block_t end_blk;
1264  #ifdef CONFIG_BLK_DEV_ZONED
1265  	unsigned int nr_blkz;		/* Total number of zones */
1266  	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1267  #endif
1268  };
1269  
1270  enum inode_type {
1271  	DIR_INODE,			/* for dirty dir inode */
1272  	FILE_INODE,			/* for dirty regular/symlink inode */
1273  	DIRTY_META,			/* for all dirtied inode metadata */
1274  	NR_INODE_TYPE,
1275  };
1276  
1277  /* for inner inode cache management */
1278  struct inode_management {
1279  	struct radix_tree_root ino_root;	/* ino entry array */
1280  	spinlock_t ino_lock;			/* for ino entry lock */
1281  	struct list_head ino_list;		/* inode list head */
1282  	unsigned long ino_num;			/* number of entries */
1283  };
1284  
1285  /* for GC_AT */
1286  struct atgc_management {
1287  	bool atgc_enabled;			/* ATGC is enabled or not */
1288  	struct rb_root_cached root;		/* root of victim rb-tree */
1289  	struct list_head victim_list;		/* linked with all victim entries */
1290  	unsigned int victim_count;		/* victim count in rb-tree */
1291  	unsigned int candidate_ratio;		/* candidate ratio */
1292  	unsigned int max_candidate_count;	/* max candidate count */
1293  	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1294  	unsigned long long age_threshold;	/* age threshold */
1295  };
1296  
1297  struct f2fs_gc_control {
1298  	unsigned int victim_segno;	/* target victim segment number */
1299  	int init_gc_type;		/* FG_GC or BG_GC */
1300  	bool no_bg_gc;			/* check the space and stop bg_gc */
1301  	bool should_migrate_blocks;	/* should migrate blocks */
1302  	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1303  	bool one_time;			/* require one time GC in one migration unit */
1304  	unsigned int nr_free_secs;	/* # of free sections to do GC */
1305  };
1306  
1307  /*
1308   * For s_flag in struct f2fs_sb_info
1309   * Modification on enum should be synchronized with s_flag array
1310   */
1311  enum {
1312  	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1313  	SBI_IS_CLOSE,				/* specify unmounting */
1314  	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1315  	SBI_POR_DOING,				/* recovery is doing or not */
1316  	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1317  	SBI_NEED_CP,				/* need to checkpoint */
1318  	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1319  	SBI_IS_RECOVERED,			/* recovered orphan/data */
1320  	SBI_CP_DISABLED,			/* CP was disabled last mount */
1321  	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1322  	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1323  	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1324  	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1325  	SBI_IS_RESIZEFS,			/* resizefs is in process */
1326  	SBI_IS_FREEZING,			/* freezefs is in process */
1327  	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1328  	MAX_SBI_FLAG,
1329  };
1330  
1331  enum {
1332  	CP_TIME,
1333  	REQ_TIME,
1334  	DISCARD_TIME,
1335  	GC_TIME,
1336  	DISABLE_TIME,
1337  	UMOUNT_DISCARD_TIMEOUT,
1338  	MAX_TIME,
1339  };
1340  
1341  /* Note that you need to keep synchronization with this gc_mode_names array */
1342  enum {
1343  	GC_NORMAL,
1344  	GC_IDLE_CB,
1345  	GC_IDLE_GREEDY,
1346  	GC_IDLE_AT,
1347  	GC_URGENT_HIGH,
1348  	GC_URGENT_LOW,
1349  	GC_URGENT_MID,
1350  	MAX_GC_MODE,
1351  };
1352  
1353  enum {
1354  	BGGC_MODE_ON,		/* background gc is on */
1355  	BGGC_MODE_OFF,		/* background gc is off */
1356  	BGGC_MODE_SYNC,		/*
1357  				 * background gc is on, migrating blocks
1358  				 * like foreground gc
1359  				 */
1360  };
1361  
1362  enum {
1363  	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1364  	FS_MODE_LFS,			/* use lfs allocation only */
1365  	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1366  	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1367  };
1368  
1369  enum {
1370  	ALLOC_MODE_DEFAULT,	/* stay default */
1371  	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1372  };
1373  
1374  enum fsync_mode {
1375  	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1376  	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1377  	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1378  };
1379  
1380  enum {
1381  	COMPR_MODE_FS,		/*
1382  				 * automatically compress compression
1383  				 * enabled files
1384  				 */
1385  	COMPR_MODE_USER,	/*
1386  				 * automatical compression is disabled.
1387  				 * user can control the file compression
1388  				 * using ioctls
1389  				 */
1390  };
1391  
1392  enum {
1393  	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1394  	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1395  	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1396  };
1397  
1398  enum {
1399  	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1400  	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1401  };
1402  
1403  enum errors_option {
1404  	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1405  	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1406  	MOUNT_ERRORS_PANIC,	/* panic on errors */
1407  };
1408  
1409  enum {
1410  	BACKGROUND,
1411  	FOREGROUND,
1412  	MAX_CALL_TYPE,
1413  	TOTAL_CALL = FOREGROUND,
1414  };
1415  
1416  static inline int f2fs_test_bit(unsigned int nr, char *addr);
1417  static inline void f2fs_set_bit(unsigned int nr, char *addr);
1418  static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1419  
1420  /*
1421   * Layout of f2fs page.private:
1422   *
1423   * Layout A: lowest bit should be 1
1424   * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1425   * bit 0	PAGE_PRIVATE_NOT_POINTER
1426   * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1427   * bit 2	PAGE_PRIVATE_INLINE_INODE
1428   * bit 3	PAGE_PRIVATE_REF_RESOURCE
1429   * bit 4	PAGE_PRIVATE_ATOMIC_WRITE
1430   * bit 5-	f2fs private data
1431   *
1432   * Layout B: lowest bit should be 0
1433   * page.private is a wrapped pointer.
1434   */
1435  enum {
1436  	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1437  	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1438  	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1439  	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1440  	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1441  	PAGE_PRIVATE_MAX
1442  };
1443  
1444  /* For compression */
1445  enum compress_algorithm_type {
1446  	COMPRESS_LZO,
1447  	COMPRESS_LZ4,
1448  	COMPRESS_ZSTD,
1449  	COMPRESS_LZORLE,
1450  	COMPRESS_MAX,
1451  };
1452  
1453  enum compress_flag {
1454  	COMPRESS_CHKSUM,
1455  	COMPRESS_MAX_FLAG,
1456  };
1457  
1458  #define	COMPRESS_WATERMARK			20
1459  #define	COMPRESS_PERCENT			20
1460  
1461  #define COMPRESS_DATA_RESERVED_SIZE		4
1462  struct compress_data {
1463  	__le32 clen;			/* compressed data size */
1464  	__le32 chksum;			/* compressed data chksum */
1465  	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1466  	u8 cdata[];			/* compressed data */
1467  };
1468  
1469  #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1470  
1471  #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1472  
1473  #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1474  
1475  #define	COMPRESS_LEVEL_OFFSET	8
1476  
1477  /* compress context */
1478  struct compress_ctx {
1479  	struct inode *inode;		/* inode the context belong to */
1480  	pgoff_t cluster_idx;		/* cluster index number */
1481  	unsigned int cluster_size;	/* page count in cluster */
1482  	unsigned int log_cluster_size;	/* log of cluster size */
1483  	struct page **rpages;		/* pages store raw data in cluster */
1484  	unsigned int nr_rpages;		/* total page number in rpages */
1485  	struct page **cpages;		/* pages store compressed data in cluster */
1486  	unsigned int nr_cpages;		/* total page number in cpages */
1487  	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1488  	void *rbuf;			/* virtual mapped address on rpages */
1489  	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1490  	size_t rlen;			/* valid data length in rbuf */
1491  	size_t clen;			/* valid data length in cbuf */
1492  	void *private;			/* payload buffer for specified compression algorithm */
1493  	void *private2;			/* extra payload buffer */
1494  };
1495  
1496  /* compress context for write IO path */
1497  struct compress_io_ctx {
1498  	u32 magic;			/* magic number to indicate page is compressed */
1499  	struct inode *inode;		/* inode the context belong to */
1500  	struct page **rpages;		/* pages store raw data in cluster */
1501  	unsigned int nr_rpages;		/* total page number in rpages */
1502  	atomic_t pending_pages;		/* in-flight compressed page count */
1503  };
1504  
1505  /* Context for decompressing one cluster on the read IO path */
1506  struct decompress_io_ctx {
1507  	u32 magic;			/* magic number to indicate page is compressed */
1508  	struct inode *inode;		/* inode the context belong to */
1509  	pgoff_t cluster_idx;		/* cluster index number */
1510  	unsigned int cluster_size;	/* page count in cluster */
1511  	unsigned int log_cluster_size;	/* log of cluster size */
1512  	struct page **rpages;		/* pages store raw data in cluster */
1513  	unsigned int nr_rpages;		/* total page number in rpages */
1514  	struct page **cpages;		/* pages store compressed data in cluster */
1515  	unsigned int nr_cpages;		/* total page number in cpages */
1516  	struct page **tpages;		/* temp pages to pad holes in cluster */
1517  	void *rbuf;			/* virtual mapped address on rpages */
1518  	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1519  	size_t rlen;			/* valid data length in rbuf */
1520  	size_t clen;			/* valid data length in cbuf */
1521  
1522  	/*
1523  	 * The number of compressed pages remaining to be read in this cluster.
1524  	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1525  	 * has been read (or failed to be read).  When it reaches 0, the cluster
1526  	 * is decompressed (or an error is reported).
1527  	 *
1528  	 * If an error occurs before all the pages have been submitted for I/O,
1529  	 * then this will never reach 0.  In this case the I/O submitter is
1530  	 * responsible for calling f2fs_decompress_end_io() instead.
1531  	 */
1532  	atomic_t remaining_pages;
1533  
1534  	/*
1535  	 * Number of references to this decompress_io_ctx.
1536  	 *
1537  	 * One reference is held for I/O completion.  This reference is dropped
1538  	 * after the pagecache pages are updated and unlocked -- either after
1539  	 * decompression (and verity if enabled), or after an error.
1540  	 *
1541  	 * In addition, each compressed page holds a reference while it is in a
1542  	 * bio.  These references are necessary prevent compressed pages from
1543  	 * being freed while they are still in a bio.
1544  	 */
1545  	refcount_t refcnt;
1546  
1547  	bool failed;			/* IO error occurred before decompression? */
1548  	bool need_verity;		/* need fs-verity verification after decompression? */
1549  	void *private;			/* payload buffer for specified decompression algorithm */
1550  	void *private2;			/* extra payload buffer */
1551  	struct work_struct verity_work;	/* work to verify the decompressed pages */
1552  	struct work_struct free_work;	/* work for late free this structure itself */
1553  };
1554  
1555  #define NULL_CLUSTER			((unsigned int)(~0))
1556  #define MIN_COMPRESS_LOG_SIZE		2
1557  #define MAX_COMPRESS_LOG_SIZE		8
1558  #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1559  
1560  struct f2fs_sb_info {
1561  	struct super_block *sb;			/* pointer to VFS super block */
1562  	struct proc_dir_entry *s_proc;		/* proc entry */
1563  	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1564  	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1565  	int valid_super_block;			/* valid super block no */
1566  	unsigned long s_flag;				/* flags for sbi */
1567  	struct mutex writepages;		/* mutex for writepages() */
1568  
1569  #ifdef CONFIG_BLK_DEV_ZONED
1570  	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1571  	unsigned int max_open_zones;		/* max open zone resources of the zoned device */
1572  	/* For adjust the priority writing position of data in zone UFS */
1573  	unsigned int blkzone_alloc_policy;
1574  #endif
1575  
1576  	/* for node-related operations */
1577  	struct f2fs_nm_info *nm_info;		/* node manager */
1578  	struct inode *node_inode;		/* cache node blocks */
1579  
1580  	/* for segment-related operations */
1581  	struct f2fs_sm_info *sm_info;		/* segment manager */
1582  
1583  	/* for bio operations */
1584  	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1585  	/* keep migration IO order for LFS mode */
1586  	struct f2fs_rwsem io_order_lock;
1587  	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1588  	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1589  
1590  	/* for checkpoint */
1591  	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1592  	int cur_cp_pack;			/* remain current cp pack */
1593  	spinlock_t cp_lock;			/* for flag in ckpt */
1594  	struct inode *meta_inode;		/* cache meta blocks */
1595  	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1596  	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1597  	struct f2fs_rwsem node_write;		/* locking node writes */
1598  	struct f2fs_rwsem node_change;	/* locking node change */
1599  	wait_queue_head_t cp_wait;
1600  	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1601  	long interval_time[MAX_TIME];		/* to store thresholds */
1602  	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1603  
1604  	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1605  
1606  	spinlock_t fsync_node_lock;		/* for node entry lock */
1607  	struct list_head fsync_node_list;	/* node list head */
1608  	unsigned int fsync_seg_id;		/* sequence id */
1609  	unsigned int fsync_node_num;		/* number of node entries */
1610  
1611  	/* for orphan inode, use 0'th array */
1612  	unsigned int max_orphans;		/* max orphan inodes */
1613  
1614  	/* for inode management */
1615  	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1616  	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1617  	struct mutex flush_lock;		/* for flush exclusion */
1618  
1619  	/* for extent tree cache */
1620  	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1621  	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1622  
1623  	/* The threshold used for hot and warm data seperation*/
1624  	unsigned int hot_data_age_threshold;
1625  	unsigned int warm_data_age_threshold;
1626  	unsigned int last_age_weight;
1627  
1628  	/* basic filesystem units */
1629  	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1630  	unsigned int log_blocksize;		/* log2 block size */
1631  	unsigned int blocksize;			/* block size */
1632  	unsigned int root_ino_num;		/* root inode number*/
1633  	unsigned int node_ino_num;		/* node inode number*/
1634  	unsigned int meta_ino_num;		/* meta inode number*/
1635  	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1636  	unsigned int blocks_per_seg;		/* blocks per segment */
1637  	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1638  	unsigned int segs_per_sec;		/* segments per section */
1639  	unsigned int secs_per_zone;		/* sections per zone */
1640  	unsigned int total_sections;		/* total section count */
1641  	unsigned int total_node_count;		/* total node block count */
1642  	unsigned int total_valid_node_count;	/* valid node block count */
1643  	int dir_level;				/* directory level */
1644  	bool readdir_ra;			/* readahead inode in readdir */
1645  	u64 max_io_bytes;			/* max io bytes to merge IOs */
1646  
1647  	block_t user_block_count;		/* # of user blocks */
1648  	block_t total_valid_block_count;	/* # of valid blocks */
1649  	block_t discard_blks;			/* discard command candidats */
1650  	block_t last_valid_block_count;		/* for recovery */
1651  	block_t reserved_blocks;		/* configurable reserved blocks */
1652  	block_t current_reserved_blocks;	/* current reserved blocks */
1653  
1654  	/* Additional tracking for no checkpoint mode */
1655  	block_t unusable_block_count;		/* # of blocks saved by last cp */
1656  
1657  	unsigned int nquota_files;		/* # of quota sysfile */
1658  	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1659  
1660  	/* # of pages, see count_type */
1661  	atomic_t nr_pages[NR_COUNT_TYPE];
1662  	/* # of allocated blocks */
1663  	struct percpu_counter alloc_valid_block_count;
1664  	/* # of node block writes as roll forward recovery */
1665  	struct percpu_counter rf_node_block_count;
1666  
1667  	/* writeback control */
1668  	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1669  
1670  	/* valid inode count */
1671  	struct percpu_counter total_valid_inode_count;
1672  
1673  	struct f2fs_mount_info mount_opt;	/* mount options */
1674  
1675  	/* for cleaning operations */
1676  	struct f2fs_rwsem gc_lock;		/*
1677  						 * semaphore for GC, avoid
1678  						 * race between GC and GC or CP
1679  						 */
1680  	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1681  	struct atgc_management am;		/* atgc management */
1682  	unsigned int cur_victim_sec;		/* current victim section num */
1683  	unsigned int gc_mode;			/* current GC state */
1684  	unsigned int next_victim_seg[2];	/* next segment in victim section */
1685  	spinlock_t gc_remaining_trials_lock;
1686  	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1687  	unsigned int gc_remaining_trials;
1688  
1689  	/* for skip statistic */
1690  	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1691  
1692  	/* threshold for gc trials on pinned files */
1693  	unsigned short gc_pin_file_threshold;
1694  	struct f2fs_rwsem pin_sem;
1695  
1696  	/* maximum # of trials to find a victim segment for SSR and GC */
1697  	unsigned int max_victim_search;
1698  	/* migration granularity of garbage collection, unit: segment */
1699  	unsigned int migration_granularity;
1700  	/* migration window granularity of garbage collection, unit: segment */
1701  	unsigned int migration_window_granularity;
1702  
1703  	/*
1704  	 * for stat information.
1705  	 * one is for the LFS mode, and the other is for the SSR mode.
1706  	 */
1707  #ifdef CONFIG_F2FS_STAT_FS
1708  	struct f2fs_stat_info *stat_info;	/* FS status information */
1709  	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1710  	unsigned int segment_count[2];		/* # of allocated segments */
1711  	unsigned int block_count[2];		/* # of allocated blocks */
1712  	atomic_t inplace_count;		/* # of inplace update */
1713  	/* # of lookup extent cache */
1714  	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1715  	/* # of hit rbtree extent node */
1716  	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1717  	/* # of hit cached extent node */
1718  	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1719  	/* # of hit largest extent node in read extent cache */
1720  	atomic64_t read_hit_largest;
1721  	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1722  	atomic_t inline_inode;			/* # of inline_data inodes */
1723  	atomic_t inline_dir;			/* # of inline_dentry inodes */
1724  	atomic_t compr_inode;			/* # of compressed inodes */
1725  	atomic64_t compr_blocks;		/* # of compressed blocks */
1726  	atomic_t swapfile_inode;		/* # of swapfile inodes */
1727  	atomic_t atomic_files;			/* # of opened atomic file */
1728  	atomic_t max_aw_cnt;			/* max # of atomic writes */
1729  	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1730  	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1731  	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1732  	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1733  #endif
1734  	spinlock_t stat_lock;			/* lock for stat operations */
1735  
1736  	/* to attach REQ_META|REQ_FUA flags */
1737  	unsigned int data_io_flag;
1738  	unsigned int node_io_flag;
1739  
1740  	/* For sysfs support */
1741  	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1742  	struct completion s_kobj_unregister;
1743  
1744  	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1745  	struct completion s_stat_kobj_unregister;
1746  
1747  	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1748  	struct completion s_feature_list_kobj_unregister;
1749  
1750  	/* For shrinker support */
1751  	struct list_head s_list;
1752  	struct mutex umount_mutex;
1753  	unsigned int shrinker_run_no;
1754  
1755  	/* For multi devices */
1756  	int s_ndevs;				/* number of devices */
1757  	struct f2fs_dev_info *devs;		/* for device list */
1758  	unsigned int dirty_device;		/* for checkpoint data flush */
1759  	spinlock_t dev_lock;			/* protect dirty_device */
1760  	bool aligned_blksize;			/* all devices has the same logical blksize */
1761  
1762  	/* For write statistics */
1763  	u64 sectors_written_start;
1764  	u64 kbytes_written;
1765  
1766  	/* Reference to checksum algorithm driver via cryptoapi */
1767  	struct crypto_shash *s_chksum_driver;
1768  
1769  	/* Precomputed FS UUID checksum for seeding other checksums */
1770  	__u32 s_chksum_seed;
1771  
1772  	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1773  
1774  	/*
1775  	 * If we are in irq context, let's update error information into
1776  	 * on-disk superblock in the work.
1777  	 */
1778  	struct work_struct s_error_work;
1779  	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1780  	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1781  	spinlock_t error_lock;			/* protect errors/stop_reason array */
1782  	bool error_dirty;			/* errors of sb is dirty */
1783  
1784  	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1785  	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1786  
1787  	/* For reclaimed segs statistics per each GC mode */
1788  	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1789  	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1790  
1791  	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1792  
1793  	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1794  	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1795  
1796  	/* For atomic write statistics */
1797  	atomic64_t current_atomic_write;
1798  	s64 peak_atomic_write;
1799  	u64 committed_atomic_block;
1800  	u64 revoked_atomic_block;
1801  
1802  #ifdef CONFIG_F2FS_FS_COMPRESSION
1803  	struct kmem_cache *page_array_slab;	/* page array entry */
1804  	unsigned int page_array_slab_size;	/* default page array slab size */
1805  
1806  	/* For runtime compression statistics */
1807  	u64 compr_written_block;
1808  	u64 compr_saved_block;
1809  	u32 compr_new_inode;
1810  
1811  	/* For compressed block cache */
1812  	struct inode *compress_inode;		/* cache compressed blocks */
1813  	unsigned int compress_percent;		/* cache page percentage */
1814  	unsigned int compress_watermark;	/* cache page watermark */
1815  	atomic_t compress_page_hit;		/* cache hit count */
1816  #endif
1817  
1818  #ifdef CONFIG_F2FS_IOSTAT
1819  	/* For app/fs IO statistics */
1820  	spinlock_t iostat_lock;
1821  	unsigned long long iostat_count[NR_IO_TYPE];
1822  	unsigned long long iostat_bytes[NR_IO_TYPE];
1823  	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1824  	bool iostat_enable;
1825  	unsigned long iostat_next_period;
1826  	unsigned int iostat_period_ms;
1827  
1828  	/* For io latency related statistics info in one iostat period */
1829  	spinlock_t iostat_lat_lock;
1830  	struct iostat_lat_info *iostat_io_lat;
1831  #endif
1832  };
1833  
1834  /* Definitions to access f2fs_sb_info */
1835  #define SEGS_TO_BLKS(sbi, segs)					\
1836  		((segs) << (sbi)->log_blocks_per_seg)
1837  #define BLKS_TO_SEGS(sbi, blks)					\
1838  		((blks) >> (sbi)->log_blocks_per_seg)
1839  
1840  #define BLKS_PER_SEG(sbi)	((sbi)->blocks_per_seg)
1841  #define BLKS_PER_SEC(sbi)	(SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1842  #define SEGS_PER_SEC(sbi)	((sbi)->segs_per_sec)
1843  
1844  __printf(3, 4)
1845  void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1846  
1847  #define f2fs_err(sbi, fmt, ...)						\
1848  	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1849  #define f2fs_warn(sbi, fmt, ...)					\
1850  	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1851  #define f2fs_notice(sbi, fmt, ...)					\
1852  	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1853  #define f2fs_info(sbi, fmt, ...)					\
1854  	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1855  #define f2fs_debug(sbi, fmt, ...)					\
1856  	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1857  
1858  #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1859  	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1860  #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1861  	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1862  #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1863  	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1864  
1865  #ifdef CONFIG_F2FS_FAULT_INJECTION
1866  #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1867  									__builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1868  static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1869  				const char *func, const char *parent_func)
1870  {
1871  	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1872  
1873  	if (!ffi->inject_rate)
1874  		return false;
1875  
1876  	if (!IS_FAULT_SET(ffi, type))
1877  		return false;
1878  
1879  	atomic_inc(&ffi->inject_ops);
1880  	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1881  		atomic_set(&ffi->inject_ops, 0);
1882  		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1883  				f2fs_fault_name[type], func, parent_func);
1884  		return true;
1885  	}
1886  	return false;
1887  }
1888  #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1889  static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1890  {
1891  	return false;
1892  }
1893  #endif
1894  
1895  /*
1896   * Test if the mounted volume is a multi-device volume.
1897   *   - For a single regular disk volume, sbi->s_ndevs is 0.
1898   *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1899   *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1900   */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1901  static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1902  {
1903  	return sbi->s_ndevs > 1;
1904  }
1905  
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1906  static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1907  {
1908  	unsigned long now = jiffies;
1909  
1910  	sbi->last_time[type] = now;
1911  
1912  	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1913  	if (type == REQ_TIME) {
1914  		sbi->last_time[DISCARD_TIME] = now;
1915  		sbi->last_time[GC_TIME] = now;
1916  	}
1917  }
1918  
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1919  static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1920  {
1921  	unsigned long interval = sbi->interval_time[type] * HZ;
1922  
1923  	return time_after(jiffies, sbi->last_time[type] + interval);
1924  }
1925  
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1926  static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1927  						int type)
1928  {
1929  	unsigned long interval = sbi->interval_time[type] * HZ;
1930  	unsigned int wait_ms = 0;
1931  	long delta;
1932  
1933  	delta = (sbi->last_time[type] + interval) - jiffies;
1934  	if (delta > 0)
1935  		wait_ms = jiffies_to_msecs(delta);
1936  
1937  	return wait_ms;
1938  }
1939  
1940  /*
1941   * Inline functions
1942   */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1943  static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1944  			      const void *address, unsigned int length)
1945  {
1946  	struct {
1947  		struct shash_desc shash;
1948  		char ctx[4];
1949  	} desc;
1950  	int err;
1951  
1952  	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1953  
1954  	desc.shash.tfm = sbi->s_chksum_driver;
1955  	*(u32 *)desc.ctx = crc;
1956  
1957  	err = crypto_shash_update(&desc.shash, address, length);
1958  	BUG_ON(err);
1959  
1960  	return *(u32 *)desc.ctx;
1961  }
1962  
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1963  static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1964  			   unsigned int length)
1965  {
1966  	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1967  }
1968  
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1969  static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1970  				  void *buf, size_t buf_size)
1971  {
1972  	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1973  }
1974  
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1975  static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1976  			      const void *address, unsigned int length)
1977  {
1978  	return __f2fs_crc32(sbi, crc, address, length);
1979  }
1980  
F2FS_I(struct inode * inode)1981  static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1982  {
1983  	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1984  }
1985  
F2FS_SB(struct super_block * sb)1986  static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1987  {
1988  	return sb->s_fs_info;
1989  }
1990  
F2FS_I_SB(struct inode * inode)1991  static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1992  {
1993  	return F2FS_SB(inode->i_sb);
1994  }
1995  
F2FS_M_SB(struct address_space * mapping)1996  static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1997  {
1998  	return F2FS_I_SB(mapping->host);
1999  }
2000  
F2FS_P_SB(struct page * page)2001  static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2002  {
2003  	return F2FS_M_SB(page_file_mapping(page));
2004  }
2005  
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2006  static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2007  {
2008  	return (struct f2fs_super_block *)(sbi->raw_super);
2009  }
2010  
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2011  static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2012  								pgoff_t index)
2013  {
2014  	pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2015  
2016  	return (struct f2fs_super_block *)
2017  		(page_address(folio_page(folio, idx_in_folio)) +
2018  						F2FS_SUPER_OFFSET);
2019  }
2020  
F2FS_CKPT(struct f2fs_sb_info * sbi)2021  static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2022  {
2023  	return (struct f2fs_checkpoint *)(sbi->ckpt);
2024  }
2025  
F2FS_NODE(struct page * page)2026  static inline struct f2fs_node *F2FS_NODE(struct page *page)
2027  {
2028  	return (struct f2fs_node *)page_address(page);
2029  }
2030  
F2FS_INODE(struct page * page)2031  static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2032  {
2033  	return &((struct f2fs_node *)page_address(page))->i;
2034  }
2035  
NM_I(struct f2fs_sb_info * sbi)2036  static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2037  {
2038  	return (struct f2fs_nm_info *)(sbi->nm_info);
2039  }
2040  
SM_I(struct f2fs_sb_info * sbi)2041  static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2042  {
2043  	return (struct f2fs_sm_info *)(sbi->sm_info);
2044  }
2045  
SIT_I(struct f2fs_sb_info * sbi)2046  static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2047  {
2048  	return (struct sit_info *)(SM_I(sbi)->sit_info);
2049  }
2050  
FREE_I(struct f2fs_sb_info * sbi)2051  static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2052  {
2053  	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2054  }
2055  
DIRTY_I(struct f2fs_sb_info * sbi)2056  static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2057  {
2058  	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2059  }
2060  
META_MAPPING(struct f2fs_sb_info * sbi)2061  static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2062  {
2063  	return sbi->meta_inode->i_mapping;
2064  }
2065  
NODE_MAPPING(struct f2fs_sb_info * sbi)2066  static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2067  {
2068  	return sbi->node_inode->i_mapping;
2069  }
2070  
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2071  static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2072  {
2073  	return test_bit(type, &sbi->s_flag);
2074  }
2075  
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2076  static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2077  {
2078  	set_bit(type, &sbi->s_flag);
2079  }
2080  
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2081  static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2082  {
2083  	clear_bit(type, &sbi->s_flag);
2084  }
2085  
cur_cp_version(struct f2fs_checkpoint * cp)2086  static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2087  {
2088  	return le64_to_cpu(cp->checkpoint_ver);
2089  }
2090  
f2fs_qf_ino(struct super_block * sb,int type)2091  static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2092  {
2093  	if (type < F2FS_MAX_QUOTAS)
2094  		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2095  	return 0;
2096  }
2097  
cur_cp_crc(struct f2fs_checkpoint * cp)2098  static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2099  {
2100  	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2101  	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2102  }
2103  
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2104  static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2105  {
2106  	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2107  
2108  	return ckpt_flags & f;
2109  }
2110  
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2111  static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2112  {
2113  	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2114  }
2115  
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2116  static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2117  {
2118  	unsigned int ckpt_flags;
2119  
2120  	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2121  	ckpt_flags |= f;
2122  	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2123  }
2124  
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2125  static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2126  {
2127  	unsigned long flags;
2128  
2129  	spin_lock_irqsave(&sbi->cp_lock, flags);
2130  	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2131  	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2132  }
2133  
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2134  static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2135  {
2136  	unsigned int ckpt_flags;
2137  
2138  	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2139  	ckpt_flags &= (~f);
2140  	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2141  }
2142  
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2143  static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2144  {
2145  	unsigned long flags;
2146  
2147  	spin_lock_irqsave(&sbi->cp_lock, flags);
2148  	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2149  	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2150  }
2151  
2152  #define init_f2fs_rwsem(sem)					\
2153  do {								\
2154  	static struct lock_class_key __key;			\
2155  								\
2156  	__init_f2fs_rwsem((sem), #sem, &__key);			\
2157  } while (0)
2158  
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2159  static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2160  		const char *sem_name, struct lock_class_key *key)
2161  {
2162  	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2163  #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2164  	init_waitqueue_head(&sem->read_waiters);
2165  #endif
2166  }
2167  
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2168  static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2169  {
2170  	return rwsem_is_locked(&sem->internal_rwsem);
2171  }
2172  
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2173  static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2174  {
2175  	return rwsem_is_contended(&sem->internal_rwsem);
2176  }
2177  
f2fs_down_read(struct f2fs_rwsem * sem)2178  static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2179  {
2180  #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2181  	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2182  #else
2183  	down_read(&sem->internal_rwsem);
2184  #endif
2185  }
2186  
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2187  static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2188  {
2189  	return down_read_trylock(&sem->internal_rwsem);
2190  }
2191  
f2fs_up_read(struct f2fs_rwsem * sem)2192  static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2193  {
2194  	up_read(&sem->internal_rwsem);
2195  }
2196  
f2fs_down_write(struct f2fs_rwsem * sem)2197  static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2198  {
2199  	down_write(&sem->internal_rwsem);
2200  }
2201  
2202  #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2203  static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2204  {
2205  	down_read_nested(&sem->internal_rwsem, subclass);
2206  }
2207  
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2208  static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2209  {
2210  	down_write_nested(&sem->internal_rwsem, subclass);
2211  }
2212  #else
2213  #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2214  #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2215  #endif
2216  
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2217  static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2218  {
2219  	return down_write_trylock(&sem->internal_rwsem);
2220  }
2221  
f2fs_up_write(struct f2fs_rwsem * sem)2222  static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2223  {
2224  	up_write(&sem->internal_rwsem);
2225  #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2226  	wake_up_all(&sem->read_waiters);
2227  #endif
2228  }
2229  
f2fs_lock_op(struct f2fs_sb_info * sbi)2230  static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2231  {
2232  	f2fs_down_read(&sbi->cp_rwsem);
2233  }
2234  
f2fs_trylock_op(struct f2fs_sb_info * sbi)2235  static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2236  {
2237  	if (time_to_inject(sbi, FAULT_LOCK_OP))
2238  		return 0;
2239  	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2240  }
2241  
f2fs_unlock_op(struct f2fs_sb_info * sbi)2242  static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2243  {
2244  	f2fs_up_read(&sbi->cp_rwsem);
2245  }
2246  
f2fs_lock_all(struct f2fs_sb_info * sbi)2247  static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2248  {
2249  	f2fs_down_write(&sbi->cp_rwsem);
2250  }
2251  
f2fs_unlock_all(struct f2fs_sb_info * sbi)2252  static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2253  {
2254  	f2fs_up_write(&sbi->cp_rwsem);
2255  }
2256  
__get_cp_reason(struct f2fs_sb_info * sbi)2257  static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2258  {
2259  	int reason = CP_SYNC;
2260  
2261  	if (test_opt(sbi, FASTBOOT))
2262  		reason = CP_FASTBOOT;
2263  	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2264  		reason = CP_UMOUNT;
2265  	return reason;
2266  }
2267  
__remain_node_summaries(int reason)2268  static inline bool __remain_node_summaries(int reason)
2269  {
2270  	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2271  }
2272  
__exist_node_summaries(struct f2fs_sb_info * sbi)2273  static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2274  {
2275  	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2276  			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2277  }
2278  
2279  /*
2280   * Check whether the inode has blocks or not
2281   */
F2FS_HAS_BLOCKS(struct inode * inode)2282  static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2283  {
2284  	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2285  
2286  	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2287  }
2288  
f2fs_has_xattr_block(unsigned int ofs)2289  static inline bool f2fs_has_xattr_block(unsigned int ofs)
2290  {
2291  	return ofs == XATTR_NODE_OFFSET;
2292  }
2293  
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2294  static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2295  					struct inode *inode, bool cap)
2296  {
2297  	if (!inode)
2298  		return true;
2299  	if (!test_opt(sbi, RESERVE_ROOT))
2300  		return false;
2301  	if (IS_NOQUOTA(inode))
2302  		return true;
2303  	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2304  		return true;
2305  	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2306  					in_group_p(F2FS_OPTION(sbi).s_resgid))
2307  		return true;
2308  	if (cap && capable(CAP_SYS_RESOURCE))
2309  		return true;
2310  	return false;
2311  }
2312  
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2313  static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2314  						struct inode *inode, bool cap)
2315  {
2316  	block_t avail_user_block_count;
2317  
2318  	avail_user_block_count = sbi->user_block_count -
2319  					sbi->current_reserved_blocks;
2320  
2321  	if (!__allow_reserved_blocks(sbi, inode, cap))
2322  		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2323  
2324  	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2325  		if (avail_user_block_count > sbi->unusable_block_count)
2326  			avail_user_block_count -= sbi->unusable_block_count;
2327  		else
2328  			avail_user_block_count = 0;
2329  	}
2330  
2331  	return avail_user_block_count;
2332  }
2333  
2334  static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2335  static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2336  				 struct inode *inode, blkcnt_t *count, bool partial)
2337  {
2338  	long long diff = 0, release = 0;
2339  	block_t avail_user_block_count;
2340  	int ret;
2341  
2342  	ret = dquot_reserve_block(inode, *count);
2343  	if (ret)
2344  		return ret;
2345  
2346  	if (time_to_inject(sbi, FAULT_BLOCK)) {
2347  		release = *count;
2348  		goto release_quota;
2349  	}
2350  
2351  	/*
2352  	 * let's increase this in prior to actual block count change in order
2353  	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2354  	 */
2355  	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2356  
2357  	spin_lock(&sbi->stat_lock);
2358  
2359  	avail_user_block_count = get_available_block_count(sbi, inode, true);
2360  	diff = (long long)sbi->total_valid_block_count + *count -
2361  						avail_user_block_count;
2362  	if (unlikely(diff > 0)) {
2363  		if (!partial) {
2364  			spin_unlock(&sbi->stat_lock);
2365  			release = *count;
2366  			goto enospc;
2367  		}
2368  		if (diff > *count)
2369  			diff = *count;
2370  		*count -= diff;
2371  		release = diff;
2372  		if (!*count) {
2373  			spin_unlock(&sbi->stat_lock);
2374  			goto enospc;
2375  		}
2376  	}
2377  	sbi->total_valid_block_count += (block_t)(*count);
2378  
2379  	spin_unlock(&sbi->stat_lock);
2380  
2381  	if (unlikely(release)) {
2382  		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2383  		dquot_release_reservation_block(inode, release);
2384  	}
2385  	f2fs_i_blocks_write(inode, *count, true, true);
2386  	return 0;
2387  
2388  enospc:
2389  	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2390  release_quota:
2391  	dquot_release_reservation_block(inode, release);
2392  	return -ENOSPC;
2393  }
2394  
2395  #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2396  static inline bool page_private_##name(struct page *page) \
2397  { \
2398  	return PagePrivate(page) && \
2399  		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2400  		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2401  }
2402  
2403  #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2404  static inline void set_page_private_##name(struct page *page) \
2405  { \
2406  	if (!PagePrivate(page)) \
2407  		attach_page_private(page, (void *)0); \
2408  	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2409  	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2410  }
2411  
2412  #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2413  static inline void clear_page_private_##name(struct page *page) \
2414  { \
2415  	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2416  	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2417  		detach_page_private(page); \
2418  }
2419  
2420  PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2421  PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2422  PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2423  PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2424  
2425  PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2426  PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2427  PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2428  PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2429  
2430  PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2431  PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2432  PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2433  PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2434  
get_page_private_data(struct page * page)2435  static inline unsigned long get_page_private_data(struct page *page)
2436  {
2437  	unsigned long data = page_private(page);
2438  
2439  	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2440  		return 0;
2441  	return data >> PAGE_PRIVATE_MAX;
2442  }
2443  
set_page_private_data(struct page * page,unsigned long data)2444  static inline void set_page_private_data(struct page *page, unsigned long data)
2445  {
2446  	if (!PagePrivate(page))
2447  		attach_page_private(page, (void *)0);
2448  	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2449  	page_private(page) |= data << PAGE_PRIVATE_MAX;
2450  }
2451  
clear_page_private_data(struct page * page)2452  static inline void clear_page_private_data(struct page *page)
2453  {
2454  	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2455  	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2456  		detach_page_private(page);
2457  }
2458  
clear_page_private_all(struct page * page)2459  static inline void clear_page_private_all(struct page *page)
2460  {
2461  	clear_page_private_data(page);
2462  	clear_page_private_reference(page);
2463  	clear_page_private_gcing(page);
2464  	clear_page_private_inline(page);
2465  	clear_page_private_atomic(page);
2466  
2467  	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2468  }
2469  
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2470  static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2471  						struct inode *inode,
2472  						block_t count)
2473  {
2474  	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2475  
2476  	spin_lock(&sbi->stat_lock);
2477  	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2478  	sbi->total_valid_block_count -= (block_t)count;
2479  	if (sbi->reserved_blocks &&
2480  		sbi->current_reserved_blocks < sbi->reserved_blocks)
2481  		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2482  					sbi->current_reserved_blocks + count);
2483  	spin_unlock(&sbi->stat_lock);
2484  	if (unlikely(inode->i_blocks < sectors)) {
2485  		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2486  			  inode->i_ino,
2487  			  (unsigned long long)inode->i_blocks,
2488  			  (unsigned long long)sectors);
2489  		set_sbi_flag(sbi, SBI_NEED_FSCK);
2490  		return;
2491  	}
2492  	f2fs_i_blocks_write(inode, count, false, true);
2493  }
2494  
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2495  static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2496  {
2497  	atomic_inc(&sbi->nr_pages[count_type]);
2498  
2499  	if (count_type == F2FS_DIRTY_DENTS ||
2500  			count_type == F2FS_DIRTY_NODES ||
2501  			count_type == F2FS_DIRTY_META ||
2502  			count_type == F2FS_DIRTY_QDATA ||
2503  			count_type == F2FS_DIRTY_IMETA)
2504  		set_sbi_flag(sbi, SBI_IS_DIRTY);
2505  }
2506  
inode_inc_dirty_pages(struct inode * inode)2507  static inline void inode_inc_dirty_pages(struct inode *inode)
2508  {
2509  	atomic_inc(&F2FS_I(inode)->dirty_pages);
2510  	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2511  				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2512  	if (IS_NOQUOTA(inode))
2513  		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2514  }
2515  
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2516  static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2517  {
2518  	atomic_dec(&sbi->nr_pages[count_type]);
2519  }
2520  
inode_dec_dirty_pages(struct inode * inode)2521  static inline void inode_dec_dirty_pages(struct inode *inode)
2522  {
2523  	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2524  			!S_ISLNK(inode->i_mode))
2525  		return;
2526  
2527  	atomic_dec(&F2FS_I(inode)->dirty_pages);
2528  	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2529  				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2530  	if (IS_NOQUOTA(inode))
2531  		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2532  }
2533  
inc_atomic_write_cnt(struct inode * inode)2534  static inline void inc_atomic_write_cnt(struct inode *inode)
2535  {
2536  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2537  	struct f2fs_inode_info *fi = F2FS_I(inode);
2538  	u64 current_write;
2539  
2540  	fi->atomic_write_cnt++;
2541  	atomic64_inc(&sbi->current_atomic_write);
2542  	current_write = atomic64_read(&sbi->current_atomic_write);
2543  	if (current_write > sbi->peak_atomic_write)
2544  		sbi->peak_atomic_write = current_write;
2545  }
2546  
release_atomic_write_cnt(struct inode * inode)2547  static inline void release_atomic_write_cnt(struct inode *inode)
2548  {
2549  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2550  	struct f2fs_inode_info *fi = F2FS_I(inode);
2551  
2552  	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2553  	fi->atomic_write_cnt = 0;
2554  }
2555  
get_pages(struct f2fs_sb_info * sbi,int count_type)2556  static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2557  {
2558  	return atomic_read(&sbi->nr_pages[count_type]);
2559  }
2560  
get_dirty_pages(struct inode * inode)2561  static inline int get_dirty_pages(struct inode *inode)
2562  {
2563  	return atomic_read(&F2FS_I(inode)->dirty_pages);
2564  }
2565  
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2566  static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2567  {
2568  	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2569  							BLKS_PER_SEC(sbi));
2570  }
2571  
valid_user_blocks(struct f2fs_sb_info * sbi)2572  static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2573  {
2574  	return sbi->total_valid_block_count;
2575  }
2576  
discard_blocks(struct f2fs_sb_info * sbi)2577  static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2578  {
2579  	return sbi->discard_blks;
2580  }
2581  
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2582  static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2583  {
2584  	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2585  
2586  	/* return NAT or SIT bitmap */
2587  	if (flag == NAT_BITMAP)
2588  		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2589  	else if (flag == SIT_BITMAP)
2590  		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2591  
2592  	return 0;
2593  }
2594  
__cp_payload(struct f2fs_sb_info * sbi)2595  static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2596  {
2597  	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2598  }
2599  
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2600  static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2601  {
2602  	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2603  	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2604  	int offset;
2605  
2606  	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2607  		offset = (flag == SIT_BITMAP) ?
2608  			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2609  		/*
2610  		 * if large_nat_bitmap feature is enabled, leave checksum
2611  		 * protection for all nat/sit bitmaps.
2612  		 */
2613  		return tmp_ptr + offset + sizeof(__le32);
2614  	}
2615  
2616  	if (__cp_payload(sbi) > 0) {
2617  		if (flag == NAT_BITMAP)
2618  			return tmp_ptr;
2619  		else
2620  			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2621  	} else {
2622  		offset = (flag == NAT_BITMAP) ?
2623  			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2624  		return tmp_ptr + offset;
2625  	}
2626  }
2627  
__start_cp_addr(struct f2fs_sb_info * sbi)2628  static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2629  {
2630  	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2631  
2632  	if (sbi->cur_cp_pack == 2)
2633  		start_addr += BLKS_PER_SEG(sbi);
2634  	return start_addr;
2635  }
2636  
__start_cp_next_addr(struct f2fs_sb_info * sbi)2637  static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2638  {
2639  	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2640  
2641  	if (sbi->cur_cp_pack == 1)
2642  		start_addr += BLKS_PER_SEG(sbi);
2643  	return start_addr;
2644  }
2645  
__set_cp_next_pack(struct f2fs_sb_info * sbi)2646  static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2647  {
2648  	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2649  }
2650  
__start_sum_addr(struct f2fs_sb_info * sbi)2651  static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2652  {
2653  	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2654  }
2655  
2656  extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2657  static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2658  					struct inode *inode, bool is_inode)
2659  {
2660  	block_t	valid_block_count;
2661  	unsigned int valid_node_count;
2662  	unsigned int avail_user_block_count;
2663  	int err;
2664  
2665  	if (is_inode) {
2666  		if (inode) {
2667  			err = dquot_alloc_inode(inode);
2668  			if (err)
2669  				return err;
2670  		}
2671  	} else {
2672  		err = dquot_reserve_block(inode, 1);
2673  		if (err)
2674  			return err;
2675  	}
2676  
2677  	if (time_to_inject(sbi, FAULT_BLOCK))
2678  		goto enospc;
2679  
2680  	spin_lock(&sbi->stat_lock);
2681  
2682  	valid_block_count = sbi->total_valid_block_count + 1;
2683  	avail_user_block_count = get_available_block_count(sbi, inode, false);
2684  
2685  	if (unlikely(valid_block_count > avail_user_block_count)) {
2686  		spin_unlock(&sbi->stat_lock);
2687  		goto enospc;
2688  	}
2689  
2690  	valid_node_count = sbi->total_valid_node_count + 1;
2691  	if (unlikely(valid_node_count > sbi->total_node_count)) {
2692  		spin_unlock(&sbi->stat_lock);
2693  		goto enospc;
2694  	}
2695  
2696  	sbi->total_valid_node_count++;
2697  	sbi->total_valid_block_count++;
2698  	spin_unlock(&sbi->stat_lock);
2699  
2700  	if (inode) {
2701  		if (is_inode)
2702  			f2fs_mark_inode_dirty_sync(inode, true);
2703  		else
2704  			f2fs_i_blocks_write(inode, 1, true, true);
2705  	}
2706  
2707  	percpu_counter_inc(&sbi->alloc_valid_block_count);
2708  	return 0;
2709  
2710  enospc:
2711  	if (is_inode) {
2712  		if (inode)
2713  			dquot_free_inode(inode);
2714  	} else {
2715  		dquot_release_reservation_block(inode, 1);
2716  	}
2717  	return -ENOSPC;
2718  }
2719  
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2720  static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2721  					struct inode *inode, bool is_inode)
2722  {
2723  	spin_lock(&sbi->stat_lock);
2724  
2725  	if (unlikely(!sbi->total_valid_block_count ||
2726  			!sbi->total_valid_node_count)) {
2727  		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2728  			  sbi->total_valid_block_count,
2729  			  sbi->total_valid_node_count);
2730  		set_sbi_flag(sbi, SBI_NEED_FSCK);
2731  	} else {
2732  		sbi->total_valid_block_count--;
2733  		sbi->total_valid_node_count--;
2734  	}
2735  
2736  	if (sbi->reserved_blocks &&
2737  		sbi->current_reserved_blocks < sbi->reserved_blocks)
2738  		sbi->current_reserved_blocks++;
2739  
2740  	spin_unlock(&sbi->stat_lock);
2741  
2742  	if (is_inode) {
2743  		dquot_free_inode(inode);
2744  	} else {
2745  		if (unlikely(inode->i_blocks == 0)) {
2746  			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2747  				  inode->i_ino,
2748  				  (unsigned long long)inode->i_blocks);
2749  			set_sbi_flag(sbi, SBI_NEED_FSCK);
2750  			return;
2751  		}
2752  		f2fs_i_blocks_write(inode, 1, false, true);
2753  	}
2754  }
2755  
valid_node_count(struct f2fs_sb_info * sbi)2756  static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2757  {
2758  	return sbi->total_valid_node_count;
2759  }
2760  
inc_valid_inode_count(struct f2fs_sb_info * sbi)2761  static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2762  {
2763  	percpu_counter_inc(&sbi->total_valid_inode_count);
2764  }
2765  
dec_valid_inode_count(struct f2fs_sb_info * sbi)2766  static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2767  {
2768  	percpu_counter_dec(&sbi->total_valid_inode_count);
2769  }
2770  
valid_inode_count(struct f2fs_sb_info * sbi)2771  static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2772  {
2773  	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2774  }
2775  
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2776  static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2777  						pgoff_t index, bool for_write)
2778  {
2779  	struct page *page;
2780  	unsigned int flags;
2781  
2782  	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2783  		if (!for_write)
2784  			page = find_get_page_flags(mapping, index,
2785  							FGP_LOCK | FGP_ACCESSED);
2786  		else
2787  			page = find_lock_page(mapping, index);
2788  		if (page)
2789  			return page;
2790  
2791  		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2792  			return NULL;
2793  	}
2794  
2795  	if (!for_write)
2796  		return grab_cache_page(mapping, index);
2797  
2798  	flags = memalloc_nofs_save();
2799  	page = grab_cache_page_write_begin(mapping, index);
2800  	memalloc_nofs_restore(flags);
2801  
2802  	return page;
2803  }
2804  
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2805  static inline struct page *f2fs_pagecache_get_page(
2806  				struct address_space *mapping, pgoff_t index,
2807  				fgf_t fgp_flags, gfp_t gfp_mask)
2808  {
2809  	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2810  		return NULL;
2811  
2812  	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2813  }
2814  
f2fs_put_page(struct page * page,int unlock)2815  static inline void f2fs_put_page(struct page *page, int unlock)
2816  {
2817  	if (!page)
2818  		return;
2819  
2820  	if (unlock) {
2821  		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2822  		unlock_page(page);
2823  	}
2824  	put_page(page);
2825  }
2826  
f2fs_put_dnode(struct dnode_of_data * dn)2827  static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2828  {
2829  	if (dn->node_page)
2830  		f2fs_put_page(dn->node_page, 1);
2831  	if (dn->inode_page && dn->node_page != dn->inode_page)
2832  		f2fs_put_page(dn->inode_page, 0);
2833  	dn->node_page = NULL;
2834  	dn->inode_page = NULL;
2835  }
2836  
f2fs_kmem_cache_create(const char * name,size_t size)2837  static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2838  					size_t size)
2839  {
2840  	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2841  }
2842  
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2843  static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2844  						gfp_t flags)
2845  {
2846  	void *entry;
2847  
2848  	entry = kmem_cache_alloc(cachep, flags);
2849  	if (!entry)
2850  		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2851  	return entry;
2852  }
2853  
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2854  static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2855  			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2856  {
2857  	if (nofail)
2858  		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2859  
2860  	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2861  		return NULL;
2862  
2863  	return kmem_cache_alloc(cachep, flags);
2864  }
2865  
is_inflight_io(struct f2fs_sb_info * sbi,int type)2866  static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2867  {
2868  	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2869  		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2870  		get_pages(sbi, F2FS_WB_CP_DATA) ||
2871  		get_pages(sbi, F2FS_DIO_READ) ||
2872  		get_pages(sbi, F2FS_DIO_WRITE))
2873  		return true;
2874  
2875  	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2876  			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2877  		return true;
2878  
2879  	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2880  			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2881  		return true;
2882  	return false;
2883  }
2884  
is_inflight_read_io(struct f2fs_sb_info * sbi)2885  static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2886  {
2887  	return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2888  }
2889  
is_idle(struct f2fs_sb_info * sbi,int type)2890  static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2891  {
2892  	bool zoned_gc = (type == GC_TIME &&
2893  			F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
2894  
2895  	if (sbi->gc_mode == GC_URGENT_HIGH)
2896  		return true;
2897  
2898  	if (zoned_gc) {
2899  		if (is_inflight_read_io(sbi))
2900  			return false;
2901  	} else {
2902  		if (is_inflight_io(sbi, type))
2903  			return false;
2904  	}
2905  
2906  	if (sbi->gc_mode == GC_URGENT_MID)
2907  		return true;
2908  
2909  	if (sbi->gc_mode == GC_URGENT_LOW &&
2910  			(type == DISCARD_TIME || type == GC_TIME))
2911  		return true;
2912  
2913  	if (zoned_gc)
2914  		return true;
2915  
2916  	return f2fs_time_over(sbi, type);
2917  }
2918  
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2919  static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2920  				unsigned long index, void *item)
2921  {
2922  	while (radix_tree_insert(root, index, item))
2923  		cond_resched();
2924  }
2925  
2926  #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2927  
IS_INODE(struct page * page)2928  static inline bool IS_INODE(struct page *page)
2929  {
2930  	struct f2fs_node *p = F2FS_NODE(page);
2931  
2932  	return RAW_IS_INODE(p);
2933  }
2934  
offset_in_addr(struct f2fs_inode * i)2935  static inline int offset_in_addr(struct f2fs_inode *i)
2936  {
2937  	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2938  			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2939  }
2940  
blkaddr_in_node(struct f2fs_node * node)2941  static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2942  {
2943  	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2944  }
2945  
2946  static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct page * node_page)2947  static inline unsigned int get_dnode_base(struct inode *inode,
2948  					struct page *node_page)
2949  {
2950  	if (!IS_INODE(node_page))
2951  		return 0;
2952  
2953  	return inode ? get_extra_isize(inode) :
2954  			offset_in_addr(&F2FS_NODE(node_page)->i);
2955  }
2956  
get_dnode_addr(struct inode * inode,struct page * node_page)2957  static inline __le32 *get_dnode_addr(struct inode *inode,
2958  					struct page *node_page)
2959  {
2960  	return blkaddr_in_node(F2FS_NODE(node_page)) +
2961  			get_dnode_base(inode, node_page);
2962  }
2963  
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2964  static inline block_t data_blkaddr(struct inode *inode,
2965  			struct page *node_page, unsigned int offset)
2966  {
2967  	return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset));
2968  }
2969  
f2fs_data_blkaddr(struct dnode_of_data * dn)2970  static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2971  {
2972  	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2973  }
2974  
f2fs_test_bit(unsigned int nr,char * addr)2975  static inline int f2fs_test_bit(unsigned int nr, char *addr)
2976  {
2977  	int mask;
2978  
2979  	addr += (nr >> 3);
2980  	mask = BIT(7 - (nr & 0x07));
2981  	return mask & *addr;
2982  }
2983  
f2fs_set_bit(unsigned int nr,char * addr)2984  static inline void f2fs_set_bit(unsigned int nr, char *addr)
2985  {
2986  	int mask;
2987  
2988  	addr += (nr >> 3);
2989  	mask = BIT(7 - (nr & 0x07));
2990  	*addr |= mask;
2991  }
2992  
f2fs_clear_bit(unsigned int nr,char * addr)2993  static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2994  {
2995  	int mask;
2996  
2997  	addr += (nr >> 3);
2998  	mask = BIT(7 - (nr & 0x07));
2999  	*addr &= ~mask;
3000  }
3001  
f2fs_test_and_set_bit(unsigned int nr,char * addr)3002  static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3003  {
3004  	int mask;
3005  	int ret;
3006  
3007  	addr += (nr >> 3);
3008  	mask = BIT(7 - (nr & 0x07));
3009  	ret = mask & *addr;
3010  	*addr |= mask;
3011  	return ret;
3012  }
3013  
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3014  static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3015  {
3016  	int mask;
3017  	int ret;
3018  
3019  	addr += (nr >> 3);
3020  	mask = BIT(7 - (nr & 0x07));
3021  	ret = mask & *addr;
3022  	*addr &= ~mask;
3023  	return ret;
3024  }
3025  
f2fs_change_bit(unsigned int nr,char * addr)3026  static inline void f2fs_change_bit(unsigned int nr, char *addr)
3027  {
3028  	int mask;
3029  
3030  	addr += (nr >> 3);
3031  	mask = BIT(7 - (nr & 0x07));
3032  	*addr ^= mask;
3033  }
3034  
3035  /*
3036   * On-disk inode flags (f2fs_inode::i_flags)
3037   */
3038  #define F2FS_COMPR_FL			0x00000004 /* Compress file */
3039  #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
3040  #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
3041  #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
3042  #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
3043  #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
3044  #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
3045  #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
3046  #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
3047  #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
3048  #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
3049  
3050  #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3051  
3052  /* Flags that should be inherited by new inodes from their parent. */
3053  #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3054  			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3055  			   F2FS_CASEFOLD_FL)
3056  
3057  /* Flags that are appropriate for regular files (all but dir-specific ones). */
3058  #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3059  				F2FS_CASEFOLD_FL))
3060  
3061  /* Flags that are appropriate for non-directories/regular files. */
3062  #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3063  
f2fs_mask_flags(umode_t mode,__u32 flags)3064  static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3065  {
3066  	if (S_ISDIR(mode))
3067  		return flags;
3068  	else if (S_ISREG(mode))
3069  		return flags & F2FS_REG_FLMASK;
3070  	else
3071  		return flags & F2FS_OTHER_FLMASK;
3072  }
3073  
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3074  static inline void __mark_inode_dirty_flag(struct inode *inode,
3075  						int flag, bool set)
3076  {
3077  	switch (flag) {
3078  	case FI_INLINE_XATTR:
3079  	case FI_INLINE_DATA:
3080  	case FI_INLINE_DENTRY:
3081  	case FI_NEW_INODE:
3082  		if (set)
3083  			return;
3084  		fallthrough;
3085  	case FI_DATA_EXIST:
3086  	case FI_PIN_FILE:
3087  	case FI_COMPRESS_RELEASED:
3088  		f2fs_mark_inode_dirty_sync(inode, true);
3089  	}
3090  }
3091  
set_inode_flag(struct inode * inode,int flag)3092  static inline void set_inode_flag(struct inode *inode, int flag)
3093  {
3094  	set_bit(flag, F2FS_I(inode)->flags);
3095  	__mark_inode_dirty_flag(inode, flag, true);
3096  }
3097  
is_inode_flag_set(struct inode * inode,int flag)3098  static inline int is_inode_flag_set(struct inode *inode, int flag)
3099  {
3100  	return test_bit(flag, F2FS_I(inode)->flags);
3101  }
3102  
clear_inode_flag(struct inode * inode,int flag)3103  static inline void clear_inode_flag(struct inode *inode, int flag)
3104  {
3105  	clear_bit(flag, F2FS_I(inode)->flags);
3106  	__mark_inode_dirty_flag(inode, flag, false);
3107  }
3108  
f2fs_verity_in_progress(struct inode * inode)3109  static inline bool f2fs_verity_in_progress(struct inode *inode)
3110  {
3111  	return IS_ENABLED(CONFIG_FS_VERITY) &&
3112  	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3113  }
3114  
set_acl_inode(struct inode * inode,umode_t mode)3115  static inline void set_acl_inode(struct inode *inode, umode_t mode)
3116  {
3117  	F2FS_I(inode)->i_acl_mode = mode;
3118  	set_inode_flag(inode, FI_ACL_MODE);
3119  	f2fs_mark_inode_dirty_sync(inode, false);
3120  }
3121  
f2fs_i_links_write(struct inode * inode,bool inc)3122  static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3123  {
3124  	if (inc)
3125  		inc_nlink(inode);
3126  	else
3127  		drop_nlink(inode);
3128  	f2fs_mark_inode_dirty_sync(inode, true);
3129  }
3130  
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3131  static inline void f2fs_i_blocks_write(struct inode *inode,
3132  					block_t diff, bool add, bool claim)
3133  {
3134  	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3135  	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3136  
3137  	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3138  	if (add) {
3139  		if (claim)
3140  			dquot_claim_block(inode, diff);
3141  		else
3142  			dquot_alloc_block_nofail(inode, diff);
3143  	} else {
3144  		dquot_free_block(inode, diff);
3145  	}
3146  
3147  	f2fs_mark_inode_dirty_sync(inode, true);
3148  	if (clean || recover)
3149  		set_inode_flag(inode, FI_AUTO_RECOVER);
3150  }
3151  
3152  static inline bool f2fs_is_atomic_file(struct inode *inode);
3153  
f2fs_i_size_write(struct inode * inode,loff_t i_size)3154  static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3155  {
3156  	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3157  	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3158  
3159  	if (i_size_read(inode) == i_size)
3160  		return;
3161  
3162  	i_size_write(inode, i_size);
3163  
3164  	if (f2fs_is_atomic_file(inode))
3165  		return;
3166  
3167  	f2fs_mark_inode_dirty_sync(inode, true);
3168  	if (clean || recover)
3169  		set_inode_flag(inode, FI_AUTO_RECOVER);
3170  }
3171  
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3172  static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3173  {
3174  	F2FS_I(inode)->i_current_depth = depth;
3175  	f2fs_mark_inode_dirty_sync(inode, true);
3176  }
3177  
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3178  static inline void f2fs_i_gc_failures_write(struct inode *inode,
3179  					unsigned int count)
3180  {
3181  	F2FS_I(inode)->i_gc_failures = count;
3182  	f2fs_mark_inode_dirty_sync(inode, true);
3183  }
3184  
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3185  static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3186  {
3187  	F2FS_I(inode)->i_xattr_nid = xnid;
3188  	f2fs_mark_inode_dirty_sync(inode, true);
3189  }
3190  
f2fs_i_pino_write(struct inode * inode,nid_t pino)3191  static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3192  {
3193  	F2FS_I(inode)->i_pino = pino;
3194  	f2fs_mark_inode_dirty_sync(inode, true);
3195  }
3196  
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3197  static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3198  {
3199  	struct f2fs_inode_info *fi = F2FS_I(inode);
3200  
3201  	if (ri->i_inline & F2FS_INLINE_XATTR)
3202  		set_bit(FI_INLINE_XATTR, fi->flags);
3203  	if (ri->i_inline & F2FS_INLINE_DATA)
3204  		set_bit(FI_INLINE_DATA, fi->flags);
3205  	if (ri->i_inline & F2FS_INLINE_DENTRY)
3206  		set_bit(FI_INLINE_DENTRY, fi->flags);
3207  	if (ri->i_inline & F2FS_DATA_EXIST)
3208  		set_bit(FI_DATA_EXIST, fi->flags);
3209  	if (ri->i_inline & F2FS_EXTRA_ATTR)
3210  		set_bit(FI_EXTRA_ATTR, fi->flags);
3211  	if (ri->i_inline & F2FS_PIN_FILE)
3212  		set_bit(FI_PIN_FILE, fi->flags);
3213  	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3214  		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3215  }
3216  
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3217  static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3218  {
3219  	ri->i_inline = 0;
3220  
3221  	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3222  		ri->i_inline |= F2FS_INLINE_XATTR;
3223  	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3224  		ri->i_inline |= F2FS_INLINE_DATA;
3225  	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3226  		ri->i_inline |= F2FS_INLINE_DENTRY;
3227  	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3228  		ri->i_inline |= F2FS_DATA_EXIST;
3229  	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3230  		ri->i_inline |= F2FS_EXTRA_ATTR;
3231  	if (is_inode_flag_set(inode, FI_PIN_FILE))
3232  		ri->i_inline |= F2FS_PIN_FILE;
3233  	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3234  		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3235  }
3236  
f2fs_has_extra_attr(struct inode * inode)3237  static inline int f2fs_has_extra_attr(struct inode *inode)
3238  {
3239  	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3240  }
3241  
f2fs_has_inline_xattr(struct inode * inode)3242  static inline int f2fs_has_inline_xattr(struct inode *inode)
3243  {
3244  	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3245  }
3246  
f2fs_compressed_file(struct inode * inode)3247  static inline int f2fs_compressed_file(struct inode *inode)
3248  {
3249  	return S_ISREG(inode->i_mode) &&
3250  		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3251  }
3252  
f2fs_need_compress_data(struct inode * inode)3253  static inline bool f2fs_need_compress_data(struct inode *inode)
3254  {
3255  	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3256  
3257  	if (!f2fs_compressed_file(inode))
3258  		return false;
3259  
3260  	if (compress_mode == COMPR_MODE_FS)
3261  		return true;
3262  	else if (compress_mode == COMPR_MODE_USER &&
3263  			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3264  		return true;
3265  
3266  	return false;
3267  }
3268  
addrs_per_page(struct inode * inode,bool is_inode)3269  static inline unsigned int addrs_per_page(struct inode *inode,
3270  							bool is_inode)
3271  {
3272  	unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3273  			get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3274  
3275  	if (f2fs_compressed_file(inode))
3276  		return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3277  	return addrs;
3278  }
3279  
inline_xattr_addr(struct inode * inode,struct page * page)3280  static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3281  {
3282  	struct f2fs_inode *ri = F2FS_INODE(page);
3283  
3284  	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3285  					get_inline_xattr_addrs(inode)]);
3286  }
3287  
inline_xattr_size(struct inode * inode)3288  static inline int inline_xattr_size(struct inode *inode)
3289  {
3290  	if (f2fs_has_inline_xattr(inode))
3291  		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3292  	return 0;
3293  }
3294  
3295  /*
3296   * Notice: check inline_data flag without inode page lock is unsafe.
3297   * It could change at any time by f2fs_convert_inline_page().
3298   */
f2fs_has_inline_data(struct inode * inode)3299  static inline int f2fs_has_inline_data(struct inode *inode)
3300  {
3301  	return is_inode_flag_set(inode, FI_INLINE_DATA);
3302  }
3303  
f2fs_exist_data(struct inode * inode)3304  static inline int f2fs_exist_data(struct inode *inode)
3305  {
3306  	return is_inode_flag_set(inode, FI_DATA_EXIST);
3307  }
3308  
f2fs_is_mmap_file(struct inode * inode)3309  static inline int f2fs_is_mmap_file(struct inode *inode)
3310  {
3311  	return is_inode_flag_set(inode, FI_MMAP_FILE);
3312  }
3313  
f2fs_is_pinned_file(struct inode * inode)3314  static inline bool f2fs_is_pinned_file(struct inode *inode)
3315  {
3316  	return is_inode_flag_set(inode, FI_PIN_FILE);
3317  }
3318  
f2fs_is_atomic_file(struct inode * inode)3319  static inline bool f2fs_is_atomic_file(struct inode *inode)
3320  {
3321  	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3322  }
3323  
f2fs_is_cow_file(struct inode * inode)3324  static inline bool f2fs_is_cow_file(struct inode *inode)
3325  {
3326  	return is_inode_flag_set(inode, FI_COW_FILE);
3327  }
3328  
inline_data_addr(struct inode * inode,struct page * page)3329  static inline void *inline_data_addr(struct inode *inode, struct page *page)
3330  {
3331  	__le32 *addr = get_dnode_addr(inode, page);
3332  
3333  	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3334  }
3335  
f2fs_has_inline_dentry(struct inode * inode)3336  static inline int f2fs_has_inline_dentry(struct inode *inode)
3337  {
3338  	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3339  }
3340  
is_file(struct inode * inode,int type)3341  static inline int is_file(struct inode *inode, int type)
3342  {
3343  	return F2FS_I(inode)->i_advise & type;
3344  }
3345  
set_file(struct inode * inode,int type)3346  static inline void set_file(struct inode *inode, int type)
3347  {
3348  	if (is_file(inode, type))
3349  		return;
3350  	F2FS_I(inode)->i_advise |= type;
3351  	f2fs_mark_inode_dirty_sync(inode, true);
3352  }
3353  
clear_file(struct inode * inode,int type)3354  static inline void clear_file(struct inode *inode, int type)
3355  {
3356  	if (!is_file(inode, type))
3357  		return;
3358  	F2FS_I(inode)->i_advise &= ~type;
3359  	f2fs_mark_inode_dirty_sync(inode, true);
3360  }
3361  
f2fs_is_time_consistent(struct inode * inode)3362  static inline bool f2fs_is_time_consistent(struct inode *inode)
3363  {
3364  	struct timespec64 ts = inode_get_atime(inode);
3365  
3366  	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3367  		return false;
3368  	ts = inode_get_ctime(inode);
3369  	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3370  		return false;
3371  	ts = inode_get_mtime(inode);
3372  	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3373  		return false;
3374  	return true;
3375  }
3376  
f2fs_skip_inode_update(struct inode * inode,int dsync)3377  static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3378  {
3379  	bool ret;
3380  
3381  	if (dsync) {
3382  		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3383  
3384  		spin_lock(&sbi->inode_lock[DIRTY_META]);
3385  		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3386  		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3387  		return ret;
3388  	}
3389  	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3390  			file_keep_isize(inode) ||
3391  			i_size_read(inode) & ~PAGE_MASK)
3392  		return false;
3393  
3394  	if (!f2fs_is_time_consistent(inode))
3395  		return false;
3396  
3397  	spin_lock(&F2FS_I(inode)->i_size_lock);
3398  	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3399  	spin_unlock(&F2FS_I(inode)->i_size_lock);
3400  
3401  	return ret;
3402  }
3403  
f2fs_readonly(struct super_block * sb)3404  static inline bool f2fs_readonly(struct super_block *sb)
3405  {
3406  	return sb_rdonly(sb);
3407  }
3408  
f2fs_cp_error(struct f2fs_sb_info * sbi)3409  static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3410  {
3411  	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3412  }
3413  
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3414  static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3415  					size_t size, gfp_t flags)
3416  {
3417  	if (time_to_inject(sbi, FAULT_KMALLOC))
3418  		return NULL;
3419  
3420  	return kmalloc(size, flags);
3421  }
3422  
f2fs_getname(struct f2fs_sb_info * sbi)3423  static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3424  {
3425  	if (time_to_inject(sbi, FAULT_KMALLOC))
3426  		return NULL;
3427  
3428  	return __getname();
3429  }
3430  
f2fs_putname(char * buf)3431  static inline void f2fs_putname(char *buf)
3432  {
3433  	__putname(buf);
3434  }
3435  
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3436  static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3437  					size_t size, gfp_t flags)
3438  {
3439  	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3440  }
3441  
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3442  static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3443  					size_t size, gfp_t flags)
3444  {
3445  	if (time_to_inject(sbi, FAULT_KVMALLOC))
3446  		return NULL;
3447  
3448  	return kvmalloc(size, flags);
3449  }
3450  
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3451  static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3452  					size_t size, gfp_t flags)
3453  {
3454  	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3455  }
3456  
get_extra_isize(struct inode * inode)3457  static inline int get_extra_isize(struct inode *inode)
3458  {
3459  	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3460  }
3461  
get_inline_xattr_addrs(struct inode * inode)3462  static inline int get_inline_xattr_addrs(struct inode *inode)
3463  {
3464  	return F2FS_I(inode)->i_inline_xattr_size;
3465  }
3466  
3467  #define f2fs_get_inode_mode(i) \
3468  	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3469  	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3470  
3471  #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3472  
3473  #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3474  	(offsetof(struct f2fs_inode, i_extra_end) -	\
3475  	offsetof(struct f2fs_inode, i_extra_isize))	\
3476  
3477  #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3478  #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3479  		((offsetof(typeof(*(f2fs_inode)), field) +	\
3480  		sizeof((f2fs_inode)->field))			\
3481  		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3482  
3483  #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3484  
3485  #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3486  
3487  bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3488  					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3489  static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3490  					block_t blkaddr, int type)
3491  {
3492  	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3493  		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3494  			 blkaddr, type);
3495  }
3496  
__is_valid_data_blkaddr(block_t blkaddr)3497  static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3498  {
3499  	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3500  			blkaddr == COMPRESS_ADDR)
3501  		return false;
3502  	return true;
3503  }
3504  
3505  /*
3506   * file.c
3507   */
3508  int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3509  int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3510  int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3511  int f2fs_truncate(struct inode *inode);
3512  int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3513  		 struct kstat *stat, u32 request_mask, unsigned int flags);
3514  int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3515  		 struct iattr *attr);
3516  int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3517  void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3518  int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3519  						bool readonly, bool need_lock);
3520  int f2fs_precache_extents(struct inode *inode);
3521  int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3522  int f2fs_fileattr_set(struct mnt_idmap *idmap,
3523  		      struct dentry *dentry, struct fileattr *fa);
3524  long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3525  long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3526  int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3527  int f2fs_pin_file_control(struct inode *inode, bool inc);
3528  
3529  /*
3530   * inode.c
3531   */
3532  void f2fs_set_inode_flags(struct inode *inode);
3533  bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3534  void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3535  struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3536  struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3537  int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3538  void f2fs_update_inode(struct inode *inode, struct page *node_page);
3539  void f2fs_update_inode_page(struct inode *inode);
3540  int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3541  void f2fs_evict_inode(struct inode *inode);
3542  void f2fs_handle_failed_inode(struct inode *inode);
3543  
3544  /*
3545   * namei.c
3546   */
3547  int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3548  							bool hot, bool set);
3549  struct dentry *f2fs_get_parent(struct dentry *child);
3550  int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3551  		     struct inode **new_inode);
3552  
3553  /*
3554   * dir.c
3555   */
3556  #if IS_ENABLED(CONFIG_UNICODE)
3557  int f2fs_init_casefolded_name(const struct inode *dir,
3558  			      struct f2fs_filename *fname);
3559  void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3560  #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3561  static inline int f2fs_init_casefolded_name(const struct inode *dir,
3562  					    struct f2fs_filename *fname)
3563  {
3564  	return 0;
3565  }
3566  
f2fs_free_casefolded_name(struct f2fs_filename * fname)3567  static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3568  {
3569  }
3570  #endif /* CONFIG_UNICODE */
3571  
3572  int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3573  			int lookup, struct f2fs_filename *fname);
3574  int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3575  			struct f2fs_filename *fname);
3576  void f2fs_free_filename(struct f2fs_filename *fname);
3577  struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3578  			const struct f2fs_filename *fname, int *max_slots);
3579  int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3580  			unsigned int start_pos, struct fscrypt_str *fstr);
3581  void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3582  			struct f2fs_dentry_ptr *d);
3583  struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3584  			const struct f2fs_filename *fname, struct page *dpage);
3585  void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3586  			unsigned int current_depth);
3587  int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3588  void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3589  struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3590  					 const struct f2fs_filename *fname,
3591  					 struct page **res_page);
3592  struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3593  			const struct qstr *child, struct page **res_page);
3594  struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3595  ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3596  			struct page **page);
3597  void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3598  			struct page *page, struct inode *inode);
3599  bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3600  			  const struct f2fs_filename *fname);
3601  void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3602  			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3603  			unsigned int bit_pos);
3604  int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3605  			struct inode *inode, nid_t ino, umode_t mode);
3606  int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3607  			struct inode *inode, nid_t ino, umode_t mode);
3608  int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3609  			struct inode *inode, nid_t ino, umode_t mode);
3610  void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3611  			struct inode *dir, struct inode *inode);
3612  int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3613  					struct f2fs_filename *fname);
3614  bool f2fs_empty_dir(struct inode *dir);
3615  
f2fs_add_link(struct dentry * dentry,struct inode * inode)3616  static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3617  {
3618  	if (fscrypt_is_nokey_name(dentry))
3619  		return -ENOKEY;
3620  	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3621  				inode, inode->i_ino, inode->i_mode);
3622  }
3623  
3624  /*
3625   * super.c
3626   */
3627  int f2fs_inode_dirtied(struct inode *inode, bool sync);
3628  void f2fs_inode_synced(struct inode *inode);
3629  int f2fs_dquot_initialize(struct inode *inode);
3630  int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3631  int f2fs_quota_sync(struct super_block *sb, int type);
3632  loff_t max_file_blocks(struct inode *inode);
3633  void f2fs_quota_off_umount(struct super_block *sb);
3634  void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3635  void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3636  							bool irq_context);
3637  void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3638  void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3639  int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3640  int f2fs_sync_fs(struct super_block *sb, int sync);
3641  int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3642  
3643  /*
3644   * hash.c
3645   */
3646  void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3647  
3648  /*
3649   * node.c
3650   */
3651  struct node_info;
3652  
3653  int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3654  bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3655  bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3656  void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3657  void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3658  void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3659  int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3660  bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3661  bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3662  int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3663  				struct node_info *ni, bool checkpoint_context);
3664  pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3665  int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3666  int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3667  int f2fs_truncate_xattr_node(struct inode *inode);
3668  int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3669  					unsigned int seq_id);
3670  bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3671  int f2fs_remove_inode_page(struct inode *inode);
3672  struct page *f2fs_new_inode_page(struct inode *inode);
3673  struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3674  void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3675  struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3676  struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3677  int f2fs_move_node_page(struct page *node_page, int gc_type);
3678  void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3679  int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3680  			struct writeback_control *wbc, bool atomic,
3681  			unsigned int *seq_id);
3682  int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3683  			struct writeback_control *wbc,
3684  			bool do_balance, enum iostat_type io_type);
3685  int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3686  bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3687  void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3688  void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3689  int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3690  int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3691  int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3692  int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3693  int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3694  			unsigned int segno, struct f2fs_summary_block *sum);
3695  void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3696  int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3697  int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3698  void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3699  int __init f2fs_create_node_manager_caches(void);
3700  void f2fs_destroy_node_manager_caches(void);
3701  
3702  /*
3703   * segment.c
3704   */
3705  bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3706  int f2fs_commit_atomic_write(struct inode *inode);
3707  void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3708  void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3709  void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3710  int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3711  int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3712  int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3713  void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3714  void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3715  bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3716  int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3717  void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3718  void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3719  bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3720  void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3721  					struct cp_control *cpc);
3722  void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3723  block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3724  int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3725  void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3726  int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3727  bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3728  int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3729  int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3730  void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3731  void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3732  int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3733  					unsigned int start, unsigned int end);
3734  int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3735  int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3736  int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3737  int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3738  bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3739  					struct cp_control *cpc);
3740  struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3741  void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3742  					block_t blk_addr);
3743  void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3744  						enum iostat_type io_type);
3745  void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3746  void f2fs_outplace_write_data(struct dnode_of_data *dn,
3747  			struct f2fs_io_info *fio);
3748  int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3749  void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3750  			block_t old_blkaddr, block_t new_blkaddr,
3751  			bool recover_curseg, bool recover_newaddr,
3752  			bool from_gc);
3753  void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3754  			block_t old_addr, block_t new_addr,
3755  			unsigned char version, bool recover_curseg,
3756  			bool recover_newaddr);
3757  int f2fs_get_segment_temp(int seg_type);
3758  int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3759  			block_t old_blkaddr, block_t *new_blkaddr,
3760  			struct f2fs_summary *sum, int type,
3761  			struct f2fs_io_info *fio);
3762  void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3763  					block_t blkaddr, unsigned int blkcnt);
3764  void f2fs_wait_on_page_writeback(struct page *page,
3765  			enum page_type type, bool ordered, bool locked);
3766  void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3767  void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3768  								block_t len);
3769  void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3770  void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3771  int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3772  			unsigned int val, int alloc);
3773  void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3774  int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3775  int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3776  int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3777  void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3778  int __init f2fs_create_segment_manager_caches(void);
3779  void f2fs_destroy_segment_manager_caches(void);
3780  int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3781  enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3782  			enum page_type type, enum temp_type temp);
3783  unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3784  unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3785  			unsigned int segno);
3786  
3787  #define DEF_FRAGMENT_SIZE	4
3788  #define MIN_FRAGMENT_SIZE	1
3789  #define MAX_FRAGMENT_SIZE	512
3790  
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3791  static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3792  {
3793  	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3794  		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3795  }
3796  
3797  /*
3798   * checkpoint.c
3799   */
3800  void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3801  							unsigned char reason);
3802  void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3803  struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3804  struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3805  struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3806  struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3807  bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3808  					block_t blkaddr, int type);
3809  bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3810  					block_t blkaddr, int type);
3811  int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3812  			int type, bool sync);
3813  void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3814  							unsigned int ra_blocks);
3815  long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3816  			long nr_to_write, enum iostat_type io_type);
3817  void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3818  void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3819  void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3820  bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3821  void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3822  					unsigned int devidx, int type);
3823  bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3824  					unsigned int devidx, int type);
3825  int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3826  void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3827  void f2fs_add_orphan_inode(struct inode *inode);
3828  void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3829  int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3830  int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3831  void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3832  void f2fs_remove_dirty_inode(struct inode *inode);
3833  int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3834  								bool from_cp);
3835  void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3836  u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3837  int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3838  void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3839  int __init f2fs_create_checkpoint_caches(void);
3840  void f2fs_destroy_checkpoint_caches(void);
3841  int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3842  int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3843  void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3844  void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3845  
3846  /*
3847   * data.c
3848   */
3849  int __init f2fs_init_bioset(void);
3850  void f2fs_destroy_bioset(void);
3851  bool f2fs_is_cp_guaranteed(struct page *page);
3852  int f2fs_init_bio_entry_cache(void);
3853  void f2fs_destroy_bio_entry_cache(void);
3854  void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3855  			  enum page_type type);
3856  int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3857  void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3858  void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3859  				struct inode *inode, struct page *page,
3860  				nid_t ino, enum page_type type);
3861  void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3862  					struct bio **bio, struct page *page);
3863  void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3864  int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3865  int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3866  void f2fs_submit_page_write(struct f2fs_io_info *fio);
3867  struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3868  		block_t blk_addr, sector_t *sector);
3869  int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3870  void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3871  void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3872  int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3873  int f2fs_reserve_new_block(struct dnode_of_data *dn);
3874  int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3875  int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3876  struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3877  			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3878  struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3879  							pgoff_t *next_pgofs);
3880  struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3881  			bool for_write);
3882  struct page *f2fs_get_new_data_page(struct inode *inode,
3883  			struct page *ipage, pgoff_t index, bool new_i_size);
3884  int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3885  int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3886  int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3887  			u64 start, u64 len);
3888  int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3889  bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3890  bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3891  int f2fs_write_single_data_page(struct folio *folio, int *submitted,
3892  				struct bio **bio, sector_t *last_block,
3893  				struct writeback_control *wbc,
3894  				enum iostat_type io_type,
3895  				int compr_blocks, bool allow_balance);
3896  void f2fs_write_failed(struct inode *inode, loff_t to);
3897  void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3898  bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3899  bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3900  void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
3901  int f2fs_init_post_read_processing(void);
3902  void f2fs_destroy_post_read_processing(void);
3903  int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3904  void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3905  extern const struct iomap_ops f2fs_iomap_ops;
3906  
3907  /*
3908   * gc.c
3909   */
3910  int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3911  void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3912  block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3913  int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3914  void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3915  int f2fs_gc_range(struct f2fs_sb_info *sbi,
3916  		unsigned int start_seg, unsigned int end_seg,
3917  		bool dry_run, unsigned int dry_run_sections);
3918  int f2fs_resize_fs(struct file *filp, __u64 block_count);
3919  int __init f2fs_create_garbage_collection_cache(void);
3920  void f2fs_destroy_garbage_collection_cache(void);
3921  /* victim selection function for cleaning and SSR */
3922  int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3923  			int gc_type, int type, char alloc_mode,
3924  			unsigned long long age, bool one_time);
3925  
3926  /*
3927   * recovery.c
3928   */
3929  int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3930  bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3931  int __init f2fs_create_recovery_cache(void);
3932  void f2fs_destroy_recovery_cache(void);
3933  
3934  /*
3935   * debug.c
3936   */
3937  #ifdef CONFIG_F2FS_STAT_FS
3938  struct f2fs_stat_info {
3939  	struct list_head stat_list;
3940  	struct f2fs_sb_info *sbi;
3941  	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3942  	int main_area_segs, main_area_sections, main_area_zones;
3943  	unsigned long long hit_cached[NR_EXTENT_CACHES];
3944  	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3945  	unsigned long long total_ext[NR_EXTENT_CACHES];
3946  	unsigned long long hit_total[NR_EXTENT_CACHES];
3947  	int ext_tree[NR_EXTENT_CACHES];
3948  	int zombie_tree[NR_EXTENT_CACHES];
3949  	int ext_node[NR_EXTENT_CACHES];
3950  	/* to count memory footprint */
3951  	unsigned long long ext_mem[NR_EXTENT_CACHES];
3952  	/* for read extent cache */
3953  	unsigned long long hit_largest;
3954  	/* for block age extent cache */
3955  	unsigned long long allocated_data_blocks;
3956  	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3957  	int ndirty_data, ndirty_qdata;
3958  	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3959  	int nats, dirty_nats, sits, dirty_sits;
3960  	int free_nids, avail_nids, alloc_nids;
3961  	int total_count, utilization;
3962  	int nr_wb_cp_data, nr_wb_data;
3963  	int nr_rd_data, nr_rd_node, nr_rd_meta;
3964  	int nr_dio_read, nr_dio_write;
3965  	unsigned int io_skip_bggc, other_skip_bggc;
3966  	int nr_flushing, nr_flushed, flush_list_empty;
3967  	int nr_discarding, nr_discarded;
3968  	int nr_discard_cmd;
3969  	unsigned int undiscard_blks;
3970  	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3971  	unsigned int cur_ckpt_time, peak_ckpt_time;
3972  	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3973  	int compr_inode, swapfile_inode;
3974  	unsigned long long compr_blocks;
3975  	int aw_cnt, max_aw_cnt;
3976  	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3977  	unsigned int bimodal, avg_vblocks;
3978  	int util_free, util_valid, util_invalid;
3979  	int rsvd_segs, overp_segs;
3980  	int dirty_count, node_pages, meta_pages, compress_pages;
3981  	int compress_page_hit;
3982  	int prefree_count, free_segs, free_secs;
3983  	int cp_call_count[MAX_CALL_TYPE], cp_count;
3984  	int gc_call_count[MAX_CALL_TYPE];
3985  	int gc_segs[2][2];
3986  	int gc_secs[2][2];
3987  	int tot_blks, data_blks, node_blks;
3988  	int bg_data_blks, bg_node_blks;
3989  	int curseg[NR_CURSEG_TYPE];
3990  	int cursec[NR_CURSEG_TYPE];
3991  	int curzone[NR_CURSEG_TYPE];
3992  	unsigned int dirty_seg[NR_CURSEG_TYPE];
3993  	unsigned int full_seg[NR_CURSEG_TYPE];
3994  	unsigned int valid_blks[NR_CURSEG_TYPE];
3995  
3996  	unsigned int meta_count[META_MAX];
3997  	unsigned int segment_count[2];
3998  	unsigned int block_count[2];
3999  	unsigned int inplace_count;
4000  	unsigned long long base_mem, cache_mem, page_mem;
4001  };
4002  
F2FS_STAT(struct f2fs_sb_info * sbi)4003  static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4004  {
4005  	return (struct f2fs_stat_info *)sbi->stat_info;
4006  }
4007  
4008  #define stat_inc_cp_call_count(sbi, foreground)				\
4009  		atomic_inc(&sbi->cp_call_count[(foreground)])
4010  #define stat_inc_cp_count(sbi)		(F2FS_STAT(sbi)->cp_count++)
4011  #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
4012  #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
4013  #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
4014  #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
4015  #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
4016  #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4017  #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
4018  #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
4019  #define stat_inc_inline_xattr(inode)					\
4020  	do {								\
4021  		if (f2fs_has_inline_xattr(inode))			\
4022  			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
4023  	} while (0)
4024  #define stat_dec_inline_xattr(inode)					\
4025  	do {								\
4026  		if (f2fs_has_inline_xattr(inode))			\
4027  			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
4028  	} while (0)
4029  #define stat_inc_inline_inode(inode)					\
4030  	do {								\
4031  		if (f2fs_has_inline_data(inode))			\
4032  			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
4033  	} while (0)
4034  #define stat_dec_inline_inode(inode)					\
4035  	do {								\
4036  		if (f2fs_has_inline_data(inode))			\
4037  			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
4038  	} while (0)
4039  #define stat_inc_inline_dir(inode)					\
4040  	do {								\
4041  		if (f2fs_has_inline_dentry(inode))			\
4042  			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4043  	} while (0)
4044  #define stat_dec_inline_dir(inode)					\
4045  	do {								\
4046  		if (f2fs_has_inline_dentry(inode))			\
4047  			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4048  	} while (0)
4049  #define stat_inc_compr_inode(inode)					\
4050  	do {								\
4051  		if (f2fs_compressed_file(inode))			\
4052  			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4053  	} while (0)
4054  #define stat_dec_compr_inode(inode)					\
4055  	do {								\
4056  		if (f2fs_compressed_file(inode))			\
4057  			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4058  	} while (0)
4059  #define stat_add_compr_blocks(inode, blocks)				\
4060  		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4061  #define stat_sub_compr_blocks(inode, blocks)				\
4062  		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4063  #define stat_inc_swapfile_inode(inode)					\
4064  		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4065  #define stat_dec_swapfile_inode(inode)					\
4066  		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4067  #define stat_inc_atomic_inode(inode)					\
4068  			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4069  #define stat_dec_atomic_inode(inode)					\
4070  			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4071  #define stat_inc_meta_count(sbi, blkaddr)				\
4072  	do {								\
4073  		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4074  			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4075  		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4076  			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4077  		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4078  			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4079  		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4080  			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4081  	} while (0)
4082  #define stat_inc_seg_type(sbi, curseg)					\
4083  		((sbi)->segment_count[(curseg)->alloc_type]++)
4084  #define stat_inc_block_count(sbi, curseg)				\
4085  		((sbi)->block_count[(curseg)->alloc_type]++)
4086  #define stat_inc_inplace_blocks(sbi)					\
4087  		(atomic_inc(&(sbi)->inplace_count))
4088  #define stat_update_max_atomic_write(inode)				\
4089  	do {								\
4090  		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4091  		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4092  		if (cur > max)						\
4093  			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4094  	} while (0)
4095  #define stat_inc_gc_call_count(sbi, foreground)				\
4096  		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4097  #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4098  		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4099  #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4100  		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4101  
4102  #define stat_inc_tot_blk_count(si, blks)				\
4103  	((si)->tot_blks += (blks))
4104  
4105  #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4106  	do {								\
4107  		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4108  		stat_inc_tot_blk_count(si, blks);			\
4109  		si->data_blks += (blks);				\
4110  		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4111  	} while (0)
4112  
4113  #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4114  	do {								\
4115  		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4116  		stat_inc_tot_blk_count(si, blks);			\
4117  		si->node_blks += (blks);				\
4118  		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4119  	} while (0)
4120  
4121  int f2fs_build_stats(struct f2fs_sb_info *sbi);
4122  void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4123  void __init f2fs_create_root_stats(void);
4124  void f2fs_destroy_root_stats(void);
4125  void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4126  #else
4127  #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4128  #define stat_inc_cp_count(sbi)				do { } while (0)
4129  #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4130  #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4131  #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4132  #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4133  #define stat_inc_total_hit(sbi, type)			do { } while (0)
4134  #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4135  #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4136  #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4137  #define stat_inc_inline_xattr(inode)			do { } while (0)
4138  #define stat_dec_inline_xattr(inode)			do { } while (0)
4139  #define stat_inc_inline_inode(inode)			do { } while (0)
4140  #define stat_dec_inline_inode(inode)			do { } while (0)
4141  #define stat_inc_inline_dir(inode)			do { } while (0)
4142  #define stat_dec_inline_dir(inode)			do { } while (0)
4143  #define stat_inc_compr_inode(inode)			do { } while (0)
4144  #define stat_dec_compr_inode(inode)			do { } while (0)
4145  #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4146  #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4147  #define stat_inc_swapfile_inode(inode)			do { } while (0)
4148  #define stat_dec_swapfile_inode(inode)			do { } while (0)
4149  #define stat_inc_atomic_inode(inode)			do { } while (0)
4150  #define stat_dec_atomic_inode(inode)			do { } while (0)
4151  #define stat_update_max_atomic_write(inode)		do { } while (0)
4152  #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4153  #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4154  #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4155  #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4156  #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4157  #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4158  #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4159  #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4160  #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4161  #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4162  
f2fs_build_stats(struct f2fs_sb_info * sbi)4163  static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4164  static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4165  static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4166  static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4167  static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4168  #endif
4169  
4170  extern const struct file_operations f2fs_dir_operations;
4171  extern const struct file_operations f2fs_file_operations;
4172  extern const struct inode_operations f2fs_file_inode_operations;
4173  extern const struct address_space_operations f2fs_dblock_aops;
4174  extern const struct address_space_operations f2fs_node_aops;
4175  extern const struct address_space_operations f2fs_meta_aops;
4176  extern const struct inode_operations f2fs_dir_inode_operations;
4177  extern const struct inode_operations f2fs_symlink_inode_operations;
4178  extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4179  extern const struct inode_operations f2fs_special_inode_operations;
4180  extern struct kmem_cache *f2fs_inode_entry_slab;
4181  
4182  /*
4183   * inline.c
4184   */
4185  bool f2fs_may_inline_data(struct inode *inode);
4186  bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4187  bool f2fs_may_inline_dentry(struct inode *inode);
4188  void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4189  void f2fs_truncate_inline_inode(struct inode *inode,
4190  						struct page *ipage, u64 from);
4191  int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4192  int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4193  int f2fs_convert_inline_inode(struct inode *inode);
4194  int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4195  int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4196  int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4197  struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4198  					const struct f2fs_filename *fname,
4199  					struct page **res_page);
4200  int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4201  			struct page *ipage);
4202  int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4203  			struct inode *inode, nid_t ino, umode_t mode);
4204  void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4205  				struct page *page, struct inode *dir,
4206  				struct inode *inode);
4207  bool f2fs_empty_inline_dir(struct inode *dir);
4208  int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4209  			struct fscrypt_str *fstr);
4210  int f2fs_inline_data_fiemap(struct inode *inode,
4211  			struct fiemap_extent_info *fieinfo,
4212  			__u64 start, __u64 len);
4213  
4214  /*
4215   * shrinker.c
4216   */
4217  unsigned long f2fs_shrink_count(struct shrinker *shrink,
4218  			struct shrink_control *sc);
4219  unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4220  			struct shrink_control *sc);
4221  void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4222  void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4223  
4224  /*
4225   * extent_cache.c
4226   */
4227  bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4228  void f2fs_init_extent_tree(struct inode *inode);
4229  void f2fs_drop_extent_tree(struct inode *inode);
4230  void f2fs_destroy_extent_node(struct inode *inode);
4231  void f2fs_destroy_extent_tree(struct inode *inode);
4232  void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4233  int __init f2fs_create_extent_cache(void);
4234  void f2fs_destroy_extent_cache(void);
4235  
4236  /* read extent cache ops */
4237  void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4238  bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4239  			struct extent_info *ei);
4240  bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4241  			block_t *blkaddr);
4242  void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4243  void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4244  			pgoff_t fofs, block_t blkaddr, unsigned int len);
4245  unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4246  			int nr_shrink);
4247  
4248  /* block age extent cache ops */
4249  void f2fs_init_age_extent_tree(struct inode *inode);
4250  bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4251  			struct extent_info *ei);
4252  void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4253  void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4254  			pgoff_t fofs, unsigned int len);
4255  unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4256  			int nr_shrink);
4257  
4258  /*
4259   * sysfs.c
4260   */
4261  #define MIN_RA_MUL	2
4262  #define MAX_RA_MUL	256
4263  
4264  int __init f2fs_init_sysfs(void);
4265  void f2fs_exit_sysfs(void);
4266  int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4267  void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4268  
4269  /* verity.c */
4270  extern const struct fsverity_operations f2fs_verityops;
4271  
4272  /*
4273   * crypto support
4274   */
f2fs_encrypted_file(struct inode * inode)4275  static inline bool f2fs_encrypted_file(struct inode *inode)
4276  {
4277  	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4278  }
4279  
f2fs_set_encrypted_inode(struct inode * inode)4280  static inline void f2fs_set_encrypted_inode(struct inode *inode)
4281  {
4282  #ifdef CONFIG_FS_ENCRYPTION
4283  	file_set_encrypt(inode);
4284  	f2fs_set_inode_flags(inode);
4285  #endif
4286  }
4287  
4288  /*
4289   * Returns true if the reads of the inode's data need to undergo some
4290   * postprocessing step, like decryption or authenticity verification.
4291   */
f2fs_post_read_required(struct inode * inode)4292  static inline bool f2fs_post_read_required(struct inode *inode)
4293  {
4294  	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4295  		f2fs_compressed_file(inode);
4296  }
4297  
f2fs_used_in_atomic_write(struct inode * inode)4298  static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4299  {
4300  	return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4301  }
4302  
f2fs_meta_inode_gc_required(struct inode * inode)4303  static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4304  {
4305  	return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4306  }
4307  
4308  /*
4309   * compress.c
4310   */
4311  #ifdef CONFIG_F2FS_FS_COMPRESSION
4312  enum cluster_check_type {
4313  	CLUSTER_IS_COMPR,   /* check only if compressed cluster */
4314  	CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4315  	CLUSTER_RAW_BLKS    /* return # of raw blocks in a cluster */
4316  };
4317  bool f2fs_is_compressed_page(struct page *page);
4318  struct page *f2fs_compress_control_page(struct page *page);
4319  int f2fs_prepare_compress_overwrite(struct inode *inode,
4320  			struct page **pagep, pgoff_t index, void **fsdata);
4321  bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4322  					pgoff_t index, unsigned copied);
4323  int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4324  void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4325  bool f2fs_is_compress_backend_ready(struct inode *inode);
4326  bool f2fs_is_compress_level_valid(int alg, int lvl);
4327  int __init f2fs_init_compress_mempool(void);
4328  void f2fs_destroy_compress_mempool(void);
4329  void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4330  void f2fs_end_read_compressed_page(struct page *page, bool failed,
4331  				block_t blkaddr, bool in_task);
4332  bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4333  bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4334  bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4335  				int index, int nr_pages, bool uptodate);
4336  bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4337  void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4338  int f2fs_write_multi_pages(struct compress_ctx *cc,
4339  						int *submitted,
4340  						struct writeback_control *wbc,
4341  						enum iostat_type io_type);
4342  int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4343  bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4344  void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4345  				pgoff_t fofs, block_t blkaddr,
4346  				unsigned int llen, unsigned int c_len);
4347  int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4348  				unsigned nr_pages, sector_t *last_block_in_bio,
4349  				struct readahead_control *rac, bool for_write);
4350  struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4351  void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4352  				bool in_task);
4353  void f2fs_put_page_dic(struct page *page, bool in_task);
4354  unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4355  						unsigned int ofs_in_node);
4356  int f2fs_init_compress_ctx(struct compress_ctx *cc);
4357  void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4358  void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4359  int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4360  void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4361  int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4362  void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4363  int __init f2fs_init_compress_cache(void);
4364  void f2fs_destroy_compress_cache(void);
4365  struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4366  void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4367  void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4368  						nid_t ino, block_t blkaddr);
4369  bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4370  								block_t blkaddr);
4371  void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4372  #define inc_compr_inode_stat(inode)					\
4373  	do {								\
4374  		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4375  		sbi->compr_new_inode++;					\
4376  	} while (0)
4377  #define add_compr_block_stat(inode, blocks)				\
4378  	do {								\
4379  		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4380  		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4381  		sbi->compr_written_block += blocks;			\
4382  		sbi->compr_saved_block += diff;				\
4383  	} while (0)
4384  #else
f2fs_is_compressed_page(struct page * page)4385  static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4386  static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4387  {
4388  	if (!f2fs_compressed_file(inode))
4389  		return true;
4390  	/* not support compression */
4391  	return false;
4392  }
f2fs_is_compress_level_valid(int alg,int lvl)4393  static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4394  static inline struct page *f2fs_compress_control_page(struct page *page)
4395  {
4396  	WARN_ON_ONCE(1);
4397  	return ERR_PTR(-EINVAL);
4398  }
f2fs_init_compress_mempool(void)4399  static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4400  static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4401  static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4402  				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4403  static inline void f2fs_end_read_compressed_page(struct page *page,
4404  				bool failed, block_t blkaddr, bool in_task)
4405  {
4406  	WARN_ON_ONCE(1);
4407  }
f2fs_put_page_dic(struct page * page,bool in_task)4408  static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4409  {
4410  	WARN_ON_ONCE(1);
4411  }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4412  static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4413  			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4414  static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4415  static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4416  static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4417  static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4418  static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4419  static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4420  static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4421  static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4422  				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4423  static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4424  				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4425  static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4426  				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4427  static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4428  							nid_t ino) { }
4429  #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4430  static inline int f2fs_is_compressed_cluster(
4431  				struct inode *inode,
4432  				pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4433  static inline bool f2fs_is_sparse_cluster(
4434  				struct inode *inode,
4435  				pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4436  static inline void f2fs_update_read_extent_tree_range_compressed(
4437  				struct inode *inode,
4438  				pgoff_t fofs, block_t blkaddr,
4439  				unsigned int llen, unsigned int c_len) { }
4440  #endif
4441  
set_compress_context(struct inode * inode)4442  static inline int set_compress_context(struct inode *inode)
4443  {
4444  #ifdef CONFIG_F2FS_FS_COMPRESSION
4445  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4446  	struct f2fs_inode_info *fi = F2FS_I(inode);
4447  
4448  	fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4449  	fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4450  	fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4451  					BIT(COMPRESS_CHKSUM) : 0;
4452  	fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4453  	if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4454  		fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4455  			F2FS_OPTION(sbi).compress_level)
4456  		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4457  	fi->i_flags |= F2FS_COMPR_FL;
4458  	set_inode_flag(inode, FI_COMPRESSED_FILE);
4459  	stat_inc_compr_inode(inode);
4460  	inc_compr_inode_stat(inode);
4461  	f2fs_mark_inode_dirty_sync(inode, true);
4462  	return 0;
4463  #else
4464  	return -EOPNOTSUPP;
4465  #endif
4466  }
4467  
f2fs_disable_compressed_file(struct inode * inode)4468  static inline bool f2fs_disable_compressed_file(struct inode *inode)
4469  {
4470  	struct f2fs_inode_info *fi = F2FS_I(inode);
4471  
4472  	f2fs_down_write(&fi->i_sem);
4473  
4474  	if (!f2fs_compressed_file(inode)) {
4475  		f2fs_up_write(&fi->i_sem);
4476  		return true;
4477  	}
4478  	if (f2fs_is_mmap_file(inode) ||
4479  		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4480  		f2fs_up_write(&fi->i_sem);
4481  		return false;
4482  	}
4483  
4484  	fi->i_flags &= ~F2FS_COMPR_FL;
4485  	stat_dec_compr_inode(inode);
4486  	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4487  	f2fs_mark_inode_dirty_sync(inode, true);
4488  
4489  	f2fs_up_write(&fi->i_sem);
4490  	return true;
4491  }
4492  
4493  #define F2FS_FEATURE_FUNCS(name, flagname) \
4494  static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4495  { \
4496  	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4497  }
4498  
4499  F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4500  F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4501  F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4502  F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4503  F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4504  F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4505  F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4506  F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4507  F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4508  F2FS_FEATURE_FUNCS(verity, VERITY);
4509  F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4510  F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4511  F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4512  F2FS_FEATURE_FUNCS(readonly, RO);
4513  
4514  #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4515  static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4516  				    block_t blkaddr)
4517  {
4518  	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4519  
4520  	return test_bit(zno, FDEV(devi).blkz_seq);
4521  }
4522  #endif
4523  
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4524  static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4525  				  struct block_device *bdev)
4526  {
4527  	int i;
4528  
4529  	if (!f2fs_is_multi_device(sbi))
4530  		return 0;
4531  
4532  	for (i = 0; i < sbi->s_ndevs; i++)
4533  		if (FDEV(i).bdev == bdev)
4534  			return i;
4535  
4536  	WARN_ON(1);
4537  	return -1;
4538  }
4539  
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4540  static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4541  {
4542  	return f2fs_sb_has_blkzoned(sbi);
4543  }
4544  
f2fs_bdev_support_discard(struct block_device * bdev)4545  static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4546  {
4547  	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4548  }
4549  
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4550  static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4551  {
4552  	int i;
4553  
4554  	if (!f2fs_is_multi_device(sbi))
4555  		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4556  
4557  	for (i = 0; i < sbi->s_ndevs; i++)
4558  		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4559  			return true;
4560  	return false;
4561  }
4562  
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4563  static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4564  {
4565  	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4566  					f2fs_hw_should_discard(sbi);
4567  }
4568  
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4569  static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4570  {
4571  	int i;
4572  
4573  	if (!f2fs_is_multi_device(sbi))
4574  		return bdev_read_only(sbi->sb->s_bdev);
4575  
4576  	for (i = 0; i < sbi->s_ndevs; i++)
4577  		if (bdev_read_only(FDEV(i).bdev))
4578  			return true;
4579  	return false;
4580  }
4581  
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4582  static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4583  {
4584  	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4585  }
4586  
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4587  static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4588  {
4589  	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4590  }
4591  
f2fs_valid_pinned_area(struct f2fs_sb_info * sbi,block_t blkaddr)4592  static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4593  					  block_t blkaddr)
4594  {
4595  	if (f2fs_sb_has_blkzoned(sbi)) {
4596  		int devi = f2fs_target_device_index(sbi, blkaddr);
4597  
4598  		return !bdev_is_zoned(FDEV(devi).bdev);
4599  	}
4600  	return true;
4601  }
4602  
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4603  static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4604  {
4605  	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4606  }
4607  
f2fs_may_compress(struct inode * inode)4608  static inline bool f2fs_may_compress(struct inode *inode)
4609  {
4610  	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4611  		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4612  		f2fs_is_mmap_file(inode))
4613  		return false;
4614  	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4615  }
4616  
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4617  static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4618  						u64 blocks, bool add)
4619  {
4620  	struct f2fs_inode_info *fi = F2FS_I(inode);
4621  	int diff = fi->i_cluster_size - blocks;
4622  
4623  	/* don't update i_compr_blocks if saved blocks were released */
4624  	if (!add && !atomic_read(&fi->i_compr_blocks))
4625  		return;
4626  
4627  	if (add) {
4628  		atomic_add(diff, &fi->i_compr_blocks);
4629  		stat_add_compr_blocks(inode, diff);
4630  	} else {
4631  		atomic_sub(diff, &fi->i_compr_blocks);
4632  		stat_sub_compr_blocks(inode, diff);
4633  	}
4634  	f2fs_mark_inode_dirty_sync(inode, true);
4635  }
4636  
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4637  static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4638  								int flag)
4639  {
4640  	if (!f2fs_is_multi_device(sbi))
4641  		return false;
4642  	if (flag != F2FS_GET_BLOCK_DIO)
4643  		return false;
4644  	return sbi->aligned_blksize;
4645  }
4646  
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4647  static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4648  {
4649  	return fsverity_active(inode) &&
4650  	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4651  }
4652  
4653  #ifdef CONFIG_F2FS_FAULT_INJECTION
4654  extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4655  							unsigned long type);
4656  #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4657  static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4658  					unsigned long rate, unsigned long type)
4659  {
4660  	return 0;
4661  }
4662  #endif
4663  
is_journalled_quota(struct f2fs_sb_info * sbi)4664  static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4665  {
4666  #ifdef CONFIG_QUOTA
4667  	if (f2fs_sb_has_quota_ino(sbi))
4668  		return true;
4669  	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4670  		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4671  		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4672  		return true;
4673  #endif
4674  	return false;
4675  }
4676  
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4677  static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4678  {
4679  	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4680  }
4681  
f2fs_io_schedule_timeout(long timeout)4682  static inline void f2fs_io_schedule_timeout(long timeout)
4683  {
4684  	set_current_state(TASK_UNINTERRUPTIBLE);
4685  	io_schedule_timeout(timeout);
4686  }
4687  
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4688  static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4689  				struct folio *folio, enum page_type type)
4690  {
4691  	pgoff_t ofs = folio->index;
4692  
4693  	if (unlikely(f2fs_cp_error(sbi)))
4694  		return;
4695  
4696  	if (ofs == sbi->page_eio_ofs[type]) {
4697  		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4698  			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4699  	} else {
4700  		sbi->page_eio_ofs[type] = ofs;
4701  		sbi->page_eio_cnt[type] = 0;
4702  	}
4703  }
4704  
f2fs_is_readonly(struct f2fs_sb_info * sbi)4705  static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4706  {
4707  	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4708  }
4709  
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4710  static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4711  					block_t blkaddr, unsigned int cnt)
4712  {
4713  	bool need_submit = false;
4714  	int i = 0;
4715  
4716  	do {
4717  		struct page *page;
4718  
4719  		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4720  		if (page) {
4721  			if (folio_test_writeback(page_folio(page)))
4722  				need_submit = true;
4723  			f2fs_put_page(page, 0);
4724  		}
4725  	} while (++i < cnt && !need_submit);
4726  
4727  	if (need_submit)
4728  		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4729  							NULL, 0, DATA);
4730  
4731  	truncate_inode_pages_range(META_MAPPING(sbi),
4732  			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4733  			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4734  }
4735  
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr)4736  static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4737  								block_t blkaddr)
4738  {
4739  	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4740  	f2fs_invalidate_compress_page(sbi, blkaddr);
4741  }
4742  
4743  #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4744  #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4745  
4746  #endif /* _LINUX_F2FS_H */
4747