1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Serial line interface for Bosh BNO055 IMU (via serdev).
4 * This file implements serial communication up to the register read/write
5 * level.
6 *
7 * Copyright (C) 2021-2022 Istituto Italiano di Tecnologia
8 * Electronic Design Laboratory
9 * Written by Andrea Merello <andrea.merello@iit.it>
10 *
11 * This driver is based on
12 * Plantower PMS7003 particulate matter sensor driver
13 * Which is
14 * Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
15 */
16
17 #include <linux/completion.h>
18 #include <linux/device.h>
19 #include <linux/errno.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/module.h>
24 #include <linux/mutex.h>
25 #include <linux/regmap.h>
26 #include <linux/serdev.h>
27
28 #include "bno055_ser_trace.h"
29 #include "bno055.h"
30
31 /*
32 * Register writes cmd have the following format
33 * +------+------+-----+-----+----- ... ----+
34 * | 0xAA | 0xOO | REG | LEN | payload[LEN] |
35 * +------+------+-----+-----+----- ... ----+
36 *
37 * Register write responses have the following format
38 * +------+----------+
39 * | 0xEE | ERROCODE |
40 * +------+----------+
41 *
42 * .. except when writing the SYS_RST bit (i.e. triggering a system reset); in
43 * case the IMU accepts the command, then it resets without responding. We don't
44 * handle this (yet) here (so we inform the common bno055 code not to perform
45 * sw resets - bno055 on serial bus basically requires the hw reset pin).
46 *
47 * Register read have the following format
48 * +------+------+-----+-----+
49 * | 0xAA | 0xO1 | REG | LEN |
50 * +------+------+-----+-----+
51 *
52 * Successful register read response have the following format
53 * +------+-----+----- ... ----+
54 * | 0xBB | LEN | payload[LEN] |
55 * +------+-----+----- ... ----+
56 *
57 * Failed register read response have the following format
58 * +------+--------+
59 * | 0xEE | ERRCODE| (ERRCODE always > 1)
60 * +------+--------+
61 *
62 * Error codes are
63 * 01: OK
64 * 02: read/write FAIL
65 * 04: invalid address
66 * 05: write on RO
67 * 06: wrong start byte
68 * 07: bus overrun
69 * 08: len too high
70 * 09: len too low
71 * 10: bus RX byte timeout (timeout is 30mS)
72 *
73 *
74 * **WORKAROUND ALERT**
75 *
76 * Serial communication seems very fragile: the BNO055 buffer seems to overflow
77 * very easy; BNO055 seems able to sink few bytes, then it needs a brief pause.
78 * On the other hand, it is also picky on timeout: if there is a pause > 30mS in
79 * between two bytes then the transaction fails (IMU internal RX FSM resets).
80 *
81 * BNO055 has been seen also failing to process commands in case we send them
82 * too close each other (or if it is somehow busy?)
83 *
84 * In particular I saw these scenarios:
85 * 1) If we send 2 bytes per time, then the IMU never(?) overflows.
86 * 2) If we send 4 bytes per time (i.e. the full header), then the IMU could
87 * overflow, but it seem to sink all 4 bytes, then it returns error.
88 * 3) If we send more than 4 bytes, the IMU could overflow, and I saw it sending
89 * error after 4 bytes are sent; we have troubles in synchronizing again,
90 * because we are still sending data, and the IMU interprets it as the 1st
91 * byte of a new command.
92 *
93 * While we must avoid case 3, we could send 4 bytes per time and eventually
94 * retry in case of failure; this seemed convenient for reads (which requires
95 * TXing exactly 4 bytes), however it has been seen that, depending by the IMU
96 * settings (e.g. LPF), failures became less or more frequent; in certain IMU
97 * configurations they are very rare, but in certain others we keeps failing
98 * even after like 30 retries.
99 *
100 * So, we just split TXes in [2-bytes + delay] steps, and still keep an eye on
101 * the IMU response; in case it overflows (which is now unlikely), we retry.
102 */
103
104 /*
105 * Read operation overhead:
106 * 4 bytes req + 2byte resp hdr.
107 * 6 bytes = 60 bit (considering 1start + 1stop bits).
108 * 60/115200 = ~520uS + about 2500mS delay -> ~3mS
109 * In 3mS we could read back about 34 bytes that means 17 samples, this means
110 * that in case of scattered reads in which the gap is 17 samples or less it is
111 * still convenient to go for a burst.
112 * We have to take into account also IMU response time - IMU seems to be often
113 * reasonably quick to respond, but sometimes it seems to be in some "critical
114 * section" in which it delays handling of serial protocol. Because of this we
115 * round-up to 22, which is the max number of samples, always bursting indeed.
116 */
117 #define BNO055_SER_XFER_BURST_BREAK_THRESHOLD 22
118
119 struct bno055_ser_priv {
120 enum {
121 CMD_NONE,
122 CMD_READ,
123 CMD_WRITE,
124 } expect_response;
125 int expected_data_len;
126 u8 *response_buf;
127
128 /**
129 * enum cmd_status - represent the status of a command sent to the HW.
130 * @STATUS_CRIT: The command failed: the serial communication failed.
131 * @STATUS_OK: The command executed successfully.
132 * @STATUS_FAIL: The command failed: HW responded with an error.
133 */
134 enum {
135 STATUS_CRIT = -1,
136 STATUS_OK = 0,
137 STATUS_FAIL = 1,
138 } cmd_status;
139
140 /*
141 * Protects all the above fields, which are accessed in behalf of both
142 * the serdev RX callback and the regmap side
143 */
144 struct mutex lock;
145
146 /* Only accessed in serdev RX callback context*/
147 struct {
148 enum {
149 RX_IDLE,
150 RX_START,
151 RX_DATA,
152 } state;
153 int databuf_count;
154 int expected_len;
155 int type;
156 } rx;
157
158 /* Never accessed in behalf of serdev RX callback context */
159 bool cmd_stale;
160
161 struct completion cmd_complete;
162 struct serdev_device *serdev;
163 };
164
bno055_ser_send_chunk(struct bno055_ser_priv * priv,const u8 * data,int len)165 static int bno055_ser_send_chunk(struct bno055_ser_priv *priv, const u8 *data, int len)
166 {
167 int ret;
168
169 trace_send_chunk(len, data);
170 ret = serdev_device_write(priv->serdev, data, len, msecs_to_jiffies(25));
171 if (ret < 0)
172 return ret;
173
174 if (ret < len)
175 return -EIO;
176
177 return 0;
178 }
179
180 /*
181 * Send a read or write command.
182 * 'data' can be NULL (used in read case). 'len' parameter is always valid; in
183 * case 'data' is non-NULL then it must match 'data' size.
184 */
bno055_ser_do_send_cmd(struct bno055_ser_priv * priv,bool read,int addr,int len,const u8 * data)185 static int bno055_ser_do_send_cmd(struct bno055_ser_priv *priv,
186 bool read, int addr, int len, const u8 *data)
187 {
188 u8 hdr[] = {0xAA, read, addr, len};
189 int chunk_len;
190 int ret;
191
192 ret = bno055_ser_send_chunk(priv, hdr, 2);
193 if (ret)
194 goto fail;
195 usleep_range(2000, 3000);
196 ret = bno055_ser_send_chunk(priv, hdr + 2, 2);
197 if (ret)
198 goto fail;
199
200 if (read)
201 return 0;
202
203 while (len) {
204 chunk_len = min(len, 2);
205 usleep_range(2000, 3000);
206 ret = bno055_ser_send_chunk(priv, data, chunk_len);
207 if (ret)
208 goto fail;
209 data += chunk_len;
210 len -= chunk_len;
211 }
212
213 return 0;
214 fail:
215 /* waiting more than 30mS should clear the BNO055 internal state */
216 usleep_range(40000, 50000);
217 return ret;
218 }
219
bno055_ser_send_cmd(struct bno055_ser_priv * priv,bool read,int addr,int len,const u8 * data)220 static int bno055_ser_send_cmd(struct bno055_ser_priv *priv,
221 bool read, int addr, int len, const u8 *data)
222 {
223 const int retry_max = 5;
224 int retry = retry_max;
225 int ret = 0;
226
227 /*
228 * In case previous command was interrupted we still need to wait it to
229 * complete before we can issue new commands
230 */
231 if (priv->cmd_stale) {
232 ret = wait_for_completion_interruptible_timeout(&priv->cmd_complete,
233 msecs_to_jiffies(100));
234 if (ret == -ERESTARTSYS)
235 return -ERESTARTSYS;
236
237 priv->cmd_stale = false;
238 /* if serial protocol broke, bail out */
239 if (priv->cmd_status == STATUS_CRIT)
240 return -EIO;
241 }
242
243 /*
244 * Try to convince the IMU to cooperate.. as explained in the comments
245 * at the top of this file, the IMU could also refuse the command (i.e.
246 * it is not ready yet); retry in this case.
247 */
248 do {
249 mutex_lock(&priv->lock);
250 priv->expect_response = read ? CMD_READ : CMD_WRITE;
251 reinit_completion(&priv->cmd_complete);
252 mutex_unlock(&priv->lock);
253
254 if (retry != retry_max)
255 trace_cmd_retry(read, addr, retry_max - retry);
256 ret = bno055_ser_do_send_cmd(priv, read, addr, len, data);
257 if (ret)
258 continue;
259
260 ret = wait_for_completion_interruptible_timeout(&priv->cmd_complete,
261 msecs_to_jiffies(100));
262 if (ret == -ERESTARTSYS) {
263 priv->cmd_stale = true;
264 return -ERESTARTSYS;
265 }
266
267 if (!ret)
268 return -ETIMEDOUT;
269
270 if (priv->cmd_status == STATUS_OK)
271 return 0;
272 if (priv->cmd_status == STATUS_CRIT)
273 return -EIO;
274
275 /* loop in case priv->cmd_status == STATUS_FAIL */
276 } while (--retry);
277
278 if (ret < 0)
279 return ret;
280 if (priv->cmd_status == STATUS_FAIL)
281 return -EINVAL;
282 return 0;
283 }
284
bno055_ser_write_reg(void * context,const void * _data,size_t count)285 static int bno055_ser_write_reg(void *context, const void *_data, size_t count)
286 {
287 const u8 *data = _data;
288 struct bno055_ser_priv *priv = context;
289
290 if (count < 2) {
291 dev_err(&priv->serdev->dev, "Invalid write count %zu", count);
292 return -EINVAL;
293 }
294
295 trace_write_reg(data[0], data[1]);
296 return bno055_ser_send_cmd(priv, 0, data[0], count - 1, data + 1);
297 }
298
bno055_ser_read_reg(void * context,const void * _reg,size_t reg_size,void * val,size_t val_size)299 static int bno055_ser_read_reg(void *context,
300 const void *_reg, size_t reg_size,
301 void *val, size_t val_size)
302 {
303 int ret;
304 int reg_addr;
305 const u8 *reg = _reg;
306 struct bno055_ser_priv *priv = context;
307
308 if (val_size > 128) {
309 dev_err(&priv->serdev->dev, "Invalid read valsize %zu", val_size);
310 return -EINVAL;
311 }
312
313 reg_addr = *reg;
314 trace_read_reg(reg_addr, val_size);
315 mutex_lock(&priv->lock);
316 priv->expected_data_len = val_size;
317 priv->response_buf = val;
318 mutex_unlock(&priv->lock);
319
320 ret = bno055_ser_send_cmd(priv, 1, reg_addr, val_size, NULL);
321
322 mutex_lock(&priv->lock);
323 priv->response_buf = NULL;
324 mutex_unlock(&priv->lock);
325
326 return ret;
327 }
328
329 /*
330 * Handler for received data; this is called from the receiver callback whenever
331 * it got some packet from the serial bus. The status tells us whether the
332 * packet is valid (i.e. header ok && received payload len consistent wrt the
333 * header). It's now our responsibility to check whether this is what we
334 * expected, of whether we got some unexpected, yet valid, packet.
335 */
bno055_ser_handle_rx(struct bno055_ser_priv * priv,int status)336 static void bno055_ser_handle_rx(struct bno055_ser_priv *priv, int status)
337 {
338 mutex_lock(&priv->lock);
339 switch (priv->expect_response) {
340 case CMD_NONE:
341 dev_warn(&priv->serdev->dev, "received unexpected, yet valid, data from sensor");
342 mutex_unlock(&priv->lock);
343 return;
344
345 case CMD_READ:
346 priv->cmd_status = status;
347 if (status == STATUS_OK &&
348 priv->rx.databuf_count != priv->expected_data_len) {
349 /*
350 * If we got here, then the lower layer serial protocol
351 * seems consistent with itself; if we got an unexpected
352 * amount of data then signal it as a non critical error
353 */
354 priv->cmd_status = STATUS_FAIL;
355 dev_warn(&priv->serdev->dev,
356 "received an unexpected amount of, yet valid, data from sensor");
357 }
358 break;
359
360 case CMD_WRITE:
361 priv->cmd_status = status;
362 break;
363 }
364
365 priv->expect_response = CMD_NONE;
366 mutex_unlock(&priv->lock);
367 complete(&priv->cmd_complete);
368 }
369
370 /*
371 * Serdev receiver FSM. This tracks the serial communication and parse the
372 * header. It pushes packets to bno055_ser_handle_rx(), eventually communicating
373 * failures (i.e. malformed packets).
374 * Ideally it doesn't know anything about upper layer (i.e. if this is the
375 * packet we were really expecting), but since we copies the payload into the
376 * receiver buffer (that is not valid when i.e. we don't expect data), we
377 * snoop a bit in the upper layer..
378 * Also, we assume to RX one pkt per time (i.e. the HW doesn't send anything
379 * unless we require to AND we don't queue more than one request per time).
380 */
bno055_ser_receive_buf(struct serdev_device * serdev,const u8 * buf,size_t size)381 static size_t bno055_ser_receive_buf(struct serdev_device *serdev,
382 const u8 *buf, size_t size)
383 {
384 int status;
385 struct bno055_ser_priv *priv = serdev_device_get_drvdata(serdev);
386 size_t remaining = size;
387
388 if (size == 0)
389 return 0;
390
391 trace_recv(size, buf);
392 switch (priv->rx.state) {
393 case RX_IDLE:
394 /*
395 * New packet.
396 * Check for its 1st byte that identifies the pkt type.
397 */
398 if (buf[0] != 0xEE && buf[0] != 0xBB) {
399 dev_err(&priv->serdev->dev,
400 "Invalid packet start %x", buf[0]);
401 bno055_ser_handle_rx(priv, STATUS_CRIT);
402 break;
403 }
404 priv->rx.type = buf[0];
405 priv->rx.state = RX_START;
406 remaining--;
407 buf++;
408 priv->rx.databuf_count = 0;
409 fallthrough;
410
411 case RX_START:
412 /*
413 * Packet RX in progress, we expect either 1-byte len or 1-byte
414 * status depending by the packet type.
415 */
416 if (remaining == 0)
417 break;
418
419 if (priv->rx.type == 0xEE) {
420 if (remaining > 1) {
421 dev_err(&priv->serdev->dev, "EE pkt. Extra data received");
422 status = STATUS_CRIT;
423 } else {
424 status = (buf[0] == 1) ? STATUS_OK : STATUS_FAIL;
425 }
426 bno055_ser_handle_rx(priv, status);
427 priv->rx.state = RX_IDLE;
428 break;
429
430 } else {
431 /*priv->rx.type == 0xBB */
432 priv->rx.state = RX_DATA;
433 priv->rx.expected_len = buf[0];
434 remaining--;
435 buf++;
436 }
437 fallthrough;
438
439 case RX_DATA:
440 /* Header parsed; now receiving packet data payload */
441 if (remaining == 0)
442 break;
443
444 if (priv->rx.databuf_count + remaining > priv->rx.expected_len) {
445 /*
446 * This is an inconsistency in serial protocol, we lost
447 * sync and we don't know how to handle further data
448 */
449 dev_err(&priv->serdev->dev, "BB pkt. Extra data received");
450 bno055_ser_handle_rx(priv, STATUS_CRIT);
451 priv->rx.state = RX_IDLE;
452 break;
453 }
454
455 mutex_lock(&priv->lock);
456 /*
457 * NULL e.g. when read cmd is stale or when no read cmd is
458 * actually pending.
459 */
460 if (priv->response_buf &&
461 /*
462 * Snoop on the upper layer protocol stuff to make sure not
463 * to write to an invalid memory. Apart for this, let's the
464 * upper layer manage any inconsistency wrt expected data
465 * len (as long as the serial protocol is consistent wrt
466 * itself (i.e. response header is consistent with received
467 * response len.
468 */
469 (priv->rx.databuf_count + remaining <= priv->expected_data_len))
470 memcpy(priv->response_buf + priv->rx.databuf_count,
471 buf, remaining);
472 mutex_unlock(&priv->lock);
473
474 priv->rx.databuf_count += remaining;
475
476 /*
477 * Reached expected len advertised by the IMU for the current
478 * packet. Pass it to the upper layer (for us it is just valid).
479 */
480 if (priv->rx.databuf_count == priv->rx.expected_len) {
481 bno055_ser_handle_rx(priv, STATUS_OK);
482 priv->rx.state = RX_IDLE;
483 }
484 break;
485 }
486
487 return size;
488 }
489
490 static const struct serdev_device_ops bno055_ser_serdev_ops = {
491 .receive_buf = bno055_ser_receive_buf,
492 .write_wakeup = serdev_device_write_wakeup,
493 };
494
495 static const struct regmap_bus bno055_ser_regmap_bus = {
496 .write = bno055_ser_write_reg,
497 .read = bno055_ser_read_reg,
498 };
499
bno055_ser_probe(struct serdev_device * serdev)500 static int bno055_ser_probe(struct serdev_device *serdev)
501 {
502 struct bno055_ser_priv *priv;
503 struct regmap *regmap;
504 int ret;
505
506 priv = devm_kzalloc(&serdev->dev, sizeof(*priv), GFP_KERNEL);
507 if (!priv)
508 return -ENOMEM;
509
510 serdev_device_set_drvdata(serdev, priv);
511 priv->serdev = serdev;
512 mutex_init(&priv->lock);
513 init_completion(&priv->cmd_complete);
514
515 serdev_device_set_client_ops(serdev, &bno055_ser_serdev_ops);
516 ret = devm_serdev_device_open(&serdev->dev, serdev);
517 if (ret)
518 return ret;
519
520 if (serdev_device_set_baudrate(serdev, 115200) != 115200) {
521 dev_err(&serdev->dev, "Cannot set required baud rate");
522 return -EIO;
523 }
524
525 ret = serdev_device_set_parity(serdev, SERDEV_PARITY_NONE);
526 if (ret) {
527 dev_err(&serdev->dev, "Cannot set required parity setting");
528 return ret;
529 }
530 serdev_device_set_flow_control(serdev, false);
531
532 regmap = devm_regmap_init(&serdev->dev, &bno055_ser_regmap_bus,
533 priv, &bno055_regmap_config);
534 if (IS_ERR(regmap))
535 return dev_err_probe(&serdev->dev, PTR_ERR(regmap),
536 "Unable to init register map");
537
538 return bno055_probe(&serdev->dev, regmap,
539 BNO055_SER_XFER_BURST_BREAK_THRESHOLD, false);
540 }
541
542 static const struct of_device_id bno055_ser_of_match[] = {
543 { .compatible = "bosch,bno055" },
544 { }
545 };
546 MODULE_DEVICE_TABLE(of, bno055_ser_of_match);
547
548 static struct serdev_device_driver bno055_ser_driver = {
549 .driver = {
550 .name = "bno055-ser",
551 .of_match_table = bno055_ser_of_match,
552 },
553 .probe = bno055_ser_probe,
554 };
555 module_serdev_device_driver(bno055_ser_driver);
556
557 MODULE_AUTHOR("Andrea Merello <andrea.merello@iit.it>");
558 MODULE_DESCRIPTION("Bosch BNO055 serdev interface");
559 MODULE_IMPORT_NS(IIO_BNO055);
560 MODULE_LICENSE("GPL");
561